初中数学校本教材

合集下载

谈初中数学校本教材的开发5篇

谈初中数学校本教材的开发5篇

谈初中数学校本教材的开发生活与数学――谈初中数学校本教材的开发一、把握数学的生活性――“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性――“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

”美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。

初中数学校本教材

初中数学校本教材

初中数学校本教材数学是科学的基础知识,也是解决生活问题的关键。

为了培养学生的兴趣和正确的科学态度,我们开发了数学校本课程。

这个课程要尊重学生的实际和兴趣,让学生在生活中实践体验,提高他们的观察和分析能力,培养创造性和解决问题的能力。

同时,我们也注重学生的动手操作能力的训练,鼓励他们展示自己的研究成功,培养成功心态,使学生的心理得到健康的发展。

本课程由八年数学教师具体负责实施,主要内容包括让学生体会数学在我们的生活中的应用,让他们在课堂上多设情景,应用数学解决问题,感受到数学的乐趣。

我们希望在愉快、轻松的研究过程中,让学生掌握数学知识,培养良好的研究惯,观察事物的能力,形成正确的人生观、价值观。

在课程内容和活动安排上,我们选取了一些学生生活实践中的鲜活材料,如几何、归纳、勾股定理、纳税、节能等问题,让学生在解决问题的过程中,充分发挥自己的创造性,感受到数学的乐趣。

我们的目标是让每位学生都能充分体现自己的能力,培养成功心态。

第一节课我们将讨论生活中的数学问题,例如钟面上的数字问题。

我们将引导学生思考如何在某些数的前面添加负号,使它们的代数和为零。

通过这个问题,我们希望让学生了解到数学来源于生活,同时也可以服务于生活。

1、数学问题1)10撕5次,共有多少张纸片?答:10撕5次,共有32张纸片。

2)撕8次、10次各有多少张纸片?答:撕8次共有256张纸片,撕10次共有1024张纸片。

3)撕n次,共有多少张纸片?答:撕n次,共有2的n次方张纸片。

4)撕成22张,需撕几次?答:撕成22张,需撕4次。

5)能否将纸片撕成1993片?为什么?答:不能将纸片撕成1993片,因为1993不是2的幂次方。

2、机器人问题在一条直线的流水线上,依次在A1、A2、A3、A4、A5有5个机器人在工作,现欲设一零件供应点,问应设于何处,可使5个机器人与它的距离总和为最小。

如果是6个机器人,则怎样?一般地,n个机器人的情况下,又应如何设置?答:对于5个机器人,零件供应点应设在A3处,使得5个机器人与它的距离总和为最小。

九年级数学校本教材

九年级数学校本教材

第一讲:反证法反证法:在证明一个命题时,人们有时先假设命题的结论不成立,从这样的假设出发,经过推理得出和已知条件矛盾,或者与已知的定理、公理等矛盾,从而得出假设的结论不成立,即所求证的命题的结论正确.这种证明方法叫做反证法.反证法证题的基本步骤:1.假设命题的结论的反面是正确的;(反设)2.从这个假设出发,经过逻辑推理,推出与已知条件或者与已知的定理、公理等矛盾;(归缪)3.由推理判定假设不正确,从而推出命题的结论是正确的.(结论)疑惑:思考:在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证;a2+b2≠c2.有些命题想从已知条件出发,经过推理,得出结论是很困难的,因此,人们想出了一种证明这种命题的方法,即反证法.假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.什么叫反证法?学以至用已知:在△ABC中,AB≠AC求证:∠B ≠∠ C证明:假设,则()这与矛盾.假设不成立.∴.例题例1.求证:两条直线相交只有一个交点.已知:;求证:;证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则.例2.试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.已知:;求证:;证明:假设,则可设它们相交于点A。

那么过点A 就有条直线与直线c平行,这与“过直线外一点”。

矛盾,则假设不成立。

∴。

例3.求证:在一个三角形中,至少有一个内角小于或等于60°。

已知:;求证:;证明:假设,则。

∴,即。

这与矛盾.假设不成立.∴.随堂练习1、用反证法证明:一个三角形中不能有两个角是直角。

(1)已知:(2)求证:(3)三角形的内角和等于(4)这个命题如果不成立,那么其“反面”2.求证:在一个三角形中,如果两个角不等,那么他们所对的边也不等.3.否定下列命题的结论:(1)在⊿ABC中如果AB=AC,那么∠B=∠C。

数学校本教材-初中数学校本教材

数学校本教材-初中数学校本教材

数学校本教材-初中数学校本教材简介本文档旨在介绍初中数学校本教材,深入了解其特点、内容和教学目标。

特点初中数学校本教材具有以下几个特点:1. 适应性广:校本教材覆盖了初中各个年级的数学知识点,从基础概念到高级应用,能满足不同层级学生的研究需要。

2. 渐进性强:教材内容按照难易程度逐步推进,有利于学生逐步掌握数学知识和技能,形成扎实的基础。

3. 知识点明晰:教材对各个知识点进行了明确的定义和讲解,为学生建立正确的数学概念和思维方式提供了指导。

4. 强调实践应用:校本教材注重将数学知识应用于实际问题的解决中,培养学生的实际运用能力和数学思维能力。

内容初中数学校本教材主要包括以下几个学科和内容:1. 数与式:包括数的性质与运算、整数、分数、小数、百分数和比例等。

2. 代数:包括代数式的建立与运算、方程与不等式、函数与图象等。

3. 几何:包括平面几何和立体几何,如点、线、面的基本性质、图形的相似和相等、体的表面积和体积等。

4. 数据与概率:包括统计与统计图、抽样调查、概率等。

以上每个学科的内容都经过精心编排,符合学生的研究进程和认知规律。

教学目标初中数学校本教材的教学目标主要包括:1. 培养学生的数学思维和解决实际问题的能力。

2. 培养学生的数学技能和运算能力。

3. 培养学生的数学推理和证明能力。

4. 培养学生的数学表达和沟通能力。

通过达到以上教学目标,学生将能够全面发展数学素养,为进一步研究高中数学奠定坚实基础。

总结初中数学校本教材是学生学习数学的重要资源,具有广泛的适应性、渐进性和实践应用特点。

通过系统学习校本教材,学生将掌握数学知识与技能,培养数学思维与解决问题的能力。

初中数学校本教材的教学目标旨在全面发展学生的数学素养,为其未来学习打下坚实基础。

校本教材教案初中趣味数学

校本教材教案初中趣味数学

校本教材教案初中趣味数学教材:《初中趣味数学》校本教材年级:初中一年级学科:数学课时:2课时教学目标:1. 激发学生对数学的兴趣,培养学生的数学思维能力。

2. 通过趣味数学问题,让学生感受数学的实用性和趣味性。

3. 培养学生独立思考、合作交流的能力。

教学内容:1. 数的奇偶性2. 平方数的性质3. 最大公约数和最小公倍数教学过程:第一课时:一、导入(5分钟)1. 老师通过讲解一个有趣的数学故事,引发学生对数学的兴趣。

2. 学生分享自己知道的趣味数学问题。

二、新课(20分钟)1. 数的奇偶性:介绍奇数和偶数的定义,通过举例让学生理解奇偶性的性质。

2. 平方数的性质:引导学生发现平方数的特征,如平方数一定是非负数,平方数的个位数字有一定的规律等。

3. 最大公约数和最小公倍数:讲解最大公约数和最小公倍数的定义和求法,通过实例让学生掌握求解方法。

三、练习与讨论(15分钟)1. 学生独立完成教材上的练习题。

2. 学生之间互相讨论,老师巡回指导。

四、总结与反思(5分钟)1. 学生总结本节课所学内容,分享自己的学习心得。

2. 老师对学生的总结进行点评,指出不足之处,给予鼓励。

第二课时:一、复习导入(5分钟)1. 老师通过提问方式复习上节课所学内容。

2. 学生分享自己总结的趣味数学问题。

二、新课(20分钟)1. 老师讲解最大公约数和最小公倍数的应用,如求解两个数的最大公约数和最小公倍数。

2. 学生通过实例练习,加深对最大公约数和最小公倍数的理解。

三、练习与讨论(15分钟)1. 学生独立完成教材上的练习题。

2. 学生之间互相讨论,老师巡回指导。

四、总结与反思(5分钟)1. 学生总结本节课所学内容,分享自己的学习心得。

2. 老师对学生的总结进行点评,指出不足之处,给予鼓励。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和表现,评价学生的参与程度。

2. 学生练习题完成情况:检查学生完成练习题的正确率和速度,评价学生的学习效果。

初中《数学》校本课程教材

初中《数学》校本课程教材

初中《数学》校本课程教材初中《数学》校本课程教材的开发与实践初中阶段是学生数学学习的重要阶段,这一时期的学生不仅需要掌握基本的数学知识,还需要培养数学思维和解决问题的能力。

然而,传统的数学教材有时难以满足不同学生的学习需求,因此,开发适合学生实际情况的校本课程教材显得尤为重要。

一、确定教材定位和目标初中《数学》校本课程教材的定位应为辅助性教材,旨在补充传统教材的不足,满足学生多元化的学习需求。

教材的目标应包括以下几个方面:1、拓展数学知识,加深学生对教材内容的理解。

2、培养学生的数学思维和解决问题的能力。

3、提高学生的学习兴趣和积极性。

二、分析学生需求和学习内容在校本课程教材的开发过程中,学生需求和学习内容是两个关键因素。

首先,我们需要了解学生的学习需求,包括学生对数学学习的兴趣、学习难点以及对数学知识的需求等。

其次,我们需要分析学习内容,确定教材的知识点、难度和趣味性。

三、设计教材结构和内容在分析了学生需求和学习内容后,我们需要设计教材的结构和内容。

结构上,教材可以包括基础知识、拓展知识、练习和实践等部分。

内容上,可以选择与生活实际相关的案例和问题,引导学生运用数学知识解决实际问题。

此外,还可以设计一些趣味性的数学游戏和活动,提高学生的学习兴趣。

四、深入剖析重难点在校本课程教材的开发过程中,深入剖析重难点是至关重要的。

对于数学教材中的重难点内容,我们需要通过多种方式进行讲解和练习,帮助学生理解和掌握。

例如,可以设计一些探究性问题,引导学生自主探究和解决数学问题。

五、实践运用与反思总结实践是检验真理的唯一标准。

在校本课程教材的使用过程中,我们需要密切关注学生的反馈,了解他们对教材的使用情况。

对于教材中的不足之处,需要及时进行调整和改进。

还需要对教材的使用效果进行反思和总结,以便更好地服务于学生。

总之,初中《数学》校本课程教材的开发与实践是一项具有挑战性的任务。

通过明确教材定位和目标、分析学生需求和学习内容、设计教材结构和内容、深入剖析重难点以及实践运用与反思总结等环节,我们可以逐步完善教材,使其更加符合学生的学习需求。

初一数学校本课程教材

初一数学校本课程教材

初一数学校本课程走进数学世界晋江市磁灶中学涂友利1、数学伴我们成长2、人类离不开数学3、4、5、6、目录人人都能学会数学让我们来做数学(1)让我们来做数学(2)让我们来做数学(3)7、第7课自测题(A卷)8、第8课自测题(B卷)第1课数学伴我们成长宇宙之大(海王星、流星雨),粒子之微(被原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表), 大千世界,天上人间,无处不有数学的页献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。

出生一一学前一一小学,我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。

2. 进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?数与式:认识、计算、方程、解应用题;图形:图形的认识、图形的画法、图形的计算;统计知识。

4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。

发挥一下我们的聪明才智,尝试解决下面的2个问题:(1)计算并观察下列三组算式:/8X 8 = 64, X 5 = 25,V7X 9 = 63; l4X 6 = 24;/12X 12 =…-'ll X 13 =---(2)已知25X25=625,则24X26=.(不要计算)(3)你能举出一个类似的例子吗?(4)更一般地,若axa=m,则(a+1)(a —1)=•通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,数学对促进人类社会发展的重大作用。

习题A组1、猜谜语(各打数学中常用字)①千人分在北上下;②1人立在口上边.2、在与伙伴玩“24点”游戏中,使数1, 5, 5, 5通过运算得24?3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1, 2, 3,4, 5, 6, 7, 8, 9这九个数字连成结果为100的算式:1 2 3 4 5 6 7 8 9 =1004、把长方形剪去一个角,它可能是儿边形?5、有一个正方形池塘如图,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?B组1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的L,再加上4班上学生的最后连你也算过去,就该有100个了那么小冯班上有多少学生?4第2课人类离不开数学我们已经知道,数学伴随我们的一生,实际上整个人类社会都离不开数学。

初中数学校本教材

初中数学校本教材

初中数学校本教材第一章兴趣数学1 Konigsberg 七桥问题(一笔画问题)18世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地D与A、B、C各有一座桥相连结。

当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。

七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f、g各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。

这就是说,七桥问题是无解的。

这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。

如果画笔经过一个n次,那么就有2n条线与该点相连结。

因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有4个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

欧拉定理如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

练习:[你能笔尖不离纸,一笔画出下面的每个图形吗?试试看。

(不走重复线路)图例1图例2图例3图例42四色问题人人都熟悉地图,可是绘制一张普通的政区图,至少需要几种颜色,才能把相邻的政区或区域通过不同的颜色区分开来,就未必是一个简单的问题了。

初中数学校本教材———— 《生活与数学》序言

初中数学校本教材———— 《生活与数学》序言

初中数学校本教材————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。

七年级数学校本教材

七年级数学校本教材

七年级上数学思维拓展训练第一章兴趣数学七桥问题(一笔画问题)18 世纪时,欧洲有一个风景秀丽的小城哥尼斯堡,那里有七座桥。

如图1所示:河中的小岛A与河的左岸B、右岸C各有两座桥相连结,河中两支流间的陆地 D 与A、B、C各有一座桥相连结。

当时哥尼斯堡的居民中流传着一道难题:一个人怎样才能一次走遍七座桥,每座桥只走过一次,最后回到出发点?大家都试图找出问题的答案,但是谁也解决不了这个问题。

七桥问题引起了著名数学家欧拉(1707—1783)的关注。

他把具体七桥布局化归为图所示的简单图形,于是,七桥问题就变成一个一笔画问题:怎样才能从A、B、C、D 中的某一点出发,一笔画出这个简单图形(即笔不离开纸,而且a、b、c、d、e、f 、g 各条线只画一次不准重复),并且最后返回起点?欧拉经过研究得出的结论是:图是不能一笔画出的图形。

这就是说,七桥问题是无解的。

这个结论是如何产生呢?如果我们从某点出发,一笔画出了某个图形,到某一点终止,那么除起点和终点外,画笔每经过一个点一次,总有画进该点的一条线和画出该点的一条线,因此就有两条线与该点相连结。

如果画笔经过一个n次,那么就有2n条线与该点相连结。

因此,这个图形中除起点与终点外的各点,都与偶数条线相连。

如果起点和终点重合,那么这个点也与偶数条线相连;如果起点和终点是不同的两个点,那么这两个点部是与奇数条线相连的点。

综上所述,一笔画出的图形中的各点或者都是与偶数条线相连的点,或者其中只有两个点与奇数条线相连。

图2中的A点与5条线相连结,B、C、D各点各与3条线相连结,图中有 4 个与奇数条线相连的点,所以不论是否要求起点与终点重合,都不能一笔画出这个图形。

欧拉定理:如果一个图是连通的并且奇顶点的个数等于0或2,那么它可以一笔画出;否则它不可以一笔画出。

一笔画:■⒈凡是由偶点组成的连通图,一定可以一笔画成。

画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。

初中七年级数学经典读本校本教材

初中七年级数学经典读本校本教材

初中七年级数学经典读本校本教材本文档旨在介绍初中七年级数学经典读本校本教材的内容和特点。

1. 教材概述初中七年级数学经典读本校本教材是为中学七年级学生编写的数学教材。

它由经验丰富的教师和数学专家合作编写,符合国家教育课程标准,并以培养学生数学思维和问题解决能力为主要目标。

2. 内容结构教材内容根据数学知识的发展逻辑和学生的认知特点进行组织。

它包括以下几个主要部分:- 数学基本概念与性质:介绍数学中的基本概念和性质,帮助学生建立起数学思维的基础。

- 计算与运算:讲解数的四则运算和常见的数学计算方法,培养学生的计算技巧。

- 几何图形与测量:介绍几何图形的性质和相关的测量知识,培养学生的几何思维和空间想象力。

- 数据与概率:讨论统计数据的收集和整理、概率的基本概念,帮助学生理解和分析数据。

- 代数与方程:引导学生掌握代数表达和方程解法,培养学生的代数思维和推理能力。

3. 特点与优势初中七年级数学经典读本校本教材的特点如下:- 系统性:教材内容涵盖了初中数学的基本知识点,融会贯通,符合知识的层次结构,使学生能够渐进式地研究数学。

- 实用性:教材注重将数学知识与实际生活相结合,让学生能够灵活运用数学解决实际问题。

- 启发性:教材注重培养学生的独立思考和问题解决能力,通过设计启发性问题和探究性任务,激发学生的研究兴趣和思维创新。

- 多样化的练和评价:教材提供了丰富的练题和评价方法,帮助学生巩固知识,培养研究兴趣和惯。

4. 使用建议为了更好地使用初中七年级数学经典读本校本教材,建议学生和教师:- 学生应认真阅读教材内容,完成课后题,并积极参与课堂讨论和练;- 教师应根据教学大纲和学生的实际情况,灵活选取教材内容,设计有针对性的教学活动。

总之,初中七年级数学经典读本校本教材是一本重要的数学教材,通过系统的知识体系和多样化的教学方法,旨在提升学生的数学学习水平和解决问题的能力。

初中《数学》校本课程教材

初中《数学》校本课程教材

校本课程目录数学与美----------------------------------------第2页中学数学与数学美--------------------------------第6页数学与文化--------------------------------------第8页数学文化欣赏-----------------------------------第14页从《数学与文化》中感受数学之美-----------------第17页三角函数历史-----------------------------------第19页解析几何建立的故事-----------------------------第28页数学生活---------------------------------------第32页半生痴迷数学著书立说---------------------------第36页山沟里的数学家---------------------------------第38页数学家们的生活趣事-----------------------------第40页牛顿与莱布尼茨的数学微积分之争-----------------第43页怎样才能学好数学呢-----------------------------第46页高中数学学习方法-------------------------------第50页华罗庚谈学数学方法-----------------------------第54页怎样才可以学好数学呢---------------------------第55页数学与美数字,在人们生活中广泛应用;数字,创造了许多如诗如画的篇章。

值此第24届国际数学家大会在北京召开之际,南京大学教授方延明写一篇妙趣横生的关于数字的文章,今转载于此,以飨读者。

我们国家是一个数学大国,也是一个数学古国,早在2000多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。

初二数学校本课程教案

初二数学校本课程教案

初二数学校本课程教案精品文档初二数学校本课程教案1(储蓄银行对存款人付给利息,这叫储蓄(存入的钱叫本金(一定存期内的利息对本金的比叫利率(本金加上利息叫本利和(利息=本金×利率×存期,本利和=本金×(如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有i=prn,s=p(例1 设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元,本利和为多少元,解i=2000×0.0171×3=102.6(s=2000×=2102.6(答某人得到利息102.6元,本利和为2102.6元(以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金(相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息(目前我国银行存款多数实行的是单利法(不过规定存款的年限越长利率也越高(例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22(1所示( 用复利法计算本利和,如果设本金是p元,年利率是1 / 15精品文档r,存期是n年,那么若第1年到第n年的本利和分别是s1,s2,…,sn,则s1=p,s2=s1=p=p2,s3,s2=p2=p3,……,sn=pn(例小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多,解按表22(1的利率计算(连续存五个1年期,则5年期满的本利和为200005?25794(先存一个2年期,再连续存三个1年期,则5年后本利和为20000?3?25898(先连续存二个2年期,再存一个1年期,则5年后本利和为200002??26003(先存一个3年期,再转存一个2年期,则5年后的本利和为20000??26374(先存一个3年期,然后再连续存二个1年期,则5年后本利和为20000?+0.0522)2?26268(2 / 15精品文档存一个5年期,则到期后本利和为20000?26660(显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存款方案,利率是合理的(2(保险保险是现代社会必不可少的一种生活、生命和财产保护的金融事业(例如,火灾保险就是由于火灾所引起损失的保险,人寿保险是由于人身意外伤害或养老的保险,等等(下面举两个简单的实例(例假设一个小城镇过去10年中,发生火灾情况如表22(2所示(试问:设想平均每年在1000家中烧掉几家,如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本,解因为1+0+1+2+0+2+1+2+0+2=11,365+371+385+395+412+418+430+435+440,445=4096(11?4096?0.0026(300000×0.0026=780(答每年在1000家中,大约烧掉2.6家(投保30万元的保险费,至少需交780元的保险费(例财产保险是常见的保险(假定A种财产保险是每投3 / 15精品文档保1000元财产,要交3元保险费,保险期为1年,期满后不退保险费,续保需重新交费(B种财产保险是按储蓄方式,每1000元财产保险交储蓄金25元,保险一年(期满后不论是否得到赔款均全额退还储蓄金,以利息作为保险费(今有兄弟二人,哥哥投保8万元A种保险一年,弟弟投保8万元B种保险一年(试问兄弟二人谁投的保险更合算些,解哥哥投保8万元A种财产保险,需交保险费80000?1000×3=80×3=240(弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交80000?1000×25=2000,而2000元一年的利息为2000×0.0522=104.4(兄弟二人相比较,弟弟少花了保险费约240-104.4=135.60(因此,弟弟投的保险更合算些(201至01学年度下学期初中八年级4 / 15精品文档趣味数学2013年3月初中数学校本教材————《校本课程》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

湖阳初中校本课程教材(生活中的数学)

湖阳初中校本课程教材(生活中的数学)

校本课程(数学学科)主编:邢一民邢金标当涂县湖阳初中数学组编序言数学是打开知识大门的钥匙,是整个科学的基础知识。

创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。

”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。

我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。

数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。

选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。

使学生成为学习的主人,学有兴趣,习有方法,必有成功。

学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。

我们的数学校本课程方案包括两个基本部分:一般项目和基本具体方案。

课程纲要一、课程目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。

二、课程概况:本课程由邢一民、邢金标编写,数学组老师具体负责实施。

本课程在初一、初二、初三年级实施。

三、课程内容与活动安排:让学生体会数学史可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。

中学《生活中的数学》校本课程教材14页word

中学《生活中的数学》校本课程教材14页word

《生活中的数学》校本课程目录第一讲:生活中的趣味数学第二讲:数学中的悖论第三讲:对称——自然美的基础第四讲:斐波那契数列第五讲:龟背上的学问第六讲:巧用数学看现实第七讲:运用数学函数方程解决生活中的问题第八讲:生活中的优化问题举例第一讲:生活中的趣味数学1.“荡秋千”问题:我国明朝数学家程大位(1533~1606年)写过一本数学著作叫做《直指算法统宗》,其中有一道与荡秋千有关的数学问题是用《西江月》词牌写的:平地秋千未起,踏板一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(每5尺为一步),秋千的踏板就和人一样高,这个人的身高为5尺,如果这时秋千的绳索拉得很直,试问它有多长?下面我们用勾股定理知识求出答案:如图,设绳索AC=AD=x(尺),则AB=(x+1)-5(尺),BD=10(尺)在Rt△ABD中,由勾股定理得AB2+BD2=AD2,即(x-4)2+102=x2,解得x=14.5,即绳索长为14.5尺.2.方程的应用:小青去植物园春游,回来以后爸爸问他春游花掉多少钱。

小青并不直接回答,却调皮地说:“我带出去的钱正好花了一半,剩下的元数是带出去角数的一半,剩下的角数与带出去元数相同。

”爸爸踌躇一下,有些为难。

你能否帮助他把钱数算出来,小青到底带了多少钱?花了多少钱?还剩多少钱?方法一:设带出去x元,y角.根据"剩下的元数是带出去角数的一半"知道y是偶数花了的钱分x为奇数与偶数情况(1)x是奇数时候,花一半就是花了=剩下=(x-1)/2元,(y/2+5)角根据后面两句话知道,剩下=y/2元,x角有二元一次方程组:(x-1)/2=y/2,y/2+5=x 解得x=9,y=8(2)x是偶数时候,花一半就是花了=剩下=x/2元,(y/2+5)角剩下的同上面情况有二元一次方程组:x/2=y/2,y/2+5=x 解得x=y=10 但是没有10角钱说法不符合实际(舍)∴答案是9元8角方法二:设带出去X元Y角,还剩a元b角按照用掉一半还剩一半的等式:10a + b = ( 10x + y)/ 2又因为: a = y / 2b = x带入等式化简即可得:x / y = 9 / 8因为 y 只能是小于10的整数所以,小青带了9元8角!用了4元9角,还剩4元9角!3.工资的选择:假设你得到一份新的工作,老板让你在下面两种工资方案中进行选择:(A)工资以年薪计,第一年为4000美元以后每年加800美元;(B)工资以半年薪计,第一个半年为2019美元,以后每半年增加200美元。

初中数学校本教材(完整版)

初中数学校本教材(完整版)

初中数学校本教材(完整版)————《生活与数学》序言一、把握数学的生活性——“使教学有生活味”《数学课程标准》中指出:“数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息做出恰当的选择和判断,进而解决问题,直接为社会创造价值”。

这说明数学来源于社会,同时也反作用于社会,社会生活与数学关系密切,它已经渗透到生活的每个方面,我们的衣食住行都离不开它。

现代数学论认为:数学源于生活,又运用于生活,生活中充满数学,数学教育寓于生活实际。

有意识地引导学生沟通生活中的具体问题与有关数学问题的联系,借助学生熟悉的生活实际中的具体事例,激发学生学习数学的求知欲,帮助学生更好的理解和掌握数学基础知识,并运用学到的数学知识去解决实际生活中的数学问题。

二、把握数学的美育性——“使教学有韵味”数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作。

音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。

” 美作为现实的事物和现象,物质产品和精神产品、艺术作品等属性总和,具有:匀称性、比例性、和谐性、色彩变幻、鲜明性和新颖性。

作为精神产品的数学就具有上述美的特点。

简练、精确是数学的美。

数学的基本定理说法简约,却又涵盖真理,让人阅读简便却又印象深刻。

数学语言是如此慎重的、有意的而且经常是精心设计的,凭借数学语言的严密性和简洁性,我们就可以表达和研究数学思想,这种简洁性有助于思维的效率。

数学很讲究它的逻辑美。

数学的应用是被人们广泛认同的,可学习数学还能训练人的逻辑思维能力。

尤其是几何的证明讲究前因后果,每一步都要前后呼应,抽象的数学也显示它模糊的美。

抽象给我们想象的余地,让我们思维海阔天空,给学生留有了思索和创新的空间。

抽象的数学不正展示它的魅力吗?数学上有很多知识是和对称有关的。

对称给人协调,平稳的感觉,像圆,正方体等,它们的形式是如此的匀称优美。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振东中学八年级数学校本课程序言数学是打开知识大门的钥匙,是整个科学的基础知识。

创新教学的先行者里斯特伯先生指出:“学生学习数学就是要解决生活问题,只有极少数人才能攻关艰深的高级数学问题,我们不能只为了培养尖端人才而忽略或者牺牲大多数学生的利益,所以数学首先应该是生活概念。

”在生活中学数学,以学生生活中实实在在的鲜活材料来吸引学生对科学的兴趣。

我们选取的都是从学生生活实践中取材,将数学知识巧妙地运用于生活之中,增加了学生对数学的兴趣,实现新课改所倡导的情感体验,培养良好的科学态度和正确价值观的目标。

数学校本课程的开发要满足学生已有的兴趣和爱好,又要激发和培养学生新的兴趣和爱好,要要求和鼓励学生投入生活,亲身实践体验。

选题要尊重学生的实际、学生的探究本能和兴趣,给与每个学生主体性发挥的广阔空间,从而更好的培养学生提出问题、分析问题、解决问题的素质和能力。

使学生成为学习的主人,学有兴趣,习有方法,必有成功。

学生的个性在社会活动中得以健康发展,学生的潜能在自学自育中得到充分开发。

课程纲要一、课程目标:以贴近生活实际、加强数学应用为宗旨,针对数学这门课的特点,从生活中挖掘数学,提高学生应用数学知识解决有关问题的能力,培养学生的观察,分析能力,充分发挥学生的创造性,开发学生自身的潜能,并且加强对学生的动手操作能力的训练,鼓励学生能够展示自己的研究成功,培养学生的成功心态,使学生的心理得到健康的发展,使每位学生的能力得到充分体现。

二、课程概况:本课程由八年数学教师具体负责实施。

本课程在八年实施。

三、课程内容与活动安排:让学生体会数学史可发生在我们的周围,我们的生活空间是无穷的数学世界,在课堂上多设情景,应用数学解决问题,让他们充分发挥自己的创造性,感受到数学的乐趣,在愉快、轻松的学习过程中掌握数学知识,从而培养学生良好的学习习惯,观察事物的能力,形成正确的人生观、价值观。

授课对象:八年学生授课时间:周四下午第6节授课地点:各班教室目录生活中的数学问题几何就在你身边归纳与发现勾股定理(一)勾股定理(二)生活中的纳税问题生活中的节能问题镜子改变了什么第一节生活中的数学问题数学来源于生活,同时又服务于生活,例如下面几个问题:1、钟面上有1、2、3、4、…… 11、12共十二个数。

(1)试在某些数的前面添加负号,使它们的代数和为零。

(2)能否改变钟面上的数,比如只剩下六个偶数,仍按第(1)小题的要求来做;(3)请试着改变第(1)小题,使它更加有趣一些。

如:哪些时间里分针与时针所夹的那些数的前面添加负号,钟面上的各数的代数和就为零;(4)在解上述各题的过程中,你能总结出一些什么规律?2、1)每位同学发一张8开的白纸,然后叫同学沿纸的长边对折成16开的纸,再将16开纸对折成32开纸,通过测量和计算回答下列问题A.8开纸和16开纸的形状相关相似吗?B.16开纸和32开纸的形状相似吗?C.猜想:如果将纸的对折操作继续进行下去,那么得到的16开、K开(K为自然数),纸都相似吗?32开、64开……、2(2)要使一个矩形纸沿长边对折后仍同原来纸的形状相似,那么该纸的长和宽之比为多少?(3)翻开你手中教材的第一页或最后一页,找出纸张的开数,如“开本787×1024 1/16”或“开本850×1168 1/32”计算纸的长和宽之比,试问A.纸的长和宽之比是否同1.414很接近?并解释误差的原因。

B.试讨论如此设计纸张大小的好处是什么?进而,造纸厂生产纸时,如何设计纸的大小为最优?3、某顾客有10元钱,第一次在商店买X件小商品花去Y元,第二次再去买该小商品时,发现每一打(12件)降价0.8元,他比第一次多买了10件,花去2元。

问他第一次买的小商品是多少件?(设X、Y为整数)。

4、百货公司的一页帐簿上沾了墨,关于1月13日出售气压热水瓶。

只知道单价及金额后面的三个数码是7.28,数量与金额前面的三个数码都看不清了,请你帮助查清这笔帐。

5、有一块长4厘米宽3厘米的园地,现要在园地辟一个花坛,使花坛的面积是原园地面积的一半,问如何设计?6、缝纫师傅想用一块三角形的布料剪出一块面积最大的正方形方巾,现在他手中只有一把剪刀,问他应该如何剪?7、小王年初向建设银行贷款2万元用于购房,商定年利率为10%,按复利计算(即本年的利息计入次年的本金生息),若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还多少钱(精确到1元)?8、一张纸片,第一次将其撕成四片,以后,每次将其中的一片撕成更小的四片。

如此进行下去,试问(10撕5次,共有多少张纸片?(2)撕8次、10次各有多少张纸片?(3)撕n次,共有多少张纸片?(4)撕成22张,需撕几次?(5)能否将纸片撕成1993片?为什么?9、在一条直线的流水线上,依次在A1、A2、A3、A4、A5有5个机器人在工作,现欲设一零件供应点,问应设于何处,可使5个机器人与它的距离总和为最小。

如果是6个机器人,则怎样?一般地,n个机器人的情况下,又应如何设置?| | | |A1 A2A3A4A510、 2006年暑假,小明每天在家都看电视,周一至周五每天看3小时,周六、周日每天看5小时。

(暑假是从7月21日正式开始。

)(1)请问小明八月份这个月里共看了多少时间的电视?(大家都知道新学期上学的这一天9月1日是星期五,八月份有31天。

)(2)如果小明每天睡觉时间为8小时,并且睡觉比看电视所多出来的时间正好是小明在八月里学习所用的时间。

小明在假期里学习,有时一天4小时,有时一天5小时,请问小明一天学5小时的天数共有多少天?(3)请同学们结合上面的问题再编写出其它问题。

第二节几何就在你的身边初学几何时,你往往会感到这门学科枯燥乏味,有的知识似曾相识,似懂非懂;有的知识则似乎很“玄”,离我们很远!其实,日常生活中有几何,几何就在你的身边。

当你骑自行车时,想过自行车的轮子为什么是圆形的,而不能是“鸡蛋形”的呢?因为“圆”形的特性可以使自行车平稳地前进;自行车的轮于有大有小,可供人们选择;两个轮子装的位置必须装得恰当,骑时会感到方便。

这说明:物体的形状、大小、位置关系与日常生活有着紧密的联系,这也正是几何这门学科所要研究的。

当你把一张长方形的纸裁成一个正方形时,你想过这里面有几何知识吗?图 1 图 2 图 3几何中叫“比较线段的大小;把阴影部分裁去,可以看成在“长”上截取一段,使它等于“宽”,这就是几何中的“线段作图”;长方形的长与宽相等时,就是正方形,这更是几何中的一个重要结论。

如果把正方形折成相等的两部分,除了图2中所示的四种折法外,你还能想到其他的折法吗?不妨试试:过四条折痕相交的那个点“· ”,任意地折一条线,看看这样把正方形分成的两部分也一样吗?当你走进用砖块铺地的房间时,你注意到这些砖块的形状吗?有的是等边三角形的,有的是长方形或正方形的。

其实,任意形状的四边形砖块也能把地面拼得没有缝隙,请看图3 。

这又将告诉我们几何中的一个重要结论(四边形的四个角的大小之和恰好等于360度),这个结论,与小学数学里学过的“三角形的三个角之和等于180度°又有着紧密的联系。

如果有兴趣的话,请你剪两块同样的直角三角形纸片,然后把两块纸片拼合成一个图形,你能拼出6种不同的图形吗?这里又包含了许许多多的几何知识。

比如,当你拼成一个等腰三角形时,就不难知道:等腰三角形可以分成两个同样的直角三角形,中间的那条线位置很特殊,今后研究等腰三角形时常常要用到它!第三节归纳与发现归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.例1如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,…这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?分析与解我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.第一层有点数:1;第二层有点数:1×6;第三层有点数:2×6;第四层有点数:3×6;……第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为例2在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:(1)这n个圆把平面划分成多少个平面区域?(2)这n个圆共有多少个交点?分析与解 (1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.由表18.1易知S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,……由此,不难推测S n-S n-1=n.把上面(n-1)个等式左、右两边分别相加,就得到S n-S1=2+3+4+…+n,因为S1=2,所以下面对S n-S n-1=n,即S n=S n-1+n的正确性略作说明.因为S n-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在S n-1上,所以有S n=S n-1+n.(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.由表18.2容易发现a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,……a n-1-a n-2=n-2,a n-a n-1=n-1.n个式子相加注意请读者说明a n=a n-1+(n-1)的正确性.例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?分析与解我们先来研究一些特殊情况:(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,….若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.(2)设b=n=2,类似地可以列举各种情况如表18.3.这时满足条件的三角形总数为:1+2=3.(3)设b=n=3,类似地可得表18.4.这时满足条件的三角形总数为:1+2+3=6.通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,…,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c <a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,…,n+k-1).所以,当b=n时,满足条件的三角形总数为:例4设1×2×3×…×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+…+n!×n.分析与解先观察特殊情况:(1)当n=1时,原式=1=(1+1)!-1;(2)当n=2时,原式=5=(2+1)!-1;(3)当n=3时,原式=23=(3+1)!-1;(4)当n=4时,原式=119=(4+1)!-1.由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.1+原式=1+(1!×1+2!×2+3!×3+…+n!×n)=1!×2+2!×2+3!×3+…+n!×n=2!+2!×2+3!×3+…+n!×n=2!×3+3!×3+…+n!×n=3!+3!×3+…+n!×n=…=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5设x>0,试比较代数式x3和x2+x+2的值的大小.分析与解本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有x3<x2+x+2.①设x=10,则有x3=1000,x2+x+2=112,所以x3>x2+x+2.②设x=100,则有x3>x2+x+2.观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样(1)当x=2时,x3=x2+x+2;(2)当0<x<2时,因为x-2<0,x2+x+2>0,所以(x-2)(x2+x+2)<0,即x3-(x2+x+2)<0,所以x3<x2+x+2.(3)当x>2时,因为x-2>0,x2+x+2>0,所以(x-2)(x2+x+2)>0,即x3-(x2+x+2)>0,所以x3>x2+x+2.综合归纳(1),(2),(3),就得到本题的解答.练习七1.试证明例7中:2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:(1)这n条直线共有多少个交点?(2)这n 条直线把平面分割为多少块区域?然后做出证明.)3.求适合x 5=656356768的整数x .(提示:显然x 不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x <602.)勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+.【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c ,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ΔFAB ≌ΔGAD,∵ΔFAB的面积等于221a,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积 =2a.同理可证,矩形MLEB的面积 =2b.∵正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB ,即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ).用数字表示面积的编号(如图),则以c为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a .∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC . ∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++ =2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2. ∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴()ab rc r 242=+, ∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.D∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC , 则 AD = c .∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++ =5432S S S S +++ =2c∴ 222c b a =+.第六节生活中的纳税问题纳税是每个公民的义务,对于每个工作人员来说,除了工资部分按国家规定纳税外,个人劳务增收也应纳税.现行劳务报酬纳税办法有三种:(1)每次取得劳务报酬不超过1000元的(包括1000元),预扣率为3%,全额计税.(2)每次取得劳务报酬1000元以上、4000元以下,减除费用800元后的余额,依照20%的比例税率,计算应纳税额.(3)每次取得劳务报酬4000元以上的,减除20%的费用后,依照20%的比例税率,计算应纳税额.每次取得劳务报酬超过20000元的(暂略).由(1),(2),(3)的规定,我们如果设个人每次劳务报酬为x元,y为相应的纳税金额(元),那么,我们可以写出关于劳务报酬纳税的分段函数:例5小王和小张两人一次共取得劳务报酬10000元,已知小王的报酬是小张的2倍多,两人共缴纳个人所得税1560元,问小王和小张各得劳务报酬多少元?解根据劳务报酬所得税计算方法(见函数①),从已知条件分析可知小王的收入超过4000元,而小张的收入在1000~4000之间,如果设小王的收入为x元,小张的收入为y元,则有方程组:由①得y=10000-x,将之代入②得x(1-20%)20%+(10000-x-800)20%=1560,化简、整理得0.16x-0.2x+1840=1560,所以0.04x=280,x=7000(元).则y=10000-7000=3000(元).所以答小王收入7000元,小张收入3000元.例6如果对写文章、出版图书所获稿费的纳税计算方法是其中y(x)表示稿费为x元应缴纳的税额.那么若小红的爸爸取得一笔稿费,缴纳个人所得税后,得到6216元,问这笔稿费是多少元?解设这笔稿费为x元,由于x>4000,所以,根据相应的纳税规定,有方程x(1-20%)· 20%×(1-30%)=x-6216,化简、整理得0.112x=x-6216,所以0.888x=6216,所以x=7000(元).答这笔稿费是7000元.练习六1.按下列三种方法,将100元存入银行,10年后的本利和各是多少?(设1年期、3年期、5年期的年利率分别为5.22%,6.21%,6.66%保持不变)(1)定期1年,每存满1年,将本利和自动转存下一年,共续存10年;(2)先连续存三个3年期,9年后将本利和转存1年期,合计共存10年;(3)连续存二个5年期.2.李光购买了25000元某公司5年期的债券,5年后得到本利和为40000元,问这种债券的年利率是多少?3.王芳取得一笔稿费,缴纳个人所得税后,得到2580元,问这笔稿费是多少元?4.把本金5000元存入银行,年利率为0.0522,几年后本利和为6566元(单利法)?第七节生活中的节能问题在炎炎夏日里,同学们遇到的难事就是饮水问题,为了使同学们过一个卫生清洁的夏季,班级决定出钱买一台饮水机,而每人又应出多少钱呢?即使买了饮水机,是否比过去每个学生每天买矿泉水更节省、更实惠?下面就来解答这个问题。

相关文档
最新文档