人教A版2020届高考数学二轮复习讲义及题型归纳:数列(拔高)

合集下载

人教A版2020届高考数学二轮复习讲义及题型归纳:数列(拔高)

人教A版2020届高考数学二轮复习讲义及题型归纳:数列(拔高)

第一章:等差数列与等比数列的综合核心考点一:等差、等比数列的判断与证明 方法总结判断和证明数列是等差、等比数列常见的3中方法如下: (1)定义法:对于2≥n 的任意正整数,都有1--n n a a (或1-n na a )为同一常数(用于证明) (2)通项公式法:①若)()1(11d a nd d n a a n -+=-+=,则数列{}n a 为等差数列(用于判断); ②若n nn n q c q qa q a a •=•==-111,则数列{}n a 为等比数列(用于判断); (3)中项公式法:①若112+-+=n n n a a a (*,2N n n ∈≥),则数列{}n a 为等差数列(用于证明);②若112+-=n n n a a a (*,2N n n ∈≥),则数列{}n a 为等比数列(用于证明); 1.设{}n a 是首项为a ,公差为d 的等差数列(d ≠0), n S 是其前n 项和.记n b =nSn n 2+c ,*n N ∈ ,其中c 为实数.(1)若c =0,且124,,b b b 成等比数列,证明:2*(,)nk k S n S k n N =∈; (2)若{}n b 是等差数列,证明:c =0.【解答】证明:(1)若c=0,则a n =a 1+(n ﹣1)d,S n =n[(n−1)d+2a]2,b n =nS n n 2=(n−1)d+2a2.当b 1,b 2,b 4成等比数列时,则b 22=b 1b 4, 即:(a +d2)2=a(a +3d2),得:d 2=2ad,又d≠0,故d=2a.因此:S n =n 2a,S nk =(nk)2a =n 2k 2a,n 2S k =n 2k 2a . 故:S nk =n 2S k (k,n ∈N*). (2)b n =nS nn 2+c =n 2(n−1)d+2a2n 2+c=n 2(n−1)d+2a 2+c (n−1)d+2a 2−c (n−1)d+2a2n 2+c=(n−1)d+2a2−c(n−1)d+2a2n 2+c. ①若{b n }是等差数列,则{b n }的通项公式是b n =A n +B 型. 观察①式后一项,分子幂低于分母幂, 故有:c(n−1)d+2a2n 2+c=0,即c(n−1)d+2a2=0,而(n−1)d+2a2≠0,故c=0.经检验,当c=0时{b n }是等差数列.2.已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数, (1)证明:2n n a a λ+-=;(2)是否存在λ,使得{}n a 为等差数列?并说明理由. 【解析】因此存在4λ=,使得{}n a 为等差数列.3.对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以n n n n n n n a a a a a a a ---+++++=321123+++6, 因此等差数列{}n a 是“()3P 数列”.n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以122a a d'=-, 所以数列{}n a 是等差数列.4.设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列(1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由. 【解析】试题分析(1)根据等比数列定义只需验证每一项与前一项的比值都为同一个不为分别求解两个高次方程,利用消最高次的方法得到方程:27+430t t +=,无解,所以n,k 得到关于t 的一元方程4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)0t t t t t t ++-++-++=,从而将方程的解转化为研究函数()4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)g t t t t t t t =++-++-++零点情况,这个函数需要利用二次求导才可确定其在(0,)+∞上无零点所以12a ,22a ,32a ,42a 依次构成等比数列.化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,1因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列.(3)假设存在1a ,d 及正整数n ,k ,使得1n a ,2n k a +,23n k a +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦. 再将这两式相除,化简得()()()()()()ln 13ln 123ln 12ln 14ln 13ln 1t t t t t t +++++=++(**). 令()()()()()()()4ln 13ln 1ln 13ln 123ln 12ln 1g t t t t t t t =++-++-++,令()()()()()()()22213ln 13312ln 1231ln 1t t t t t t t ϕ=++-+++++, 则()()()()()()()613ln 13212ln 121ln 1t t t t t t t ϕ'=++-+++++⎡⎤⎣⎦.令()()1t t ϕϕ'=,则()()()()163ln 134ln 12ln 1t t t t ϕ'=+-+++⎡⎤⎣⎦.由()()()()1200000g ϕϕϕ====,()20t ϕ'>,第二节:求解数列的通项公式与前n 项和核心考点一:裂项相消1. 设数列{}n a 的前n 项和为n S .已知233n n S =+. (I)求{}n a 的通项公式;(II)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】(I)因为233n n S =+ 所以,1233a =+ ,故13,a = 当1n > 时,11233,n n S --=+此时,1122233,n n n n n a S S --=-=- 即13,n n a -=所以,13,1,3,1,n n n a n -=⎧=⎨>⎩当1n > 时,()11133log 313n n n n b n ---==-⋅当1n > 时,所以()()01231132313n n T n --=+⨯+⨯++-L 两式相减,得经检验,1n = 时也适合,核心考点二:错位相减1.设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n 且T n +a n +12n=λ(λ为常数).令c n =b 2n (n ∈N *)求数列{c n }的前n 项和R n .【解答】解:(1)设等差数列{a n }的首项为a 1,公差为d,由a 2n =2a n +1,取n=1,得a 2=2a 1+1,即a 1﹣d+1=0① 再由S 4=4S 2,得4a 1+4×3d 2=4(a 1+a 1+d),即d=2a 1②联立①、②得a 1=1,d=2.所以a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1; (2)把a n =2n ﹣1代入T n +a n +12n=λ,得T n +2n 2n =λ,则T n =λ−2n2n .所以b 1=T 1=λ﹣1,当n≥2时,b n =T n −T n−1=(λ−2n2n )−(λ−2(n−1)2n−1)=n−22n−1.所以b n =n−22n−1,c n =b 2n =2n−222n−1=n−14n−1. R n =c 1+c 2+…+c n =0+141+242+⋯+n−14n−1③14R n=142+243+⋯+n−14n ④③﹣④得:34R n =14+142+⋯+14n−1−n−14n =14(1−14n−1)1−14−n−14n 所以R n =49(1−3n+14n);所以数列{c n }的前n 项和R n =49(1−3n+14n).核心考点三:分组求和1. n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(1)求111101b b b ,,;(2)求数列{}n b 的前1 000项和.【答案】(1)10b =,111b =, 1012b =;(2)1893. 【解析】试题分析:(1)先用等差数列的求和公式求公差d ,从而求得通项n a ,再根据已知条件[]x 表示不超过x 的最大整数,求111101b b b ,,;(2)对n 分类讨论,再用分段函数表示n b ,再求数列{}n b 的前1 000项和.试题解析:(1)设{}n a 的公差为d ,据已知有72128d +=,解得 1.d = 所以{}n a 的通项公式为.n a n =111101[lg1]0,[lg11]1,[lg101] 2.b b b ====== (2)因为0,110,1,10100,2,1001000,3,1000.n n n b n n ≤<⎧⎪≤<⎪=⎨≤<⎪⎪=⎩所以数列{}n b 的前1000项和为1902900311893.⨯+⨯+⨯=第三节:数列不等式的证明1.对于数列{u n }若存在常数M >0,对任意的n ∈N',恒有|u n+1﹣u n |+|u n ﹣u n ﹣1|+…+|u 2﹣u 1|≤M则称数列{u n }为B ﹣数列(1)首项为1,公比为q(|q|<1)的等比数列是否为B ﹣数列?请说明理由; (2)设S n 是数列{x n }的前n 项和,给出下列两组论断;A 组:①数列{x n }是B ﹣数列 ②数列{x n}不是B ﹣数列B组:③数列{S n}是B﹣数列④数列{S n}不是B﹣数列请以其中一组中的一个论断为条件,另一组中的一个论断为结论组成一个命题.判断所给命题的真假,并证明你的结论;(3)若数列{a n},{b n}都是B﹣数列,证明:数列{a n b n}也是B﹣数列.【解答】解(1)设满足题设的等比数列为{a n},则a n=q n﹣1,于是|a n﹣a n﹣1|=|q n﹣1﹣q n﹣2|=|q|n﹣2|q﹣1|,n≥2因此|a n+1﹣a n|+|a n﹣a n﹣1|+…+|a2﹣a1|=|q﹣1|(1+|q|+|q|2++|q|n﹣1).因为|q|<1,所以1+|q|+|q|2+…+|q|n﹣1=1−|q|n1−|q|<11−|q|,即|a n+1﹣a n|+|a n﹣a n1|+…+|a2﹣a1|<|q−1|1−|q|故首项为1,公比为q(|q|<1)的等比数列是B﹣数列.(2)命题1:若数列{x n}是B﹣数列,则数列{S n}是B﹣数列.此命题为假命题.事实上,设x n=1,n∈N•,易知数列{x n}是B﹣数列,但S n=n|S n﹣1﹣S n|+|S n﹣S n+1|+…+|S2﹣S1|=n由n的任意性知,数列{S n}是B﹣数列此命题为假命题.命题2:若数列{S n}是B﹣数列,则数列{x n}是B﹣数列此命题为真命题事实上,因为数列{S n}是B﹣数列,所以存在正数M,对任意的n∈N*,有|S n+1﹣S n|+|S n﹣S n﹣1|+…+|S2﹣S1|≤M即|x n+1|+|x n|+…+|x2|≤M.于是|x n+1﹣x n|+|x n﹣x n﹣1|+…+|x2﹣x1|≤|x n+1|+2|x n|+2|x n﹣1|+…+2|x2|+2|x1|≤2M+|x1|所以数列{x n }是B ﹣数列.(3)若数列{a n }{b n }是B ﹣数列,则存在正数M 1.M 2,对任意的n ∈N •,有|a n+1﹣a n |+|a n ﹣a n ﹣1|+…+|a 2﹣a 1|≤M 1,|b n+1﹣b n |+|b n ﹣a n ﹣1|…++|b 2﹣b 1|≤M 2注意到|a n |=|a n ﹣a n ﹣1+a n ﹣1+a n ﹣2+…+a 2﹣a 1+a 1|≤|a n ﹣a n ﹣1|+|a n ﹣1﹣a n ﹣2|+…+|a 2﹣a 1|+|a 1|≤M 1+|a 1|同理:|b n |≤M 2+|b 1|记K 2=M 2+|b 2|,则有K 2=M 2+|b 2||a n+1b n+1﹣a n b n |=|a n+1b n+1﹣a n b n+1+a n b n+1﹣a n b n |≤|b n+1||a n+1﹣a n |+|a n ||b n+1﹣b n |≤K 1|a n+1﹣a n |+k 1|b n+1﹣b n |因此K 1(|b n+1﹣b n |+|b n ﹣b n ﹣1|+|a 2﹣a 1|)≤k 2M 1+k 1M 2+K 1(|b n+1﹣b n |+|b n ﹣b n ﹣1|+|a 2﹣a 1|)≤k 2M 1+k 1M 2故数列{a n b n }是B ﹣数列.2. 设数列A :1a ,2a ,…N a (N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“)(A G 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出)(A G 的所有元素;(2)证明:若数列A 中存在n a 使得n a >1a ,则∅≠)(A G ;(3)证明:若数列A 满足n a -1n a - ≤1(n=2,3, …,N),则)(A G 的元素个数不小于N a -1a .【答案】(1)()G A 的元素为2和5;(2)详见解析;(3)详见解析.【解析】试题分析:(1)关键是理解G 时刻的定义,根据定义即可写出)(A G 的所有元素;(2)要证∅≠)(A G ,即证)(A G 中含有一元素即可;(3)当1a a N ≤时,结论成立.只要证明当1a a N >时仍然成立即可. 试题解析:(1))(A G 的元素为2和5.(3)当1a a N ≤时,结论成立.以下设1a a N >.由(2)知∅≠)(A G .设{}p p n n n n n n A G <⋅⋅⋅<<⋅⋅⋅=2121,,,,)(,记10=n .则p n n n n a a a a <⋅⋅⋅<<<210.如果∅≠i G ,取i i G m min =,则对任何i i m n k i a a a m k <≤<≤,1. 从而)(A G m i ∈且1+=i i n m .又因为p n 是)(A G 中的最大元素,所以∅=p G .从而对任意n k n p ≤≤,p n k a a ≤,特别地,p n N a a ≤.对i i n n a a p i ≤-⋅⋅⋅=-+11,1,,1,0.因此1)(111111+≤-+=--++++i i i i i n n n n n a a a a a .所以p a a a a a a i i p n pi n n N ≤-=-≤--∑=)(1111. 考点:数列、对新定义的理解.3.记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T,若T =∅,定义0TS =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<;(3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥I .【答案】(1)13n n a -=(2)详见解析(3)详见解析【解析】试题解析:(1)由已知得1*13,n n a a n N -=•∈.于是当{2,4}T =时,2411132730r S a a a a a =+=+=.又30r S =,故13030a =,即11a =.所以数列{}n a 的通项公式为1*3,n n a n N -=∈.(2)因为{1,2,,}T k ⊆L ,1*30,n n a n N -=>∈,因此,1r k S a +<.(3)下面分三种情况证明.①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+=I .②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥I . ③若D 不是C 的子集,且C 不是D 的子集.令U E C C D =I ,U F D C C =I 则E φ≠,F φ≠,E F φ=I . 于是C E C D S S S =+I ,D F C D S S S =+I ,进而由C D S S ≥,得E F S S ≥. 设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠. 由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-,故21E F S S ≥+,所以2()1C C D D C D S S S S -≥-+I I ,即21C C D D S S S +≥+I .综合①②③得,2C C D D S S S +≥I .4.设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,n c M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列. 【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)分别代入求123,,c c c ,观察规律,再证明当3n ≥时,11()()20k k k k b na b na n ++---=-<,所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-L ,即证明;(2)首先求{}n c 的通项公式,分1110,0,0d d d >=<三种情况讨论证明.试题解析:解:(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-, 3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-. 当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,此时,12,,,m m m c c c ++L 是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c L L 是等差数列.③当10d <时,111212()||.n d d a d b d ≥-+-+--。

2020高考文科数学(人教A版)总复习课件:第六章 数列6.4

2020高考文科数学(人教A版)总复习课件:第六章 数列6.4

考点1
第六章
考点2
考点3
6.4 数列求和
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
-13-
对点训练2(2018河北保定一模,17)已知数列{an}满足:2an=an+1+an-1 (n≥2,n∈N*),且a1=1,a2=2.
(1)求数列{an}的通项公式; (2)若数列{bn}满足2anbn+1=an+1bn(n≥1,n∈N*),且b1=1.求数列{bn} 的通项公式,并求其前n项和Tn.
数列,a1=1,b1=2,a2+b2=7,a3+b3=13.
(1)求{an}和{bn}的通项公式;
(2)若 cn=
������������ ������������
,,������������为为偶奇数数,,求数列{cn}的前
2n
项和
S2n.
解 (1)设数列{an}的公差为 d,数列{bn}的公比为 q,
6.4 数列求和
第六章
知识梳理 考点自诊
6.4 数列求和
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
-2-
1.基本数列求和方法
(1)等差数列求和公式:Sn=������(������12+������������)=na1+������(���2���-1)d.
������������1,������ = 1,
(1)12+22+32+…+n2=������(������+1)6(2������+1);
(2)13+23+33+…+n3=
������(������+1) 2

【人教A版】2020年高考数学二轮复习《数列》讲义案及基础题型精讲卷

【人教A版】2020年高考数学二轮复习《数列》讲义案及基础题型精讲卷
2020 年高考数学文科二轮复习
《数列》讲义案及基础题型精讲卷
核心考点一:等差、等比数列的判断与证明 方法总结
判断和证明数列是等差、等比数列常见的 3 中方法如下:
an (1)定义法:对于 n 2 的任意正整数,都有 an an1 (或 an1 )为同一常数(用于证明)
(2)通项公式法:
例 3.
数列 an 的前
n
项和为
Sn
,已知
a1
1,
an1

n
n
2
Sn

n

2,3,4,
),证明:数列

Sn n


等比数列。
解析
由 an1

n
n
2
Sn

Sn1

Sn

n
n
2
Sn

所以
Sn1

(n
n
2
1) Sn

2n n
2
Sn
,所以
Sn1 n 1
(3)若数列 bn 满足 4b11 4b2 1 4b3 1 4bn 1 (an 1)bn ( n N * ),证明:数列 bn 是等差数列。
解析 (1)因为 an2 3an1 2an ,所以 an2 an1 2(an1 an ) ,即

2
Sn n

S1

a1

1

0
,因此数列

Sn n

是等比数列.
例 4.已知数列 an 满足 a1 1, a2 3 , an2 3an1 2an ( n N * ).

2020年高考数学(文)二轮专项复习专题05 数列

2020年高考数学(文)二轮专项复习专题05 数列

2020年高考数学(文)二轮专项复习专题05 数 列本专题的主要内容是数列的概念、两个基本数列——等差数列、等比数列.这部分知识应该是高考中的重点内容.考察数列知识时往往与其他知识相联系,特别是函数知识.数列本身就可以看作特殊(定义在N *)的函数.因此解决数列问题是常常要用到函数的知识,进一步涉及到方程与不等式.本专题的重点还是在两个基本数列——等差数列、等比数列上,包括概念、通项公式、性质、前n 项和公式.§5-1 数列的概念【知识要点】1.从函数的观点来认识数列,通过函数的表示方法,来认识数列的表示方法,从而得到数列的常用表示方法——通项公式,即:a n =f (n ).2.对数列特有的表示方法——递推法有一个初步的认识.会根据递推公式写出数列的前几项,并由此猜测数列的一个通项公式.3.明确数列的通项公式与前n 项和公式的关系: S n =a 1+a 2+…+a n ;⎩⎨⎧≥==-)2()1(11n -S S n S a n n n .特别注意对项数n 的要求,这相当于函数中的定义域. 【复习要求】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 2.了解数列是自变量为正整数的一类函数. 【例题分析】例1 根据数列的前几项写出该数列的一个通项公式:(1)3231,1615,87,43,21; (2)2,-6,18,-54,162; (3)9,99,999,9999,99999; (4)1,0,1,0,1,0;(5)12133,1091,857,631,413,23; (6)52,177,73,115,21,53;【分析】本题需要观察每一项与项数之间存在的函数关系,猜想出一个通项公式.这种通过特殊的元素得到一般的规律是解决问题的常用方法,但得到的规律不一定正确,可经过证明来验证你的结论.解:(1)nn n n a 211212-=-= ; (2)a n =2×(-3)n -1;(3)a n =10n -1;(4)⎩⎨⎧为偶数为奇数n n a n 01;(5)nn a n 2112+-=; (6)232++=n n a n . 【评析】(1)中分数的考察要把分子、分母分开考察,当然有时分子分母之间有关系;(2)中正负相间的情况一定与(-1)的方次有关;(3)中的情况可以扩展为7,77,777,7777,77777⇒)110(97-=n n a ;(4)中的分段函数的写法再一次体现出数列是特殊的函数,也可写成2)1(11--+=n n a ,但这种写法要求较高;(5)中的假分数写成带分数结果就很明显了;(6)中的变换要求较高,可根据分子的变化,变换整个分数,如==42218463=,根据分子,把21变为84,其他类似找到规律.例2 已知:数列{a n }的前n 项和S n ,求:数列{a n }的通项公式a n , (1)S n =n 2-2n +2;(2)1)23(-=n n S .【分析】已知数列前n 项和S n 求通项公式a n 的题目一定要考虑n =1与n ≥2两种情况,即:a n =S n -S n -1不包含a 1,实际上相当于函数中对定义域的要求.解:(1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,则⎩⎨⎧≥-==23211n n n a n .(2)当n =1时,,2111==S a 当n ≥2时,11)23(21--<=-=n n n n S S a ,此公式也适合n =1时的情况, 则1)23(21-⨯=n n a . 【评析】分情况求出通项公式a n 后,应考察两个式子是否能够统一在一起,如果能够统一还是写成一个式子更加简洁;如果不能统一就要写成分段函数的形式,总之分情况讨论后应该有一个总结性结论.例3完成下列各题:(1)数列{a n }中,a 1=2)11ln(1na a n n ++=+,则a 3=( )A .2+ln3B .2+2ln3C .2+3ln3D .4(2)已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 (3)数列{a n }中,*221,,254N ∈+=+++-=n bn an a a a n a n n Λ,其中a ,b 为常数,则ab =______.【分析】本题中三个小题都涉及数列的递推关系,这类问题,最好的办法是给n 赋值,通过特殊的项找到一般的规律.解:(1)∵n n a nn a n a a n n n n ln )1ln(1ln )11ln(1-++=++=++=+, ∴a 2=a 1+ln(1+1)-ln1=2+ln2, a 3=a 2+ln(2+1)-ln2=2+ln3,选A .(2)∵a p +q =a p +a q ,∴,36111112-=⇒-=+==+a a a a a ∴a 3=a 2+1=a 2+a 1=-6-3=-9, a 5=a 3+2=a 3+a 2=-9-6=-15, a 10=a 5+5=a 5+a 5=-30.选C .(3)∵a 1+a 2+…+a n =an 2+bn ,∴⎩⎨⎧+=++=b a a a ba a 24211,∵254-=n a n ,∴⎪⎩⎪⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧+=++=212242112323b a b a b a ,∴ab =-1.【评析】这种通过特殊的项解决数列问题的方法今后经常用到,希望大家掌握. 例4 已知:函数f (x )=a 1+a 2x +a 3x 2+…+a n x n -1,21)0(=f ,且数列{a n }满足f (1)=n 2a n (n ∈N *),求:数列{a n }的通项.【分析】首先要应用f (0)与f (1)这两个条件,由题可看出可能与S n 与a n 关系有关.解:由题知:21)0(1==a f ,f (1)=a 1+a 2+…+a n =n 2a n , 即:S n =n 2a n ,则S n -1=(n -1)2a n -1(n ≥2), ∴a n =S n -S n -1=n 2a n -(n -1)2a n -1(n ≥2),∴(n 2-1)a n =(n -1)2a n -1(n ≥2),即:)2(111≥+-=-n n n aa n n,∴)2(31425313211122334211≥⨯⨯⨯⨯--⨯-⨯+-=⨯⨯⨯⨯⨯---n n n n n n n a a a a a a a a a a n n n n ΛΛ,即)2(21111≥⨯⨯+=n nn a a n ,∴)2()1(1≥+=n n n a n , ∵当n =1时,212111=⨯=a 上式也成立, ∴)()1(1*N ∈+=n n n a n .【评析】本题中,题目给出函数的条件,而f (0)与f (1)的运用就完全转化为数列问题,S n 与a n 的关系应该是要求掌握的,尤其是在n -1出现时,要注意n ≥2的限制,这相当于函数中的定义域.而叠乘的方法是求数列通项的基本方法之一.练习5-1一、选择题: 1.数列1614,1311,108,75,42---…的通项公式为( ) A .1313)1(1+--+n n n B .1313)1(+--n n n C .1323)1(---n n nD .1333)1(---n n n2.若数列的前四项是3,12,30,60,则此数列的一个通项公式是( )A .2)2)(1(++n n nB .5n 2-6n +4C .2)1(93-+n n D .2127ln 12+-n3.数列{a n }中,若a 1=1,a 2=1,a n +2=a n +1+a n ,则a 7=( )A .11B .12C .13D .14 4.数列{a n }的前n 项和为S n ,若Sn =2(a n -1),则a 2=( ) A .-2 B .1 C .2 D .4 二、填空题:5.数列2,5,2,5,…的一个通项公式______.6.数列{a n }的前n 项和S n =n 2,数列{a n }的前4项是______,a n =______. 7.若数列{a n }的前n 项和S n =2n 2-3n +1,则它的通项公式是______. 8.若数列{a n }的前n 项积为n 2,则a 3+a 5=______. 三、解答题:9.已知:数列{a n }中,若n n na a a a a =+++=Λ211,21, 求:数列{a n }前4项,并猜想数列{a n }的一个通项公式.10.已知:数列1,2,2,3,3,3,4,4,4,4,5…,求:数列的第50项.§5-2 等差数列与等比数列【知识要点】1.熟练掌握等差数列、等比数列的定义:a n -a n -1=d (常数)(n ≥2)⇔数列{a n }是等差数列;q a a n n=-1(常数)(n ≥2)⇔数列{a n }是等比数列;由定义知:等差数列中的项a n 及公差d 均可在R 中取值,但等比数列中的项a n 及公比q 均为非零实数.应该注意到,等差数列、等比数列的定义是解决数列问题的基础,也是判断一个数列是等差数列、等比数列的唯一依据.2.明确等差中项与等比中项的概念,并能运用之解决数列问题:c b a ca b 、、⇔+=2成等差数列,b 叫做a 、c 的等差中项,由此看出:任意两个实数都有等差中项,且等差中项唯一;b 2=ac ⇔a 、b 、c 成等比数列,b 叫做a 、c 的等比中项,由此看出:只有同号的两个实数才有等比中项,且等比中项不唯一;3.灵活运用等差数列、等比数列的通项公式a n 及前n 项和公式S n : 等差数列{a n }中,a n =a m +(n -m )d =a 1+(n -1)d ,d n n na n a a S n n 2)1(211-+=+=; 等比数列{a n }中,a n =a m q n -m =a 1q n -1,⎪⎩⎪⎨⎧=/--==)1(1)1()1(11q qq a q na S n n ;4.函数与方程的思想运用到解决数列问题之中:等差数列、等比数列中,首项a 1、末项a n 、项数n ,公差d (公比q )、前n 项和S n ,五个量中,已知三个量,根据通项公式及前n 项和公式,列出方程可得另外两个量.等差数列中,n da n d S d a dn a n n )2(2121-+=-+=、,可看作一次函数与二次函数的形式,利用函数的性质可以解决数列问题.5.等差数列、等比数列的性质:等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ; 等比数列{a n }中,若m +n =p +q ,则a m ·a n =a p ·a q ; 【复习要求】1.理解等差数列、等比数列的概念.2.掌握等差数列、等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、等比数列与指数函数的关系. 【例题分析】例1完成下列各题:(1)若等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( ) A .138 B .135 C .95 D .23 (2)各项均为正数的等差数列{a n }中必有( )A .8664a aa a <B .8664a aa a ≤C .8664a aa a >D .8664a aa a ≥【分析】本题在于考察等差数列的基本知识,通项公式及前n 项和公式是一切有关数列中考察的重点,注意数列中项数之间的关系.解:(1)∵等差数列{a n }中a 2+a 4=4,a 3+a 5=10, ∴a 3=2,a 4=5,∴公差d =3,首项a 1=-4, ∴a 10=a 1+9d =-4+27=23,∴9510210110=⨯+=a a S .选C. (2)等差数列{a n }中a 4+a 8=2a 6, ∵等差数列{a n }各项均为正数,∴由均值不等式2628484)2(a a a a a =+≤⋅,当且仅当a 4=a 8时等号成立 即:8664a aa a ≤,选B .【评析】本题中涉及到等差数列中的重要性质:若m +n =p +q ,则a m +a n =a p +a q ,(1)中可直接应用这一性质:a 2+a 4=a 3+a 3=2a 3得到结论,但题中所给的答案可看作这一性质的证明,同时,等差数列中通项公式并不一定要用首项表示,可以从任何一项开始表示a n ,这也是常用的方法,(2)注意观察数列中项数的关系,各项均为正数的要求恰好给运用均值不等式创造了条件,注意等号成立的条件.例2完成下列各题:(1)等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S 10=2,S 30=14,则S 40=( ) A .80 B .30 C .26 D .16 【分析】本题中各小题是在运用等比数列的基本知识来解决,通项公式与前n 项和公式要熟练运用.解:(1)∵数列{a n }是等比数列,∴⎩⎨⎧=+=+=+=+63211321121q a q a a a q a a a a ,∴⎩⎨⎧==211q a ,a 7=a 1·q 6=26=64.选A . (2)方法一:∵等比数列{a n }的前n 项和为S n ,(*)21)1(10110=--=qq a S ,(**)141)1(30130=--=q q a S , 两式相除:7111030=--qq ,即:1+q 10+q 20=7⇒q 10=2或q 10=-3(舍), 把q 10=2代入(*)中得到:211-=-qa , ∴.30)21)(2(1)1(440140=--=--=qq a S 选B . 方法二:a 1+a 2+…+a 10、a 11+a 12+…+a 20、a 21+a 22+…+a 30、a 31+a 32+…+a 40、……也构成等比数列,设新等比数列的公比为p则:a 1+a 2+…+a 10=S 10=2、a 11+a 12+…+a 20=2p 、a 21+a 22+…+a 30=2p 2 ∵S 30=2+2p +2p 2=14,∴p =-3或p =2, ∵等比数列{a n }的各项均为正数,∴p =2,∴a 1+a 2+…+a 10=2、a 11+a 12+…+a 20=4、a 21+a 22+…+a 30=8、a 31+a 32+…+a 40=16,∴S 40=2+4+8+16=30.【评析】(2)中方法一仍是解决此类问题的基本方法,注意把qa -11看成整体来求,方法二的方法在等差数列及等比数列中均适用,即:等比数列中第1个n 项和、第2个n 项和、…第n 个n 项和仍然成等比数列,此时,你知道这时的公比与原数列的么比的关系吗?例3 已知:等差数列{a n }的前n 项和为S n ,且S 5=16,S 10=64,求:S 15=?.【分析】本题是对等差数列的知识加以进一步考察,可以用求和公式,也可运用等差数列的性质加以解决.解:方法一:由⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=⨯+==⨯+=2532251664291010162455111015d a d a S d a S ,则:1442141515115=⨯+=d a S ; 方法二:等差数列中:a 1+a 2+a 3+a 4+a 5、a 6+a 7+a 8+a 9+a 10, a 11+a 12+a 13+a 14+a 15这三项也构成等差数列, 即a 1+a 2+a 3+a 4+a 5=S 5=16,a 6+a 7+a 8+a 9+a 10=S 10-S 5=64-16=48, a 11+a 12+a 13+a 14+a 15=S 15-S 10=S 15-64, ∴2×48=16+S 15-64,∴S 15=144.方法三:∵596,48166452106106610=+=-=⨯+=-∴a a a a S S ,∵a 1+a 15=a 6+a 10 ∴14415259615215115=⨯=⨯+=a a S .【评析】本题中方法一是直接应用前n 项和公式,得出首项与公差,再用公式得出所求,应是基本方法,但运算较繁锁;方法二充分注意到等差数列这一条件,得到的结论可以扩展为等差数列中第1个n 项和、第2个n 项和、……第n 个n 项和仍然成等差数列,你知道这时的公差与原数列的公差的关系吗?这一方法希望大家掌握;方法三是前n 项和公式与等差数列的性质的综合应用,大家可以借鉴.例4已知:等差数列{a n }中,且na a ab nn +++=Λ21, (1)求证:数列{b n }是等差数列; (2)若23,1132113211=++++++=b b b a a a a ΛΛ,求数列{a n }{b n }的通项公式.【分析】运用等差数列的两个公式,两个数列都是等差数列,所求通项就离不开首项和公差.解:(1)∵数列{a n }是等差数列,设公差为d ,∴2,2121121nn n n n a a n a a a b n a a a a a +=+++=⨯+=+++∴ΛΛ, ∴)2(222211111≥=-=⋅+-+=---⋅-n da a a a a ab b n n n n n n ,∴数列{b n }是等差数列,公差为2d;(2)∵1,1121==+++=∴a b na a ab nn Λ, ∵数列{a n }、{b n }是等差数列,∴31,232·66,23132132117713113113113113211321==++==++=⨯+⨯+=++++++∴∴d d b d a b a b b a a b b a a b b b a a a ΛΛ, ∴656161)1(1,323131)1(1+=-+=+=⨯-+=n n b n n a n n . 【评析】(1)中遇到了证明数列是等差(等比)数列,采取的方法只能是运用定义,满足定义就是,不满足定义就不是.例5 已知:等差数列{a n }中,a 3=12,S 12>0,S 13<0, 求数列{a n }的公差d 的取值范围;【分析】按照所给的条件,把两个不等的关系转化为关于公差d 的不等式. 解:(1)∵数列{a n }是等差数列,∴⎪⎩⎪⎨⎧<⨯+=>⨯+=013201221311312112a a S a a S ,即:⎩⎨⎧<++-=+>++-=+01020923313133121d a d a a d a d a a a α,∴⎪⎪⎩⎪⎨⎧-<->332827a d a d ,即:3724-<<-d , 【评析】也可直接运用d n n na S n 2)1(1-+=得到关于a 1与d 的不等式,再通过通项公式得到a 3与a 1的关系.例6 已知:四个数中,前三个数成等差数列,后三个数成等比数列,第一、四个数的和为16,第二、三个数的和为12,求这四个数.【分析】本题中,方程的思想得到明显的体现,实际上数列问题总体上就是解方程的问题,根据所给的条件,加上通项公式、前n 项和公式列出方程,解未知数,通过前面的例题大家应该有所体会了.解:方法一:设这四个数为:a ,b ,12-b ,16-a则根据题意得,⎩⎨⎧==⇒⎪⎩⎪⎨⎧-=--+=40)16()12(1222b a a b b ba b 或⎩⎨⎧==915b a , 则这四个数为0、4、8、16或15、9、3、1.方法二:设这四个数为:a -d ,a ,a +d ,ad a 2)(+ 则根据题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++=+-441216)(2d a d a a a d a d a 或⎩⎨⎧-==69d a , 则这四个数为:0、4、8、16或15、9、3、1.【评析】列方程首先就要设未知数,题目中要求四个数,但不要就设四个未知数,要知道,方程的个数与未知数的个数一样时才有可能解出,因此在设未知数时就要用到题目中的条件.方法一是用“和”设未知数,用数列列方程;方法二是用数列设未知数,用“和”列方程.例7 已知:等差数列{a n }中,a 4=10,且a 5,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.【分析】本题最后要求的是等差数列的前20项和,因此,求首项、公差以及通项公式就是必不可少的.解:∵数列{a n }是等差数列,∴a 5=a 4+d =10+d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d ,∵a 5,a 6,a 10成等比数列,∴a 62=a 5·a 10,即:(10+2d )2=(10+d )(10+6d ) ∴d =0或d =-15,当d =0时,a n =a 4=10,S 20=200;当d =-15时,a n =a 4+(n -4)d =-15n +70,1750202)230(5520220120-=⨯-+=⨯+=a a S ; 【评析】这种等差、等比数列综合运用时,往往出现多解的情况,对于多个解都要一一加以验证,即使不合题意也要说明,然后舍去.例8 已知:等差数列{a n }中,a n =3n -16,数列{b n }中,b n =|a n |,求数列{b n }的前n 项和S n .【分析】由于对含有绝对值的问题要加以讨论,因此所求的前n 项和S n 应该写成分段函数的形式.解:(1)当n ≤5时,a n <0,则:b n =|a n |=16-3n ,且b 1=13,n n n n S n 229232316132+-=⨯-+=;(2)当n ≥6时,a n >0,则:b n =|a n |=3n -16,此时:S 5=35,b 6=2,7022923)5(21632352+-=-⨯-++=n n n n S n , 由(1)(2)知,⎪⎩⎪⎨⎧≥+-≤+-=)6(7022923)5(2292322n n n n nn S n .【评析】当n ≥6时,前5项和要加在S n 中是经常被忽略的,得到的结果形式上比较复杂,可通过赋值的方法加以验证.练习5-2一、选择题:1.若等差数列的首项是-24,且从第10项开始大于零,则公差d 的取值范围是( ) A .38>d B .d <3 C .338<≤d D .338≤<d 2.若等差数列{a n }的前20项的和为100,则a 7·a 14的最大值为( ) A .25 B .50 C .100 D .不存在 3.等比数列{a n }中,若a 1+a 2=40,a 3+a 4=60,则a 7+a 8=( ) A .80 B .90 C .100 D .135 4.等差数列{a n }的前2006项的和S 2006=2008,其中所有的偶数项的和是2,则a 1003=( ) A .1 B .2 C .3 D .4 二、填空题:5.(1)等差数列{a n }中,a 6+a 7+a 8=60,则a 3+a 11=______; (2)等比数列{a n }中,a 6·a 7·a 8=64,则a 3·a 11=______; (3)等差数列{a n }中,a 3=9,a 9=3,则a 12=______;(4)等比数列{a n }中,a 3=9,a 9=3,则a 12=______.6.等比数列{a n }的公比为正数,若a 1=1,a 5=16,则数列{a n }前7项的和为______. 7.等差数列{a n }中,若a n =-2n +25,则前n 项和S n 取得最大值时n =______. 8.等比数列{a n }中,a 5a 6=-512,a 3+a 8=124,若公比为整数,则a 10=______. 三、解答题:9.求前100个自然数中,除以7余2的所有数的和.10.已知:三个互不相等的数成等差数列,和为6,适当排列后这三个数也可成等比数列,求:这三个数.11.已知:等比数列{a n }中,a 1=2,前n 项和为S n ,数列{a n +1}也是等比数列,求:数列{a n }的通项公式a n 及前n 项和S n .§5-3 数列求和【知识要点】1.数列求和就是等差数列、等比数列的求和问题,还应掌握与等差数列、等比数列有关的一些特殊数列的求和问题,2.数列求和时首先要明确数列的通项公式,并利用通项公式找到所求数列与等差数列、等比数列之间的联系,利用等差数列、等比数列的求和公式解决问题,3.三种常见的特殊数列的求和方法:(1)直接公式法:解决一个等差数列与一个等比数列对应项相加而成的新数列的求和问题;(2)错位相减法:解决一个等差数列与一个等比数列对应项相乘而成的新数列的求和问题;(3)裂项相消法:解决通项公式是等差数列相邻两项乘积的倒数的新数列的求和问题. 【复习要求】特殊数列求和体现出知识的“转化”思想——把特殊数列转化为等差数列、等比数列,而在求和的过程中又体现出方程的思想 【例题分析】例1 求和下列各式(1))21(412211n n ++++Λ; (2)1×2+2×22+3×23+…+n ×2n ; (3))12)(12(1751531311+-++⨯+⨯+⨯n n Λ;(4)11431321211++++++++n n Λ.【分析】我们遇到的数列求和的问题是一些特殊的数列,即与等差、等比数列密切相关的数列,最后还是回到等差、等比数列求和的问题上.解:(1))212121()21()21(4122112n n n n +++++++=++++ΛΛΛ n n n n n n 211)1(21211)211(212)1(-++=--++=. (2)设:S n =1×2+2×22+3×23+…+n ×2n1321322222222)1(22212)++⨯-++++=-⨯+⨯-+⋯+⨯+⨯=-n n n n n n n S n n S Λ 则:22)1(21)21(2211+-=---⨯=++n n n n n n S . (3))12)(12(1751531311+-++⨯+⨯+⨯n n Λ )]121121()5131()311[(21+--++-+-=n n Λ 12)1211(21+=+-=n n n . (4)11431321211+++++++++n n Λ 111342312-+=-+++-+-+-=n n n Λ.【评析】(1)中数列可看成一个等差数列与一个等比数列对应项相加而成,直接运用前n 项和公式即可;(2)中数列可看成一个等差数列与一个等比数列对应项相乘而成,采用错位相减的方法,相减以前需要每一项乘以等比数列的公比,然后错位相减,还是利用等比数列的前n 项和公式,注意错位后最后一项相减时出现的负号,这是极容易出错的地方;(3)(4)都是裂项相消,都与等差数列有关,(3)中的形式更加常见一些,注意裂项后的结果要与裂项前一致,经常要乘一个系数(这个系数恰好是等差数列的公差的倒数).例2求下列数列的前n 项和S n .(1)1,-5,9,-13,17,-21,…,(-1)n -1(4n -3); (2)n+++++++ΛΛ3211,,3211,211,1; (3)1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1;【分析】对于一个数列来说,最重要的是通项公式,有了通项公式,就可以写出所有的项,就可以看出其与等差、等比数列的关系,从而利用等差、等比数列的前n 项和得出结论.解:(1)方法一:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1+9+17+4n -3)-[5+13+21+(4n -7)] .12)21(2745)21(2341-=-⨯-+-+⨯-+=n n n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1+9+17+4n -7)-[5+13+21+(4n -3)].22234522741n n n n n -=⨯-+-⨯-+= 方法二:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1-5)+(9-13)+(17-21)+…+(4n -11+4n -7)+(4n -3).12)34(21)4(-=-+-⨯-=n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1-5)+(9-13)+(17-21)+…+(4n -7+4n -3).22)4(n n -=⨯-= (2)此数列中的第n 项)111(2)1(22)1(13211+-=+=+=++++=n n n n n n n a n Λ 则n+++++++++++ΛΛ321132112111 ⋅+=+-=+-++-+-+-=12)111(2)]111()4131()3121()211[(2n n n n n Λ (2)此数列中的第n 项1221212221n 12-=--=++++=-n n n a Λ 则1+(1+2)+(1+2+22)+…(1+2+22+…+2n -1)=(21-1)+(22-1)+(23-1)+…(2n -1) n n n n n n--=---=-++++=+2221)21(2)2222(1321Λ. 【评析】(1)中带有(-1)n ,需要讨论最后一项的正负,方法一是把正、负项分开,看成两个等差数列,方法二应该是多观察的结果,当都要对n 加以讨论,(2)(3)都要先写出通项,然后每一项按照通项的形式写出,很明显地看出方法.例3 数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设12-=n n n a b ,求证:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .【分析】对于证明数列是等差、等比数列的问题,还是要应用定义.解:(1)证明:∵,2,2111nn n n n n a b a b ++-==∴ ∴12;122222*********====-=-=--+-++a b a a a a b b n n n n n n n n n n n , ∴数列{b n }是首项、公差都为1的等差数列,即:b n =n .(2)由(1)中结果,设12-=n n n a b 时,b n =n ,则:a n =n ·2n -1 ∴S n =1×20+2×21+3×22+4×23+…+(n -1)2n -2+n ·2n-1 nn n nn n n n S n n n S 22222122)1(2)2(2322212)13212321⋅⋅-+++++=-+-+-++⨯+⨯+⨯=----ΛΛ12)1(21212+-=---=⋅⋅n nn n n n S . 【评析】证明数列是等差、等比数列时,如果可能应强调首项与公差,证明后,往往要用到整个数列,因此证明完后应把数列的通项写出,便于解决其他问题.例4 已知:数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *,(1)求证:数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立.【分析】证明等比数列是应该应用定义,比较大小最有效的方法是作差.(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n )( n ∈N *),∵a 1-1=1≠0,∴4)()1(1=-+-+n a n a n n , ∴数列{a n -n }是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n .则数列{a n }的前n 项和⋅++-=++++++=-2)1(314)4()24()14(110n n n S n n n Λ (3)证明: 2)1(43442)2)(1(3144111+---+++-=-+++n n n n S S n n n n .02)1)(43()43(212≤-+-=-+-=n n n n ∴不等式S n +1≤4S n ,对任意n ∈N *皆成立.练习5-3一、选择题:1.数列n n 21)12(1617815413211+-、、、、、Λ的前n 项之和S n =( ) A .n n 2112-+ B .n n n 21122-+- C .12211--+n n D .n n n 2112-+- 2.若数列1111311211110,,10,10,10n Λ,…它的前n 项的积大于105,则正整数n 的最小值是( )A .12B .11C .10D .83.数列{a n }的通项公式11++=n n a n ,若前n 项和S n =3,则n =( ) A .3 B .4C .15D .16 4.数列{a n }的前n 项和为S n ,若)1(1+=n n a n 则S 5等于( ) A .1B .65C .61D .301 二、填空题:5.若)1(11216121+++++=n n S n Λ,且431=⋅+n n S S ,则n =______. 6.若lg x +lg x 2+lg x 3+…+lg x n =n 2+n ,则x =______.7.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)的前99项和是______.8.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,若b n =log 3a n ,则数列{b n }的前10项的和是______.三、解答题:9.已知:等差数列{a n }的前n 项和为S n ,且S 7=7,S 15=75, 求数列}{n sn 的前n 项和T n .10.已知:等比数列{a n }中,公比nn n n a a a T a a a S q 111,,12121+++=+++=≠ΛΛ. (1)用a 1、q 、n 表示n n T S ; (2)若5533113T S T S T S 、、-成等差数列,求q 的值;11.已知:数列{a n }中,a 3=2,a 5=1,数列⎭⎬⎫⎩⎨⎧+11n a 是等差数列, (1)数列{a n }的通项公式;(2)若na b n n 1+=,求数列{b n }的前n 项和S n .§5-4 数列综合问题【知识要点】1.灵活运用等差数列、等比数列的两个公式及其性质来解决综合问题,2.能解决简单的由等差数列、等比数列形成的新数列的问题,3.能够利用等差数列、等比数列的定义来确定所给数列是等差数列、等比数列.【复习要求】通过简单综合问题的解决,加深对等差数列、等比数列中,定义、通项、性质、前n 项和的认识.加深数列是特殊的函数的认识,符合高中阶段知识是以函数为主线的展开.【例题分析】例1 完成下列各题:(1)数列{a n }中,若11121,1++=-=n n n a a a ,则a 5=______. (2)数列{a n }中,若a 1=2,a n +1=a n +n +1,则通项a n =______.【分析】叠加的方法应该是解决数列的通项以及求和问题中常见的方法.解:(1)3451122334455212121)()()()(++=+-+-+-+-=a a a a a a a a a a 1212++ 3247=, (2)∵a n +1=a n +n +1,∴a n +1-a n =n +1∴利用叠加法,有:a 2-a 1=1+1a 3-a 2=2+1a 4-a 3=3+1………1)1()1+-=-+-n a a n n)1)(2(214321-+=++++=-n n n a a n Λ 整理222++=n n a n . 【评析】叠加时一定要注意首、尾项的变化,尤其是符号.例2已知:数列{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.【分析】应该是等差数列中的基本问题,还是利用两个基本公式解决问题.解:(1)设{a n }的公差为d ,由已知条件,⎩⎨⎧-=+=+54111d a d a ,解出a 1=3,d =-2.∴a n =a 1+(n -1)d =-2n +5; (2)4)2(42)1(221+--=+-=-+=n n n d n n na S n .∴n =2时,S n 取到最大值4. 【评析】对于等差数列的前n 项和的最值问题,看成二次函数的最值问题应该是基本方法.例3 已知:数列{a n }中,a 1=1,221+=+n n a a ,设11++=n n n a a b ,求数列{b n }的前n 项和S n .【分析】注意观察所给数列变形后与等差、等比数列有哪些联系,这个联系一定要找到,而且一定有联系,显然本题中}{2n a 是等差数列.解:由题知:数列{a n }中a n >0, ∵1,2,22122121=+=+=++∴a a a a a n n n n , ∴数列}{2n a 是首项为1,公差为2的等差数列, ∴12,0,122)1(12-=>-=⨯-+=∴n a a n n a n n n Θ, ∵11++=n n n a a b ,∴)1212(2112121--+=++-=n n n n b n , ∴)112(21)1212573513(21-+=--+++-+-+-=n n n S n Λ. 【评析】对于开方的问题一定要考虑正、负,而裂项求和(也可以看作分母的有理化)在前一节中也比较多地提到.例4已知:等差数列{a n }的各项均为正数,a 1=3,等比数列{b n }中,b 1=1且b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960.求数列{a n }、{b n }的通项公式.【分析】还是方程思想在数列中的体现,利用所给条件,列出方程得到公差与公比,从而得到通项公式.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,∵等差数列{a n }的各项均为正数,∴d >0,则等差数列{a n }中,a 1+a 2=2a 1+d =6+d ,a 1+a 2+a 3=3a 1+3d =9+3d ,等比数列{b n }中,b 2=b 1q =q ,b 3=q 2,∵b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960,∴⎩⎨⎧=+=+960)39(64)6(2d q d q ,得d =2或56-=d , ∵d >0,∴d =2,此时q =8,∴a n =2n +1,b n =8n -1;【评析】注意题目中所给的条件如何运用,例如:等差数列{a n }的各项均为正数,隐含着给出d >0,从而对最后的结果产生影响.例5 完成下列各题:(1)若一个直角三角形三边长成等比数列,则( )A .三边长之比3∶4∶5B .三边长之比为1:2:3C .较大锐角的正弦为215-D .较小锐角的正弦为215- (2)△ABC 中,如果角A 、B 、C 成等差数列,边a 、b 、c 成等比数列,那么△ABC 一定是( )A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形【分析】解决三角形中的问题是一定要用到正弦定理、余弦定理,三角形的内角和等于π恰好使等差数列的条件得以运用,从而得到角B 为3π的结论,再利用余弦定理找到边之间的关系,应该是数列与三角综合问题中常见的方法.解:(1)由题中条件可设三边为a 、aq 、aq 2(q >1),由勾股定理:a 2+a 2q 2=a 2q 4,则25101224+=⇒=--q q q , 设较小锐角为A ,其对边为a ,则215512sin 2-=+==aq a A .选D . (2)∵△ABC 中,角A 、B 、C 成等差数列,∴⎩⎨⎧=+++=π2C B A C A B ,∴3π=B , 由余弦定理212cos 222=-+=ac b c a B ,得a 2+c 2-b 2=ac , ∵三条边a 、b 、c 成等比数列,∴b 2=ac ,∴a 2+c 2-2ac =0,即a =c ,∴△ABC 一定是等边三角形.选C .【评析】解决与三角形有关的问题时,一定要想到正弦定理、余弦定理,与数列综合时,应把角的关系转化为边的关系,因为边成等比数列,所以用边判断三角形形状应该是正确的选择.例6 已知数列{a n }的前n 项和S n =npa n ,且a 1≠a 2,(1)确定p 的值;(2)判断数列{a n }是否为等差数列.【分析】本题中存在递推的关系,解决时还是通过赋值,找到结论,赋值时要多赋几个,以免出现冲突.解:(1)∵S n =npa n ,∴S 1=a 1=pa 1,∴a 1=0或p =1,∵S 2=a 1+a 2=2pa 2,∴当p =1时,有a 1+a 2=2a 2⇒a 1=a 2与已知矛盾,∴p ≠1,∴a 1=0(且a 2≠0),∵S 2=a 1+a 2=2pa 2,a 2≠0,∴21=P ; (2)由(1)中结论:n n na S 21=,即:2S n =na n ,则2S n +1=(n +1)a n +1, ∴两式相减:2(S n +1-S n )=2a n +1=(n +1)a n +1-na n ①,同理得到:2a n =na n -(n -1)a n -1(n ≥2) ②,∴①-②得2a n +1-2a n =(n +1)a n +1-2na n +(n -1)a n -1(n ≥2),整理得到2(n -1)a n =(n -1)a n +1+(n -1)a n -1(n ≥2),∵n ≥2,∴2a n =a n +1+a n -1,即:a n +1-a n =a n -a n -1,∴数列{a n }是等差数列.【评析】(1)中对n =1得到的结论要加以验证,这也是为什么要多赋几个值的原因,(2)中开始由S n 求a n 的方法应该掌握,而后面①-②得到结论的方法并不多见,实际上是在找数列中连续三项存在的关系,最后得到的也是等差数列的定义,即:每一项与其前一项的差都相等,这与a n -a n -1是常数略有不同,希望大家了解.例7在数列{a n }中,S n +1=4a n +2,且a 1=1,(1)若b n =a n +1-2a n ,求证:数列{b n }是等比数列;(2)若nn n a c 2=,求证:数列{c n }是等差数列; (3)求数列{a n }的通项公式a n 及前n 项和公式S n .【分析】还是要应用定义来证明等差、等比数列.解:(1)∵S n +1=4a n +2,∴S n =4a n -1+2(n ≥2),∴a n +1=S n +1-S n =4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1),即b n =2b n -1,∵S n +1=4a n +2,a 1=1,∴S 2=a 1+a 2=4a 1+2,∴a 2=5,∴b 1=a 2-2a 1=3,∴数列{b n }是首项为3,公比为2的等比数列,即:b n =3·2n -1;(2)∵n n n n n n n n n n n n n n b a a a a c c a c 22222,211111-----=-=-=-=∴ ∵b n =3·2n -1,∴,432232211=⋅==----n n n n n n b c c ∵21211==a c ∴数列{c n }是首项为21,公差为等差数列43, 即⋅-=4143n c n (3)∵),4143(22,2-===⋅⋅∴n c a a c n n n n n n n )4143(248245242232-⨯++⨯+⨯+⨯=n S n n ΛΛ )4143(2)222(431)4143(2)41)1(43(24524222)132132-⨯-++++=--⨯+--⨯++⨯+⨯=-++n S n n S n n n n n n ΛΛΛ ∴S n =(3n -4)·2n -1+2.【评析】前两问实际上是第三问的铺垫,证明等差、等比数列后,要写出通项公式,为下一步的问题作准备.错位相减时要注意计算,方法再好,结果是错的,也不能说明你的水平.练习5-4一、选择题:1.已知{a n }为等差数列,{b n }为正项等比数列,公比q ≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 62.设数列{a n }的前n 项和S n ,且a n =-2n +1,则数列}{n sn 的前11项为( ) A .-45 B .-50 C .-55 D .-663.已知等比数列(a n )中a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,0)∪(1,+∞)B .(-∞,-1]C .(-∞,-1]∪[3,+∞)D .[3,+∞)4.△ABC 中,tan A 是等差数列{a n }的公差,且a 3=-1,a 7=1,tan B 是等比数列{b n }的公比,且b 3=9,316=b ,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形二、填空题:5.若等差数列{a n }中,a 1+a 3=5,a 8+a 10=19,则前10项和S 10=______.6.设等比数列{a n }的公比q =2,前n 项和为S n ,则24a S =______.7.等差数列{a n }中,a 1>0,S 4=S 9,当S n 取得最大值时,n =______.8.数列{a n }中,若a 1=1,n n a n na 11+=+,则通项公式a n =______.三、解答题:9.已知:递增等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.求{a n }的通项公式a n ;10.已知数列{x n }的首项x 1=3,x n =2n p +nq ,且x 1,x 4,x 5成等差数列,(1)求:常数p ,q 的值;(2)求:数列{x n }的前n 项的和S n 的公式.11.已知{a n }是正数组成的数列,a 1=1,且点),(1+n n a a 在函数y =x 2+1的图象上.(1)求:数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b n +12.习题5一、选择题:1.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )A .12B .10C .8D .62.等比数列{a n }的首项为a 1,公比为q ,则“a 1<0且0<q <1”是“对于任意n ∈N *都有a n +1>a n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3.等差数列{a n }中,a 1+a 2+a 3+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1=( )A .-20B .-20.5C .-21.5D .-22.54.若数列{a n }的前n 项和S n =5n 2-n ,则a 6+a 7+a 8+a 9+a 10=( )A .250B .270C .370D .4905.将n 2个正整数1,2,3,…,n 2填入n ×n 个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.如图,就是一个3阶幻方.定义f (n )为n 阶幻方每条对角线上数的和,例如f (3)=15,那么f (4)的值为( )A .35B .34 D .32二、填空题:6.等差数列{a n }中,a 5=3,若其前5项和S 5=10,则其公差d =______.7.数列{a n }中,a 1=3,a 2=6,若a n +2=a n +1-a n ,则a 6=______,a 2009=______.8.设f (n )=1+2+3+…+n ,n ∈N *,则f (25)=______.9.若数列{a n }满足)2(11,21211≥-+==-n n a a a n n ,则a 10等于______. 10.数列{a n }中,如果存在非零的常数T ,使得a n +T =a n 对于任意正整数n 均成立,那么就称数列{a n }为周期数列,其中T 叫做数列{a n }的周期.已知数列{x n }满足x n +2= |x n +1-x n |(x ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),当数列{x n }的周期为3时,则数列{x n }的前2009项的和S 2009为______.三、解答题:11.已知数列{a n }是等差数列,a 3=18,a 6=12.(1)求数列{a n }的通项公式;(2)数列{a n }的前多少项和最大,最大值是多少?12.已知数列{a n }的各项均为正数,S n 为其前n 项和,且S n =2a n -2.(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且22)(log 1n n a b ,求证:对任意正整数n ,总有T n <2;13.已知{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13(1)求{a n },{b n }的通项公式; (2)求数列}{nnb a 的前n 项和S n .14.如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m ,a 2=a m -1,…,a m =a 1,即a i =a m -i +1(i =1,2,…,m ),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n }是7项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=2,b 4=11.依次写出{b n }的每一项;(2)设{c n }是49项的“对称数列”,其中c 25,c 26,…,c 49是首项为1,公比为2的等比数列,求{c n }各项的和S ;(3)设{d n }是100项的“对称数列”,其中d 51,d 52,…,d 100是首项为2,公差为3的等差数列.求{d n }前n 项的和S n (n =1,2,…,100).专题05 数列参考答案练习5-1一、选择题:1.B 2.A 3.C 4.D 二、填空题:5.⎩⎨⎧=为偶数为奇数n n a n 52,23)1(7⋅-+=n n a 均可;6.1、3、5、7,a n =2n -1; 7.⎩⎨⎧≥-==)2(54)1(0n n n a n ; 8.1661.三、解答题9.解:213;21223332112221==⇒=++==⇒=+a a a a a a a a a a a ; 2143444321==⇒=+++a a a a a a a ,猜想:21=n a .10.解:由题知:数列的前50项中有:1个1、2个2、3个3、……、9个9,此时共有1+2+3+…+9=45项,还有5个10.练习5-2一、选择题:1.D 2.A 3.D 4.B 二、填空题: 5.40、16、0、3±;6.127;7.12;8.512.三、解答题9.解:由题知,前100个自然数中,除以7余2的所有数构成首项为2,公差为7的等差数列{a n },即:a n =7n -5,前100个自然数中最后一个除以7余2是:a 14=93, 则前100个自然数中,除以7余2的所有数的和.66514293214=⨯+=S 10.解:设这三个数为2-d ,2,2+d (d ≠0),由题意,当2-d 为等比中项时,有(2-d )2=2(2+d )⇒d =6,这三个数:-4,2,8; 当2为等比中项时,有22=(2-d )(2+d )⇒d =0(舍),无解;当2+d 为等比中项时,有(2+d )2=2(2-d )⇒d =-6,这三个数:8,2,-4; 综上所述,这三个数为-4,2,8或8,2,-4.11.解:∵数列{a n }为等比数列,∴a n =2q n -1,∵数列{a n +1}也是等比数列,∴(a n +1+1)2=(a n +1)(a n +2+1) 即a n +12+2a n +1=a n a n +2+a n +a n +2∵等比数列中a n +12=a n ·a n +2,∴a n +a n +2=2a n +1则a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n .练习5-3一、选择题:1.A 2.B 3.C 4.B二、填空题:5.6 6.100 7.2100-101 8.-25. 三、解答题:9.4942n n T n -=. 10.解:∵(1)数列{a n }是等比数列,∴qq a S n n --=1)1(1,而}1{n a 是以11a 为首项,q1为公比的等比数列, ∴.,)1(111])1(1[1121111--=--=--=∴n n n n n n n q a T S q q a q qqa T (2)∵5533113T S T S T S 、、-成等差数列,∴-3a 12、a 12q 2、a 12q 4成等差数列, ∴2a 12q 2=-3a 12+a 12q 4,∵等比数列{a n }中a 1≠0,∴q 4-2q 2-3=0,∴q 2=3,∴.3±=q 11.解:(1)∵数列}11{+n a 是等差数列,∴,121,2111135=++=+∴d d a a∴1121,121)3(11113+=++=-++=+∴n a n d n a a n n ,即:1121++-=n a n (2)由(1)知:)111(12)1(121+-=+==+n n n n n a b nn∴⋅+=+-++-+-=112)]111()3121()211[(12n n n n S n Λ 练习5-4一、选择题:1.B 2.D 3.C 4.A 二、填空题: 5.60; 6.215 7.6或7; 8.n1三、解答题: 9.答:a n =2×2n -1=2n . 10.略解:(1)p =1,q =1.(2)由(1)知:x n =2n +n ,。

人教A版2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

人教A版2020届高考数学二轮复习(理)讲义及题型归纳(拔高):概率与统计

概率与统计一、考纲解读1.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性。

2.理解超几何分布及其推导过程,并能进行简单的应用。

3.了解条件概率和两个事件相互独立的概念,理解n 次独立重复实验的模型及二项分布,并能解决一些简单的实际问题。

4.理解取有限个值的离散型变量均值,方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

5.利用实际问题的频率分布直方图,了解正态分布密度曲线的特点及曲线所表示的意义二、命题趋势探究1.高考命题中,该部分命题形式有选择题、填空题,但更多的是解答题。

2.主要以离散型随机变量分布列为主体命题,计算离散型随机变量的期望和方差,其中二项分布与超几何分布为重要考点,难度中等以下。

3.有关正态分布的考题多为一道小题。

三、知识点精讲(一).条件概率与独立事件(1)在事件A 发生的条件下,时间B 发生的概率叫做A 发生时B 发生的条件概率,记作()P B A ,条件概率公式为()=P B A ()()P AB P A 。

(2)若()=P BA P B (),即()=()()P A B PAPB ,称A 与B 为相互独立事件。

A 与B相互独立,即A 发生与否对B 的发生与否无影响,反之亦然。

即,A B 相互独立,则有公式()=()()P AB P A P B 。

(3)在n 次独立重复实验中,事件A 发生k ()0k n ≤≤次的概率记作()n P k ,记A在其中一次实验中发生的概率为()P A p = ,则()()1n k k k n n P k C p p -=- .(二).离散型随机变量分布列、期望、方差及其性质(1)离散型随机变量ξ的分布列(如表13-1所示).表13-1①()11,i p i n i N θ*≤≤≤≤∈ ;②121n p p p ++= .(2)E ξ表示ξ的期望:1122=+n n p p p E ξξξξ++…,反应随机变量的平均水平,若随机变量ξη,满足=a b ηξ+,则E aE b ηξ=+.(3)D ξ表示ξ的方差:()()()2221122=---n n E p E p E p D ξξξξξξξ+++,反映随机变量ξ取值的波动性。

2020届高三理科数学二轮复习讲义:模块二专题三数列第一讲等差数列、等比数列Word版含解析.doc

2020届高三理科数学二轮复习讲义:模块二专题三数列第一讲等差数列、等比数列Word版含解析.doc

专题三数列第一讲等差数列、等比数列高考导航平等差、等比数列基本量的考察,常以客观题的形式出现,考察利用通项公式、前n 项和公式成立方程组求解.2.平等差、等比数列性质的考察主要以客观题出现,拥有“新、巧、活”的特色,考察利用性质解决相关计算问题.3.平等差、等比数列的判断与证明,主要出此刻解答题的第一问,是为求数列的通项公式而准备的,所以是解决问题的重点环节.1.(2016 ·全国卷Ⅰ )已知等差数列 { a n} 前 9 项的和为 27,a10=8,则 a100=()A .100B.99 C.98D.97[分析]设{ a n} 的公差为 d,由等差数列前 n 项和公式及通项公9=9a1+9×8a1=- 1,2=,a n=a1+(n-1)d=n式,得S d 27解得10=a1+9d=8,d=1,a-2,∴ a100=100-2=98.应选 C.[答案] C2.(2017 ·全国卷Ⅲ )等差数列 { a n} 的首项为 1,公差不为 0.若 a2,a3,a6成等比数列,则 { a n} 前 6 项的和为 ()A .- 24 B.- 3 C.3 D.8[ 分析 ]设等差数列{ a n}的公差为d,依题意得a23=a2·a6,即 (1+2d)2=(1+d)(1+5d),解得 d=- 2 或 d=0(舍去 ),又 a1=1,∴ S66×5=6×1+2×(-2)=-24.应选A.[答案]A3.(2016 ·浙江卷 )设数列 { a n} 的前 n 项和为 S n,若 S2=4,a n+1=*[ 分析 ]∵a n+1=2S n+1,∴ a2=2S1+1,即S2-a1=2a1+1,又∵S2=4,∴ 4-a1=2a1+1,解得 a1=1.又 a n+1=S n+1-S n,∴S n+1-S n=2S n+1.解法一: S n+1=3S n+1,由 S2=4,可求出 S3=13,S4=40,S5=121.1113解法二: S n+1=3S n+1,则 S n+1+2= 3 S n+2 .又 S1+2=2,∴13S n+2是首项为2,公比为 3的等比数列,13n-13n-1∴ S n+2=2×3,即 S n=2,35-1∴ S5=2=121.[答案] 11214.(2017 ·绵阳三诊 )已知 { a n} 是各项都为正数的数列,其前n 项1和为 S n,且 S n为 a n与a n的等差中项.(1)求证:数列 { S n2} 为等差数列;- 1 n(2) b n=a n,求{ b n}的前n和T n.1 [ 分析 ] (1)明:由意知2S n=a n+a n,即 2S n a n-a2n=1.①当 n=1 ,由①式可得 S1=1;当 n≥2 , a n=S n-S n-1,代入①式得2S n(S n- S n-1)-(S n-S n-1)2= 1,整理得 S2n-S2n-1=1.∴ { S2n} 是首 1,公差 1 的等差数列.(2)由(1)知 S2n=n, S n=n,∴a n=S n-S n-1= n- n-1.∴ b n=-1 n-1 nn+ n-1).==(-1)n(a n n- n-1当 n 奇数, T n=- 1+ ( 2+1)-(3+2)+⋯+(n-1+n-2)-( n+ n-1)=- n;当 n 偶数, T n=- 1+ ( 2+1)-(3+2)+⋯-(n-1+n-2)+( n+ n-1)= n.∴{ b n} 的前 n 和 T n=(-1)n n.考点一等差、等比数列的基本运算1.等差数列的通公式及前n 和公式a n=a1+(n-1)d;S n=n a1+a n=na1+n n-1 d.222.等比数列的通公式及前n 和公式a n=a1q n-1(q≠0);na1 q=1 ,S n= a1 1-q n a1-a n q1-q =1-qq≠1 .[点 ]1.(2017 ·全国卷Ⅰ ) S n等差数列 { a n} 的前 n 和.若 a4+a5=24,S6=48, { a n} 的公差 ()A .1 B.2 C.4 D.8[ 分析 ] 等差数列 { a n} 中,S6=a1+a6×6=48, a1+a6= 16=2a2+a5,又 a4+a5=24,所以 a4-a2=2d=24-16=8,得 d=4,故 C.[答案] C2.(2017 ·全国卷Ⅱ )我国古代数学名著《算法宗》中有以下:“ 望巍巍塔七,光点点倍加增,共灯三百八十一,尖几灯?”意思是:一座 7 塔共挂了 381 灯,且相两中的下一灯数是上一灯数的 2倍,塔的共有灯 ()A .1B.3C.5D.9[ 分析 ] 由意可知,由上到下灯的数a1, a2,a3,⋯,a7构a1 1-27成以 2 公比的等比数列,∴S7=1-2=381,∴ a1=3.故 B.[答案]B3.(2017 ·湖北省武市武昌区高三研)公比q(q>0)的等比数列 { a n} 的前 n 和 S n.若 S2=3a2+2,S4=3a4+2, a1=()1 2A .- 2 B.- 1 C.2 D.3[ 分析 ] 由 S 2=3a 2+2,S 4=3a 4+2 得 a 3+a 4=3a 4-3a 2,即 q +q 2=3q 2-3,解得 q =- 1(舍)或 q =3,将 q =3代入 S 2=3a 2+2 中得22a 1 33+2,解得 a 1=- 1,应选 B.+ a 1=3× a 12 2[答案] B4. (2017 ·东北三校联考 )已知等差数列 { a n } 知足 a 2=3,a 5=9,若数列 { b 知足 = 3,b + =ab ,则 { b n } 的通项公式为 .n } b 1 n 1 n________[分析] 由题意可得等差数列 { a n } 的公差 d = a 5-a 25-2 =2,所以 a n= a 2+(n -2)d =2n -1,则 b n +1=ab n =2b n -1,b n + 1-1=2(b n -1),又由于 b 1-1= 2,所以数列 { b n - 1} 是首项为 2、公比为 2 的等比数列,所以 b n -1= 2n ,b n =2n +1.[ 答案 ] b n =2n +1等差 (比)数列的运算注意两点(1)在等差 (比)数列中,首项 a 1 和公差 d(公比 q)是两个最基本的元素.(2)在进行等差 (比)数列项与和的运算时, 若条件和结论间的联系不显然,则均可化成对于 a 1 和 d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.【易错提示】 等比数列前 n 项和公式中若不确立 q 能否等于 1 应分 q =1 或 q ≠1 两种状况议论.考点二等差、等比数列的性质[对点训练 ]1.(2017 ·广州六校联考 )已知等差数列 { a n} 中, a7+ a9=16, S11=99,则 a的值是 ()212A .15B.30 C.31 D.64[分析]由于 a7+a9=2a8=16,所以 a8=8.由于 S=11 a1+a11=11×2a6=11a =99,所以 a =9,则 d=11226262a8-a6 72=4,所以 a12=a8+4d=15,应选 A.[答案]A2.太·原模拟已知等比数列{ a n}知足=1,a=4(a -1),(2017)a143a54则 a2=()11A .2B.1 C.2 D.8[分析]由等比数列的性质,得a3a5=a42=4(a4-1),解得 a =2.又 a =1,所以 q3=a4=8,即 q=2,414a111故 a 2=a1q =4×2=2.[答案]C3.(2017 ·合肥模 ) 等比数列 { a n } 的前 n 和 S n ,若 S 5=1,S 10=3, S 15 的 是 ________.[ 分析 ] ∵数列 { a n } 是等比数列,∴ S 5,S 10-S 5,S 15-S 10 成等比数列,∴ (S 10-S 5)2=S 5·(S 15-S 10),4=1×(S 15-3),得 S 15=7.[答案]7[ 研究追]3 中条件不 ,怎样求S 100 的 ?[分析]在等比数列 { a n } 中, S 5,S 10- S 5,S 15-S 10,⋯成等比数列,因 S 5=1,S 10=3,所以 S 100 可表示 等比数列1,2,4,⋯的前201× 1-22020 和,故 S 100==2 -1.[答案 ] 220-1等差、等比数列的性 是两种数列基本 律的深刻体 , 是解决等差、等比数列 既快捷又方便的工具, 存心 地去 用.但在 用性 要注意性 的前提条件,有 需要 行合适 形.考点三 等差、等比数列的判断与 明1. 明数列 { a n } 是等差数列的两种基本方法(1)利用定 , 明a n +1-a n (n ∈N * ) 一常数;(2)利用等差中 ,即 明2a n =a n -1+a n +1(n ≥2).2. 明数列 { a n } 是等比数列的两种基本方法a n+1*(1)利用定义,证明a n(n∈N)为一常数;(2)利用等比中项,即证明a2n=a n-1a n+1(n≥2).[ 解](1)证明:由 a1=1,及 S n+1=4a n+2,有 a1+a2=4a1+2,a2=3a1+2=5,∴ b1=a2-2a1=3.由 S n+1=4a n+2①知当 n≥2 时,有 S n=4a n-1+2②①-②得 a n+1=4a n-4a n-1,∴a n+1-2a n=2(a n-2a n-1)又∵ b n=a n+1-2a n,∴ b n=2b n-1,∴{ b n} 是首项 b1=3,公比为 2 的等比数列.(2)由(1)可得 b n=a n+1- 2a n=3·2n-1,a n+1 a 3∴2n+1-2n n=4,a n1 3∴数列 2n是首项为 2,公差为 4的等差数列.∴ a 2n n =12+(n -1)×34=43n -14,n -2a n =(3n -1) ·2 .等差、等比数列的判断与证明应注意的两点(1)判断一个数列是等差 (比)数列,也能够利用通项公式及前n 项和公式,但不可以作为证明方法.(2)a n+1=q 和 a 2=a - a + (n ≥2)都是数列 {a } 为等比数列的必需a n nn 1 n 1n不充足条件,判断时还要看各项能否为零.[对点训练 ]若数列 { a n } 的前 n 项和为 S n ,且知足 a n +2S n S n -1=0(n ≥2),a 11=2.1(1)求证: S n 成等差数列;(2)求数列 { a n } 的通项公式.[ 解] (1)证明:当 n ≥2 时,由 a n +2S n S n -1=0, 得 S n -S n - 1=- 2S n S n -1,所以 1 -1=2,S n S n -11 1 1 又 S 1=a 1 =2,故 S n 是首项为 2,公差为 2 的等差数列. (2) 由 可得 1 =2n ,∴ S = 1 , (1) S n n 2n11当 n ≥2 时, a n =S n -S n -1=2n -2 n -1n -1-n 1 = 2n n -1 =- 2n n -1 .1当 n =1 时, a 1=2不合适上式.12,n =1,故 a n =1-2n n -1 ,n ≥2.热门课题 11函数与方程思想在数列中的应用[感悟体验 ]1.(2017 ·西安统测 )已知等差数列 { a n } 的前 n 项和为 S n ,a 1=13,S 3=S 11,则 A .49S n 的最大值为B .28()C .- 49 或- 28D .28或 49[ 分析 ] 由 S 3=S 11,可得 3a 1+3d =11a 1+ 55d ,把 a 1=13 代入得d =- 2,故 S n =13n -n(n -1)=- n 2+14n ,依据二次函数性质, 知当n =7 时, S n 最大,且最大值为 49.2020届高三理科数学二轮复习讲义:模块二专题三数列第一讲等差数列、等比数列Word版含解析.doc[答案]A2.(2017 ·河南郑州二中期末 )已知等差数列 { a n} 的公差 d≠0,且2S n+16 a1,a3,a13成等比数列,若 a1=1,S n是数列 { a n} 的前 n 项的和,则a n+3(n∈N* )的最小值为 ()9A .4 B.3 C.2 3-2 D.2[ 分析 ]∵a1=1,a1、a3、a13成等比数列,∴ (1+2d)2=1+12d.得 d=2 或 d=0(舍去 )∴ a n=2n-1,∴S n=n 1+2n-1=n2,22S n+162n2+16∴a n+3=2n+2 .令 t=n+1,2S n+169则a n+3=t+t-2≥6-2=4 当且仅当 t=3,2S n+16即 n=2 时,∴a n+3的最小值为 4.应选 A. [答案] A。

2020年高考数学(理)二轮专项复习专题05 数列

2020年高考数学(理)二轮专项复习专题05 数列

专题05数列本专题的主要内容是数列的概念、两个基本数列——等差数列、等比数列.这部分知识应该是高考中的重点内容.考察数列知识时往往与其他知识相联系,特别是函数知识.数列本身就可以看作特殊(定义在N *)的函数.因此解决数列问题是常常要用到函数的知识,进一步涉及到方程与不等式.本专题的重点还是在两个基本数列——等差数列、等比数列上,包括概念、通项公式、性质、前n 项和公式.§5-1数列的概念【知识要点】1.从函数的观点来认识数列,通过函数的表示方法,来认识数列的表示方法,从而得到数列的常用表示方法——通项公式,即:a n =f (n ).2.对数列特有的表示方法——递推法有一个初步的认识.会根据递推公式写出数列的前几项,并由此猜测数列的一个通项公式.3.明确数列的通项公式与前n 项和公式的关系:S n =a 1+a 2+…+a n ;⎩⎨⎧≥==-)2()1(11n -S S n S a n n n .特别注意对项数n 的要求,这相当于函数中的定义域.【复习要求】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.【例题分析】例1根据数列的前几项写出该数列的一个通项公式:(1)3231,1615,87,43,21;(2)2,-6,18,-54,162;(3)9,99,999,9999,99999;(4)1,0,1,0,1,0;(5)12133,1091,857,631,413,23;(6)52,177,73,115,21,53;【分析】本题需要观察每一项与项数之间存在的函数关系,猜想出一个通项公式.这种通过特殊的元素得到一般的规律是解决问题的常用方法,但得到的规律不一定正确,可经过证明来验证你的结论.解:(1)nn n n a 211212-=-=;(2)a n =2×(-3)n -1;(3)a n =10n -1;(4)⎩⎨⎧为偶数为奇数n n a n 01;(5)nn a n 2112+-=;(6)232++=n n a n .【评析】(1)中分数的考察要把分子、分母分开考察,当然有时分子分母之间有关系;(2)中正负相间的情况一定与(-1)的方次有关;(3)中的情况可以扩展为7,77,777,7777,77777⇒)110(97-=nn a ;(4)中的分段函数的写法再一次体现出数列是特殊的函数,也可写成2)1(11--+=n n a ,但这种写法要求较高;(5)中的假分数写成带分数结果就很明显了;(6)中的变换要求较高,可根据分子的变化,变换整个分数,如==42218463=,根据分子,把21变为84,其他类似找到规律.例2已知:数列{a n }的前n 项和S n ,求:数列{a n }的通项公式a n ,(1)S n =n 2-2n +2;(2)1)23(-=n n S .【分析】已知数列前n 项和S n 求通项公式a n 的题目一定要考虑n =1与n ≥2两种情况,即:a n =S n -S n -1不包含a 1,实际上相当于函数中对定义域的要求.解:(1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,则⎩⎨⎧≥-==23211n n n a n .(2)当n =1时,,2111==S a 当n ≥2时,1123(21--<=-=n n n n S S a ,此公式也适合n =1时的情况,则123(21-⨯=n n a .【评析】分情况求出通项公式a n 后,应考察两个式子是否能够统一在一起,如果能够统一还是写成一个式子更加简洁;如果不能统一就要写成分段函数的形式,总之分情况讨论后应该有一个总结性结论.例3完成下列各题:(1)数列{a n }中,a 1=211ln(1na a n n ++=+,则a 3=()A .2+ln3B .2+2ln3C .2+3ln3D .4(2)已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于()A .-165B .-33C .-30D .-21(3)数列{a n }中,*221,,254N ∈+=+++-=n bn an a a a n a n n ,其中a ,b 为常数,则ab =______.【分析】本题中三个小题都涉及数列的递推关系,这类问题,最好的办法是给n 赋值,通过特殊的项找到一般的规律.解:(1)∵n n a nn a n a a n n n n ln )1ln(1ln )11ln(1-++=++=++=+,∴a 2=a 1+ln(1+1)-ln1=2+ln2,a 3=a 2+ln(2+1)-ln2=2+ln3,选A .(2)∵a p +q =a p +a q ,∴,36111112-=⇒-=+==+a a a a a ∴a 3=a 2+1=a 2+a 1=-6-3=-9,a 5=a 3+2=a 3+a 2=-9-6=-15,a 10=a 5+5=a 5+a 5=-30.选C .(3)∵a 1+a 2+…+a n =an 2+bn ,∴⎩⎨⎧+=++=ba a a ba a 24211,∵254-=n a n ,∴⎪⎩⎪⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧+=++=212242112323b a b a b a ,∴ab =-1.【评析】这种通过特殊的项解决数列问题的方法今后经常用到,希望大家掌握.例4已知:函数f (x )=a 1+a 2x +a 3x 2+…+a n x n -1,21)0(=f ,且数列{a n }满足f (1)=n 2a n (n ∈N *),求:数列{a n }的通项.【分析】首先要应用f (0)与f (1)这两个条件,由题可看出可能与S n 与a n 关系有关.解:由题知:21)0(1==a f ,f (1)=a 1+a 2+…+a n =n 2a n ,即:S n =n 2a n ,则S n -1=(n -1)2a n -1(n ≥2),∴a n =S n -S n -1=n 2a n -(n -1)2a n -1(n ≥2),∴(n 2-1)a n =(n -1)2a n -1(n ≥2),即:)2(111≥+-=-n n n a a n n,∴)2(31425313211122334211≥⨯⨯⨯⨯--⨯-⨯+-=⨯⨯⨯⨯⨯---n n n n n n n a a a a a a a a aa n n n n,即)2(21111≥⨯⨯+=n n n a an ,∴)2()1(1≥+=n n n a n ,∵当n =1时,212111=⨯=a 上式也成立,∴)()1(1*N ∈+=n n n a n .【评析】本题中,题目给出函数的条件,而f (0)与f (1)的运用就完全转化为数列问题,S n 与a n 的关系应该是要求掌握的,尤其是在n -1出现时,要注意n ≥2的限制,这相当于函数中的定义域.而叠乘的方法是求数列通项的基本方法之一.练习5-1一、选择题:1.数列1614,1311,108,75,42---…的通项公式为()A .1313)1(1+--+n n n B .1313)1(+--n n n C .1323)1(---n n nD .1333)1(---n n n2.若数列的前四项是3,12,30,60,则此数列的一个通项公式是()A .2)2)(1(++n n n B .5n 2-6n +4C .2)1(93-+n n D .2127ln 12+-n 3.数列{a n }中,若a 1=1,a 2=1,a n +2=a n +1+a n ,则a 7=()A .11B .12C .13D .144.数列{a n }的前n 项和为S n ,若Sn =2(a n -1),则a 2=()A .-2B .1C .2D .4二、填空题:5.数列2,5,2,5,…的一个通项公式______.6.数列{a n }的前n 项和S n =n 2,数列{a n }的前4项是______,a n =______.7.若数列{a n }的前n 项和S n =2n 2-3n +1,则它的通项公式是______.8.若数列{a n }的前n 项积为n 2,则a 3+a 5=______.三、解答题:9.已知:数列{a n }中,若n n na a a a a =+++=211,21,求:数列{a n }前4项,并猜想数列{a n }的一个通项公式.10.已知:数列1,2,2,3,3,3,4,4,4,4,5…,求:数列的第50项.§5-2等差数列与等比数列【知识要点】1.熟练掌握等差数列、等比数列的定义:a n -a n -1=d (常数)(n ≥2)⇔数列{a n }是等差数列;q a a n n=-1(常数)(n ≥2)⇔数列{a n }是等比数列;由定义知:等差数列中的项a n 及公差d 均可在R 中取值,但等比数列中的项a n 及公比q 均为非零实数.应该注意到,等差数列、等比数列的定义是解决数列问题的基础,也是判断一个数列是等差数列、等比数列的唯一依据.2.明确等差中项与等比中项的概念,并能运用之解决数列问题:c b a ca b 、、⇔+=2成等差数列,b 叫做a 、c 的等差中项,由此看出:任意两个实数都有等差中项,且等差中项唯一;b 2=ac ⇔a 、b 、c 成等比数列,b 叫做a 、c 的等比中项,由此看出:只有同号的两个实数才有等比中项,且等比中项不唯一;3.灵活运用等差数列、等比数列的通项公式a n 及前n 项和公式S n :等差数列{a n }中,a n =a m +(n -m )d =a 1+(n -1)d ,d n n na n a a S n n 2)1(211-+=+=;等比数列{a n }中,a n =a m q n -m =a 1q n -1,⎪⎩⎪⎨⎧=/--==)1(1)1()1(11q qq a q na S n n ;4.函数与方程的思想运用到解决数列问题之中:等差数列、等比数列中,首项a 1、末项a n 、项数n ,公差d (公比q )、前n 项和S n ,五个量中,已知三个量,根据通项公式及前n 项和公式,列出方程可得另外两个量.等差数列中,n da n d S d a dn a n n )2(2121-+=-+=、,可看作一次函数与二次函数的形式,利用函数的性质可以解决数列问题.5.等差数列、等比数列的性质:等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ;等比数列{a n }中,若m +n =p +q ,则a m ·a n =a p ·a q ;【复习要求】1.理解等差数列、等比数列的概念.2.掌握等差数列、等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、等比数列与指数函数的关系.【例题分析】例1完成下列各题:(1)若等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=()A .138B .135C .95D .23(2)各项均为正数的等差数列{a n }中必有()A .8664a aa a <B .8664a aa a ≤C .8664a aa a >D .8664a aa a ≥【分析】本题在于考察等差数列的基本知识,通项公式及前n 项和公式是一切有关数列中考察的重点,注意数列中项数之间的关系.解:(1)∵等差数列{a n }中a 2+a 4=4,a 3+a 5=10,∴a 3=2,a 4=5,∴公差d =3,首项a 1=-4,∴a 10=a 1+9d =-4+27=23,∴9510210110=⨯+=a a S .选C.(2)等差数列{a n }中a 4+a 8=2a 6,∵等差数列{a n }各项均为正数,∴由均值不等式26284842(a a a a a =+≤⋅,当且仅当a 4=a 8时等号成立即:8664a aa a ≤,选B .【评析】本题中涉及到等差数列中的重要性质:若m +n =p +q ,则a m +a n =a p +a q ,(1)中可直接应用这一性质:a 2+a 4=a 3+a 3=2a 3得到结论,但题中所给的答案可看作这一性质的证明,同时,等差数列中通项公式并不一定要用首项表示,可以从任何一项开始表示a n ,这也是常用的方法,(2)注意观察数列中项数的关系,各项均为正数的要求恰好给运用均值不等式创造了条件,注意等号成立的条件.例2完成下列各题:(1)等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=()A .64B .81C .128D .243(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S 10=2,S 30=14,则S 40=()A .80B .30C .26D .16【分析】本题中各小题是在运用等比数列的基本知识来解决,通项公式与前n 项和公式要熟练运用.解:(1)∵数列{a n }是等比数列,∴⎩⎨⎧=+=+=+=+63211321121q a q a a a q a a a a ,∴⎩⎨⎧==211q a ,a 7=a 1·q 6=26=64.选A .(2)方法一:∵等比数列{a n }的前n 项和为S n ,(*)21)1(10110=--=qq a S ,(**)141)1(30130=--=q q a S ,两式相除:7111030=--qq ,即:1+q 10+q 20=7⇒q 10=2或q 10=-3(舍),把q 10=2代入(*)中得到:211-=-qa ,∴.30)21)(2(1)1(440140=--=--=qq a S 选B .方法二:a 1+a 2+…+a 10、a 11+a 12+…+a 20、a 21+a 22+…+a 30、a 31+a 32+…+a 40、……也构成等比数列,设新等比数列的公比为p则:a 1+a 2+…+a 10=S 10=2、a 11+a 12+…+a 20=2p 、a 21+a 22+…+a 30=2p 2∵S 30=2+2p +2p 2=14,∴p =-3或p =2,∵等比数列{a n }的各项均为正数,∴p =2,∴a 1+a 2+…+a 10=2、a 11+a 12+…+a 20=4、a 21+a 22+…+a 30=8、a 31+a 32+…+a 40=16,∴S 40=2+4+8+16=30.【评析】(2)中方法一仍是解决此类问题的基本方法,注意把qa -11看成整体来求,方法二的方法在等差数列及等比数列中均适用,即:等比数列中第1个n 项和、第2个n 项和、…第n 个n 项和仍然成等比数列,此时,你知道这时的公比与原数列的么比的关系吗?例3已知:等差数列{a n }的前n 项和为S n ,且S 5=16,S 10=64,求:S 15=?.【分析】本题是对等差数列的知识加以进一步考察,可以用求和公式,也可运用等差数列的性质加以解决.解:方法一:由⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=⨯+==⨯+=2532251664291010162455111015d a d a S d a S ,则:1442141515115=⨯+=d a S ;方法二:等差数列中:a 1+a 2+a 3+a 4+a 5、a 6+a 7+a 8+a 9+a 10,a 11+a 12+a 13+a 14+a 15这三项也构成等差数列,即a 1+a 2+a 3+a 4+a 5=S 5=16,a 6+a 7+a 8+a 9+a 10=S 10-S 5=64-16=48,a 11+a 12+a 13+a 14+a 15=S 15-S 10=S 15-64,∴2×48=16+S 15-64,∴S 15=144.方法三:∵596,48166452106106610=+=-=⨯+=-∴a a a a S S ,∵a 1+a 15=a 6+a 10∴14415259615215115=⨯=⨯+=a a S .【评析】本题中方法一是直接应用前n 项和公式,得出首项与公差,再用公式得出所求,应是基本方法,但运算较繁锁;方法二充分注意到等差数列这一条件,得到的结论可以扩展为等差数列中第1个n 项和、第2个n 项和、……第n 个n 项和仍然成等差数列,你知道这时的公差与原数列的公差的关系吗?这一方法希望大家掌握;方法三是前n 项和公式与等差数列的性质的综合应用,大家可以借鉴.例4已知:等差数列{a n }中,且na a ab nn +++= 21,(1)求证:数列{b n }是等差数列;(2)若23,1132113211=++++++=b b b a a a a ,求数列{a n }{b n }的通项公式.【分析】运用等差数列的两个公式,两个数列都是等差数列,所求通项就离不开首项和公差.解:(1)∵数列{a n }是等差数列,设公差为d ,∴2,2121121nn n n n a a n a a a b n a a a a a +=+++=⨯+=+++∴ ,∴)2(222211111≥=-=⋅+-+=---⋅-n da a a a a ab b n n n n n n ,∴数列{b n }是等差数列,公差为2d;(2)∵1,1121==+++=∴a b na a ab nn ,∵数列{a n }、{b n }是等差数列,∴31,232·66,23132132117713113113113113211321==++==++=⨯+⨯+=++++++∴∴d d b d a b a b b a a b b a a b b b a a a ,∴656161)1(1,323131)1(1+=-+=+=⨯-+=n n b n n a n n .【评析】(1)中遇到了证明数列是等差(等比)数列,采取的方法只能是运用定义,满足定义就是,不满足定义就不是.例5已知:等差数列{a n }中,a 3=12,S 12>0,S 13<0,求数列{a n }的公差d 的取值范围;【分析】按照所给的条件,把两个不等的关系转化为关于公差d 的不等式.解:(1)∵数列{a n }是等差数列,∴⎪⎩⎪⎨⎧<⨯+=>⨯+=013201221311312112a a S a a S ,即:⎩⎨⎧<++-=+>++-=+01020923313133121d a d a a d a d a a a α,∴⎪⎪⎩⎪⎨⎧-<->332827a d a d ,即:3724-<<-d ,【评析】也可直接运用d n n na S n 2)1(1-+=得到关于a 1与d 的不等式,再通过通项公式得到a 3与a 1的关系.例6已知:四个数中,前三个数成等差数列,后三个数成等比数列,第一、四个数的和为16,第二、三个数的和为12,求这四个数.【分析】本题中,方程的思想得到明显的体现,实际上数列问题总体上就是解方程的问题,根据所给的条件,加上通项公式、前n 项和公式列出方程,解未知数,通过前面的例题大家应该有所体会了.解:方法一:设这四个数为:a ,b ,12-b ,16-a则根据题意得,⎩⎨⎧==⇒⎪⎩⎪⎨⎧-=--+=40)16()12(1222b a a b b ba b 或⎩⎨⎧==915b a ,则这四个数为0、4、8、16或15、9、3、1.方法二:设这四个数为:a -d ,a ,a +d ,ad a 2)(+则根据题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++=+-441216)(2d a d a a a d a d a 或⎩⎨⎧-==69d a ,则这四个数为:0、4、8、16或15、9、3、1.【评析】列方程首先就要设未知数,题目中要求四个数,但不要就设四个未知数,要知道,方程的个数与未知数的个数一样时才有可能解出,因此在设未知数时就要用到题目中的条件.方法一是用“和”设未知数,用数列列方程;方法二是用数列设未知数,用“和”列方程.例7已知:等差数列{a n }中,a 4=10,且a 5,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.【分析】本题最后要求的是等差数列的前20项和,因此,求首项、公差以及通项公式就是必不可少的.解:∵数列{a n }是等差数列,∴a 5=a 4+d =10+d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d ,∵a 5,a 6,a 10成等比数列,∴a 62=a 5·a 10,即:(10+2d )2=(10+d )(10+6d )∴d =0或d =-15,当d =0时,a n =a 4=10,S 20=200;当d =-15时,a n =a 4+(n -4)d =-15n +70,1750202)230(5520220120-=⨯-+=⨯+=a a S ;【评析】这种等差、等比数列综合运用时,往往出现多解的情况,对于多个解都要一一加以验证,即使不合题意也要说明,然后舍去.例8已知:等差数列{a n }中,a n =3n -16,数列{b n }中,b n =|a n |,求数列{b n }的前n 项和S n .【分析】由于对含有绝对值的问题要加以讨论,因此所求的前n 项和S n 应该写成分段函数的形式.解:(1)当n ≤5时,a n <0,则:b n =|a n |=16-3n ,且b 1=13,n n n n S n 229232316132+-=⨯-+=;(2)当n ≥6时,a n >0,则:b n =|a n |=3n -16,此时:S 5=35,b 6=2,7022923)5(21632352+-=-⨯-++=n n n n S n ,由(1)(2)知,⎪⎩⎪⎨⎧≥+-≤+-=)6(7022923)5(2292322n n n n nn S n .【评析】当n ≥6时,前5项和要加在S n 中是经常被忽略的,得到的结果形式上比较复杂,可通过赋值的方法加以验证.练习5-2一、选择题:1.若等差数列的首项是-24,且从第10项开始大于零,则公差d 的取值范围是()A .38>d B .d <3C .338<≤d D .338≤<d 2.若等差数列{a n }的前20项的和为100,则a 7·a 14的最大值为()A .25B .50C .100D .不存在3.等比数列{a n }中,若a 1+a 2=40,a 3+a 4=60,则a 7+a 8=()A .80B .90C .100D .1354.等差数列{a n }的前2006项的和S 2006=2008,其中所有的偶数项的和是2,则a 1003=()A .1B .2C .3D .4二、填空题:5.(1)等差数列{a n }中,a 6+a 7+a 8=60,则a 3+a 11=______;(2)等比数列{a n }中,a 6·a 7·a 8=64,则a 3·a 11=______;(3)等差数列{a n }中,a 3=9,a 9=3,则a 12=______;(4)等比数列{a n }中,a 3=9,a 9=3,则a 12=______.6.等比数列{a n }的公比为正数,若a 1=1,a 5=16,则数列{a n }前7项的和为______.7.等差数列{a n }中,若a n =-2n +25,则前n 项和S n 取得最大值时n =______.8.等比数列{a n }中,a 5a 6=-512,a 3+a 8=124,若公比为整数,则a 10=______.三、解答题:9.求前100个自然数中,除以7余2的所有数的和.10.已知:三个互不相等的数成等差数列,和为6,适当排列后这三个数也可成等比数列,求:这三个数.11.已知:等比数列{a n }中,a 1=2,前n 项和为S n ,数列{a n +1}也是等比数列,求:数列{a n }的通项公式a n 及前n 项和S n .§5-3数列求和【知识要点】1.数列求和就是等差数列、等比数列的求和问题,还应掌握与等差数列、等比数列有关的一些特殊数列的求和问题,2.数列求和时首先要明确数列的通项公式,并利用通项公式找到所求数列与等差数列、等比数列之间的联系,利用等差数列、等比数列的求和公式解决问题,3.三种常见的特殊数列的求和方法:(1)直接公式法:解决一个等差数列与一个等比数列对应项相加而成的新数列的求和问题;(2)错位相减法:解决一个等差数列与一个等比数列对应项相乘而成的新数列的求和问题;(3)裂项相消法:解决通项公式是等差数列相邻两项乘积的倒数的新数列的求和问题.【复习要求】特殊数列求和体现出知识的“转化”思想——把特殊数列转化为等差数列、等比数列,而在求和的过程中又体现出方程的思想【例题分析】例1求和下列各式(1))21(412211n n ++++ ;(2)1×2+2×22+3×23+…+n ×2n ;(3))12)(12(1751531311+-++⨯+⨯+⨯n n ;(4)11431321211++++++++n n.【分析】我们遇到的数列求和的问题是一些特殊的数列,即与等差、等比数列密切相关的数列,最后还是回到等差、等比数列求和的问题上.解:(1))212121()21(21(4122112n n n n +++++++=++++ nn n n n n 211)1(21211)211(212)1(-++=--++=.(2)设:S n =1×2+2×22+3×23+…+n ×2n1321322222222)1(22212)++⨯-++++=-⨯+⨯-+⋯+⨯+⨯=-n n n n n n n S n n S 则:22)1(21)21(2211+-=---⨯=++n n n n n n S .(3))12)(12(1751531311+-++⨯+⨯+⨯n n )]121121()5131()311[(21+--++-+-=n n 12)1211(21+=+-=n nn .(4)11431321211+++++++++n n 111342312-+=-+++-+-+-=n n n .【评析】(1)中数列可看成一个等差数列与一个等比数列对应项相加而成,直接运用前n项和公式即可;(2)中数列可看成一个等差数列与一个等比数列对应项相乘而成,采用错位相减的方法,相减以前需要每一项乘以等比数列的公比,然后错位相减,还是利用等比数列的前n 项和公式,注意错位后最后一项相减时出现的负号,这是极容易出错的地方;(3)(4)都是裂项相消,都与等差数列有关,(3)中的形式更加常见一些,注意裂项后的结果要与裂项前一致,经常要乘一个系数(这个系数恰好是等差数列的公差的倒数).例2求下列数列的前n 项和S n .(1)1,-5,9,-13,17,-21,…,(-1)n -1(4n -3);(2)n+++++++ 3211,,3211,211,1;(3)1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1;【分析】对于一个数列来说,最重要的是通项公式,有了通项公式,就可以写出所有的项,就可以看出其与等差、等比数列的关系,从而利用等差、等比数列的前n 项和得出结论.解:(1)方法一:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1+9+17+4n -3)-[5+13+21+(4n -7)].12)21(2745)21(2341-=-⨯-+-+⨯-+=n n n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1+9+17+4n -7)-[5+13+21+(4n -3)].22234522741n nn n n -=⨯-+-⨯-+=方法二:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1-5)+(9-13)+(17-21)+…+(4n -11+4n -7)+(4n -3).12)34(21)4(-=-+-⨯-=n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3)=(1-5)+(9-13)+(17-21)+…+(4n -7+4n -3).22)4(n n-=⨯-=(2)此数列中的第n 项111(2)1(22)1(13211+-=+=+=++++=n n n n n n n a n 则n+++++++++++ 321132112111⋅+=+-=+-++-+-+-=12)111(2111(4131()3121()211[(2n nn n n (2)此数列中的第n 项1221212221n 12-=--=++++=-n n n a 则1+(1+2)+(1+2+22)+…(1+2+22+…+2n -1)=(21-1)+(22-1)+(23-1)+…(2n -1)n n n n n n--=---=-++++=+2221)21(2)2222(1321.【评析】(1)中带有(-1)n ,需要讨论最后一项的正负,方法一是把正、负项分开,看成两个等差数列,方法二应该是多观察的结果,当都要对n 加以讨论,(2)(3)都要先写出通项,然后每一项按照通项的形式写出,很明显地看出方法.例3数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设12-=n nn a b ,求证:数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .【分析】对于证明数列是等差、等比数列的问题,还是要应用定义.解:(1)证明:∵,2,2111nn n n n n a b a b ++-==∴∴12;122222211111111====-=-=--+-++a b a a a a b b n n n n n n n n n n n ,∴数列{b n }是首项、公差都为1的等差数列,即:b n =n .(2)由(1)中结果,设12-=n n n a b 时,b n =n ,则:a n =n ·2n -1∴S n =1×20+2×21+3×22+4×23+…+(n -1)2n -2+n ·2n-1n n n nn n n n S n n n S 22222122)1(2)2(2322212)13212321⋅⋅-+++++=-+-+-++⨯+⨯+⨯=---- 12)1(21212+-=---=⋅⋅n nnn n n S .【评析】证明数列是等差、等比数列时,如果可能应强调首项与公差,证明后,往往要用到整个数列,因此证明完后应把数列的通项写出,便于解决其他问题.例4已知:数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *,(1)求证:数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立.【分析】证明等比数列是应该应用定义,比较大小最有效的方法是作差.(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n )(n ∈N *),∵a 1-1=1≠0,∴4)()1(1=-+-+n a n a n n ,∴数列{a n -n }是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n .则数列{a n }的前n 项和⋅++-=++++++=-2)1(314)4()24()14(11n n n S n n n (3)证明:2)1(43442)2)(1(3144111+---+++-=-+++n n n n S S n n n n .02)1)(43()43(212≤-+-=-+-=n n n n ∴不等式S n +1≤4S n ,对任意n ∈N *皆成立.练习5-3一、选择题:1.数列n n 21)12(1617815413211+-、、、、、 的前n 项之和S n =()A .n n 2112-+B .n n n 21122-+-C .12211--+n n D .nn n 2112-+-2.若数列1111311211110,,10,10,10n ,…它的前n 项的积大于105,则正整数n 的最小值是()A .12B .11C .10D .83.数列{a n }的通项公式11++=n n a n ,若前n 项和S n =3,则n =()A .3B .4C .15D .164.数列{a n }的前n 项和为S n ,若)1(1+=n n a n 则S 5等于()A .1B .65C .61D .301二、填空题:5.若)1(11216121+++++=n n S n ,且431=⋅+n n S S ,则n =______.6.若lg x +lg x 2+lg x 3+…+lg x n =n 2+n ,则x =______.7.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)的前99项和是______.8.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,若b n =log 3a n ,则数列{b n }的前10项的和是______.三、解答题:9.已知:等差数列{a n }的前n 项和为S n ,且S 7=7,S 15=75,求数列}{n sn的前n 项和T n .10.已知:等比数列{a n }中,公比nn n n a a a T a a a S q 111,,12121+++=+++=≠ .(1)用a 1、q 、n 表示nnT S ;(2)若5533113T S T S T S 、、-成等差数列,求q 的值;11.已知:数列{a n }中,a 3=2,a 5=1,数列⎭⎬⎫⎩⎨⎧+11n a 是等差数列,(1)数列{a n }的通项公式;(2)若na b n n 1+=,求数列{b n }的前n 项和S n .§5-4数学归纳法【知识要点】1.数学归纳法是证明与正整数有关的命题的一种方法.2.数学归纳法证明包含两个步骤:(1)证明n =n 0时命题成立(n 0是第一个使命题成立的正整数)(2)假设n =k (k ≥n 0)时命题成立,由此证明n =k +1时命题也成立.注意到,数学归纳法是一种自动证明的方法,其中(1)是基础,(2)是一种递推的结构,在证明n =k +1命题成立时,必须要用上n =k 成立时的归纳假设.【复习要求】了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【例题分析】例1求证:)()12(2)1()12)(12(532311*222N ∈++=+-++⨯+⨯n n n n n n n 【分析】等式的证明应该是利用数学归纳法常见的命题,注意从k 到k +1时书写一定要清晰,不能模棱两可,蒙混过关.证明:(1)当n =1时,左31)12(2)11(1,313112=+⨯+⨯===⨯=右,则当n =1时原式成立(2)假设当n =k 时原式成立,即:,)12(2)1()12)(12(532311222++=+-++⨯+⨯k k k k k k 则当n =k +1时,左)32)(12()1()12)(12(5323112222+++++-++⨯+⨯=k k k k k k )32)(12()1()12(2)1(2++++++=k k k k k k )32)(12(2)1(2)32)(1(2++++++=k k k k k k 右=+++=+++++=)32(2)2)(1()32)(12(2)12)(2)(1(k k k k k k k k .故当n =k +1时原式也成立.∴由(1)(2)知:当n ∈N *时,原式均成立.【评析】数学归纳法的关键在第二步,本题中利用归纳假设把k +1个式子的和转化为两个式子的和是关键,后面的运算主要是提取公因式,最好把要变成的形式先写出来,这样就有了一个目标.例2求证:)2,(12131211*≥∈+>++++n n n n n N 【分析】本题中n 0=2,在利用归纳假设证明n =k +1不等式也成立时,我们可以利用不等式的其他证明方法.证明:(1)当n =2时,左=+⨯=>=+=12223423211右,则当n =2时原式成立.(2)假设当n =k 时原式成立,即:,12131211+>++++k k k 则,当n =k +1时,左,1)1()1(2,112111*********+++=++=+++>++++++=k k k k k k k k k 右 ∵,0)2)(1()2)(1(2422521)1()1(211222>++=++---++=+++-++k k k k k k k k k k k k k ∴,1)1()1(211131211+++>++++++k k k k 故当n =k +1时原式也成立,∴由(1)(2)知:当n ∈N *,n ≥2时,原式均成立.【评析】在第二步中,利用比较法得到原式成立的结果,这种方法需要大家掌握.例3已知:正数数列{a n }的前n 项之和为S n ,且满足221(+=n n a S (1)求:a 1,a 2,a 3,a 4的值;(2)猜测数列{a n }的通项公式,并用数学归纳法加以证明.【分析】本题首先要求出前四项,应注意到正数数列这一条件,需要利用S n 与a n 的关系.解:(1),321(,121(22221212111=⇒+=+==⇒+==a a a a S a a a S ,721(,521(424432143233213=⇒+=+++==⇒+=++=a a a a a a S a a a a a S (2)猜想:a n =2n -1,证明:①当n =1时,猜想显然成立②假设当n =k 时猜想成立,即:a k =2k -1,此时,)21(22k a S k k =+=则当n =k +1时,2211121(k a S S a k k k k -+=-=+++,整理得到:a k +12-2a k +1-(2k +1)(2k -1)=0,即:(a k +1+2k -1)(a k +1-2k -1)=0,∵a n >0,∴a k +1=2k +1=2(k +1)-1,故当n =k +1时猜想也成立.∴由①②知:a n =2n -1(n ∈N *).【评述】这种归纳、猜想、证明的题目应该是我们解决问题中常见的,体现了由特殊到一般的过程,关键是归纳,前四项不要算错,否则就猜不出来了.例4已知:数列{a n }、{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).求:a 2,a 3,a 4及b 2,b 3,b 4,猜测{a n },{b n }的通项公式,并证明你的结论.【分析】利用等差中项与等比中项的条件,找到a n 、b n 、a n +1、b n +1的关系.解:由条件得2b n =a n +a n +1,121++=n n n b b a由此可得⎩⎨⎧==⇒=+=⎪⎩⎪⎨⎧962222122211b a b b a a a b ;同理得到:⎩⎨⎧==⎩⎨⎧==2520,16123433b a b a ,由此猜测a n =n (n +1),b n =(n +1)2,下面用数学归纳法证明:a n =n (n +1),b n =(n +1)2,①当n =1时,a 1=1×2=2,b 1=(1+1)2=4,猜想成立.②假设当n =k 时,猜想成立,即a k =k (k +1),b k =(k +1)2,则当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),2211)2(+==++k b a b kkk ,故当n =k +1时,猜想也成立.由①②知a n =n (n +1),b n =(n +1)2对一切正整数都成立.练习5-41.某个命题与正整数有关,若n =k (k ∈N +)时,命题成立,那么可推出当n =k +1时,该命题也成立.现已知当n =5时,该命题不成立,那么可以推得()A .当n =6时,该命题不成立B .当n =6时,该命题成立C .当n =4时,该命题不成立D .当n =4时,该命题成立2.平面上有n 条直线,它们任意两条不平行,任意三条不共点,若k 条这样的直线把平面分成f (k )个区域,则f (k +1)-f (k )=()A .k +1B .k C .k -1D .2k 3.利用数学归纳法证明不等式2413212111>+++++n n n 的过程中,从n =k 到n =k +1时,不等式的左边添加的代数式是______.4.观察下列式子:474131211,3531211,23211222222<+++<++<+,…,则可以猜想的结论为:_______.5.求证:1×2+2×5+3×8+…+n (3n -1)=n 2(n +1).6.求证:121211()511)(311)(111(+>-++++n n .7.求证:4n +15n -1能被9整除.8.已知:递增数列{a n }满足:a 1=1,2a n +1=a n +a n +2(n ∈N *),且a 1、a 2、a 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足:b n +1=2n b -(n -2)b n +3(n ∈N *),且b 1≥1,用数学归纳法证明:b n ≥a n .§5-5数列综合问题【知识要点】1.灵活运用等差数列、等比数列的两个公式及其性质来解决综合问题,2.能解决简单的由等差数列、等比数列形成的新数列的问题,3.能够利用等差数列、等比数列的定义来确定所给数列是等差数列、等比数列.【复习要求】通过简单综合问题的解决,加深对等差数列、等比数列中,定义、通项、性质、前n 项和的认识.加深数列是特殊的函数的认识,符合高中阶段知识是以函数为主线的展开.【例题分析】例1完成下列各题:(1)数列{a n }中,若11121,1++=-=n n n a a a ,则a 5=______.(2)数列{a n }中,若a 1=2,a n +1=a n +n +1,则通项a n =______.【分析】叠加的方法应该是解决数列的通项以及求和问题中常见的方法.解:(1)3451122334455212121)()()()(++=+-+-+-+-=a a a a a a a a a a 1212++3247=,(2)∵a n +1=a n +n +1,∴a n +1-a n =n +1∴利用叠加法,有:a 2-a 1=1+1a 3-a 2=2+1a 4-a 3=3+1………1)1()1+-=-+-n a a n n )1)(2(214321-+=++++=-n n n a a n 整理222++=n n a n .【评析】叠加时一定要注意首、尾项的变化,尤其是符号.例2已知:数列{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.【分析】应该是等差数列中的基本问题,还是利用两个基本公式解决问题.解:(1)设{a n }的公差为d ,由已知条件,⎩⎨⎧-=+=+54111d a d a ,解出a 1=3,d =-2.∴a n =a 1+(n -1)d =-2n +5;(2)4)2(42)1(221+--=+-=-+=n n n d n n na S n .∴n =2时,S n 取到最大值4.【评析】对于等差数列的前n 项和的最值问题,看成二次函数的最值问题应该是基本方法.例3已知:数列{a n }中,a 1=1,221+=+n n a a ,设11++=n n n a a b ,求数列{b n }的前n 项和S n .【分析】注意观察所给数列变形后与等差、等比数列有哪些联系,这个联系一定要找到,而且一定有联系,显然本题中}{2n a 是等差数列.解:由题知:数列{a n }中a n >0,∵1,2,22122121=+=+=++∴a a a a a n n n n ,∴数列}{2n a 是首项为1,公差为2的等差数列,∴12,0,122)1(12-=>-=⨯-+=∴n a a n n a n n n ,∵11++=n n n a a b ,∴1212(2112121--+=++-=n n n n b n ,∴)112(211212573513(21-+=--+++-+-+-=n n n S n .【评析】对于开方的问题一定要考虑正、负,而裂项求和(也可以看作分母的有理化)在前一节中也比较多地提到.例4已知:等差数列{a n }的各项均为正数,a 1=3,等比数列{b n }中,b 1=1且b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960.求数列{a n }、{b n }的通项公式.【分析】还是方程思想在数列中的体现,利用所给条件,列出方程得到公差与公比,从而得到通项公式.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,∵等差数列{a n }的各项均为正数,∴d >0,则等差数列{a n }中,a 1+a 2=2a 1+d =6+d ,a 1+a 2+a 3=3a 1+3d =9+3d ,等比数列{b n }中,b 2=b 1q =q ,b 3=q 2,∵b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960,∴⎩⎨⎧=+=+960)39(64)6(2d q d q ,得d =2或56-=d ,∵d >0,∴d =2,此时q =8,∴a n =2n +1,b n =8n -1;【评析】注意题目中所给的条件如何运用,例如:等差数列{a n }的各项均为正数,隐含着给出d >0,从而对最后的结果产生影响.例5完成下列各题:(1)若一个直角三角形三边长成等比数列,则()A .三边长之比3∶4∶5B .三边长之比为1:2:3C .较大锐角的正弦为215-D .较小锐角的正弦为215-(2)△ABC 中,如果角A 、B 、C 成等差数列,边a 、b 、c 成等比数列,那么△ABC 一定是()A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形【分析】解决三角形中的问题是一定要用到正弦定理、余弦定理,三角形的内角和等于π恰好使等差数列的条件得以运用,从而得到角B 为3π的结论,再利用余弦定理找到边之间的关系,应该是数列与三角综合问题中常见的方法.解:(1)由题中条件可设三边为a 、aq 、aq 2(q >1),由勾股定理:a 2+a 2q 2=a 2q 4,则25101224+=⇒=--q q q ,设较小锐角为A ,其对边为a ,则215512sin 2-=+==aq a A .选D .(2)∵△ABC 中,角A 、B 、C 成等差数列,∴⎩⎨⎧=+++=π2C B A C A B ,∴3π=B ,由余弦定理212cos 222=-+=ac b c a B ,得a 2+c 2-b 2=ac ,∵三条边a 、b 、c 成等比数列,∴b 2=ac ,∴a 2+c 2-2ac =0,即a =c ,∴△ABC 一定是等边三角形.选C .【评析】解决与三角形有关的问题时,一定要想到正弦定理、余弦定理,与数列综合时,应把角的关系转化为边的关系,因为边成等比数列,所以用边判断三角形形状应该是正确的选择.例6已知数列{a n }的前n 项和S n =npa n ,且a 1≠a 2,(1)确定p 的值;(2)判断数列{a n }是否为等差数列.【分析】本题中存在递推的关系,解决时还是通过赋值,找到结论,赋值时要多赋几个,以免出现冲突.解:(1)∵S n =npa n ,∴S 1=a 1=pa 1,∴a 1=0或p =1,∵S 2=a 1+a 2=2pa 2,∴当p =1时,有a 1+a 2=2a 2⇒a 1=a 2与已知矛盾,∴p ≠1,∴a 1=0(且a 2≠0),∵S 2=a 1+a 2=2pa 2,a 2≠0,∴21=P ;(2)由(1)中结论:n n na S 21=,即:2S n =na n ,则2S n +1=(n +1)a n +1,∴两式相减:2(S n +1-S n )=2a n +1=(n +1)a n +1-na n ①,同理得到:2a n =na n -(n -1)a n -1(n ≥2)②,∴①-②得2a n +1-2a n =(n +1)a n +1-2na n +(n -1)a n -1(n ≥2),整理得到2(n -1)a n =(n -1)a n +1+(n -1)a n -1(n ≥2),∵n ≥2,∴2a n =a n +1+a n -1,即:a n +1-a n =a n -a n -1,∴数列{a n }是等差数列.【评析】(1)中对n =1得到的结论要加以验证,这也是为什么要多赋几个值的原因,(2)中开始由S n 求a n 的方法应该掌握,而后面①-②得到结论的方法并不多见,实际上是在找数列中连续三项存在的关系,最后得到的也是等差数列的定义,即:每一项与其前一项的差都相等,这与a n -a n -1是常数略有不同,希望大家了解.例7在数列{a n }中,S n +1=4a n +2,且a 1=1,(1)若b n =a n +1-2a n ,求证:数列{b n }是等比数列;(2)若nnn a c 2=,求证:数列{c n }是等差数列;(3)求数列{a n }的通项公式a n 及前n 项和公式S n .【分析】还是要应用定义来证明等差、等比数列.解:(1)∵S n +1=4a n +2,∴S n =4a n -1+2(n ≥2),∴a n +1=S n +1-S n =4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1),即b n =2b n -1,∵S n +1=4a n +2,a 1=1,∴S 2=a 1+a 2=4a 1+2,∴a 2=5,∴b 1=a 2-2a 1=3,∴数列{b n }是首项为3,公比为2的等比数列,即:b n =3·2n -1;(2)∵n n n n n n n n n n n n n n b a a a a c c a c 22222,211111-----=-=-=-=∴∵b n =3·2n -1,∴,432232211=⋅==----n n n n n n b c c ∵21211==a c ∴数列{c n }是首项为21,公差为等差数列43,即⋅-=4143n c n (3)∵),4143(22,2-===⋅⋅∴n c a a c nnn n n n n )4143(248245242232-⨯++⨯+⨯+⨯=n S n n )4143(2)222(431)4143(2)41)1(43(24524222)132132-⨯-++++=--⨯+--⨯++⨯+⨯=-++n S n n S n n n n n n ∴S n =(3n -4)·2n -1+2.【评析】前两问实际上是第三问的铺垫,证明等差、等比数列后,要写出通项公式,为下一步的问题作准备.错位相减时要注意计算,方法再好,结果是错的,也不能说明你的水平.练习5-5一、选择题:1.已知{a n }为等差数列,{b n }为正项等比数列,公比q ≠1,若a 1=b 1,a 11=b 11,则()A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 62.设数列{a n }的前n 项和S n ,且a n =-2n +1,则数列}{n sn 的前11项为()A .-45B .-50C .-55D .-663.已知等比数列(a n )中a 2=1,则其前3项的和S 3的取值范围是()A .(-∞,0)∪(1,+∞)B .(-∞,-1]C .(-∞,-1]∪[3,+∞)D .[3,+∞)4.△ABC 中,tan A 是等差数列{a n }的公差,且a 3=-1,a 7=1,tan B 是等比数列{b n }的公比,且b 3=9,316=b ,则这个三角形是()A .钝角三角形B .直角三角形C .锐角三角形D .等腰三角形二、填空题:5.若等差数列{a n }中,a 1+a 3=5,a 8+a 10=19,则前10项和S 10=______.6.设等比数列{a n }的公比q =2,前n 项和为S n ,则24a S=______.7.等差数列{a n }中,a 1>0,S 4=S 9,当S n 取得最大值时,n =______.8.数列{a n }中,若a 1=1,n n a n na 11+=+,则通项公式a n =______.三、解答题:9.已知:递增等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项.求{a n }的通项公式a n ;10.已知数列{x n }的首项x 1=3,x n =2n p +nq ,且x 1,x 4,x 5成等差数列,(1)求:常数p ,q 的值;(2)求:数列{x n }的前n 项的和S n 的公式.11.已知{a n }是正数组成的数列,a 1=1,且点),(1+n n a a 在函数y =x 2+1的图象上.(1)求:数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b n +12.习题5一、选择题:。

2020高考文科数学(人教A版)总复习课件:第六章 数列6.2

2020高考文科数学(人教A版)总复习课件:第六章 数列6.2
这个数列是等差数列. ( × )
(2)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列 {an}一定是等差数列. ( √ )
(3)数列{an}为等差数列的充要条件是其通项公式为关于n的一次
函数. ( × )
(4)数列{an}为等差数列的充要条件是对任意n∈N*,都有 2an+1=an+an+2. ( √ )
6.2 等差数列及其前n项和
第六章
知识梳理 考点自诊
6.2 等差数列及其前n项和
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
学科素养·微专题
-2-
1.等差数列
(1)定义:一般地,如果一个数列从 第2项 起,每一项与它的前
一项的 差 等于 同一个常数
,那么这个数列就叫做等
差数列,这个常数叫做等差数列的 公差 ,公差通常用字母d表
关关键键能能力力··学学案案突突破破
学科素养·微专题
-11-
思考求等差数列基本量的一般方法是什么? 解题心得1.等差数列运算问题的一般求法是设出首项a1和公差d, 然后由通项公式或前n项和公式转化为方程(组)求解. 2.等差数列的通项公式及前n项和公式共涉及五个量a1,an,d,n,Sn, 已知其中三个就能求出另外两个,体现了用方程组解决问题的思想. 3.减少运算量的设元的技巧,若三个数成等差数列,可设这三个数 分别为a-d,a,a+d;若四个数成等差数列,可设这四个数分别为a-
第六章
知识梳理 考点自诊
6.2 等差数列及其前n项和
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
学科素养·微专题
-3-
2.等差数列的通项公式及前n项和公式与函数的关系 (1)an=a1+(n-1)d可化为an=dn+a1-d的形式.当d≠0时,an是关于n的 一次函数;当d>0时,数列为递增数列;当d<0时,数列为递减数列. (2)数列{an}是等差数列,且公差不为0⇔Sn=An2+Bn(A,B为常数).

(全国通用)2020版高考数学二轮复习 提升专题 数列 教案讲义

(全国通用)2020版高考数学二轮复习 提升专题  数列 教案讲义

第1讲 等差数列、等比数列[例1] (1)(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n(2)(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.[答案] (1)A (2)1213[解析] (1)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2. 所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.(2)由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13(1-35)1-3=1213.[解题方略] 等差(比)数列基本运算的解题思路 (1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[跟踪训练]1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B.54 C.45D.-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A.-1B.1C.-2D.2解:(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0.解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+2n -1=n 2.解析:选C 法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q +4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q+2)2=0,所以q =-2,故选C.3.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[例2] (1)(2019·长春市质量监测一)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.(2)在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] (1)法一:设数列{a n }的公比为q (q >0且q ≠1),由题意可得⎩⎪⎨⎪⎧S 6=a 1(1-q 6)1-q=30, ①S 9=a 1(1-q 9)1-q =70,②①÷②得,1-q 61-q 9=1+q 31+q 3+q 6=37,又由q >0,得q 3=2,再由S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=13,得S 3=13S 6=10. 法二:由题意可得(S 6-S 3)2=S 3(S 9-S 6),即(30-S 3)2=40S 3,即S 23-100S 3+900=0,解得S 3=10或S 3=90,又数列{a n }的各项均为正数,所以S 3<S 6,S 3=90(舍去),故S 3=10.(2)设{a n }的公差为d .法一:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得6.5≤n ≤7.5. 因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7(13-2×7+15)2=49.法二:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15. 所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] (1)10 (2)49[解题方略] 与数列性质有关问题的求解策略[跟踪训练]1.在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A.-2+22B.- 2C. 2D.-2或 2解析:选B 设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.2.(2019·四省八校双教研联考)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( ) A.-1 B.0 C.1D.2解析:选C 法一:设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.法二:设{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.法三:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.3.数列{a n }是首项a 1=m ,公差为2的等差数列,数列{b n }满足2b n =(n +1)a n ,若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.解析:由题意得,a n =m +2(n -1), 从而b n =n +12a n =n +12[m +2(n -1)].又对任意n ∈N *都有b n ≥b 5成立,结合数列{b n }的函数特性可知b 4≥b 5,b 6≥b 5,故⎩⎪⎨⎪⎧52(m +6)≥3(m +8),72(m +10)≥3(m +8),解得-22≤m ≤-18.答案:[-22,-18][例3] 设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1; 当n ≥2时,a n =S n -S n -1=a n -1-a n , 即a n a n -1=12(n ≥2,n ∈N *). 所以数列{a n }是首项为1, 公比为12的等比数列,故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.[解题方略]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[跟踪训练]已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值.(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n . 解:(1)因为数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). 所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)因为S n =2a n -3n , 所以S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3,①把b n =a n +3及b n +1=a n +1+3,代入①式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1,所以a n =b n -3=6×2n -1-3=3(2n-1).逻辑推理——等比数列运算中的分类讨论[典例] 已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A.(-∞,-1] B.(-∞,0)∪[1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)[解析] 设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞). [答案] D[素养通路]等比数列的公比q <0时,相邻两项一定异号,相隔一项的两项符号一定相同;等比数列的公比q >0时,数列中的各项符号相同.用等比数列前n 项和公式时,如果其公比q 不确定,要分q =1和q ≠1两种情况进行讨论.本题考查了逻辑推理及数学运算的核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A.16B.8C.4D.2解析:选C 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.2.(2019·湖南省五市一校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6=( )A.6B.7C.8D.9解析:选B 法一:由题意知,数列{a n }是等差数列,设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d +a 1+5d =12,a 1+a 1+2d +a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以a 1+a 6=a 1+a 1+5d =7,故选B. 法二:由题意知,数列{a n }是等差数列,将a 2+a 4+a 6=12与a 1+a 3+a 5=9相加可得3(a 1+a 6)=12+9=21,所以a 1+a 6=7,故选B.3.(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A.32B.31C.64D.63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B. 法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.4.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2019=( ) A.1 B.-2 C.3D.-3解析:选A 因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n-1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.5.(2019届高三·西安八校联考)若等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A.10B.11C.12D.13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n+1<0的正整数n 的值为12,故选C.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A.0B.-9C.9D.1解析:选 C 由已知可得,数列{a n }为等差数列,f (x )=sin2x +cos x +1,∴f ⎝ ⎛⎭⎪⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin2x -cos x +1,∴f (π-x )+f (x )=2,∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.二、填空题7.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.解析:设等比数列的公比为q ,则a n =a 1qn -1=qn -1.∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34,即4q 2+4q +1=0,∴q =-12,∴S 4=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:588.(2019·北京高考)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -109.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14,∴数列{a n }的公差为2.答案:2 三、解答题10.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d .因为a 1=-10, 所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.11.(2019·广西梧州、桂林、贵港等期末)设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)∵⎩⎪⎨⎪⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,∴⎩⎪⎨⎪⎧a 1=1,d =2, 故a n =1+(n -1)×2=2n -1. (2)由(1)知,S n =n (1+2n -1)2=n 2.∵S 3,a 14,S m 成等比数列,∴S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.12.(2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?解:(1)证明:∵a 3=7,a 3=3a 2-2,∴a 2=3, ∴a n =2a n -1+1, ∴a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n, ∴a n =2n-1,∴S n =2(1-2n)1-2-n =2n +1-n -2,∴n +S n -2a n =n +(2n +1-n -2)-2(2n-1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.B 组——大题专攻强化练1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n(n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明:数列{b n }为等差数列;(2)设c n =n a n,求数列{c n }的前n 项和S n . 解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n=3a n +3n3n=a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝ ⎛⎭⎪⎫1-13n =32-12·3n -1.2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.3.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.4.已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2020成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1.(2)由(1)知,b n =2n+1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n)1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1031,f (10)=211+10-2=2056, 故使b 1+b 2+…+b n >2020成立的最小正整数n 的值是10.第2讲 数列通项与求和[例1] (1)已知S n 为数列{a n }的前n 项和,a 1=1,当n ≥2时,S n -1+1=a n ,则a 8=________.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. [解析] (1)当n =2时,S 1+1=a 2,即a 2=2.当n ≥2时,⎩⎪⎨⎪⎧S n -1+1=a n ,S n +1=a n +1,相减得a n +1=2a n ,又a 1=1,所以a 2=2a 1.所以数列{a n }构成一个等比数列, 所以a 8=a 2·q 6=2×26=128.(2)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. [答案] (1)128 (2)22n -1[解题方略]1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[跟踪训练]1.已知S n 是数列{a n }的前n 项和,且log 5(S n +1)=n +1,则数列{a n }的通项公式为________.解析:由log 5(S n +1)=n +1,得S n +1=5n +1,所以S n =5n +1-1.当n ≥2时,a n =S n -S n -1=4×5n;当n =1时,a 1=S 1=24,不满足上式.所以数列a n 的通项公式为a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2. 答案:a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2 2.已知首项为2的数列{a n }满足a n +1(2n -1)=a n (2n +1)(n ∈N *),则数列{a n }的通项公式为a n =________.答案:4n -2解析:因为a n +1(2n -1)=a n (2n +1)(n ∈N *),且a 1=2,所以a n +1a n =2n +12n -1,得a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×53×…×2n -12n -3=4n -2. 考点二数列的求和题型一 分组转化求和[例2] 已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解] (1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16,所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n-1=3n.(2)由(1)得b n =3n+2n -1,所以S n =(3+32+33+ (3))+(1+3+5+…+2n -1) =3(1-3n)1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32. [解题方略]求解此类题的关键:一是会“列方程”,即会利用方程思想求出等差数列与等比数列中的基本量;二是会“用公式”,即会利用等差(比)数列的通项公式,求出所求数列的通项公式;三是会“分组求和”,观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n 项和时可用分组求和法,把数列分成几个可以直接求和的数列;四是会“用公式法求和”,对分成的各个数列的求和,观察数列的特点,一般可采用等差数列与等比数列的前n 项和公式求和.题型二 裂项相消求和[例3] (2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.[解] (1)由已知有S n -S n -1=1(n ≥2,n ∈N ), ∴数列{S n }为等差数列,又S 1=a 1=1, ∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,∴n ≥5,∴n 的最小值为5. [解题方略]求解此类题需过“三关”:一是定通项关,即会利用求通项的常用方法,求出数列的通项公式;二是巧裂项关,即能将数列的通项公式准确裂项,表示为两项之差的形式;三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.题型三 错位相减求和[例4] (2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式.(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).[解题方略]运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }是不是一个为等差数列,一个为等比数列;二是错开位置,为两式相减不会看错列做准备;三是相减,相减时一定要注意最后一项的符号,学生在解题时常在此步出错,一定要小心.[跟踪训练]1.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,∴q =2.于是a 1=2,∴数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,∴T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n 2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,∴T n =1+12+122+…+12n -1-n2n=1-⎝ ⎛⎭⎪⎫12n1-12-n2n =2-n +22n.2.(2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),求T n .解:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.∴1a n =1+12(n -1)=12(n +1), 即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2), ∴b n =1n (n +1)=1n -1n +1(n ≥2),∴T n =b 1+b 2+…+b n =⎛⎪⎫1-12+ ⎛⎪⎫12-13+…+ ⎛⎪⎫1n -1n +1=1-1n +1=n n +1. [例5] (2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.[解] (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.[解题方略]求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.[跟踪训练](2019·重庆市七校联合考试)已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式;(2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧d a 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1), 所以S n =(2+22+23+…+2n )+(1+3+5+…+2n -1)=2n +1+n 2-2.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1).由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7. 由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1.(2)由(1)得b n =2n -1+(n -1)ln2,所以T n =(1+2+22+…+2n -1)+[0+1+2+…+(n -1)]ln2=1-2n1-2+n (n -1)2ln2=2n-1+n (n -1)2ln2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2),则a 1+a 2+…+a 2020=( )A.-3027B.3027C.-3030D.3030解析:选C 因为a 1+a 2+…+a 2020=(a 1+a 2)+(a 3+a 4)+…+(a 2019+a 2020)=(1-4)+(7-10)+…+[(3×2019-2)-(3×2020-2)]=(-3)×1010=-3030,故选C.2.已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=( )A.-12B.23C.12D.11解析:选D 因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.3.(2019·广东省六校第一次联考)数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)na n (n ∈N *),则数列{b n }的前50项和为( )A.49B.50C.99D.100解析:选A 由题意得,当n ≥2时,a n =S n -S n -1=2n ,当n =1时,a 1=S 1=3,所以数列{b n }的前50项和为(-3+4)+(-6+8)+…+(-98+100)=1+2×24=49,故选A.4.已知数列{a n }是等差数列,若a 2,a 4+3,a 6+6构成公比为q 的等比数列,则q =( ) A.1 B.2 C.3D.4解析:选A 令等差数列{a n }的公差为d ,由a 2,a 4+3,a 6+6构成公比为q 的等比数列,得(a 4+3)2=a 2(a 6+6),即(a 1+3d +3)2=(a 1+d )·(a 1+5d +6),化简得(2d +3)2=0,解得d =-32.所以q =a 4+3a 2=a 1-92+3a 1-32=a 1-32a 1-32=1.故选A.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1016个浮雕,这些浮雕构成一幅优美的图案,若从最下层往上,浮雕的数量构成一个数列{a n },则log 2(a 3a 5)的值为( )A.8B.10C.12D.16解析:选C 依题意得,数列{a n }是以2为公比的等比数列, 因为最下层的浮雕的数量为a 1,所以S 7=a 1(1-27)1-2=1016,解得a 1=8,所以a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *),所以a 3=25,a 5=27,从而a 3×a 5=25×27=212, 所以log 2(a 3a 5)=log 2212=12,故选C.6.(2019·洛阳市统考)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2a n(2a n -1)(2a n +1-1),若k >T n 恒成立,则k 的最小值为( )A.17 B.149 C.49D.8441解析:选B ∵6S n =a 2n +3a n ,∴6S n +1=a 2n +1+3a n +1, ∴6a n +1=(a n +1+a n )(a n +1-a n )+3(a n +1-a n ), ∴(a n +1+a n )(a n +1-a n )=3(a n +1+a n ), ∵a n >0,∴a n +1+a n >0,∴a n +1-a n =3, 又6a 1=a 21+3a 1,a 1>0,∴a 1=3.∴{a n }是以3为首项,3为公差的等差数列,∴a n =3n ,∴b n =17·⎝ ⎛⎭⎪⎫18n -1-18n +1-1,∴T n =17·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -1-18n +1-1=17·⎝ ⎛⎭⎪⎫17-18n +1-1<149, ∴k ≥149,∴k 的最小值为149,故选B.二、填空题7.在各项都为正数的等比数列{a n }中,已知a 1=2,a 2n +2+4a 2n =4a 2n +1,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q >0,因为a 1=2,a 2n +2+4a 2n =4a 2n +1, 所以(a n q 2)2+4a 2n =4(a n q )2,化为q 4-4q 2+4=0, 解得q 2=2,q >0,解得q = 2.则数列{a n }的通项公式a n =2×(2)n -1=2n +12.答案:2n +128.(2019·安徽合肥一模改编)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为________. 解析:设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1.∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).答案:2n +1n4(n +1)9.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,∴数列{a n }是等比数列,首项是1,公比是2,所以a n =2n -1.因为a n b n =-n 2+9n -20,所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6} 三、解答题10.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.11.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n2n +2n .(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n +1-2-2n +2=2n,当n =1时,a 1=S 1=2,所以a n =2n .(2)∵b n =a n2n +2n =2n +1,∴a n b n =(2n +1)·2n.∴T n =3×2+5×22+7×23+…+(2n +1)·2n, 2T n =3×22+5×23+7×24+…+(2n +1)·2n +1,∴-T n =6+23+24+…+2n +1-(2n +1)·2n +1=6+23(1-2n -1)1-2-(2n +1)2n +1=-2-(2n -1)·2n +1.∴T n =(2n -1)·2n +1+2.12.(2019·郑州市第二次质量预测)数列{a n }满足:a 12+a 23+…+a nn +1=n 2+n ,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1a n ,数列{b n }的前n 项和为S n ,求满足S n >920的最小正整数n .解:(1)由题意知,a 12+a 23+…+a nn +1=n 2+n ,当n ≥2时,a 12+a 23+…+a n -1n =(n -1)2+n -1,两式相减得,a nn +1=2n ,a n =2n (n +1)(n ≥2).当n =1时,a 1=4也符合,所以a n =2n (n +1),n ∈N *. (2)b n =1a n=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1), 由S n =n 2(n +1)>920得n >9,所以满足条件的最小正整数n 为10.B 组——大题专攻强化练1.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得a 1=S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 1=1,所以a n =n -n -1.(2)b n =(-1)na n =(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. ∴S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,∴(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, ∴a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1-12n +1=-2n +22n +1.∴T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.3.(2019·江苏高考题节选)定义首项为1且公比为正数的等比数列为“M ­数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M ­数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0, 解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M ­数列”.(2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). 4.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,所以当n ≥2时,(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,所以b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,即b n =2-12n -1(n ≥2),易知b 1=1满足上式,所以b n =2-12n -1(n ∈N *).(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1,①12T n =121+222+323+…+n2n ,② 由①-②得,12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n 2n =2-n +22n . 所以T n =4-n +22n -1.所以数列{a n }的前n 项和S n =n (n +1)-4+n +22n -1.[思维流程——找突破口][典例] 已知数列{a n }满足a 1=1,na n +1=2(n +1)·a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [快审题][稳解题] (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 理由如下: 由条件可得a n +1n +1=2a nn, 即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[题后悟道] 等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等.[针对训练]已知正数数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式.(2)设b n =(1-a n )2-a (1-a n ),若b n +1>b n 对任意n ∈N *恒成立,求实数a 的取值范围.。

2020高考数学二轮专题复习 第3讲数列课件 精品

2020高考数学二轮专题复习 第3讲数列课件 精品

1 n 1
1 n
,②an
1 nn
k
1 k
(1 n
n
1
k
),
③an
1
n n1
n 1
n,形如这样的数列每
一项可以分为两项,先后相互相消求和.
4 并项求和法. 5 倒序相加法. 6 公式法.
【1】(2011g4月绍兴一中模拟)已知数列an中,a1 1,
an 1
2an 2 an
(n
N*
(1)求数列{an}的通项公式;
(2)证明: 1 1 L 1 1.
a2 a1 a3 a2
an1 an
【1】►(2011·江西)已知两个等比数列{an}、{bn}满足 a1=a(a>0), b1-a1=1,b2-a2=2,b3-a3=3.
a1
1,
an1
3an
2an
3
,
求an .
取倒
6.若数列an满足 a1 1, an1 2an 2 n1 , 求an. 除幂
7.若数列an满足 a1 1, an1 3an 2,求an.
可转化型
an1 ban c b 1
一次函数型
同加= c
b 1
由递推公式求通项(2)
8.已知数列an中a1=3,且an+1=an2,求an. 取对数
An Bn

7n+5 n+3

则使得 an 为整数的正整数的n的个数是_____ bn
6.(2010·浙江)设 a1,d 为实数,首项为 a1,公差为 d 的等差数列{an}的前 n
项和为 Sn,满足 S5S6+15=0,则 d 的取值范围是________.

人教A版2020届高考数学二轮复习讲义及题型归纳:数列(中档)

人教A版2020届高考数学二轮复习讲义及题型归纳:数列(中档)

(2)求数列 an 的前 n 项和 Sn .
【解析】
(1)证明:当
n≥2时 ,由
ቤተ መጻሕፍቲ ባይዱ
an=
3an-1+
2n-
1,

an+ an- 1+
2n 2n-1=
3an-1+2n+2n-1 an -1+ 2n-1
= 3.
又∵ a1=1,∴ a1+21=3
∴数列 { an+2n} 是首项为 3,公比为 3 的等比数列 .
解得 q= ;
(2)当 q=1 时,该数列为常数列 ,若 Sm,Sn,Sl 成等差数列 ,则也有 am+k,an+k,a1+k 成等差 数列 ;
若 q≠1由, Sm,Sn,S1 成等差数列 ,则有 2Sn=S1+Sm,
即有
,
整理化简得 2qn﹣1=qm﹣1+ql﹣1,两边同乘以 a1,得 2a1qn﹣1=a1qm﹣1+a1ql﹣1,即 2an=am+al, 两边同乘以 qk 即可得到 2an+k =am+k+al+k, 即 am+k ,an+k,al+k 成等差数列 .
法二 当 n≥2时 ,
2n2-n bn- bn-1= n+ c -
n- 2- n- n-1+c
2n2+ c- n-3c = n2+ c- n+c c- ,
欲使 { bn} 为等差数列 ,
只需
4c- 2= 2(2c-1)且- 3c= 2c(c-1)(c≠0)解, 得
c=-
1 2.
1 故当 c=- 2时,数列 { bn} 为等差数列
2, n
N *) bn bn 1
k(k

2020年高考数学二轮复习 4.2 数列的综合应用课件 理

2020年高考数学二轮复习 4.2 数列的综合应用课件 理

an 4 4n2 1 4 4(n 1)2 1 4 an1 4
0.又函数y=cos x在区间(0,π)上是减函数,
∴Tn+1>Tn(n∈N*).
1212-13+13-14+…+n1-n+1 1=16+1212-n+1 1<16+14=152. 综上,原不等式成立.
【点评】本题主要考查等差数列,等比数列,特殊到一
般的思想方法,数学归纳法,裂项相消法,不等式的放缩等
基础知识,考查综合运用数学知识进行归纳、总结、推理、
论证等能力.由此可见:数学不但要教演绎,更要教猜想和
(1)求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通 项公式,并证明你的结论;
(2)证明:a1
1
b1
a2
1
b2
1 5 an bn 12
【分析】求出数列{an}、{bn}的前4项后猜测{an}、{bn}的
通项公式,再用数学归纳法证明;对an+bn进行放缩,再求
和可得.
【解析】 (1)由条件得2bn=an+an+1,an+12=bnbn+1 由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4= 25.
所以当n=k+1时,结论也成立.由①②,可知an=n(n
+1),bn=(n+1)2对一切正整数b1 6 12

n≥2时,由(1)知an+bn=(n+1)(2n+1)>2n(n+1).
故a1+1 b1+a2+1 b2+…+an+1 bn<16+12×
2×1 3+3×1 4+…+n(n1+1)=16+
n 1 1)
1 1
1 2
1 3
1 2 n,
n
下面用数学归纳法证明.
① 当n=1时,不等式2( 2 -1)<1<2显然成立.

2020高考文科数学(人教A版)总复习课件:第六章 数列6.1

2020高考文科数学(人教A版)总复习课件:第六章 数列6.1

A.121 B.25 C.31 D.35
解析:当m=1时,由an+m=an+3m,得an+1-an=3,
∴∴数S5=列5×{an1}+是12首×项5×a14=×1,3公=3差5.d=3的等差数列, 4.(2018 衡水中学押题二,7)数列{an}满足 a1=2,an+1= (an>0),则
an=( D ) A.10n-2
考点1
第六章
考点2
考点3
6.1 数列的概念与表示
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
学科素养·微专题
-12-
解 (1)数列的项有的是分数,有的是整数,可先将各项都统一写
成分数形式再观察:12
,
4 2
,
9 2
,
16 2
,
225,…,所以它的一个通项公式为
an=���2���2.
(2)数列各项的绝对值为 1,3,5,7,9,…,是连续的正奇数,并且奇数
关键能力·学案突破
学科素养·微专题
-5-
知识梳理 考点自诊
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有数列的第n项都能使用公式表达. ( × )
(2)数列{an}和集合{a1,a2,a3,…,an}是一回事. ( × )
(3)若数列用图象表示,则从图象上看都是一群孤立的点. ( √ )
第六章
6.1 数列的概念与表示
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
学科素养·微专题
-7-
知识梳理 考点自诊
5.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn= -1������

2020届高三数学二轮复习讲义数列

2020届高三数学二轮复习讲义数列

2020届高三数学二轮复习——数列【考点思维脑图】【重要考点串讲】1.等差、等比数列的概念与性质2.等差、等比数列的判定方法(1)等差数列的判定方法①定义法:1n n a a d +-=(常数)(*2,n n ∈N ≥)⇒{}n a 是等差数列. ②等差中项法:122n n n a a a --=+(*3,n n ∈N ≥)⇒{}n a 是等差数列.③通项公式法:n a pn q =+(p ,q 是常数,*n ∈N )⇒{}n a 是等差数列. ④前n 项和公式法:2n S pn qn =+(p ,q 是常数,*n ∈N )⇒{}n a 是等差数列.【提醒】若要证明一个数列是等差数列,则必须用定义法或等差中项法. (2)等比数列的判定方法①定义法:1n n a q a +=(1n ≥,*n ∈N ,q 为非零常数)或1n n aq a -=(2n ≥,*n ∈N ,q 为非零常数){}n a ⇒是等比数列.②等比中项法:212n n n a a a ++=⋅(0n a ≠,*n ∈N ){}n a ⇒是等比数列.③通项公式法:11n n a a q -=(1a ,q 为非零常数,*n ∈N ){}n a ⇒是等比数列.④前n 项和公式法:nn S k q k =⋅-(k 为常数,且0k ≠,0q ≠,1).(注意:此方法不能用于证明一个数列是等比数列)【提醒】①②是判定等比数列的常用方法,常用于证明,③④常用于选择题、填空题中的判定.若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. 3.n a 与n S 的关系12n n S a a a =++⋅⋅⋅+,1*1,1,2,n nn S n a S S n n -=⎧=⎨-∈⎩N ≥. 【注意】利用前n 项和n S 与n a 之间的关系求通项公式时,当1a 符合由1n n n a S S -=-(2,n ≥且*n ∈N )求出的通项公式时,可以直接写出{}n a 的通项公式;否则,要写成分段的形式.注意1n =时的情况. 4.数列常见递推公式的类型及方法(1)若1()n n a a f n +-=,求n a →累加法.112211()()()n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ 1(1)(2)(1)(2)f n f n f a n =-+-+⋅⋅⋅++≥(2)若1()n na f n a +=,求n a →累成法. 121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅⋅⋅⋅=1(1)(2)(1)(2)f n f n f a n -⋅-⋅⋅⋅⋅⋅⋅≥. (3)1n n a pa q +=+(p ,q 是非零常数),设1()n n a m p a m +-=-, 即1(1)n n a pa m p +=+-,由(1)1qm p q m p-=⇒=-,由此化为与等比数列{}1n qa p +-相关的通项问题. (4)1n n n a pa q +=+ (p ,q 是非零常数),通常两边同除以nq 得到111n nn n a a p q q q+-=⋅+,转化为形式(3)的递推公式问题. 5.数列求和的方法技巧(1)公式法①利用等差、等比数列的前n 项和公式直接求解. ②利用正整数的平方和公式、立方和公式求解. 常用的数列前n 项和公式:①(1)1232n n n ++++⋅⋅⋅+=;②2135(21)n n +++⋅⋅⋅+-=; ③222112(1)(21)6n n n n ++⋅⋅⋅+=++;④223333(1)1234n n n ++++⋅⋅⋅+=.(2)错位相减法:适用于{}n n a b ⋅求和,{}n a 为等差数列,{}n b 为等比数列,【提醒】运用错位相减法求和时,应注意两边乘以公比后,对应项的幂指数会发生变化,为避免出错,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多一项,两式相减,除第一项和最后一项外,剩下的1n -项是一个等比数列.(3)倒序相加法:用于等差数列、与二项式系数相关联的数列的求和.(4)裂项相消法:利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.常见的裂项技巧: ①111(1)1n n n n =-++;②1111()()n n k k n n k =-++; ③1111()(21)(21)22121n n n n =--+-+;④1111[](1)(2)2(1)(1)(2n n n n n n n =-+++++);1k=.【提醒】利用裂项相消法求和时要注意:①在把通项裂开后,是否恰好等于相应的两项之差;②在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.(5)分组求和法:如n n na b c=±,数列{}nb,{}nc是等比数列或等差数列,采用分组求和法求{}na的前n项和.(6)并项求和法:一个数列的前n项和,可两两结合求解,则称之为并项求和.形如(1)()nna f n=-类型,可采用两项合并求解.【方法技巧突破】必考点1 等差、等比数列的判断【典例1】已知在ABC∆中,1A,1B分别是边BA,CB的中点,2A,2B分别是线段1A A,1B B的中点,……,nA,nB分别是线段1nA A-,1nB B-(*n∈N,1n>)的中点,设数列{}na,{}nb满足:n n n nB A a CA b CB=+u u u u u r u u u r u u u r(*n∈N),给出下列四个命题,其中假命题是A.数列{}n a是单调递增数列,数列{}n b是单调递减数列B.数列{}n na b+是等比数列C.数列{}nnab(*n∈N,1n>)既有最小值,又有最大值D.若ABC∆中,C=90°,CA CB=,则||n nB Au u u u u r最小时,12n na b+=【解析】由11(1)(1)()22n n nBA BA CA CB=-=--u u u u r u u u r u u u r u u u r,12n nB B CB=u u u u r u u u r,11111(1)()(1)(1)2222n n n n n n n nB A B B BA CB CA CB CA CB-=+=+--=-+-u u u u u r u u u u r u u u u r u u u r u u u r u u u r u u u r u u u r,所以112n na=-,1112n nb-=-,则数列{}na是单调递增数列,数列{}nb是单调递减数列,故A正确;数列{}n na b+中,n na b+=12n,11a b+=12,即数列{}n na b+是首项为12,公比为12的等比数列,故B正确;当1n>时,21112222nnn nnab-==-+--单调递增,有最小值,无最大值,故C错误;若ABC∆中,C=90°,CA CB=,则2222222||()2()n n n n n n n nB A a b CA a b CA CB a b CA=++⋅=+u u u u r u u u r u u u r u u u r,2222211111(1)(1)5()6()22222nn n n n na b-+=-+-=⨯-⨯+=21315()255n-+,当1n=时,22n na b+取得最小值,即当||n nB Au u u u u r最小时,12n na b+=,故D正确.所以C为假命题,故选C.【典例2】(2016浙江)如图,点列{}{},n nA B分别在某锐角的两边上,且*1122,,n n n n n nA A A A A A n++++=≠∈N,*1122,,n n n n n nB B B B B B n++++=≠∈N.(P≠Q表示点P与Q不重合),若n n nd A B=,nS为1n n nA B B+△的面积,则A.{}n S是等差数列B.{}2n S是等差数列C.{}n d是等差数列D.{}2n d是等差数列【解析】如图,记nh为1n n nA B B+∆上的高(*n∈N),设锐角的大小为θ,根据图象可知,11||sinn n n nh h A Aθ++=+,又112||||n n n nB B B B+++=,∴1121111||||22n n n n n n n nS S B B h B B h+++++-=⋅-⋅111111||()||||sin22n n n n n n n nB B h h B B A Aθ++++=⋅-=⋅.根据题意112||||n n n nB B B B+++=,112||||n n n nA A A A+++=,所以111||||sin2n n n nB B A Aθ++⋅为常数,所以{}nS为等差数列,故选A.【典例3】已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++⋅⋅⋅+,(1)1(1)2(1)n m n m n m n m c a a a -+-+-+=⋅⋅⋅⋅⋅⋅*(,)m n ∈N ,则以下结论一定正确的是A .数列{}n b 为等差数列,公差为mq B .数列{}n b 为等比数列,公比为2m qC .数列{}n c 为等比数列,公比为2m q D .数列{}n c 为等比数列,公比为mm q【解析】由题意,知2(1)()mn m n b a q q q -=++⋅⋅⋅+.当1q =时,(1)n m n b ma -=,1(1)n mn m n n b ma ma b +-===, 故{}n b 是常数列,公差为0,选项A 错误.当1q ≠时,(1)(1)1m n m n q q b a q --=⋅-,1(1)(1)(1)(1)11m mm n m n m m n q q q q b a a q q q +-+---=⋅=⋅--, 此时1m n nb q b +=,选项B 错误, 又等比数列{}n a 的公比为q ,所以(1)122(1)(1)m m m m mn m n m n c aq aq+++⋅⋅⋅+--==.所以2(1)2(11)(1)1(1)(1)(1)2(1)()m m mm mm n m n m m n mn m m m m n m n m n m n a q a q c a q c a a a q++--++---====,故选项D 错误. 综上,选C .【方法探究】在判断一个数列是否为等差(等比)数列时,应根据已知条件灵活选用不同的方法,一般可根据已知条件先求出一些项,然后根据其求解过程寻找具体的解题思路,表示出类似1n n a a +-(或1n na a +)的递推关系式,再验证其是否为一个与n 无关的常数.另外,常数数列{}n a 的通项公式为n a a =,它是一个首项为a ,公差为0的等差数列,若0a ≠,则该数列又是一个首项为a ,公比为1的等比数列.【典例4】(2017全国卷Ⅰ)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.【解析】(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ , 解得2q =-,12a =-.故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【方法探究】若干个能唯一确定一个数列的量称为该数列的“基本量”.首项与公差是等差数列的“基本量”,首项与公比是等比数列的“基本量”,在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法.必考点2 求解数列中有关项或前n 项和的最值问题【典例1】已知公差不为0的等差数列{}n a 的前n 项和是n S ,11a +,21a +,41a +成等比数列,且4520a a +=-,则11n n a S +-的最大值为 A .12 B .1 C .32D .2 【解析】设数列{}n a 的公差为d (0d ≠),则由11a +,21a +,41a +成等比数列得2111(1)(1)(31)a d a a d ++=+++,得11d a =+,再由4512720a a a d +=+=-,解得13a =-,2d =-,故21n a n =--,22n S n n =--,则2122211121422n n a n S n n n n+-===----++≤,当且仅当1n =时取等号, 所以11n n a S +-的最大值为12.故选A . 【典例2】(2016全国卷Ⅰ) 设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 .【解析】设{}n a 的公比为q ,由1310a a +=,245a a +=得118,2a q ==,则24a =,32a =,41a =,512a =,所以12123464n a a a a a a a ⋅⋅⋅=…. 【方法探究】在解决等差、等比数列的基本运算问题时,通常考虑两种方法:①基本量法,即运用条件转化成关于首项1a 和公差d (公比q )的方程(组);②巧妙运用等差、等比数列的性质.【典例3】在等差数列{}n a 中,17a =,公差为d ,前n 项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为 .【解析】由题意,当且仅当8n =时n S 有最大值,可得89000d a a <⎧⎪>⎨⎪<⎩,即0770780d d d <⎧⎪+>⎨⎪+<⎩,解得718d -<<-.【典例4】(2018全国卷Ⅱ)记n S 为等差数列{}n a 的前n 项和,已知17=-a ,315=-S .(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【解析】(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为−16.【方法总结】在进行等差(比)数列的通项与前n 项和的运算时,常化成关于首项和公差(公比)的方程(组)求解,但要注意消元法及整体计算的应用,以减少计算量.【方法探究】求等差数列前n 项和n S 最值的两种方法(1)函数法:利用等差数列前n 项和的函数表达式2n S pn qn =+,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当10a >,0d <时,满足10m m a a +⎧⎨⎩≥≤的项数m 使得n S 取得最大值m S ;②当10a <,0d >时,满足10m m a a +⎧⎨⎩≤≥的项数m 使得n S 取得最小值m S .必考点3 等差或等比数列的性质应用【典例1】(1)设n S 为等差数列{}n a 的前n 项和,若936S =,则2285()a a a +-=A .60B .30C .12D .4(2)已知等差数列{}n a 满足3514a a +=, 2633a a =,则17a a = A .33 B .16C .13D .12(3)等比数列{}n a 的首项为11a =-,前n 项和为n S ,若1053132S S =,则公比q = . 【解析】(1)1999()362a a S +==,∴19528a a a +==,∴54a =, ∴22228555()444460a a a a a +-=-=⨯-=.故选A .(2)设等差数列{}n a 的公差为d ,因为3514a a +=, 所以2614a a +=,又2633a a =,所以26311a a =⎧⎨=⎩或26113a a =⎧⎨=⎩当26311a a =⎧⎨=⎩时,113262d -==-,所以1726()()13a a a d a d =-+=. 当26113a a =⎧⎨=⎩时,311262d -==--,所以1726()()13a a a d a d =-+=. 综上,1713a a =,故选C . (3)由1053132S S =,11a =-知公比1q ≠,1055132S S S -=. 由等比数列前n 项和的性质知5S ,105S S -,1510S S -成等比数列,且公比为5q , 故5132q =,所以12q =. 【方法探究】在应用相应性质解题时,要注意性质成立的前提条件,有时需要对性质进行适当变形.此外,解题时注意“设而不求”的运用.【典例2】(2018上海)记等差数列{}n a 的前几项和为n S ,若30a =,6714a a +=,则7S =. 【解析】解法一 设{}n a 的公差为d ,首项为1a ,则111205614a d a d a d +=⎧⎨+++=⎩,解得142a d =-⎧⎨=⎩,所以7767(4)2142S ⨯=⨯-+⨯=.解法二 32714a d +=,所以2d =.故432a a d =+=,故7477214S a ==⨯=. 【典例3】在等比数列{}n a 中,已知138a a +=,574a a +=,则9111315a a a a +++=__. 【解析】解法一 设等比数列{}n a 的公比为q ,由已知,则211461184a a q a q a q ⎧+=⎨+=⎩,解得412q =. 又888291113131()8()22a a a q a q a a q +=+=+=⨯=,1212123131513131()8()12a a a q a q a a q +=+=+=⨯=,所以9111315a a a a +++=2+1=3.解法二 因为{}n a 为等比数列,所以57a a +是13a a +与911a a +的等比中项,所以25713911()()()a a a a a a +=++,故225791113()428a a a a a a ++===+.又911a a +是57a a +与1315a a +的等比中项,所以2911571315()()()a a a a a a +=++,故22911131557()214a a a a a a ++===+.所以9111315a a a a +++=2+1=3.【方法探究】关于等差或等比数列性质的应用问题,可以直接构造关于首项1a ,和公差d (或公比q )的方程或方程组来求解,也可以灵活利用等差、等比数列的性质进行转化,简化相应的运算,如本题中分别把13a a +,57a a +,911a a +,1315a a +看作一个整体,利用等比数列的性质求解.必考点4 求解等差或等比数列的通项及前n 项和的方法【典例1】(2019年天津卷)设{}n a 是等差数列,{}n b 是等比数列.已知14a =,16b =,2222b a =-,3324b a =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足111,22,,21,,+=⎧<<=⎨=⎩k k n kk n c b n c 其中*∈N k . (i )求数列22{(1)}-n n a c 的通项公式; (ii )求21=∑ni ii a c*()∈N n .【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩ 故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为31n a n =+,{}n b 的通项公式为32nn b =⨯.(2)(i)22211(321)(321()())941n n n n n nn a c a b -=-=⨯+⨯-=⨯-.所以,数列221(){}n n a c -的通项公式为22194()1n n na c -=⨯-.(ii)222211112[1((1)])nnni ini iiiiii i i i a c a a c a ac ======-+-+∑∑∑∑1()221[243](941)2n n nni i =-=⨯+⨯+⨯-∑2114(14)(3252)914n n n n ---=⨯+⨯+⨯--211*2725212()n n n n --=⨯+⨯--∈N .【典例2】(2018天津)设{}n a 是等比数列,公比大于0,其前n 项和为n S ()n *∈N ,{}n b 是等差数列.已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为n T ()n *∈N ,(i)求n T ;(ii)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=-+++∑()n *∈N . 【解析】(1)设等比数列{}n a 的公比为q .由1321,2,a a a ==+可得220q q --=.因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+, 可得13 4.b d +=由5462a b b =+,可得131316,b d += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i)由(1),有122112nn n S -==--, 故1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii)证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑L . 【方法探究】利用等差数列、等比数列的公式求出{}n a ,{}n b 的通项公式,再求出n S ,n T .证明时注意裂项相消法求和的正确使用.【典例3】(2016浙江)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(1)求通项公式n a ;(2)求数列{2n a n --}的前n 项和.【解析】(1)由题意得:1221421a a a a +=⎧⎨=+⎩,则1213a a =⎧⎨=⎩,又当2n ≥时,由11(21)(21)2n n n n n a a S S a +--=+-+=,得13n n a a +=,所以,数列{}n a 的通项公式为1*3,n n a n N -=∈. (2)设1|32|n n b n -=--,*n N ∈,122,1b b ==.当3n ≥时,由于132n n ->+,故132,3n n b n n -=--≥.设数列{}n b 的前n 项和为n T ,则122,3T T ==.当3n ≥时,229(13)(7)(2)351131322n n n n n n n T --+---+=+-=-,所以,2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.【典例4】已知首项都是1的两个数列{}n a ,{}n b (0n b ≠*n N ∈),满足11n n n n a b a b ++-120n n b b ++=.(1)令nn na cb =,求数列{}n c 的通项公式; (2)若13n n b -=,求数列{}n a 的前n 项和n S .【思路点拨】(1)将已知条件11n n n n a b a b ++-120n n b b ++=两边同除以1n n b b +得112n nn na ab b ++-=,即12n nc c +-=,由等差数列的定义知{}n c 是等差数列,再由等差数列的通项公式可得n c ;(2)根据(1)的结论,可以得n n n a c b =,数列{}n a 的通项n a 是等差数列乘以等比数列的形式,因此,求数列{}n a 的前n 项和n S 选用错位相减法来计算.【解析】(1)因为11120n n n n n n a b a b b b +++-+=,0,n b n N +≠∈所以1112,2n nn n n na a c cb b +++-=-= 所以数列{}nc 是以首项11c =,公差2d =的等差数列,故2 1.n c n =- (2)由13n n b -=知1(21)3n n n n a c b n -==-于是数列{}n a 前n 项和0111333(21)3n n S n -=⋅+⋅++-⋅L 1231333(21)3n n S n =⋅+⋅++-⋅L相减得121212(333)(21)32(22)3n n n n S n n --=+⋅++--⋅=--⋅L 所以(1)3 1.n n S n =-⋅+【方法探究】1.求解数列通项公式的常见方法:①等差、等比数列直接利用公式求解;②利用n a 与n S 的关系,即1*1,1,2,n nn S n a S S n n -=⎧=⎨-∈⎩N ≥;③累加法和累乘法;④转化法,即将问题转化为等差、等比数列;⑤归纳——猜想——证明.2.数列的求和方法常用的有公式法、错位相减法、裂项相消法、分组求和法、并项求和法等,如本题的求和运用的就是错位相减法.【典例5】已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。

人教A版2020届高考数学二轮复习讲义及题型归纳(拔高):不等式选讲

人教A版2020届高考数学二轮复习讲义及题型归纳(拔高):不等式选讲

目录目录 (1)一、考纲解读 (2)二、命题趋势探究 (2)三、知识点精讲 (2)(一).不等式的性质 (2)(二).含绝对值的不等式 (3)(三).基本不等式 (3)(四).不等式的证明 (3)四、解答题题型总结 (4)核心考点一:解含绝对值的不等式 (4)一、考纲解读1.了解绝对值的几何意义,会利用绝对值的定义解不等式,利用绝对值不等式证明不等式和求最值.2.了解柯西不等式及其几何意义,会用它来证明不等式和求最位.3.了解基本不等式,会用它来证明不等式和求最值.4.会用综合法、分析法、反证法及数学归纳法证明不等式. 二、命题趋势探究本节内容为新课标新增内容,是高考选考内容.题型以含绝对值的不等式的解法和证明为重要考点,不等式的应用为次重要考点,不等式证明放在一般位置,难度为中档. 三、知识点精讲 (一).不等式的性质 1.同向合成(1),a b b c a c >>⇒>; (2),c a b d a c b d >>⇒+>+; (3)0,c 0a b d ac bd >>>>⇒>. (合成后为必要条件) 2.同解变形(1)a b a c b c >⇔+>+;(2)0,0,a b c ac bc c ac bc >⇔>>⇔<<; (3)11000a b a b b a>>⇔>>⇔>>.(变形后为充要条件) 3.作差比较法0,0a b a b a b a b >⇔>-><⇔-< (二).含绝对值的不等式(1)0,||a x a a x a ><⇔>-<<;0,||,a x a x a x a >>⇔>><-或 (2)22||||a b a b >⇔>(3)||||x a x b c +++<零点分段讨论 (三).基本不等式(1)222a b ab +>(当且仅当等号成立条件为a b =) (2)0,0,22a ba b ab +>>≥(当且仅当等号成立条件为a b =); 30,0,0,3a b c a b c abc ++>>>≥(当且仅当a b c ==时等号成立) (3)柯西不等式22222()()()a b c d a c b d ++≥+(当且仅当ad bc =时取等号)①几何意义:2222||ad bc a b c d ⋅⇔+≤++a b a b ||||||≤②推广:222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++.当且仅当向量12(,,,)n a a a a =与向量12(,,,)n b b b b =共线时等号成立.(四).不等式的证明(1)作差比较法、作商比较法.(2)综合法——由因到果. (3)分析法——执果索因. (4)数学归纳法.(5)构造辅助函数利用单调性证明不等式. (6)反证法. (7)放缩法. 四、解答题题型总结核心考点:利用柯西不等式证明解不等式柯西不等式不仅具有优美的代数表现形式及向量表现形式,而且有明显的几何意义,它与基本不等式具有密切的关系,其作用类似于基本不等式可用来求最大(小)值或证明不等式,不过它的特点更明显应用更直接. 1.二维形式的柯西不等式设1212,,,x x y y ∈R ,2222211221212()()()x y x y x x y y ++≥+.等号成立1221x y x y ⇔=. 证明 设1122(,),(,)x y x y ==a b ,由|cos ⋅=a b a ||b |a,b ,得cos |⋅=a ba,b a ||b |, 又|cos |1≤a,b ,即1|⋅≤|a b |a ||b |,|⋅≤|a b |a ||b |,故2222212121122()()()x x y y x y x y +≤++ 等号成立即1221x y x y =. 2.一般形式的柯西不等式 设12,,,n a a a 及12,,,n b b b 为任意实数,则21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,当且仅当1212nna a ab b b ===(规定0i a =时0i b =,1,2,,i n =)时等号成立.证法一:当i a 全为0时,命题显然成立.否则210ni i a =>∑,考查关于x 的二次函数21()()ni i i f x a x b ==-∑,显然()0f x ≥恒成立.注意到222111()()2()n n n ii i ii i i f x a x a b x b ====-+∑∑∑,而()0f x ≥恒成立,且210ni i a =>∑,故()f x 的判别式不大于零,即2221114()40n n ni i ii i i i a b a b ===∆=-⋅≤∑∑∑,整理后得222111()n n niii i i i i a b a b ===⋅≥∑∑∑.证法二:向量的内积证法. 令12(,,,)n a a a =a ,12(,,,)n b b b =b ,θ为a 与b 的夹角.因为|cos ⋅=a b a ||b |a,b ,且|cos |1≤a,b ,所以|cos ||⋅=≤|a b |a ||b ||a,b a ||b |222|⇒⋅≤|a b |a ||b |,即21122()n n a b a b a b +++≤2222221212()()n n a a a b b b ++++++,等号成立0θ⇔=︒或180︒⇔a,b 平行1212nna a ab b b ⇔===. 柯西不等式提示了任意两组实数积之和的平方与平方和之间的关系,应用它可以简单地证明许多复杂的不等式,下面举例说明.1已知函数()|2|,f x m x m =--∈R ,且(2)0f x +≥的解集为[1,1]-. ①求m 的值;②若,,a b c +∈R ,且11123m a b c++=,求证:239a b c ++≥.解析 ①因为(2)||f x m x +=-,(2)0f x +≥等价于||x m ≤.由||x m ≤有解,得0m ≥,且其解集为{|}x m x m -≤≤.又(2)0f x +≥的解集为[1,1]-,故1m =.②由①知111123a b c++=,又,,a b c +∈R ,由柯西不等式得11123(23)()23a b c a b c a b c++=++++2111(23)923a b c a b c≥⋅+⋅+⋅=. 2.已知1a b c ++=,0,0,0a b c >>>,求证:31313132a b c +++++≤. 解析 由柯西不等式有()()2313131313131(111)18a b c a b c ++++++++++⋅++=≤.当且仅当313131a b c +=+=+即13a b c ===时等号成立. 故31313132a b c +++++≤.3.已知0,0,0a b c >>>,22cos sin a b c θθ+<.求证:22cos sin a b c θθ+<.解析 由柯西不等式及0a >,0b >,0c >,2222222(cos sin )(cos sin )(cos sin )a b a b θθθθθθ++≥+ .即222(cos sin )c a b θθ>+,又因为0c >,所以 22cos sin a b c θθ+<.4.设实数,,a b c 满足2223232a b c ++=,求证:39271a b c ---++≥. 解析 由柯西不等式,222222(23)[1(2)+(3)][(2)(3)]9a b c a b c ++≤+++=2.所以233a b c ++≤,所以33(23)3392733331a b c a b c ----++-++≥≥=.5.已知n *∈N ,且2n ≥,求证:1111112172342122n n <-+-++-<-. 解析 因为111111234212n n -+-+⋯+-- 111111(1)2()232242n n =+++⋯+-++⋯+111111(1)()23212n n=+++⋯+-++⋯+ 111122n n n=++⋯+++ . 所以原不等式等价于4111271222n n n <++⋯+<++. 由柯西不等式有2111()[(1)(2)(2)]122n n n n n n n++⋯+++++⋯+>++. 故2111241122(1)(2)(2)73n n n n n n n n ++⋯+>=≥++++++⋯++. 又由柯西不等式有 2222222111111()(111)[]122(1)(2)(2)n n n n n n ++⋯+<++⋯+++⋯+++++()()()()1111[]112212n n n n n n n<++⋯++++- 1111()22n n n =-=. 所以11121222n n n ++⋯+<++.6.已知正实数,,a b c 满足1abc =,求证:3331113()()()2a b c b c a c a b ++≥+++.解析 由1abc =,得()2221b c a b c ab ac=++,从而原不等式等价于 22222232b c c a a b ab ac bc ba ca cb ++≥+++.左边()()()()2bc ca ab ab ac bc ba ca cb ++≥+++++()12ab bc ca =++()333322abc ≥=. 7.已知,11122=-+-a b b a 求证:122=+b a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档