超声波特性
超声波特性实验
用来调节反射回波的电压幅度;超声仪的发射接口与探头连接,并向探头发射 400V 的高压脉冲,用来激发超声波;仪器面板上射频、检波接口与示波器的 CH1、 CH2 通道连接,以射频或检波方式在示波器上显示探头接收到的反射回波;触 发接口与示波器的外触发(TRG)相连,使超声的发射信号与示波器扫描同步。
实验内容 1、熟悉仪器使用、观察反射回波 (1)、如图 20-7 所示,把直探头放在位置 1、2 等处,先适当调节超声仪衰 减(大约 90dB),再调节示波器衰减,要求被测信号最大幅度不超过 2V(估算 一下)。观察试块底面对纵波反射的多次反射回波(反射底波),多次回波是部分 超声波在平行的两个界面之间来回反射的结果。
可变角探头入射角继续增加,横波幅度减弱并消失,在此过程中又会出现两个回波,测
量这两个回波对应的时间差,可确定其为表面波,用手指轻压试块表面,可发现回波幅值变
化。
探头
水槽
挡板
图 20-9 表面波测量弧面长度
图 20-10 水声速测量示意图
4.测量水中的声速
如图 20-10,将金属档板放在水槽的不同位置 x,用示波器测量超声波在档
回波幅度最大,然后适当调节超声仪衰减,要求被测信号幅度不超过 2V。在此前提下调节
示波器衰减(可用微调)使回波幅度增大到满幅的 80%左右。
2、测量直探头和斜探头的延迟
超声波在晶片到被测试块表面这段距离往复传播的时间称为探头的延迟(如
图 20-8)。由于探头的延迟 使距离的测量出现误差,因此需要测量探头的延迟时
利用试块 40 mm 的厚度方向进行测量。多次测量,求 平均值。
(2)、测量斜探头的延迟 如图 20-6 把斜探头放在试块上 3 的位置,使探头的斜 射声束能够同时入射在R1和R2圆弧面上。适当移动探头使在 示波器上同时观测到两个弧面的回波B1和B2为最大。测量它 们对应的时间t1和t2。由于R1 = 2R2,因此斜探头延迟的计算 同(20-3)式。多次测量,求平均值。
超声波的物理特性及医学应用
超声波的物理特性及医学应用超声波是一种频率高于人类听觉范围的机械波,波长短于可见光波长的一种波动形式。
它在物理学和医学中有着广泛的应用,其物理特性和医学应用均为我们所熟知。
超声波的物理特性包括频率高、波长短、能量强、穿透力强等特点。
超声波的频率通常在20 kHz到1 GHz之间,远远超出了人类听觉的范围。
波长短于可见光波长,因此在物质中传播时,超声波能够穿透并产生回波,这使得超声波成为了一种理想的成像工具。
超声波能量强,穿透力强,能够穿透人体组织,因而被广泛应用于医学成像和治疗中。
在医学应用方面,超声波已经成为了一种重要的医疗工具。
超声波成像技术被广泛应用于医学影像学中,如超声心动图、超声造影、超声血流动力学等。
通过超声波成像技术,医生可以清晰地看到人体内部器官的结构和功能,从而诊断疾病和指导治疗。
而且,超声波成像技术还具有即时、无辐射和低成本等优点,因此被认为是一种理想的影像学检查手段。
超声波在医学中还被广泛应用于治疗。
超声波治疗技术是一种无创伤的治疗手段,通过超声波的热效应和机械效应对病灶进行治疗。
常见的超声波治疗包括超声波消融治疗、超声波手术刀和超声波射频治疗等,它们被广泛应用于肿瘤治疗、疼痛治疗、美容整形等领域。
超声波治疗技术具有无创伤、局部作用、可靶向等优点,因此备受医生和患者的青睐。
超声波在医学中还被应用于超声心血管造影、超声导航手术、超声检测等领域。
超声心血管造影技术是一种无创伤的心脏和血管成像技术,通过超声波对心脏和血管进行准确成像,帮助医生诊断心血管疾病。
超声导航手术技术则是一种利用超声波引导手术的技术,通过超声波成像对手术器械和病灶进行准确定位,能够提高手术的精确度和安全性。
超声波
三、超声波
超声波特性:
2、超声波在液体介质中传播,能够产生巨 大的正、负交变的液压冲击波和空化作用。
这种交变的脉冲压力作用在邻近的零件 表面上会使其破坏,引起固体物质分散、破 碎效应等。
三、超声波
超声波特性: 3、超声波在介质中传播遇到不同介质的界 面会发生反射和折射现象。
能量反射的大小,决定于两种介质的波阻抗 (密度乘波速),介质的波阻抗相差越大,超声波 通过界面时能量的反射率越高。当超声波从液体或 固体传入到空气、或者是相反的过程,反射率都接 近100%。为了改善超声波在相邻介质中的传递条 件,往往在声学部件的连接处加入全损耗系统用油、 凡士林油为传递介质,以消除空气所引起的衰减, 如医学上的B超。
2) 振幅扩大棒
指数形:扩大比中等(10~20倍),使用中 振幅比较稳定,但不易于制造;
阶梯形:扩大比较 大(>20倍),也易于 制造;但振幅易减 小,性能不稳定, 而且在粗细过度的 地方容易产生应力 集中而导致疲劳断 裂,为此须加工过 渡圆弧。 锥形:振幅扩大比较小 (5~10倍),但易于制造;
三、超声波
超声波特性:
4、超声波在一定条件下,会产生波的干涉 和共振现象。 为了使弹性杆处于最大振幅共振状态,应 将弹性杆设计成半波长的整数倍;而固定弹 性杆的支持点,应该选在振动过程中的波节 处,这一点不振动。
7.1 超声波加工原理
超声加工:是利用工具端面作超声振动,通过磨粒悬浮液加 工脆硬材料的一种成型方法。
vmax=251.3 mm/s
a=3233g
1、工具 2、工件 3、磨料悬浮液 4、5 变幅杆
6、换能器
7、超声波发生器
7.1 超声波加工原理
虽然每次打击下来的材料很少,但由于每秒打击的次数 多达16000次以上,所以仍有一定的加工速度。 同时,工作液受工具端面超声振动作用而产生的高频、 交变的液压冲击波和“空化”作用,促使工作液钻入被加工 材料的微裂缝处,加剧机械破坏作用。 重要概念:空化作用 由此可见,超声加工是磨粒在超声振动作用下的机械碰 撞和抛磨作用以及超声空化作用的综合结果,其中磨粒撞击 作用是主要的。
1. 简述超声波的特性
1. 简述超声波的特性
超声波是一种由高频声波组成的电磁波。
它的频率在20kHz以上,可以超出人类听觉范围。
超声波具有许多特殊的特性,如高速传播、高能量转换效率、高穿透能力、高分辨率等。
首先,超声波具有高速传播特性。
它的传播速度取决于介质的密度和弹性模量,一般在1,500m/s到1,700m/s之间。
这使得超声波在探测和测量应用中具有很大的优势。
其次,超声波具有高能量转换效率的特性。
超声波能够将电能转换为声能,并在传播过程中不断转换为其他形式的能量。
这使得超声波在高能量密度的激励下能够产生高能量输出。
第三,超声波具有高穿透能力的特性。
超声波的穿透能力取决于波的频率和介质的密度。
在低密度介质中,超声波的穿透能力较强;而在高密度介质中,超声波的穿透能力较弱。
这使得超声波在探测和成像应用中具有很大的优势。
最后,超声波具有高分辨率的特性。
超声波的分辨率取决于波的频率和波的振幅。
超声波的频率越高,它的分辨率就越高。
同时,超声波的振幅越大,它的分辨率也就越高。
这使得超声波在成像应用中能够提供清晰的图像。
总之,超声波具有高速传播、高能量转换效率、高穿透能力和高分辨率等特性,这使得它在许多应用领域中具有广泛的应用前景。
超声波在医学成像、工业探测、测量和检测等领域都有广泛的应用。
超声波的特性及在医学诊断中的应用价值
超声波的特性及在医学诊断中的应用价值超声波是一种机械波,在波长小于人类能够听到的声音范围内,具有高频率的特性。
超声波在医学诊断中具有重要的应用价值,因为它能够通过皮肤表面向体内器官发送声波,从而产生图像,帮助医生诊断疾病。
本文将探讨超声波的特性及在医学诊断中的应用价值。
超声波的特性超声波是一种能够穿透人体组织的机械波,具有高频率和短波长的特性。
通常情况下,医学上使用的超声波频率在1MHz至10MHz之间,波长在1mm至1cm之间。
这种高频率和短波长使得超声波能够穿透人体组织,在不损伤组织的情况下产生图像。
超声波在医学诊断中的应用价值超声波在医学诊断中具有重要的应用价值,主要体现在以下几个方面:1. 无损伤性超声波诊断技术是一种无创伤的检查方法,它通过声波的传播和反射来生成图像,不会对人体组织造成伤害。
这使得超声波成为一种相对安全的医学诊断技术,适用于各个年龄段和各种病情的患者。
2. 高分辨率超声波诊断技术具有较高的图像分辨率,能够清晰显示组织结构和器官形态,有助于医生准确诊断疾病。
而且,超声波可以通过改变频率和波长来调整图像分辨率,满足不同病情下的诊断需求。
3. 实时性超声波诊断技术可以实时生成图像,医生可以在进行检查的同时观察患者的组织结构和器官形态,及时发现异常情况。
这种实时性有利于医生在诊断和治疗过程中做出及时的决策。
4. 多功能性超声波诊断技术不仅可以用于检查内脏器官如心脏、肝脏、肾脏等,还可以用于检查肌肉、骨骼、血管等。
它还可以用于妇科、产科、儿科等领域的诊断,具有较高的多功能性。
5. 便捷性超声波诊断设备体积小、重量轻,操作简便,不需要进行复杂的准备工作,有利于医生在医疗现场进行快速、准确的诊断。
超声波诊断技术在医学诊断中具有重要的应用价值,它能够通过高频率的声波穿透人体组织,产生清晰的图像,帮助医生进行诊断和治疗。
随着医学技术的不断发展,超声波诊断技术将会有更广泛的应用,为医疗健康事业作出更大的贡献。
超声波特性
1.声速:超声波在不同介质中传输速度是不同的。
气体350m/s左右,液体中1500m/s左右;固体中5000m/s左右。
2.声衰减在空气中,超声波除了因扩散引起衰减外,由于空气中的粘滞性、热传导以及分子的吸收也会引起衰减。
在20℃时的空气中,衰减系数在20℃时的水中,衰减系数如换算成位移衰减到I/e的距离x(1/ɑ),则空气中x(m)=则水中x(m)=从表中可以看出:空气可水相比,其声衰减随频率的增大而急剧增加,即空气(各种气体均如此)不利于高频声传播,衰减很快,如500KHZ以上。
所以液体中超声一般选择1-5MHz,而气体中超声一般选择50-300KHz。
当然选择频率时还应考虑超声换能器之间的距离(声程)以及测量精度等要求。
3.特性阻抗与声反射、声折射、声散射特性阻抗由介质的密度和声速之积确定。
气体、液体和固体的特性阻抗之比约为1:3000:80000,差异很大。
超声从一种介质进入另一种介质的能力取决于特性阻抗。
流体中只存在纵波,纵波从流体向固体倾斜射入,在固体中除纵波外,还存在横波。
高频率的声波,如2MHZ,在照射到含有气泡和固体颗粒时液体时,会产生声散射。
4.超声换能器的指向性式中:--------指向性半角;--------波长;--------圆型辐射面直径气体介质中换能器的角一般取3-7度;液体介质中换能器的角一般取2-10度;可以上换能器的指向性均要求尖锐,以使能量较为集中。
5.温度特性在水中中,超声传播速度随温度升高而增大,但在90℃之后又开始减小。
1. 压电陶瓷片PZT用于测量液体流量的超声换能器,工作频率在0.5-5MHz.PZT压电片(圆形、半圆形、方形、矩形)是常用的形式,它的频率由下公式确定式中:-----------频率常数,PZT均为2200;-----------厚度(应远小于横向尺寸)。
1MHz的PZT圆片,直径10-12mm,厚度约2mm;1.5MHz的的PZT圆片,直径15mm左右,厚度约1.3mm;2. 换能器的基本结构压电圆片换能器一般结构有一下三种:液体换能器中,若在前后端设置匹配层,可有效提高电声转换效率和扩展频带宽度。
超声波的特性(精)
职业教育现代宠物技术教学资源库
1 超声波的特性
声波是物体的机械振动产生的,振动的频率超过20000次/s 称为超声波,简称超声。
超声波在机体内传播的物理特性是超声影像诊断的基础,其中主要有:
一、超声的定向性
又称方向性或束性。
当探头的声源晶片振动发生超声时,形成了一股声束,以一定的方向传播。
诊断方面利用这一特性做器官的定向探查,以发现体内脏器或组织的位置和形态上的变化。
二、超声的反射性
超声在介质中传播,若遇到声阻抗不同的界面时一部分声能引起反射,所余的声能继续传播。
如介质中有多个不同的声阻界面,则可顺序产生多次的回声反射。
超声界面的大小要大于超声的半波长,才能产生反射。
若界面小于半波长,则无反射而产生绕射。
超声垂直入射界面时,反射的回声可被接收返回探头而在示波屏显示。
入射超声与界面成角而不垂直时,入射角与反射角相等,探头接收不到反射的回声。
三、超声的吸收和衰减性
超声在介质中传播时,由于与介质中的摩擦产生粘滞性和热传播而吸收,又由于声速本身的扩散、反射、散射、折射与传播距离的增加而衰减。
吸收和衰减除与介质的不同有关外,亦与超声的频率有关。
但频率又与超声的穿透力有关,频率愈高,衰减愈大,穿透力愈弱。
超声诊断主要是利用这种界面反射的物理特性。
超声波特性
2.1 超声波的定义波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz,超声波是频率大于20KHz的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L为入射波,S₁为反射横波,L₁为反射纵波,L₂为折射纵波,S₂为折射横波。
S₂图2.1超声波的反射、折射及其波形转换这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:()cos()A A x t kx ω=+ ()0()ax A x A e -= ()式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:2af α= ()式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减从理论上讲,超声波衰减主要有三个方面:(1) 由声速扩展引起的衰减在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
超声波的特性及在医学诊断中的应用价值
超声波的特性及在医学诊断中的应用价值1. 引言1.1 介绍超声波的基本概念超声波是一种机械波,其频率高于人类听觉范围内的声波,一般定义为超过20kHz。
超声波在空气中传播速度约为343米/秒,传播速度比空气中的声速更快,这使得超声波在医学诊断中具有独特的应用优势。
超声波是通过超声波探头发出的脉冲波,当波束遇到组织界面时,一部分波将被反射回探头,探头接收反射波并将其转化为电信号,再通过计算机处理形成影像。
超声波的基本特性包括频率、波长、速度、反射、穿透等。
在医学诊断中,超声波可以用于检查人体各种器官和组织的结构、形态及功能。
其应用场景包括但不限于产前检查、心脏病、脑部疾病、乳腺病、泌尿系统疾病等。
超声波在医学诊断中具有无辐射、实时性、价格低廉等优势,但也存在穿透深度有限、分辨率较低等局限性。
超声波在医学诊断中扮演着不可替代的重要角色,随着技术的不断发展,超声波技术将会在未来医学领域中发挥更大的作用。
1.2 阐述超声波在医学诊断中的重要性超声波在医学诊断中扮演着非常重要的角色,由于其高频振动和穿透力强的特性,能够在人体组织中产生明显的反射或散射,从而形成图像,让医生能够清晰地观察到人体内部的结构和病变情况。
与传统的X光检查相比,超声波检查不需要使用放射线,避免了对人体的辐射损伤,尤其适用于孕妇和婴幼儿等对辐射敏感的人群。
超声波检查具有无创伤性、无痛苦、无辐射、操作简便、成本低廉等优势,被广泛应用于医学诊断中。
在心脏病、腹部疾病、妇科疾病、乳腺疾病等方面,超声波检查均具有很高的诊断准确性和临床应用价值。
随着技术的不断创新和发展,超声波在医学诊断中的应用范围也在不断扩大,被越来越多的医院和临床医生所重视和采用。
超声波在医学诊断中的重要性不可忽视,对于提高医疗诊断的准确性和有效性起着关键作用。
2. 正文2.1 超声波的特性超声波是一种高频声波,它的频率超过人类能够听到的范围,通常在20kHz以上。
超声波具有以下特性:1. 能够传播在各种介质中:超声波可以在空气、水、固体等不同介质中传播,因此在医学诊断中可以通过不同组织的反射来获取影像信息。
超声波的定义及特性ppt课件
反射波 i r t 0
入射波
界面
透射波
aPr
Z2 Z2
Z1 Z1
aPt
2Z2 Z2 Z1
其中: Z2 2c2
2
aI r
Z2 Z2
Z1 Z1
aIt
4Z 2 Z1 Z2 Z1 2
,Z1 1c1
37
显然有:① aPt aPr 1
② aIt aIr 1
③ aIr aPr 2
即声强与该点声压、振速或振动位移的最大值有关。
③ 声强的单位 瓦/厘米2
1瓦=1焦耳/秒
23
4.声压级和声强级 (1)声强级LI
LI = 10lg(I/I0) 分贝(dB) 称LI为:I相对于I0的声强级,I0为I的参考值。 (2)声压级LP
由I=P2/ρc , I0=P02/ρc可得: LI = 10lg(I/I0) = 10lg(P2/P02) = 20lg(P/P0) 定义: LP = 20lg(P/P0) 分贝(dB) 称LP为:P相对于P0的声压级,P0为P的参考值。
10
11
三、按发射超声的类型分类
1.脉冲波 采用机种:A型、M型、B型超声诊断仪, 脉冲波多普勒血流仪。
2.连续波 采用机种:连续波多普勒血流仪。
四、按声波的频率分类(如前述)
1. 次声波 2.可听声波 3.超声波
12
第四节 波动方程与波参数
一、波动方程
假定:平面声波,沿x方向传播
1. 基本方程
声学:Z=P/v, 电学:R=U/I, 类比:Z-R,P-U,V-I
29
超声成像只能用于那些有液体和软组织的、 且声波传播通路上没有气体或骨骼阻挡的那些 区域。
在液体和软组织中,声速和声阻抗变化不 大,使得声反射量适中,既保证了界面回波的 显像观察,亦保证了声波可穿透足够的深度。 此外,接收回波的时延与目标深度成近似的正 比关系,这是B超诊断图像成功应用必要的物 理基础。
超声波有何特点
超声波有何特点
超声波是一种频率高于人类听觉范围(20千赫兹)的机械波。
它具有以下特点:
1. 频率高:超声波的频率通常在20千赫兹以上,可以达到数百兆赫兹。
由于频率高,超声波在传播过程中能够产生更小的波长,具有更强的穿透力和更精确的定位能力。
2. 穿透力强:超声波在介质中传播时,能够穿透许多物质,包括液体、固体和气体。
由于其频率高和波长短,超声波能够穿透人体组织和材料,并在其中产生反射、折射和散射现象,从而用于成像、检测和测量等应用。
3. 反射性强:超声波在不同介质之间传播时,会产生反射现象。
利用超声波的反射特性,可以对介质中的缺陷、界面和结构进行非破坏性检测和成像,广泛应用于医学、工业、生物学等领域。
4. 频散性:由于超声波在介质中传播时,频率较高,不同频率的超声波在介质中传播速度可能不同,导致波包的频散现象。
频散性使得超声波在长距离传播过程中波包可能发生变形,需要进行补偿或校正。
5. 成像分辨率高:超声波成像技术可以实现非常高的空间分辨率,能够清晰地显示被检测物体的内部结构、形态和位置,对于医学诊断、材料检测等领域具有重要应用价值。
6. 无辐射危害:超声波是一种机械波,与X射线和γ射线相比,超声波没有电离辐射,不会对生物组织产生辐射危害,因此被广泛应用于医学诊断中。
超声波的特性
超声波的特性
超声波是一种人耳无法听到的、频率一般超过20kHz的声音。
超声波的基本特性如下所述:
1.波长与辐射
波的传播速度是用频率乘以波长来表示。
电磁波的传播速度是3×108m/s,而声波在空气中的传播速度很慢,约为344 m/s (20℃时)。
在这种比较低的传播速度下,波长很短,这就意味着可以获得较高的距离和方向分辨率。
正是由于这种较高的分辨率特性,才使我们有可能在进行测量时获得很高的精确度。
超声波设备的外表面尺寸易于获得精确的辐射。
2.反射
要探测某个物体是否存在,超声波就能够在该物体上得到反射。
由于金属、木材、混凝土、玻璃、橡胶和纸等可以反射近乎100%的超声波,因此我们可以很容易地发现这些物体。
由于布、棉花、绒毛等可以吸收超声波,因此很难利用超声波探测到它们。
同时,由于不规则反射,通常可能很难探测到表面振动幅度很大的物体。
3.温度效应
声波传播的速度“c”可以用下列公式表示。
c=331.5+0.607t (m/s) 式中,t=温度(℃)
也就是说,声音传播速度随周围温度的变化而有所不同。
因此,要精确的测量与某个物体之间的距离时,始终检查周围温度是十分必要的。
4.衰减
传播到空气中的超声波强度随距离的变化成比例地减弱,这是因为衍射现象所导致的在球形表面上的扩散损失,也是因为介质吸收能量产生的吸收损失。
如图1所示,超声波的频率越高,衰减率就越高,波的传播距离也就越短。
9.1.1 超声波特性
超声波特性超声波特性有四个方面:1.束射特性由于超声波的波长短,超声波射线能够和光线一样,可以反射、折射,也能聚焦,而且.恪守几何光学上的定律。
即超声波射线从一种物质外表反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改动它的传插方向,两种物质的密度差异愈大,则折射也愈大。
2.吸收特性声波在各种物质中传播时,随着传播间隔的增加,强度会渐进削弱,这是由于物质要吸收掉它的能量。
关于同一物质,声波的频率越高,吸收越强。
关于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比拟弱,在固体中传播时吸收最小。
3.超声波的能量传送特性超声波所以往各个工业部门中有普遍的应用,主要之点还在于比声波具有强大得多的功率。
为什么有强大的功率呢?由于当声波抵达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决议了分子振动的速度。
频率愈高速度愈大。
物资分子由于振动所取得的能量除了与分子的质量有关外,是由分子的振动速度的平方决议的,所以假如声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波能够高很多,所以它能够使物资分子取得很大的能量;换句话说,超声波自身能够供应物质足够大的功率。
4.超声波的声压特性当声波通入某物体时,由于声波振动使物质分子产生紧缩和稠密的作用,将使物质所受的压力产生变化。
由于声波振动惹起附加压力现象叫声压作用。
由于超声波所具有的能量很大,就有可能使物质分子产生显诸的声压作用、例如当水中经过普通强度的超声波时,产生的附加压力可以抵达好几个大气压力。
液体中存起着如此庞大的声压作用,就会惹起值得留意的现象。
当超声波振动使液体分子紧缩时,好象分子遭到来直四面八方的压力;当超声波振动使液体分子稠密时,好象遭到向外散开的拉力,关于液体,它们比较受得住附加压力的作用,所以在遭到紧缩力的时分;不大会产生反常情形。
超声波特性及其应用
—84—工作研究声波是物体的振动在介质中传播产生的,它每时每刻都围绕在我们身边,与我们形影不离。
声学就是研究声波在介质中传播、辐射、散射、吸收、接收和能量等规律的科学,声波的能量大小与其频率的平方成正比,频率是单位时间内振动的次数,单位是赫兹,按频率对声波进行分类,把频率低于20赫兹的波称为次声波,20赫兹至20k 赫兹的波称为可闻波,属于我们人耳能分辨的范围,频率为大于20k 赫兹的波称为超声波。
不同频率的声波具有不同的特点,对应有不同的应用,从而,使声音变成了当今社会的一种新的资源。
可见,超声波属于声波的范畴,其频率高于20k 赫兹的声波,超声波作为信息的载体、作为遥测遥感的信息的手段,使得它在医学、生活、工业、农业上有很多的应用。
1 超声波特性简介超声波的频率高于20000Hz , 其低限超出了人耳可听到的频率范围,所以一般人是听不见超声的。
我们知道,在振幅相同的条件下,波具有的能量与其频率的平方称正比,超声波的频率可高达1011kz ,所以超声波能量大,但超声波的强度随着传播距离的增加按着指数的规律减少;超声波具有声波的普遍特性,当它作用到不同的介质时,会产生声的反射,在不同的界面有反射的特性,与此同时还伴有对声波的吸收。
超声波的反射和折射与介质的声阻有关(声阻和电路的电阻类似),两中介的声阻决定了声波的反射系数,当声阻相差很大时会产生全反射,所以可以通过改变介质的声阻来控制声波的反射和透射规律 ;另外超声波的波长短,波长越短其衍射的现象就越不明显,所以近似沿直线传播,易于得到定向和集中的超声波束,可以用于定向的发射; 超声波的穿透能力很强,但超声波在空气中衰减很快、在液体和固体中衰减很小,介质的吸收系数不仅和介质的声阻有关,还和超声波的频率有关,频率越高穿透能力越差,所以选择合适的频率尤为重要。
超声波在介质中传播时会产生一系列的力、热、光、电和化学的效应,随之伴随有三种作用,第一,超声波传播中的机械作用,即机械能量的传播,这种机械能量能使介质的质点间的声压剪切、振动、加速度冲击等效应;第二,超声波传播中还有空化作用,空化过程为大量空气泡的形成、长大和剧烈的崩溃,使局部点的极端高温高压,伴随引起湍动、微扰、聚能等多种效应;第三,超声波传播中的热作用,运动产生热量,超声波的振动能量被介质吸收,转变为热能,使介质的自身温度升高。
超声波物理特性(精)
超声波物理特性1、方向性超声波与一般声波不同,由于频率极高,波长很短,远远小于换能器(探头压电晶体片)的直径,故在传播时发射的超声波集中于一个方向,类似平面波,声场分布呈狭窄的圆柱状,声场宽度与换能器压电晶体片之大小相接近,因有明显的方向性,故称为超声束。
2、反射、散射、透射、折射和绕射超声在密度均匀的介质中传播,不产生反射和散射射。
在传播中,经过两种不同介质的界面时,一部分能量由界面处返回第一介质,此即反射,其方向与声束和界面间的夹角有关,反射角和入射角相等,如二者垂直,即沿原入射声束的途径返回;另一部分能量能穿过界面,进入第二介质,此即透射。
两介质声阻相差愈小,财界面处反射愈少,透射入第二介质愈多,甚至可以没有反射,只有透射,如超声波在均匀介质水中的传播就是如此。
超声诊断常用这一特性来鉴别病变的囊性、实质性及结构是否均匀。
反之,两种不同介质的声阻相差愈大,则界面处反射愈强,透射入第二介质愈少,甚至难以透过,超声波的这一特性限制了超声在肺和骨的应用。
超声在传播时,遇到与超声波波长近似或小于波长(小界面)的介质时,产生散射与绕射。
散射为小介质向四周发散超声,又成为新的声源。
绕射是超声波绕过障碍物的边缘,继续向前传播。
散射回声强度与超声波入射角无关。
穿过大界面的透射波如果发生声束前进方向的改变,称为折射。
折射是由于两种介质声速不同引起的。
超声检查时,通过人体内各组织器官的界面反射和散射回声,不仅能显示器官的轮廓及毗邻关系,而且能显示其细微结构及运动状态,故界面的反射和散射回声是超声成像的基础。
3.吸收与衰减当声波在弹性介质中传播时,由于“内摩擦”或所谓“黏滞性”而使声能逐渐减小,声波的振幅逐渐减低,介质对声能的此种作用即为吸收,而声波由强变弱的过程即为衰减。
吸收与衰减的多少和超声波的频率、介质的黏滞性、导热性、温度及传播的距离等因素有密切关系。
超声波在介质中传播时,入射声能随传播距离的增加而减少的现象称超声衰减,其原因有反射、散射、声束的扩散及吸收。
41.4超声波的物理特性及人体组织的声学类型
一、超声波的物理特性
超声场:超声波在弹性介质中传播时,介质中充满超声能量的空间区域 近场:近探头处声束呈狭小圆柱形,称近场,该区侧向、横向分辨力高,指向性好 远场:近场末端超声束开始扩散变宽,声能逐渐减小,侧向、横向分辨力下降
8
一、超声波的物理特性
• 垂直入射 • 具有方向性 • 反射(大界面) • 散射(微小粒子) • 探头接受信号反应回声高低及所在深度
一、超声波的物理特性
• 声波的方向性 直线传播
1
一、超声波的物理特性
反射
折射
2
一、超声波的物理特性
• 超声波入射到大界面(远大于波长),界面两侧介质存在声阻抗差时,发生反射或折射 • 两个介质无声阻抗,声波全部通过,无反射现象,称为透射 • 声波垂直入射大界面,按照原有方向前进和返回
3
一、超声波的物理特性
4
一、超声波的物理特性
骨骼:强回声,后方无回声
气管:后方无回声
5
一、超声波的物理特性
散射:声波遇到远小于波长的微小粒子,微粒吸收声波能量后向四周辐射 声波形成球面波 绕射:又名衍射。声波入射到1-2个波长的界面,声束绕过物体后,又以 原来的方向偏斜传播。
6
一、超声波的物理特性
声衰减:声波的强度越到深处越减弱的现象 与超声波的频率有关,频率越高,衰减越明显
9
二、人体组织界面的声学类型
无反射型
01
少反射型
03
人体组织界面的声学类型
(一)无反射型
液性组织(如:血液、尿液、积液、胆汁、羊水、囊肿里面的液体等)。
11
二、人体组织界面的声学类型
(二)全反射型
骨骼、含气组织(如:肺、胃、肠等)、结石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 超声波的定义
波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性
当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ₁为反射横波,L ₁为反射纵波,L ₂为折射纵波,S ₂为折射横波。
L
图2.1超声波的反射、折射及其波形转换
这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:
()cos()A A x t kx ω=+ (2.1)
0()ax A x A e -= (2.2)
式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:
2af α= (2.3)
式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减
从理论上讲,超声波衰减主要有三个方面:
(1) 由声速扩展引起的衰减
在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减
由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。
(3) 由介质的吸收引起的衰减
超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。
同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。
扩散衰减仅取决于波的几何形状而与传播介质的性质无关。
对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。
因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P
f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率
η:动力粘滞系数 C :超声波传播速度
v C :定容比热 p C :定压比热
ρ:传播介质密度
式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示:
223
83f C πηβρ= (2.5)
把C = 2.5)可得: 3223
322283()M f R T
β
πηργ=⨯⨯ (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。
在实际应用
中,一般选30:100KHz的超声波进行距离测量,比较典型的频率为40KHz,本系统就选用频率f=40KHz的超声波的传感器。
2.2.2超声波的波型
由于声源在介质中施力的方向与波在介质中传播的方向可以相同也可以不同,这就可产生不同类型的声波,超声波的波型主要有以下几种。
(1)纵波
当介质中的质点振动方向和超声波传播方向相同时,此种超声波为纵波波型,以L表示。
任何介质,当其体积发生交替变化时均产生纵波。
由于纵波的产生和接收都较容易,所以纵波在超声波检测中得到了广泛应用。
(2)横波
当介质中质点振动方向和超声波的传播方向垂直时,此种超声波为横波波型,以T表示。
因为液体和气体中缺乏横向运动的弹性力,所以横波不能存在,只有纵波才能存在,但在固体中纵波和横波都能存在。
(3)表面波
瑞利于1887年首先研究和证实了表面波的存在,因此称为瑞利波,用字母R表示。
表面波是沿着固体表面传播的具有纵波和横波双重性的波。
其振动质点的轨迹为一椭圆,质点位移的长轴垂直于传播方向,质点位移的短轴平行于传播方向,随着深度增加很快衰减,离表面一个波长以上的地方,质点振动的振幅很微弱。
表面波的传播速度,只与介质的弹性性质有关,与频率无关。
(4)板波
板波亦称拉姆波,板波只产生在大约一个波长的薄板内,在板的两表面和中部都有质点的振动,声场遍及整个板的厚度。
薄板两表面的质点振动是纵波和横波成分之和,运动轨迹为椭圆形,长轴于短轴的比例取决于材料的性质。
板波可以分为对称型和非对称型两种。
2.2.3超声波的传播速度
声波的传输需要一种媒质,声波在媒质中的传播速度,称为声速。
由声波产生的物理过程可知,声速与质点速度是完全不同的,声波的传播只是扰动形式和能量的传递,
并不把在各自平衡位置附近振动的媒质点传走。
某种媒质中的声速主要取决于该媒质的密度和温度。
由于空气没有剪切弹性,只有体积弹性,因而气体中声波的传播形式只能是纵波。
也就是说,在声扰动下,气体媒质中的质点在各自平衡位置附近运动,形成稠密和稀疏依次交替的传递过程,而且质点运动的方向与声波传播的方向一致。
声波在相当大的频率范围内不随频率发生变化,也就是说超声波的传播速度与可听声波的传播速度是相同的,超声波在媒质中的反射、折射、衍射、散射等传播规律与可听声波并无质的区别,与一般声波相比,超声波具有更好的定向性,并且可以穿透不透明物质。
在空气中超声波传播速度主要与温度有关,在空气中的传播速度C为:
331.4
C=(2.7)
式中,T为环境温度。
2.3超声波传感器
人们把产生超声波的核心部件称作超声波传感器,也叫超声波换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的装置。
超声波传感器的种类很多,按照实现超声波传感器机电转换的物理效应的不同可分为电动式、电磁式、磁滞式、压电式等。
有些单晶体和多晶陶瓷材料受到应力能在材料中产生电场,这种效应称为压电效应,这些材料称为压电材料。
目前压电式传感器的理论研究和实际应用最为广泛,本文超声波测距选用的是压电式收发分体超声波传感器T/R40-16,其特性如下:
(1)T/R40-16型号代码
T—发射;R—接受;40一中心频率;16一外壳直径。
(2)T/R40-16结构图
本设计中选用T/R40-16型超声波传感器,T/R40-16内部结构示意图如图2.2所示。
超声波传感器由压电晶片、锥形喇叭、底座、引线、金属外壳及屏蔽网组成。
其中,压电晶片是传感器的核心,锥形喇叭使发射和接收超声波的能量集中,并使传感器有一定的指向角,金属网可防止外界力量对压电晶片和锥形喇叭的损害,金属网也起保护作用,但不影响发射和接收超声波。
实物图如图2.3所示。
.
(3)频率特性曲线
.
TR40/16超声波传感器的声压电平和灵敏度曲线如图2.4、2.5所示,从上图中可以得知,它的声压能级、灵敏度在40Ⅺ乜的时候最大,所以电路一般选用40KHz作为传感器的使用频率。