射影几何简介
射影几何(正式版)
![射影几何(正式版)](https://img.taocdn.com/s3/m/019f277e27284b73f24250bc.png)
射影几何首先,射影几何学是几何学的一个重要分支学科。
概括的说,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的学科。
那射影几何的某些内容在公元前就已经发现了,但直到十九世纪才形成独立体系,趋于完备。
接下来,我将从以下4个方面介绍射影几何。
(1,2,3,4)首先是第一点,从透视学到射影几何在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临了如何呈现的问题。
例如如何将平行的9个长方体从一个角度观察并呈现在了二维纸面上。
正是这种冲突,刺激并导致了富有文艺复兴特色的学科---透视学。
这里不得不提起一个数学透视法的天才,阿尔贝蒂。
他是当时意大利著名建筑师、建筑理论家。
意大利文艺复兴时期最有影响的建筑理论家。
一生致力于理论研究,著有《论绘画》、《论建筑》、《论雕塑》,其中《论建筑》为当时最富影响、最具代表性的建筑理论著作,书内列有研究建筑材料、施工、结构、构造、经济、规划、水文、设计等章节,完整地介绍了他的建筑思想。
另外《论绘画》一书(1511)则更是早期数学透视法的代表作,成为射影几何学发展的起点。
接下来就是第2点了——射影几何的早期发展在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,其早期开拓者德沙格、帕斯卡等主要是以欧式几何的方法处理问题(这点很重要)。
但是由于18世纪解析几何、微积分的发展洪流而被人遗忘。
德沙格:生在法国,也死在法国,和当时的笛卡尔、费尔马等领头数学家都是好朋友,这批人的活动和所取得的成就,使法国成为当时世界上最辉煌的国度。
身处这一旋涡的德扎格以其新颖的思想和独特的数学方法,对于透视法产生的问题给予数学上解答,开辟了数学的一个新领域,成为射影几何学的先驱的第一人。
帕斯卡:法国著名的数学家、物理学家、哲学家和散文家。
主要贡献是在物理学上,发现了帕斯卡定律,并以其名字命名压强单位。
几何学中的射影几何研究
![几何学中的射影几何研究](https://img.taocdn.com/s3/m/dc7044820d22590102020740be1e650e52eacfe3.png)
几何学中的射影几何研究几何学是研究空间图形和它们的性质的学科,而射影几何是其中的一个重要分支。
射影几何通过引入射影平面和射影点的概念,对平行线和无穷远点进行了研究,从而为几何学提供了一种新的视角和工具。
本文将针对射影几何的基本概念、应用以及研究现状进行探讨。
一、射影几何的基本概念射影几何的基本思想是将实数域上的几何问题拓展到射影平面上,从而解决传统几何学中无法解释的问题。
射影几何中最基本的概念是射影平面和射影点。
射影平面可以看作是在传统的欧几里得平面上加入了一条无穷远线形成的平面,而射影点则是传统几何中的点在射影平面上的映射。
二、射影几何的应用射影几何在现实生活中有着广泛的应用。
在计算机图形学中,射影几何可以用来处理透视投影问题,使得计算机生成的图像更加真实。
在地图制作中,射影几何可以用来解决投影问题,实现地球表面的平面展开。
此外,在相机成像和光学仪器设计等领域,射影几何也起着重要的作用。
三、射影几何的研究现状射影几何作为几何学的重要分支,在现代数学中得到了广泛的研究。
从理论的角度来看,射影几何涉及到代数、拓扑和几何学等多个领域的交叉研究。
研究者们通过引入射影空间、投影变换和射影群等概念,对射影几何进行了深入的探讨。
在应用方面,射影几何已经得到了广泛的应用和拓展。
例如,在计算机视觉和模式识别领域,射影几何可以用来进行图像处理和目标跟踪。
此外,在计算机辅助设计和虚拟现实等领域,射影几何也发挥着重要的作用。
射影几何的研究还面临着一些挑战。
其中之一是如何将射影几何与其他数学分支更加紧密地结合起来,从而推动射影几何的发展。
另外,射影几何在应用方面仍有一些问题需要解决,如何将射影几何应用到更多的领域,并且发挥出更大的价值。
总结射影几何作为几何学的重要分支,通过引入射影平面和射影点的概念,为解决传统几何学中的一些难题提供了新的思路和方法。
射影几何在实际生活和学科研究中有着广泛的应用,并且在理论和应用方面都存在着一定的挑战和发展空间。
射影几何公理
![射影几何公理](https://img.taocdn.com/s3/m/8f499aee370cba1aa8114431b90d6c85ec3a8825.png)
射影几何公理【实用版】目录1.射影几何的定义与基本概念2.射影几何公理的基本内容3.射影几何公理的应用4.射影几何的发展历程与意义正文射影几何是一种数学几何学,主要研究空间中直线、平面以及它们的射影。
射影几何公理是射影几何的基本理论,它为射影几何的研究和发展奠定了基础。
本文将从射影几何的定义与基本概念、射影几何公理的基本内容、射影几何公理的应用以及射影几何的发展历程与意义四个方面进行介绍。
首先,射影几何的定义与基本概念。
射影几何起源于光学和摄影测量学,它的基本概念包括射影、射影空间、射影直线、射影平面等。
射影是指从一个点向一个平面投射的过程,射影空间是指由射影和平面构成的空间。
射影几何的研究对象是射影空间中的直线、平面以及它们的射影。
其次,射影几何公理的基本内容。
射影几何公理包括以下三个基本原理:1)直线确定一个平面;2)两个不共线的点确定一条直线;3)三个不共线的点确定一个平面。
这些基本原理为射影几何的研究提供了理论基础。
接着,射影几何公理的应用。
射影几何公理在实际应用中具有广泛的应用价值,例如在计算机图形学、摄影测量学、空间探测等领域都有重要的应用。
射影几何公理在解决实际问题中起到了关键作用。
最后,射影几何的发展历程与意义。
射影几何公理的发展历程可以追溯到古希腊时期,欧几里得和阿里士多德等数学家都对射影几何做出了重要贡献。
随着科学技术的发展,射影几何在现代数学、物理学、工程学等领域发挥着越来越重要的作用,它为许多实际问题的解决提供了理论支持。
总之,射影几何公理是射影几何的基本理论,它为射影几何的研究和发展奠定了基础。
射影几何公理在实际应用中具有广泛的应用价值,它为许多实际问题的解决提供了理论支持。
射影几何定理
![射影几何定理](https://img.taocdn.com/s3/m/11fd4559a9114431b90d6c85ec3a87c241288a64.png)
射影几何定理摘要:一、射影几何定理的定义与背景1.射影几何的起源与发展2.射影几何定理的概念引入二、射影几何定理的重要性质1.定理的基本内容与公式表述2.定理在射影几何中的核心地位三、射影几何定理的应用领域1.在数学领域的应用2.在其他学科领域的应用四、射影几何定理的意义与价值1.对于数学理论的贡献2.对于实际问题的解决正文:射影几何定理,作为射影几何学中的一个重要理论,起源于19 世纪,经历了漫长的发展过程,逐渐成为了射影几何学研究的基础。
该定理不仅对射影几何学科有着深远的影响,同时也为其他学科领域提供了有力的理论支持。
射影几何定理的一个重要性质是,它揭示了射影空间中的点到直线、直线与平面的位置关系。
具体来说,该定理的公式表述为:在射影空间中,给定点P、直线L 和平面π,如果P 在L 上,且L 在π上,那么P 也在π上。
这个定理在射影几何中具有核心地位,为射影几何的研究奠定了基础。
射影几何定理在数学领域具有广泛的应用。
例如,在代数几何中,射影几何定理可以用来解决代数曲线的几何问题;在拓扑学中,射影几何定理可以帮助研究者理解流形之间的映射关系。
此外,射影几何定理还在计算机科学、物理学和工程学等领域发挥着重要作用。
射影几何定理对数学理论的发展作出了巨大贡献。
它不仅丰富了射影几何学的理论体系,而且为其他数学分支的研究提供了有力的工具。
同时,射影几何定理在实际问题中的应用也体现出其具有很高的价值。
例如,在计算机图形学中,射影几何定理可以用来简化三维模型的表示和计算;在光学设计中,射影几何定理有助于优化光学系统的结构和性能。
总之,射影几何定理作为射影几何学科的一个重要理论,具有深刻的内涵和广泛的应用价值。
射影几何公理
![射影几何公理](https://img.taocdn.com/s3/m/32e86e6a4a73f242336c1eb91a37f111f1850d86.png)
射影几何公理摘要:1.射影几何公理的概述2.射影几何公理的基本概念3.射影几何公理的推导与证明4.射影几何公理的应用5.射影几何公理的重要性正文:射影几何公理是射影几何的基础理论,它是研究射影空间中的点、线、面及其相关性质的数学工具。
射影几何公理主要包括以下几个方面:1.射影空间:射影空间是一个向量空间,其中的加法运算满足齐次性。
射影空间中的点可以看作是向量,线可以看作是向量空间中的直线,面可以看作是向量空间中的平面。
2.射影映射:射影映射是从一个射影空间到另一个射影空间的映射,它保持向量之间的加法运算。
射影映射可以将射影空间中的点、线、面映射到另一个射影空间中,从而研究它们之间的关系。
3.射影几何公理:射影几何公理是描述射影空间中点、线、面及其相关性质的一组公理。
射影几何公理包括以下三条基本公理:(1) 齐次公理:射影空间中的加法运算满足齐次性。
(2) 投影公理:对于射影空间中的任意直线和点,存在唯一的直线与该直线平行且经过该点。
(3) 线性组合公理:对于射影空间中的任意三个点,它们的线性组合可以表示为射影空间中的任意一点。
通过以上三条基本公理,可以推导出射影几何中的一系列定理和性质。
射影几何公理在几何学、物理学、计算机图形学等领域都有广泛应用。
4.射影几何公理的应用:射影几何公理在许多领域都有重要应用,例如在计算机图形学中,利用射影几何公理可以简化图形的表示和计算;在物理学中,射影几何公理可以用于描述光的传播和折射等现象;在几何学中,射影几何公理为研究空间几何问题提供了一种有效的方法。
5.射影几何公理的重要性:射影几何公理是射影几何的理论基础,它为研究射影空间中的点、线、面及其相关性质提供了一种统一的理论框架。
射影几何学
![射影几何学](https://img.taocdn.com/s3/m/24391dff04a1b0717fd5ddd2.png)
在射影几何学中,把无穷远点看作是“理想点”。
通常的直线再加上一个无穷点就是无穷远直线,如果一个平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。
通过同一无穷远点的所有直线平行。
德国数学家克莱因(图)在爱尔朗根大学提出著名的《爱尔朗根计划书》中提出用变换群对几何学进行分类在引入无穷远点和无穷远直线后,原来普通点和普通直线的结合关系依然成立,而过去只有两条直线不平行的时候才能求交点的限制就消失了。
由于经过同一个无穷远点的直线都平行,因此中心射影和平行射影两者就可以统一了。
平行射影可以看作是经过无穷远点的中心投影了。
这样凡是利用中心投影或者平行投影把一个图形映成另一个图形的映射,就都可以叫做射影变换了。
射影变换有两个重要的性质:首先,射影变换使点列变点列,直线变直线,线束变线束,点和直线的结合性是射影变换的不变性;其次,射影变换下,交比不变。
交比是射影几何中重要的概念,用它可以说明两个平面点之间的射影对应。
在射影几何里,把点和直线叫做对偶元素,把“过一点作一直线”和“在一直线上取一点”叫做对偶运算。
在两个图形中,它们如果都是由点和直线组成,把其中一图形里的各元素改为它的对偶元素,各运算改为它的对偶运算,结果就得到另一个图形。
这两个图形叫做对偶图形。
在一个命题中叙述的内容只是关于点、直线和平面的位置,可把各元素改为它的对偶元素,各运算改为它的对偶运算的时候,结果就得到另一个命题。
这两个命题叫做对偶命题。
这就是射影几何学所特有的对偶原则。
在射影平面上,如果一个命题成立,那么它的对偶命题也成立,这叫做平面对偶原则。
同样,在射影空间里,如果一个命题成立,那么它的对偶命题也成立,叫做空间对偶原则。
研究在射影变换下二次曲线的不变性质,也是射影几何学的一项重要内容。
如果就几何学内容的多少来说,射影几何学;仿射几何学;欧氏几何学,这就是说欧氏几何学的内容最丰富,而射影几何学的内容最贫乏。
比如在欧氏几何学里可以讨论仿射几何学的对象(如简比、平行性等)和射影几何学的对象(如四点的交比等),反过来,在射影几何学里不能讨论图形的仿射性质,而在仿射几何学里也不能讨论图形的度量性质。
射影几何
![射影几何](https://img.taocdn.com/s3/m/2f1257bdf121dd36a32d823c.png)
在19世纪以前,射影几何一直是 在欧氏几何的框架下被研究的, 其早期开拓者德沙格、帕斯卡等 主要是以欧式几何的方法处理问 题(这点很重要)。 而且由于18世纪解析几何、微积 分的发展洪流而被人遗忘。
德沙格(1591-1661) 帕斯卡(1623-1662)
加斯帕尔· 蒙日 (Gaspard Monge, 1746~1818),法 国数学家、化学家 和物理学家。
射影几何学的发展和其他数 学分支的发展有密切的关系。 特别是“群”的概念产生以 后,也被引进了射影几何学, 对这门几何学的研究起了促 进作用。
对于我们来说,射影几何最重要的 应用是在对初等几何数学的指导, 它不仅表现在提高数学思想与观念 上,还直接表现在对初等几何图形 性质的研究中。由射影 几何的性质, 指导研究初等几何中的一些问题。
射影几何的繁荣
射影几何学是专门研究图 形的位置关系的,也是专 门用来讨论在把点投影到 直线或者平面上的时影几何的早期发展; 3.射影几何的繁荣; 4.射影几何的应用;
数学透视法的天才阿尔贝 蒂(1401-1472)的《论绘 画》一书(1511)则更是 早期数学透视法的代表作, 成为射影几何学发展的起 点。
19世纪前半叶: 庞斯列(1788~1867,P-J.Poncelet)是 射影几何的主要奠基人。 在公元1822年,完成了一部理论严谨、 构思新颖的巨著——《论图形的射影 性质》。这部书的问世,标志着射影 几何座位一门学科的正式诞生。
默比乌斯:常见一种齐次坐标系,把 变换分成全等、相似、仿射、直射等 类型,给出线束中四条线交比的度量 公式等。 普吕克:引进了另一种齐次坐标系, 得到了平面上无穷远线的方程,无穷 远圆点的坐标。
完全四点形
《射影几何与透视学》课件
![《射影几何与透视学》课件](https://img.taocdn.com/s3/m/f724363130b765ce0508763231126edb6f1a762f.png)
射影几何的应用
通过射影几何理论,可以更好地 设计建筑物的外观和内部结构。
在计算机游戏中,利用射影几何 可以创造出更加真实的三维场景 。
摄影和电影制作 建筑设计
机器人视觉 计算机图形学
利用射影几何原理,可以更好地 理解和处理图像的透视关系。
射影几何在机器人视觉中用于识 别和定位物体。
02
透视学基础
《射影几何与透视学》PPT课件
目录
• 射影几何概述 • 透视学基础 • 射影几何与透视学的关系 • 射影几何与透视学的实际应用 • 结论 • 参考文献
01
射影几何概述
Chapter
射影几何的定义
01
02
03
射影几何
研究图形在射影变换下不 变性质的几何分支。
射影变换
保持图形间点与点、直线 与直线间对应关系的变换 。
绘画艺术中的射影几何与透视学
绘画中的空间表现
利用射影几何与透视学的原理, 画家可以更好地表现画面的空间
关系和深度感。
绘画中的立体感
通过透视学的原理,画家可以创造 出更加逼真的立体感,使画面更加 生动。
绘画中的光影效果
利用射影几何的原理,画家可以更 好地表现光影效果,增强画面的层 次感和立体感。
摄影技巧中的射影几何与透视学
03
射影几何与透视学的关系
Chapter
射影几何对透视学的影响
射影几何为透视学提供了理论基础,使得透视学得以发 展。
射影几何中的投影原理为透视学中的投影提供了理论支 持。
射影几何中的一些基本概念,如点、线、面等,在透视 学中也有广泛应用。
透视学在射影几何中的应用
透视学为射影几何提供了实际 应用的场景,使得射影几何的 理论得以具体化。
射影几何简介.
![射影几何简介.](https://img.taocdn.com/s3/m/0ac08060f90f76c661371aad.png)
h
A
B
l2 CD
• 德沙格定理 如果两个三角形对应顶点 的连线交于一点,则对应边所在直线的 三个交点共线.
A
A1 C1 C
B1
B
• 帕斯卡定理 若一六边形内接于一圆锥曲
线,则每两条对边相交而得到的三点在同
一条直线上.
P
Q
R
• 布里昂雄定理 如果一个六边形外切于 圆锥曲线,则六边形对应顶点的三条连 线相交于一点. E
O
• 无穷远点 画家没影点(消点)的概念
实际上指的是无穷远点.几何学家受此启
发引入了无穷远点的概念.阿尔贝蒂指 出,画面上的平行线必须画成相交于某 一点,除非它们平行于画面.但是没影 点并不与原景中的任一点对应。为了保 持这种对应关系,德沙格(Desargues, 1593-1662) 在直线上引进了一个新的点, 即无穷远点。
D
F
O
C A
B
• 拓广平面
引入无穷远点的直线叫拓广 直线,在欧氏平面的每一条直线上 都引入一个无穷远点,所有无穷远 点的集合叫无穷远直线.引入无穷 远直线后的欧氏平面叫拓广平面.
• 射影平面
在拓广平面上,如果不区别 无穷远元素与通常元素,予以同等 看待,则称拓广平面为射影平 面.射影平面上的直线叫射影直线, 射影平面上的点叫射影点.
交比
射影变换不能保持长度,也不能保 持长度的比.但是,如果一条直线上 有4个有序点A,B,C,D,它们在另 一直线上的射影是A1,B1,C1,D1 ,则 这两组有序点的交比相等.即射影变 换能保持交比.
• 交比 比值
(ABCD) CA / DA CB DB
叫做4个有序点的交比.
AB C
D
• 定理 在射影变换下4个有序点的交比保 持不变. O第Fra bibliotek节 射影几何简介
射影几何学
![射影几何学](https://img.taocdn.com/s3/m/d3f1d3be690203d8ce2f0066f5335a8102d2661c.png)
把各种几何和变换群相的是F.
谢谢观看
射影几何真正成为独立的学科、成为几何学的一个重要分支,主要是在十七世纪。在17世纪初期,开普勒最 早引进了无穷远点概念。稍后,为这门学科建立而做出了重要贡献的是两位法国数学家——笛沙格和帕斯卡。
几何学内容
概括的说,射影几何学是几何学的一个重要分支学科,它是专门研究图形的位置关系的,也是专门用来讨论 在把点投影到直线或者平面上的时候,图形的不变性质的科学。
由于点列和线束中的元素都只依赖于两个齐次参数的比值,即依赖于一个独立参数,它们就都叫做一维基本 形。
已给平面上一个以点和直线构成的图形,把其中的点和直线对换,就得到另一个图形,叫做所给图形的对偶。 例如,点列(和一条直线关联的点的集合)和线束(和一点关联的直线的集合)是对偶形。三角形是自对偶形。
对于平面上一个只涉及点与直线的关联关系的定理,如果把其中的点和直线及其关联关系对换,就得到一个 新定理,叫做原定理的对偶。“如果原定理成立,则它的对偶定理也成立。”称它为对偶定理。
几何学概况
十七世纪,当笛卡儿和费尔马创立的解析几何问世的时候,还有一门几何学同时出现在人们的面前。这门几 何学和画图有很密切的关系,它的某些概念早在古希腊时期就曾经引起一些学者的注意,欧洲文艺复兴
图1射影几何学
时期透视学的兴起,给这门几何学的产生和成长准备了充分的条件。这门几何学就是射影几何学。
在射影几何学中,把无穷远点看作是“理想点”。通常的直线再加上一个无穷点就是无穷远直线,如果一个 平面内两条直线平行,那么这两条直线就交于这两条直线共有的无穷远点。通过同一无穷远点的所有直
射影几何三大入门定理
![射影几何三大入门定理](https://img.taocdn.com/s3/m/742ce1c2951ea76e58fafab069dc5022abea465e.png)
射影几何三大入门定理1. 定理一:射影平面的基本性质射影几何是研究投影关系的一门数学分支,它研究的对象是射影空间和射影平面。
在射影几何中,有三个重要的入门定理,这些定理对于理解和应用射影几何具有重要意义。
首先,我们来讨论第一个定理:射影平面的基本性质。
1.1 射影平面的定义在介绍定理之前,我们需要先了解什么是射影平面。
射影平面是指一个由点和直线构成的集合,满足以下条件:•任意两条直线有且只有一个交点;•任意两个不同的点确定一条直线。
1.2 定理一的表述定理一指出,在射影平面中,存在以下基本性质:•任意两个不同的直线交于唯一一点;•任意两个不同的点确定唯一一条直线。
1.3 定理一的证明第一个性质:任意两个不同的直线交于唯一一点假设在射影平面中存在两个不同的直线L1和L2,在L1上取两个不同的点A和B,在L2上取两个不同的点C和D。
我们需要证明线段AB和CD的交点是唯一的。
根据射影平面的定义,任意两个不同的点确定唯一一条直线,所以线段AB确定了一条直线L3,线段CD也确定了一条直线L4。
由于L3和L4都与L1和L2相交,所以它们一定有一个公共交点P。
假设还存在另一个不同于P的交点Q,那么根据射影平面的定义,线段PQ也应该与直线L1相交。
但是根据前面的假设,A、B、C、D四个点在射影平面中是不共面的,所以直线PQ与直线L1没有交点。
这与假设矛盾,因此我们得出结论:任意两个不同的直线在射影平面中交于唯一一点。
第二个性质:任意两个不同的点确定唯一一条直线假设在射影平面中存在两个不同的点A和B,在A上取两条不同的直线L1和L2,在B上取两条不同的直线L3和L4。
我们需要证明直线AB和CD(其中C为L1与L3的交点,D为L2与L4的交点)是唯一相交的。
根据射影平面的定义,任意两条直线有且只有一个交点,所以线段AB与L1和L2分别有唯一的交点C和D。
假设还存在另一条直线EF与A、B两点相交,并且E和F分别是直线EF与L1和L2的交点。
射影几何在圆锥曲线中的应用
![射影几何在圆锥曲线中的应用](https://img.taocdn.com/s3/m/cc45e99248649b6648d7c1c708a1284ac9500553.png)
射影几何在圆锥曲线中的应用。
射影几何在圆锥曲线中的应用一、引言射影几何是现代数学中的一个重要分支,它不仅在几何学中具有广泛的应用,还在物理学、工程学和计算机图形学等领域中发挥着重要作用。
而在圆锥曲线的研究中,射影几何更是扮演着关键的角色。
本文将探讨射影几何在圆锥曲线中的应用,深入剖析相关理论,并结合实际例子进行分析,帮助读者更全面地理解这一主题。
二、射影几何的基本概念射影几何是研究几何中不变性质的一门学科,它主要研究图形在投影变换下的性质。
在射影几何中,有一些基本概念需要了解。
首先是射影空间的概念,它是将n维欧氏空间中的点和直线扩充为射影空间中的点和超平面,从而使得无穷远处的点也有了几何意义。
其次是投影变换的概念,它将射影空间中的点投影到一个维数较低的子空间上,保持了射影空间中的同一直线上的点在投影后仍然在一条直线上。
还有射影几何中的几何元素,如点、直线、圆锥曲线等。
三、圆锥曲线的基本性质圆锥曲线是指平面上满足一般二次方程方程的曲线,包括椭圆、双曲线和抛物线。
这三种曲线在几何上有着独特的性质,而射影几何恰好能够帮助我们更好地理解这些性质。
椭圆是一个闭曲线,它有两个焦点,而双曲线是一个开曲线,它有两个渐近线,抛物线则是一种特殊的双曲线。
在射影几何中,我们可以通过投影变换将椭圆、双曲线和抛物线转化为标准形式,从而更好地研究它们的性质和特点。
四、射影几何在圆锥曲线的研究中的应用在圆锥曲线的研究中,射影几何发挥着重要作用。
首先是通过射影几何的方法来研究圆锥曲线的渐近线和双曲线的渐近线的性质,可以更清晰地理解曲线的渐近线与离心率的关系。
其次是射影几何可以帮助我们更好地理解曲线的偏心率和焦点之间的关系,从而揭示曲线的几何本质。
射影几何还可以应用于圆锥曲线的投影性质和对偶性质的研究中,从而为曲线的相关性质提供更深入的理解。
五、射影几何在圆锥曲线的实际应用除了理论研究,射影几何在圆锥曲线的实际应用中也发挥着重要作用。
第6章 平面射影几何简介
![第6章 平面射影几何简介](https://img.taocdn.com/s3/m/4fb6c97f8e9951e79b8927cb.png)
(1.1)
联系的任何三个不全为零的实数 x1 , x2 , x3称为点P关于
仿射标架 O; e1 , e2 的齐次(仿射)坐标,记为 P[ x1 , x2 x3 ] 是点P的齐次坐标,则对任意非零实数 λ, x1 , x2 , x3 也是点P的齐次坐标,因而点P的齐次 坐标不唯一。 对于P∈π,显然有 x3 0 点P的仿射坐标(x,y)称为点 P的非齐次(仿射)坐标。 [ 对于齐次坐标 x1 , x2 ,0]不表示π上的任何点,我们把齐 次坐标为 [ x1 , x2 ,0] 的点称为无穷远点。在π上加进这 些无穷远点后称为扩大的欧氏平面,记为 。我们把 扩大的欧氏平面称为射影平面。平面π上的点称为 的通常点。
很明显关系~是等价关系, R3 0 关于等价关系~的等 价类的集合构成射影平面的解析模型,记为 P 2或RP 2 点 P x1 , x2 , x3 的等价类记为 [ x1 , x2 , x3 ]
8
P 直观上, 2 是把空间中过原点的直线视为一点,即 P 2 R 3中过原点的`直线 {[ x1 , x2 , x3 ]
2
O N
0
M P'
P
1
图 6.1
3
但是,对于 OM // 1 的点 M 0 在 1 上没有象,因而中心 投影不是映射;同样对于ON // 0 的点N 1在 0上没原 象。为了使中心投影成为一个映射并且是双射,就需要 在 0与 1上添加一些新的点,使点M 0 都有象,点 N 1 都有原象。这样的添加了点的平面就形成了射影平面 的概念 。
4
§1 齐次坐标,射影平面
1.齐次坐标,射影平面 2.直线的齐次坐标方程 返回
5
什么是射影几何它有什么特点
![什么是射影几何它有什么特点](https://img.taocdn.com/s3/m/65270a59eef9aef8941ea76e58fafab069dc443e.png)
什么是射影几何它有什么特点在数学的广袤领域中,射影几何宛如一颗璀璨的明珠,散发着独特的魅力。
要理解射影几何,首先得从它的基本概念入手。
射影几何是研究图形在射影变换下不变性质的几何分支。
那么,什么是射影变换呢?简单来说,就是通过中心投影或者平行投影将一个图形映射到另一个图形的过程。
想象一下,你拿着一个手电筒,光线照射在物体上形成的影子,就是一种简单的射影。
射影几何与我们熟悉的欧氏几何有着明显的区别。
在欧氏几何中,距离和角度是非常重要的概念,但在射影几何中,这些概念却不再具有绝对的意义。
比如说,在射影变换下,平行线可能会相交。
这与我们在日常生活中的直观感受大相径庭,但却在射影几何的世界里是合理且有趣的现象。
射影几何的一个显著特点是它更注重图形的整体性质和相互关系,而不是具体的度量。
它关心的是图形的形状、位置和组合方式,而不是像长度、面积这样的具体度量值。
这种特点使得射影几何在解决一些特定的几何问题时具有独特的优势。
射影几何中的一个重要概念是无穷远点。
为了处理平行线相交的情况,我们引入了无穷远点的概念。
想象一下,所有平行的直线都在无穷远处相交于一个点,这个点就是无穷远点。
通过引入无穷远点,我们能够更简洁、更统一地描述和处理许多几何现象。
另一个特点是射影几何中的对偶原理。
对偶原理指出,如果在一个关于射影几何的命题中,把点和直线的概念互换,把“通过”和“在……上”的概念互换,把“共点”和“共线”的概念互换,得到的新命题仍然成立。
这一原理使得我们在研究射影几何问题时,可以通过对偶的方式得到新的结论和方法,大大丰富了我们解决问题的手段。
射影几何在艺术领域也有着广泛的应用。
比如在绘画中,画家常常利用透视原理来表现物体的远近和空间感。
而透视原理本质上就是一种射影变换。
通过巧妙地运用射影几何的知识,画家能够创作出更加逼真、富有立体感的作品。
在建筑设计中,射影几何同样发挥着重要作用。
建筑师在设计建筑物的外观和结构时,需要考虑不同角度的视觉效果和空间布局。
射影几何定理
![射影几何定理](https://img.taocdn.com/s3/m/83f393c7aff8941ea76e58fafab069dc51224762.png)
射影几何定理(原创实用版)目录1.射影几何定理的概述2.射影几何定理的证明方法3.射影几何定理的应用领域4.射影几何定理的意义和影响正文射影几何定理是射影几何中的一个基本定理,它对射影空间中的直线与直线、直线与平面、平面与平面之间的位置关系进行了深入的研究。
射影几何定理的内容主要包括以下几个方面:首先,射影几何定理对射影空间中的直线与直线的位置关系进行了详细的描述。
在射影空间中,一条直线可以看作是一个二维子空间,两条直线的位置关系可以分为相交、平行和重合三种情况。
射影几何定理通过引入射影矩阵的概念,给出了判断两条直线位置关系的方法。
其次,射影几何定理对射影空间中的直线与平面、平面与平面的位置关系进行了探讨。
在射影空间中,一条直线与一个平面的位置关系可以分为直线在平面上、直线与平面相交、直线与平面平行和直线在平面内四种情况;两个平面的位置关系可以分为相交、平行和重合三种情况。
射影几何定理通过射影矩阵的运算,给出了判断这些位置关系的方法。
射影几何定理在实际应用中具有广泛的应用领域。
在计算机图形学中,射影几何定理可以用来判断物体之间的遮挡关系;在计算机视觉中,射影几何定理可以用来检测图像中的特征点;在机器学习中,射影几何定理可以用来解决线性分类问题。
射影几何定理在射影几何中具有重要的意义和影响。
它不仅丰富了射影几何的研究内容,而且为射影几何在实际应用中提供了有力的理论支持。
射影几何定理的研究还推动了射影代数和射影几何其他领域的发展,为数学和工程学科的交叉融合做出了贡献。
总之,射影几何定理是射影几何中的一个基本定理,它对射影空间中的直线与直线、直线与平面、平面与平面之间的位置关系进行了深入的研究,并在实际应用中具有广泛的应用领域。
射影几何(正式版)
![射影几何(正式版)](https://img.taocdn.com/s3/m/d79e315b8e9951e79a89271f.png)
射影几何首先,射影几何学是几何学的一个重要分支学科。
概括的说,它是专门研究图形的位置关系的,也是专门用来讨论在把点投影到直线或者平面上的时候,图形的不变性质的学科。
那射影几何的某些内容在公元前就已经发现了,但直到十九世纪才形成独立体系,趋于完备。
接下来,我将从以下4个方面介绍射影几何。
(1,2,3,4)首先是第一点,从透视学到射影几何在文艺复兴时期,描绘现实世界成为绘画的重要目标,这就使画家们在将三维现实世界绘制到二维的画布上时,面临了如何呈现的问题。
例如如何将平行的9个长方体从一个角度观察并呈现在了二维纸面上。
正是这种冲突,刺激并导致了富有文艺复兴特色的学科---透视学。
这里不得不提起一个数学透视法的天才,阿尔贝蒂。
他是当时意大利著名建筑师、建筑理论家。
意大利文艺复兴时期最有影响的建筑理论家。
一生致力于理论研究,著有《论绘画》、《论建筑》、《论雕塑》,其中《论建筑》为当时最富影响、最具代表性的建筑理论著作,书内列有研究建筑材料、施工、结构、构造、经济、规划、水文、设计等章节,完整地介绍了他的建筑思想。
另外《论绘画》一书(1511)则更是早期数学透视法的代表作,成为射影几何学发展的起点。
接下来就是第2点了——射影几何的早期发展在19世纪以前,射影几何一直是在欧氏几何的框架下被研究的,其早期开拓者德沙格、帕斯卡等主要是以欧式几何的方法处理问题(这点很重要)。
但是由于18世纪解析几何、微积分的发展洪流而被人遗忘。
德沙格:生在法国,也死在法国,和当时的笛卡尔、费尔马等领头数学家都是好朋友,这批人的活动和所取得的成就,使法国成为当时世界上最辉煌的国度。
身处这一旋涡的德扎格以其新颖的思想和独特的数学方法,对于透视法产生的问题给予数学上解答,开辟了数学的一个新领域,成为射影几何学的先驱的第一人。
帕斯卡:著名的、、和。
主要贡献是在上,发现了,并以其名字命名单位。
帕斯卡没有受过正规的。
他4岁时母亲病故,他父亲是一位受人尊敬的,在其精心地教育下,帕斯卡很小时就精通。
几何学中的射影几何
![几何学中的射影几何](https://img.taocdn.com/s3/m/037bafa818e8b8f67c1cfad6195f312b3069eb11.png)
几何学中的射影几何几何学是数学的一个分支,致力于研究空间形状、结构和性质。
而射影几何则是几何学中的一个重要领域,它研究的是射影空间及其相关的几何概念和性质。
在本文中,我们将深入探讨射影几何的基本原理和应用。
一、射影几何的定义和基本原理射影几何是建立在射影空间上的几何学分支。
射影空间是传统的欧几里德空间的一个扩充,它引入了无穷远点和直线上的点,使得几何概念得到无穷远的自然推广。
在射影几何中,有三个基本原理需要我们了解:1. 射影空间公理:射影空间满足射影空间公理,包括点线对偶原理、直线交定理、射影变换等。
通过这些公理,我们可以在射影空间中进行几何推理和定理证明。
2. 无穷远点:射影空间引入了无穷远点的概念,它代表着直线上的点在无穷远处的位置。
在射影几何中,我们可以将两个无穷远点连接起来形成一条直线,这条直线称为“无穷远直线”。
3. 射影变换:射影变换是射影几何中常用的一种变换方法。
它可以将射影空间中的点和直线映射到另一个射影空间中,保持射影几何的内部结构和性质不变。
二、射影几何的应用领域射影几何不仅在纯粹的数学领域中有重要意义,而且在许多应用领域也具有广泛的应用。
以下是射影几何的一些典型应用:1. 计算机视觉:射影几何在计算机视觉领域发挥着重要作用。
通过射影变换,我们可以将二维图像映射到三维空间中,从而实现图像的三维重建和深度识别。
2. 无人驾驶:射影几何在无人驾驶技术中有广泛应用。
通过射影变换和几何推理,无人驾驶汽车可以实时感知周围环境、规划路径和避免障碍物。
3. 空间布局设计:射影几何可以帮助我们进行空间布局设计,比如建筑物的设计和室内装饰。
通过射影变换和空间投影,我们可以在平面上模拟和优化各种建筑设计方案。
4. 图像处理:射影几何在图像处理中有广泛的应用。
通过射影变换和几何校正,我们可以对图像进行矫正、旋转和变形,从而提高图像的质量和准确度。
5. 三维动画:射影几何在三维动画制作中扮演着重要角色。
什么是射影几何在计算机视觉中的应用
![什么是射影几何在计算机视觉中的应用](https://img.taocdn.com/s3/m/f9e447122a160b4e767f5acfa1c7aa00b42a9d4a.png)
什么是射影几何在计算机视觉中的应用在当今科技飞速发展的时代,计算机视觉已经成为了一个极为重要的领域,它在自动驾驶、医学成像、安防监控、虚拟现实等众多领域都发挥着至关重要的作用。
而在计算机视觉的背后,射影几何这一数学分支也有着广泛且深刻的应用。
要理解射影几何在计算机视觉中的应用,首先得明白什么是射影几何。
射影几何是研究在射影变换下图形性质不变的几何分支。
简单来说,射影变换是一种特殊的几何变换,它可以将一个图形通过投影的方式变换到另一个图形,在这个变换过程中,某些几何性质保持不变。
在计算机视觉中,图像的获取本身就是一种射影过程。
当我们用相机拍摄一个场景时,场景中的三维信息被投影到二维的图像平面上,这就涉及到了射影几何的原理。
比如说,在拍摄一个建筑物时,由于拍摄角度的不同,建筑物的形状和大小在图像中可能会发生变形,但通过射影几何的知识,我们可以对这种变形进行分析和校正。
射影几何在摄像机标定中也起着关键作用。
摄像机标定是确定摄像机内部参数和外部参数的过程,这些参数对于准确地从图像中获取三维信息至关重要。
通过利用射影几何中的一些定理和方法,我们可以建立摄像机成像的数学模型,从而计算出摄像机的参数。
在图像匹配和立体视觉中,射影几何同样有着重要的地位。
当我们需要对不同视角下拍摄的同一物体的图像进行匹配时,射影几何可以帮助我们找到图像之间的对应关系。
而在立体视觉中,通过分析不同视角下拍摄的图像之间的差异,利用射影几何的原理可以计算出物体的深度信息,从而实现三维重建。
此外,射影几何还在运动估计和跟踪中发挥作用。
当物体在场景中运动时,其在连续的图像帧中的位置和形状会发生变化。
通过射影几何的方法,我们可以对物体的运动进行建模和估计,从而实现对物体的跟踪。
举个例子来说,在自动驾驶领域,车辆需要通过摄像头感知周围的环境。
利用射影几何,车辆可以对前方道路的形状、障碍物的位置和距离进行准确的判断。
比如,通过分析摄像头拍摄的图像中道路标线的变形情况,可以计算出车辆与道路的相对位置和姿态,从而为车辆的自动驾驶提供关键的信息。
代数射影几何
![代数射影几何](https://img.taocdn.com/s3/m/37e78aa8846a561252d380eb6294dd88d1d23d50.png)
代数射影几何
摘要:
1.代数射影几何的定义和背景
2.代数射影几何的基本概念
3.代数射影几何的应用
4.代数射影几何的发展和未来展望
正文:
代数射影几何是一种数学分支,主要研究空间中的向量空间和射影空间,并通过代数方法来描述和研究它们的性质。
它是几何学、代数学和线性代数等领域的重要交叉点,被广泛应用于物理学、计算机科学和工程学等领域。
代数射影几何的基本概念包括向量空间、射影空间、线性变换、矩阵和行列式等。
向量空间是一个具有加法和标量乘法运算的集合,射影空间是一个具有加法和投影运算的集合。
线性变换和矩阵是向量空间之间的映射方式,而行列式则是矩阵的性质之一。
代数射影几何的应用非常广泛,包括在计算机图形学中的应用、在机器学习和人工智能中的应用、在密码学和信息理论中的应用等。
例如,在计算机图形学中,代数射影几何被用来表示三维空间中的点和向量,以便进行渲染和计算。
在机器学习和人工智能中,代数射影几何被用来解决线性回归和分类问题。
代数射影几何的发展可以追溯到19 世纪末和20 世纪初,当时数学家们开始研究空间中的向量空间和射影空间,并通过代数方法来描述它们的性质。
随着计算机科学和信息技术的发展,代数射影几何的应用范围不断扩大,它的
重要性也日益凸显。
未来,代数射影几何将继续发挥重要作用,并将成为数学、物理学、计算机科学和工程学等领域的重要基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
笛沙格把他的射影几何思想用于圆锥曲线,得到许多新颖的结果: – 直线可以看作具有无限长半径的圆的一部分; – 焦点相合的椭圆退化为圆; – 焦点之一在无穷远的椭圆是一抛物线,等等.
• • •
他不再把圆锥曲线看作圆锥与平面的交线,而是理解为圆的截景. 圆不仅可以变换为椭圆,而且可以变换为开口的抛物线或双曲线,这时的曲线仍看作封闭的, 只不过是一个点在无穷远而已. 笛沙格力图用投射、截景等射影几何概念统一处理各种圆锥曲线,从而为圆锥曲线的研究开 辟了广阔的前景.
• •
为什么笛沙格的书在当时被忽略呢?主要有两个原因. 一是它被差不多同时出现的解析几何掩盖了.从思想的深刻来讲,笛沙格的射影几何是可以 和笛卡儿的解析几何相媲美的.但笛卡儿的解析几何是用代数方法研究几何问题,可以迅速 得到数量结果,而射影几何主要是对几何的定性研究.当时的技术发展更需要解析几何这样 的有力工具. 第二个原因是,笛沙格的写作形式比较古怪,他引进了 70 个新术语,其中多是从植物学借 用的.例如,他用棕 (Palm)、干、树来表示三种不同性质的直线.这类语句以及不易理解的 思想,使他的书难于阅读. 除了笛卡儿、帕斯卡、费马等几位大数学家外,很少有人欣赏他的著作.
1
B′ O . A′
C′
B
C
D′ A
D
• • •
那么,截景与原形究竟有什么共性呢?这正是阿尔贝蒂苦苦思索而未找到答案的问题. 阿尔贝蒂还考虑到:如果在眼睛和景物之间插进两张玻璃板,它们上面的截景将是不同的; 如果从两个不同位置来观察景物,截景也将是不同的.但所有截景都反映同一景物,它们之 间必存在某种关系. 于是他进一步提出问题:同一景物的任意两个截景间有什么数学关系,或者说有什么共同的 数学性质?他留给后人的这些问题成为射影几何的出发点.
′ B′ C
B . A′ D′ A
C
O
D
3
• •
引入了无穷远点和无穷远线后,笛沙格证明了著名的笛沙格定理:若两个三角形对应顶点连 线共点,则对应边交点共线.不管两个三角形是否在同一平面,定理都是成立的,逆定理也 同样成立. 笛沙格在书中对二维和三维的笛沙格定理及其逆定理都作了证明.
O
A B C R C′ A′ Q P
笛沙格
• • • •
射影几何的创始人是法国的建筑师笛沙格. 1639 年,笛沙格发表了一本重要著作《试论圆锥与平面相交结果》 ,推动了 19 世纪射影几 何的蓬勃发展,被公认为这一学科的经典. 但它在发表之初,却没有受到数学家们的重视.笛沙格把书印了 50 份,分送给他的朋友,不 久便全部散失了. 直到 1845 年,沙勒才偶然发现了一个手抄本,由波德加以复制,使笛沙格的射影几何成果 复明于世.1950 年左右,这部书的一个原版本终于蒂在 1435 年写成的《论绘画》一书中阐述了这样的思想:在 眼睛和景物之间插进一张直立的玻璃板,并设想光线从眼睛出发射到景物的每一个点上,这 些线叫投影线. 他设想每根线与玻璃板交于一点,这些点的集合叫做截景.显然,截景给眼睛的印象和景物 本身一样,所以作画逼真的问题就是在玻璃板 (实际是画布) 上作出一个真正的截景.
• •
例如,人眼在 O 处观察平面上的矩形 ABCD 时,从 O 到矩形各点的连线形成一投影棱锥, 其中 OA,OB,OC,OD 是四根典型的投影线.若在人眼和矩形间插入一平面,并连结四条 线与平面的交点 A′ ,B′ ,C′ ,D′ ,则四边形 A′ B′C′ D′ 为矩形 ABCD 的截景. 由于截景对人眼产生的视觉印象和原矩形一样,它们必然有相同之处.但从直观上看,截景 和原形既不全等又不相似,也不会有相同的面积,截景甚至并非矩形.
• •
2
• • •
笛沙格数学思想的出色之处,首先在于他引进了无穷远点和无穷远直线.阿尔贝蒂曾指出, 画面上的平行线应画成交于一点,除非它们平行于玻璃板. 例如,图中的 A′ B′ 和 D′C′ 便相交于某点 O′ ,这一点不和 AB 或 DC 上任何普通的点对应, 所以叫影消点,而除 O′ 外的直线 A′ B′ 或 D′C′ 上的任何点,都对应着 AB 或 DC 上某个确定 的点. 为了使 A′ B′ 与 AB 上的点以及 D′C′ 与 DC 上的点有完全的对应关系,笛沙格在 AB 及 DC 上 引入一个新的点,叫做无穷远点,把它看作两平行线的公共点. O′
射影几何简介
数学与统计学学院 August 1, 2016
一、历史背景
透视法
• • •
射影几何起源于透视法,而透视法是与绘画艺术分不开的. 在中世纪,画家的主要任务是颂扬上帝和为圣经插图.但到了文艺复兴时期,描绘现实世界 逐渐成为绘画的目标了. 为了在画布上忠实地再现大自然,就需要解决一个数学问题:如何把三维的现实世界反映到 二维的画布上.
′ B′ C
B . A′ D′ A
C
O
D
• • •
所有平行于 AB 的直线都交于这一点,方向不同于 AB 的另外一组平行线则有另外一个公共 的无穷远点. 由于平行线组的数目是无穷的,笛沙格实际是在平面上引入了无穷多的新点.他假定所有这 些点都在同一直线上,而这直线则对应于截景上的影消线. 以这种新规定为前提,我们就可以断言“平面上任意两直线必交于一点”了,因为不平行线 交于普通点而平行线交于无穷远点. O′
B′ .
• •
在深入研究投影性质的基础上,笛沙格终于回答了阿尔贝蒂早就提出的问题:同一实物的两 个截景间有什么数学关系?这实质是一个投影下的不变性问题. 笛沙格发现:交比在投影下是不变的.所谓交比,是指直线上的四点 A,B,C,D 所形成的 BA DA 诸线段的特定比 (A, C; B, D) = BC : DC ,帕普斯早就引入过这个比。
4
帕斯卡
• • • • • • • • • • • • • • •
帕斯卡也为射影几何学的早期工作做出了重要的贡献。 1641 年,他发现了一条定理: “内接于二次曲线的六边形的三双对边的交点共线。 ”这条定理 叫做帕斯卡六边形定理,也是射影几何学中的一条重要定理。 1658 年,他写了《圆锥曲线论》一书,书中很多定理都是射影几何方面的内容。 和笛沙格的一些定理一样,帕斯卡的这些定理,只涉及关联性质而不涉及度量性质 (长度、 角度、面积)。但他们在证明中却用到了长度概念,而不是用严格的射影方法,他们也没有意 识到,自己的研究方向会导致产生一个新的几何体系 —射影几何。他们所用的是综合法。 随着解析几何和微积分的创立,综合法让位于解析法,射影几何的探讨也中断了。