中考数学考点系统复习第一单元数与式第3讲分式试题
2024中考数学复习核心知识点精讲及训练—分式(含解析)
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
中考数学复习第一单元数与式第3课时分式课件7
考向探究
应考策略
当堂检测
专题八┃连读文本及其他 浙江近9年中考真题精选(2009~2017)
考点精讲
重难点突破
[解析] 本题考查学生理解文意的能力。A项,由文中 “对我来讲”“我内心明白”等内容可知,此项中“客 观公正”的表述有误;B项,应为“《偷书贼》这本书 对作者的意义,远远超过作者当初的想象”;C项,由 原文“不管别人怎么看这本书,不管评价是好是坏”可 知,作者并非十分在乎别人对《偷书贼》的评价。
加 键是寻找最简公分母
减
运
1.先观察各分母,能因式分解的先因式分解
算 找最 2.取各分母公因式的最高次幂(数字因式取最小公倍数)
简公 分母
3.对于只在一个分母中含有的因式,则连同它的指数作为最
简公分母的因式
化简 及求 值的 一般 步骤
有括号先计算括号内的,然后按照先乘除后加减的运 算顺序化简,最后代入数字求值. 温馨提示:1. 注意化简结果应为最简分式; 2. 求值时,必须保证所代数值使原分式的分母及运算 过程中分式的分母都不为0
考向探究
应考策略
当堂检测
专题八┃连读文本及其他 浙江近9年中考真题精选(2009~2017)
考
接着,轮到了爸爸。 又有一只手握紧了莉赛尔的手。她惊恐地朝旁边看去,鲁 迪·斯丹纳(莉赛尔的伙伴)紧张地咽着唾沫,目瞪口呆地 看着汉斯·休伯曼被当众鞭打。那鞭子的声音让莉赛尔头 晕目眩,她估计爸爸身上肯定被打得皮开肉绽了。他被打 了四鞭子,随后倒在地上。 那个犹太老人最后一次爬起来,继续向前走。他飞快地回 头看了一眼,朝独自跪在那里的人最后投去悲哀的一瞥。 因为挨了四鞭,那人的背还在火辣辣地痛,他的膝盖也跪 疼了。不过,这个老人会带着尊严死去,或至少是抱着这
中考数学总复习:第一单元 数与式第03课时 分式
加 乘法法则
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,即������������ ·������������ =④
������������ ������������
减
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即������÷������=������·⑤ ������
( D)
B.1+1������ D. 1
������-1
高频考向探究
3.[2018·滨州] 若分式������2-9的值为 0,则 x 的值为
.
������-3
[答案] -3 [解析] 因为分式值为 0,所以 x2-9=0 且
x-3≠0,所以 x=-3. c
高频考向探究
探究二 分式的化简求值
例 2 (1)[2016·包头] 化简(���1���+���1���)÷(������12-������12)·ab,其结果是 ( )
3 +������
C.������������������-������������2=���������-���������
2.分式-11-������可变形为
A.-������1-1
C.- 1
1+������
( C)
B.2������2+������=������
1 +������
D.-���������+��� ������=-������+������������
������+1
0,解得 x=1,故选 C. c
高频考向探究
(3)下列计算错误的是 (
A.00..27������������+-������������=27������������+-������������ C.������������--������������=-1
最新中考数学总复习第一部分数与代数 第一章 数与式 第3讲 代数式、整式与因式分解
数学
8.计算: (1)3x2·5x2= 15x4 ; (2)3a(5a-2b)= 15a2-6ab ; (3)(3x+1)(x+2)= 3x2+7x+2 ; (4)10ab3÷(-5ab)= -2b2 ; (5)(6ab+5a)÷a= 6b+5 .
返回
数学
9.乘法公式 (1)平方差公式:(a+b)(a-b)= a2-b2 . (2)完全平方公式:(a±b)2= a2±2ab+b2 .
返回
数学
11ቤተ መጻሕፍቲ ባይዱ分解因式: (1)a3b-ab= ab(a+1)(a-1) ; (2)3ax2+6axy+3ay2= 3a(x+y)2 .
返回
数学
课堂精讲
考点1 代数式与代数式求值
1.(2021温州)某地居民生活用水收费标准:每月用水量不超过
17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区
返回
数学
课前预习
1.(2021 广州模拟)单项式-3πa2b的系数是
4
-3π
4
,次数是
3
.
2.(2021 汕尾模拟改编)下列说法错误的是( B )
A.3xy 的系数是 3 C.-ab3 的次数是 4
B.2xy2 的次数是2
3
3
D.5x2-2xy-1 是二次三项式
返回
数学
3.(2021 广州)下列运算正确的是( C )
某用户上月用水量为20立方米,则应缴水费为( D )
A.20a元
B.(20a+24)元
C.(17a+3.6)元
中考数学总复习 第一部分 考点全解 第一章 数与式 第3讲 分式(38分)课件
原式=
5+1 2
5-1=2.
12/9/2021
第十五页,共四十二页。
5.(2014·河南 16 题)先化简,再求值:xx22--x1÷(2+x2+x 1),其中 x= 2-1. 解:原式=x+x1x-x1- 1÷x2+2xx+1
=x+x 1·x+x 12
=x+1 1=
12/9/2021
第三十二页,共四十二页。
解:原式=xx++yy-xx-+yy·x+2yx-xy-y
=x+y2yx-y·x+2yx-xy-y
=2x2-y y.
∵|x+2|+(2x+y-1)2=0,
∴2xx++2y=-01,=0, 解得xy==5-. 2,
∴原式=2×2-×25-5=-190.
12/9/2021
12/9/2021
第二十八页,共四十二页。
解:原式=a+12a-1·a+2 1
=a-1 1.
∵关于 x 的方程 x2-2ax+a=0 有两个相等的实数根,
∴Δ=(-2a)2-4a=0,即 4a2-4a=0,
解得 a=0 或 1.
若使分式有意义,则 a≠-1,1,
∴取 a=0.
当 a=0 时,原式=0-1 1=-1.
第十一页,共四十二页。
解:原式=x-x+x21÷x+x1+x1-2 1 =x-+x1·xx+-11 =-x-x 1.
解不等式组- 2x-x≤1<1,4,
12/9/2021
第十二页,共四十二页。
得-1≤x<52. ∴不等式组的整数解为-1,0,1,2. 若使分式有意义,只能取 x=2, ∴原式=-2-2 1=-2.
12/9/2021
第二十二页,共四十二页。
类型三 分式的化简求值
中考数学 第一轮 系统复习 夯实基础 第一章 数与式 第3讲 分式及其运算
1.分式:形如AB(A,B 是整式,且 B 中含有字母,B≠0)的式子叫做分式.
2.与分式有关的结论: (1)分式AB无意义的条件是 B=0; (2)分式AB有意义的条件是 B≠0; (3)分式AB值为 0 的条件是 A=0 且 B≠0.
3.若分式xx2--11的值为 0,则 x 的值为( C ) A.0 B.1 C.-1 D.±1 【解析】xx2--11=(x-1)x-(1x+1)=x+1=0,x=-1,故选 C.
21-1=(
2+1 2-1)(
2+1)=
2+1
13.(原创题)已知 a,b 互为倒数,求代数式a2+a2+abb+b2÷(1a+1b)的值.
解:原式=(aa++bb)2÷aa+bb=(a+b)·aa+bb=ab. ∵a,b 互为倒数,∴原式=ab=1
1.通分的关键是确定最简公分母.方法是:(1)将各分母分解因式;(2)找各分 母系数的最小公倍数;(3)找出各分母中不同的因式,相同因式中取次数最高的, 满足(2)(3)的因式之积即为各分式的最简公分母.
1.通分:根据分式的基本性质将几个异分母的分式化为________的分式, 这种变形叫做分式的通分.通分的关键是确定几个分式的最简公分母.
2.分式的运算法则: (1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的 值不变. (2) 分式的加减法:同分母加减法:______________________; 异分母加减法:______________________.
15.若x-4 1表示一个整数,则整数 x 可取的值的个数是( D ) A.3 个 B.4 个 C.5 个 D.6 个
16.已知1x-1y=3,求代数式2xx--124xxyy--y2y的值. 解析:第 14 题按照字母满足的条件,逐一分析计算得出答案;第 15 题 首先考虑能够整除 4 的整数有±1,±2,±4;第 16 题把1x-1y=3 变形为 y-x =3xy 代入代数式即可求值.
中考数学总复习 第1部分 教材同步复习 第一章 数与式
母
为公因式的系数;
b.取各个公因式的最低次幂作为公因
分式除以分式,把除 式的因式;
除法 式的分子、分母颠倒 c.如果分子、分母是多项式,则应先
运算 位置后,与被除式相 把分子、分母分解因式,再判断.
乘
(2)依据分式的基本性质BA=AB÷÷CC(C≠0,
C为A,B的公因式),约去公因式
式子表示 ab·dc= ac
2.下列分式中,最简分式是 A.xx22- +11
B.xx2+-11
(A )
C.x2-x22-xyx+y y2
D.2xx2-+3162
4
知识点二 分式的运算
• 1.分式的运算法则
运算
法则
分式乘分式,用分子 分式的乘除关键是约分
乘法 的积作为积的分子, (1)确定公因式:
运算 分母的积作为积的分 a.取分子、分母系数的最大公约数作
12
练习1 先化简,再求值:(x-1 1+x+1 1)·(x2-1),其中x= 3. 解:原式=x-1 1·(x+1)(x-1)+x+1 1·(x+1)(x-1)
=x+1+x-1 =2x. 当x= 3时,原式=2 3.
13
练习2 先化简:(xx2-+22x-x2-x-4x1+4)÷x-x 4,并从0≤x≤4中选取合适的整数代 入求值.
15
易错点 注意隐含条件中的计算错误
例3
化简分式:(
x2-2x x2-4x+4
-
3 x-2
x-3 )÷x2-4
,并从1,2,3,4这四个数中取一个合适
的数作为x的值代入求值.
错解:原式=[xxx--222-x-3 2]÷xx2--34=xx- -32·x+x2-x3-2=x+2.
分式中考总复习原创课件
C
全体实数
x≠2
x≠±2
4.计算:(1) (2)
3.计算:
x-2
a4b4
解:原式
解:原式
解:原式
(3)
5.已知 ,当x=________时,A=0; 当x=________时,A无意义.
解:(1) (2)由已知,得x=1或2, 但x不能取1,所以x=2. 当x=2时, .
8.已知 求 的值.
解:由已知,得y-x=4xy,x-y=-4xy.原式=另解:原式=
第一章 数与式第3课 分式
1.分式的有关概念: (1)如果A,B分别是整式,并且B中含有________, 那么式子 叫做分式. (2)当B________时,分式 (A,B分别是整式)有意义.
2.分式的基本性质: 分式的分子与分母乘(或除以)同一个________的整式, 分式的值__________.用式子表示为 或 (C≠____),其中A,B,C均为整式.
【变式2】计算:
解:原式
【考点3】分式的化简求值
【例3】先化简,再求值:在0,1,2,这三个数中选一个合适的代入求值.
解:
根据分式的意义,x≠0,x≠2,所以x取1,当x=1时,原式= .
【变式3】已知 ( ),求 的值
-2
2
提示:先化简原式= ,当A=0时,分子x+2=0.解得x=-2.当A无意义时,分母x-2=0,解得x=2.
6.计算:(1)
解:原式
解:原式
(2)
7.已知(1)化简A;(2)当x满足不等式1≤x<3,且x为整数时,求A的值.
字母,B≠ 0
3.分式的运算: (1)加、减 同分母; (2)乘、除 化简.
专题03分式(讲练)(学生版)-2023年中考一轮复习讲练测(浙江专用)
2023年中考数学总复习一轮讲练测(浙江专用)第一单元数与式专题03分式(讲练)1.了解分式和最简分式的概念,掌握分式有意义的条件及分式的值为零的条件.2.利用分式的基本性质进行通分和约分.3.会进行分式的加减乘除运算并解决分式的化简求值问题1.(2022•衢州)计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)02.(2021•宁波)要使分式1x+2有意义,x的取值应满足()A.x≠0B.x≠﹣2C.x≥﹣2D.x>﹣23.(2021•金华)1a +2a=()A.3B.32a C.2a2D.3a4.(2022•杭州)照相机成像应用了一个重要原理,用公式1f =1u+1v(v≠f)表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=()A.fvf−v B.f−vfvC.fvv−fD.v−ffv5.(2022•湖州)当a =1时,分式a+1a的值是 . 6.(2022•温州)计算:x 2+xy xy +xy−x 2xy= .7.(2020•湖州)化简:x+1x 2+2x+1= .8.(2021•湖州)计算:2×2﹣1= .9.(2021•丽水)数学活动课上,小云和小王在讨论张老师出示的一道代数式求值问题:已知实数a ,b 同时满足a 2+2a =b +2,b 2+2b =a +2,求代数式ba+ab 的值.结合他们的对话,请解答下列问题: (1)当a =b 时,a 的值是 .(2)当a ≠b 时,代数式ba+ab 的值是 .10.(2021•衢州)先化简,再求值:x 2x−3+93−x,其中x =1.11.(2022•衢州)(1)因式分解:a 2﹣1. (2)化简:a−1a 2−1+1a+1.12.(2022•舟山)观察下面的等式:12=13+16,13=14+112,14=15+120,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数). (2)请运用分式的有关知识,推理说明这个结论是正确的. 13.(2022秋•拱墅区校级期中)(1)已知a+b a−b=7,求2(a+b)a−b−a−b 3(a+b)的值.(2)求当a =√3,b =﹣1时代数式﹣2a 2b ﹣a +3ba +a 2的值.1.分式的基本概念:(1)形如 (A ,B 是整式,且 中含有字母, ≠0)的式子叫做分式.(2)当 时,分式A B 有意义;当 时,分式A B 无意义;当 时,分式AB 的值为零.(3)最简分式需满足的条件:分子、分母 .2.分式的基本性质:分式的分子与分母都乘(或除以) ,分式的值不变,用式子可表示为AB = ,A B =A ÷M B ÷M(其中M 是不等于零的整式). 3.分式的约分、通分:把一个分式的分子与分母的公因式约去,叫做 .把几个异分母分式化为与原分式的值相等的同分母分式,叫做 .4.分式的运算法则:(1)符号法则:分子、分母与分式本身的符号,改变其中任何 个,分式的值不变.用式子表示为:a b =-a -b =-a -b =--a b ,-a b =a -b =-ab .(2)分式的加减法:同分母相加减:a c ±bc = ;异分母相加减:b a ±dc = .(3)分式的乘除法:a b ·c d = ;a b ÷cd= . (4)分式的乘方: ⎝⎛⎭⎫a b n= (n 为正整数). 5.分式的混合运算:在分式的混合运算中,应先算 ,再将除法化为 ,进行约分化简,最后进行加减运算.若有括号,先算 .灵活运用运算律,运算结果必须是 或 .考点一 分式的有关概念例1.(2021春•奉化区校级期末)当m 为何值时,分式m 2−4m 2−m−6的值为0?【变式训练】1.(2022春•嘉兴期末)要使分式x−2(x−2)(x−3)有意义,x 的取值应满足( ) A .x ≠2B .x ≠3C .x ≠2或x ≠3D .x ≠2且x ≠32.(2022春•温州期末)若分式x−12x+1的值为0,则x 的值是( )A .−12B .0C .12D .13.(2022春•拱墅区期末)若分式1x−2值为正数,则x 的值可能为( )A .0B .1C .2D .34.(2022春•乐清市期末)当x =3时,分式x−b x+2b没有意义,则b 的值为( )A .﹣3B .−32C .32D .35.(2022春•西湖区校级期末)某人从A 地到B 地的速度为v 1,从B 地返回A 地的速度为v 2,若v 1≠v 2,则此人从A 地到B 地往返一次的平均速度是( ) A .v 1+v 22v 1v 2B .v 1+v 22C .以上都不对考点二 分式的基本性质及应用例2.不改变分式的值,把下列分式的分子与分母的最高次项的系数都化为正数. (1)−2x−1x−1(2)3−x−x 2+2.【变式训练】1.(2022春•海曙区校级期中)若把x ,y 的值同时扩大为原来的3倍,则下列分式的值保持不变的是( ) A .x+2y+2B .x−2y−2C .x+y x−yD .xyx+y2.(2022春•普陀区期末)如果把分式xy 3x−y中的x ,y 都扩大3倍,那么分式的值( )A .缩小3倍B .不变C .扩大3倍D .扩大9倍3.(2022春•上虞区期末)不改变分式0.5x−10.3x+2的值,把它的分子和分母中各项的系数都化为整数,结果为( ) A .0.5x−13x+2B .5x−100.3x+2C .5x−13x+2D .5x−103x+204.(2022春•滨湖区校级期中)已知x2=y 3=z4,则2x+y−z3x−2y+z= .考点三 零指数幂和负整数指数幂例3.(2020春•安吉县期末)计算:(﹣2)3+(π﹣3)0.【变式训练】1.(2021•下城区一模)下列计算结果是负数的是( )A .2﹣3B .3﹣2C .(﹣2)3D .(﹣3)22.(2021•温州模拟)计算|﹣2|+2﹣1的结果是( )A .﹣112B .0C .112D .2123.(2022春•东阳市期末)计算:20220﹣(12)﹣1= . 4.(2022•丽水)计算:√9−(﹣2022)0+2﹣1.5.(2021春•惠来县期末)计算:(−3)2+(12)−1+(π−3)0.考点四 分式的四则运算例4.(2022•临安区一模)以下是方方化简(a −1+1a+1)÷a 2+2aa+1的解答过程.解:原式=(a 2−1+1)⋅a+1a 2+2a=a 2×a+1a(a+2)=a 2+a a+2方方的解答过程是否有错误?如果有,请写出正确的解答过程.【变式训练】1.(2022春•钱塘区期末)下列分式中,最简分式是( ) A .a+1a 2−1B .4a6bc2C .2a2−aD .a+ba 2+ab2.(2020春•江北区期末)计算2+m 2−m•(m 2﹣4)的结果是( ) A .m 2﹣4B .4﹣m 2C .m 2﹣4m ﹣4D .﹣m 2﹣4m ﹣43.(2022春•嵊州市期末)下列运算正确的是( ) A .12a+1a=23a B .1a−1−1a+1=2a 2−1C .3b 4a ⋅2a9b 2=b 6D .13ab+2b 23a=b 324.(2022春•嵊州市期末)如图,若x 为正整数,则表示(x−3)2x 2−6x+9−1x+1的值的点落在( )A .①B .②C .③D .④5.(2020•乐清市一模)(1)计算:π0−√9+(13)﹣2;(2)化简:x 2−16x+4÷2x−84x.6.(2022春•定海区期末)化简:4x x 2−4−2x−2.言言同学的解答如下:4x x 2−4−2x−2=4x −2(x +2)=2x +4.言言同学的解答正确吗?如果不正确,请写出正确的解答过程.考点五 分式的化简求值例5.(2021•永嘉县校级开学)计算:先化简,再求值:(1−x +2x−1x+1)÷x−2x 2+2x+1,其中x 的值是一元二次方程x 2+x ﹣6=0的解.【变式训练】1.(2022秋•西湖区校级期中)先化简再求值:x 2−2x+1x+2÷(2﹣x −3x+2),其中x =(2﹣2√3)0+(12)﹣1. 2.(2022•定海区校级开学)先化简,再求值:(3x 2−9−1x−3)⋅x+3x ,其中x =2.3.(2022春•余姚市校级期末)先化简代数式a 2−2a+1a 2−4÷(1−3a+2)+1a−2,再选择一个你喜欢的数代入求值.4.(2022春•南浔区期末)先化简,再求值:(1+2x+1)÷x 2+6x+9x 2−1,并从﹣1,0,1,2中选取一个合适的数作为x 的值代入求值.5.(2022春•江干区校级期中)(1)已知x ﹣3y =0(y ≠0),求分式x 2−3xy+y 2x 2+y 2的值.(2)已知x −1x =3,求x 2+1x 2和x 4+1x 4的值.。
2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解
单项式乘 先用单项式乘多项式中的每 多项式 一项,再把所得的积相加
m(a+b+c)=__m__a_+__m_b_+__m_c____
类别
运算法则
举例
先用一个多项式的每一项 多项式乘 多项式 分别乘另一个多项式的每 (a+b)(m+n)__a_m_+__a_n_+__b_m__+__b_n__
一项,再把所得的积相加
类别
内容
整式 单项式和__多__项__式__统称整式
单项式
概念 系数
(1)由数与字母的__积___组成的代数式叫作单项式. (2)单独一个字母或者一个数也是单项式 单项式中的数字因数
次数 单项式中的所有字母的__指__数___的和
类别
内容
概念 几个单项式的__和___叫作多项式
多项式
项 次数
组成多项式的每个单项式 多项式中__次__数__最__高__的项的次数
8a3b÷4ab=__2_a_2_
多项式
除以单 先用这个多项式的每一项除以这个单 (14m5n3-7m2)÷7m2=
项式 项式,再把所得的商相加
_2_m_3_n_3-__1_
类别
运算法则
举例 (2x2+3x-20)÷(2x- 5)=x+4
把被除式和除式按同一字母的降 多项式除 以多项式 幂排列(若有缺项,则用0补齐)后,用
解
(3)不恒成立.理由如下: ∵ C2 - A·B=(2a - 2b)2 - (a - 3b)(3a - b)=4a2 - 8ab + 4b2 - (3a2 - 10ab + 3b2)=4a2-8ab+4b2-3a2+10ab-3b2=a2+2ab+b2=(a+b)2≥0, ∴C2≥A·B, ∴(2)中的C2与A·B的大小关系不恒成立.
中考数学复习讲义课件 中考考点解读 第一单元 数与式 第3讲 代数式与整式(含因式分解) (2)
(2)公式法:①a2-b(a2+=b_)_(_a_-__b_)__________; ②a2±2ab+b(2a=±_b_)2_______. 3.因式分解与整式乘法的关系:多项式整式乘积 4.因式分解的一般步骤 (1)如果多项式的各项有公因式,应先提取公因式; (2)如果多项式的各项没有公因式,可以尝试使用公式 法来分解因式; (3)检查因式分解是否彻底,必须分解到每一个多项式 不能再分解为止.
是_____.
3.(2020·河北)有一电脑程序:每按一次按键,屏 幕的A区就会自动加上a2,同时B区就会自动减去 3a,且均显示化简后的结果.已知A,B两区初始 显示的分别是25和-16,如图.如,第一次按键后, A,B两区分别显示: (1)从初始状态按2次后,分别求A,B两区显示的 结果; (2)从初始状态按4次后,计算A,B两区代数式的 和,请判断这个和能为负数吗?说明理由.
A.(x+y)2=x2+y2
B.2x2y+
3xy2=5x3y3
C. (-2a2b)3=-8a6bC3
D.(-x)5÷x2
=x3
10.(2020·宜宾)下列计算正确的是()
A.3a+2b=5ab
B.(-2a)2=
-4a2
C.(a+1)2=a2+2a+1 D.a3·a4=a12
延伸训 练
11.(2020·青海)下面是某同学在一次测试中的计算:
乘法 平方差公式:(a+b)(a-b)=_________
人教版中考第一轮复习九年级第一章:数与式(含答案)
第一章:数与式 1.1:实数考点一:实数的相关概念 实数 ✧实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负分数负有理数负实数零正无理数正整数正有理数正实数实数✧ 实数大小的比较在数轴上表示两个数的点,右边的点表示的数 ,左边的点表示的数 。
正数大于零,负数小于零;两个正数,绝对值大的较 ;两个负数,绝对值大的较 。
设a 、b 是任意两实数:若0>-b a 。
则a b ;若0=-b a 。
则b a =;若0<-b a 。
则a b ;数轴: ✧数轴的三要素为 、正方向和单位长度。
数轴上的点与 一 一对应。
相反数、倒数、绝对值 ✧ 实数a 、b 互为相反数,则=+b a 。
实数a 、b 互为倒数,则=ab 。
✧绝对值:()()⎩⎨⎧<≥=00a a a aa 的集合意义是数轴上表示数a 的点与原点的距离。
数的乘方与开方 ✧ 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0; ✧ 正数有两个平方根,负数没有平方根,0的平方根是0,正数的正的平方根叫做 。
✧ 若a b =3,则b 叫做a 的立方根。
考点1 正数、负数的意义1.(2019 滨州)2.(2019 云南)若零上8℃记作+8℃,则零下6℃记作 ℃.3.(2019 乐山)某天早晨的气温是℃,到中午升高了℃,晚上又降低了℃.则晚上的温度是 .4.(2019 乐山)4.一定是( )A. 正数B. 负数C.0D.以上选项都不正确 考点2 实数及其分类1.(2019·玉林)下列各数中,是有理数的是( )A .ΠB .1.2 C. 2 D.33 2.(2018·重庆)下列四个数中,是正整数的是( ) A .-1 B .0 C.12D .13.(2018·菏泽)下列各数:-2,0,13,0.020 020 002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1(2018巴中)1. 下列各数:,0,,023,,,0.30003……,中无理数个数为( )A . 2个B . 3个C .4个D .5个4.(2019·桂林)若海平面以上1 045米,记作+1 045米,则海平面以下155米,记作( ) A .-1 200米 B .-155米 C .155米 D .1 200米考点3 数轴、相反数、绝对值、倒数 5.(2019·威海)-3的相反数是( )A .-3B .3 C.13 D .-136.(2019·德州)-12的倒数是( )A .-2 B.12 C .2 D .17.(2019·遂宁)-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A.0 B.1 C.2 D.39.(2018·攀枝花)如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10.(2019·成都)若m+1与-2互为相反数,则m的值为.考点4 科学记数法和近似数11.(2019·荆门)已知一天有86 400秒,一年按365天计算共有31 536 000秒,用科学记数法表示31 536 000正确的是( )A.3.153 6×106 B.3.153 6×107 C.31.53 6×106 D.0.315 36×10812.(2019·潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )A.10.02亿 B.100.2亿 C.1 002亿 D.10 020亿13.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是( )A.131 000 B.0.131×106 C.1.31×105 D.13.1×104【能力提升】15.(2019·天水)已知|a|=1,b是2的相反数,则a+b的值为( )A.-3 B.-1 C.-1或-3 D.1或-316.(2019·枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1) B.-(a-1) C.a+1 D.a-117.(2019·泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( )A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米第2讲实数的运算【基础过关】考点1 平方根、算术平方根、立方根1.(2018·安顺)4的算术平方根是( )A .± 2 B. 2 C .±2 D .2 2.(2019·烟台)-8的立方根是( )A .2B .-2C .±2D .-2 2 3.(2019·南京)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.(2019·通辽)16的平方根是( )A .±4B .4C .±2D .+2 考点2 实数的大小比较5.(2019·菏泽)下列各数中,最大的数是( )A .-12 B.14 C .0 D .-26.(2019·常德)下列各数中比3大比4小的无理数是( )A.10B.17 C .3.1 D.1037.(2019·宜昌)如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是( )A .点AB .点BC .点CD .点D 考点3 实数的运算8.(2019·淄博)比-2小1的数是( )A .-3B .-1C .1D .3 9.(2019·天津)计算(-3)×9的结果等于( )A .-27B .-6C .27D .6 10.(2019·聊城)计算:(-13-12)÷54= .11.(2019·十堰)计算:(-1)3+|1-2|+38.12.(2019·黄石)计算:(2 019-π)0+|2-1|-2sin45°+(13)-1.【能力提升】13.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a>bB .|a|<|b|C .a +b>0 D.ab <014.(2019·贺州)计算11×3+13×5+15×7+17×9+…+137×39的结果是( )A.1937 B.1939 C.3739 D.383915.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下3x 2=,把显示结果输入如图的程序中,则输出的结果是 .16.64的算术平方根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学考点系统复习第一单元数与式第3讲分式试题
1.(xx·温州)若分式x -2
x +3的值为0,则( D )
A .x =-3
B .x =-2
C .x =0
D .x =2
2.(xx·滨州)下列分式中,最简分式是( A )
A.x 2-1x 2+1
B.x +1
x 2-1
C.x 2-2xy +y 2
x 2-xy D.x 2-36
2x +12
3.(xx·河北)下列运算结果为x -1的是( B )
A .1-1x B.x 2
-1x ·x
x +1
C.x +1x ÷1x -1
D.x 2+2x +1
x +1
4.(xx·绵阳平武县一模)把分式xy
x 2-y 2中的x ,y 的值都扩大到原来的2倍,则分式的值( A )
A .不变
B .扩大到原来的2倍
C .扩大到原来的4倍
D .缩小到原来的12
5.(xx·包头)化简(1a +1b )÷(1a 2-1
b 2)·ab,其结果是( B )
A.a 2b 2a -b
B.a 2b 2
b -a
C.1
a -
b D.1
b -a
6.(xx·临沂)计算:a2
a-1+
1
1-a
=a+1.
7.(xx·达州宣汉县模拟)先化简,再求值:x2+4x+4
x2-4
÷
x+2
x-2
-x,其中x=1.
解:原式=
(x+2)2
(x+2)(x-2)
·
x-2
x+2
-x
=1-x.
当x=1时,原式=1-1=0.
8.(xx·广安岳池县一诊)先化简,再求值:x-3
x-2
÷(x+2-
5
x-2
),其中x是方程x2-7x+10=0的
根.
解:原式=x-3
x-2
÷
x2-9
x-2
=x-3
x-2
·
x-2
(x+3)(x-3)
=
1
x+3
.
解方程x2-7x+10=0,得x
1=2(舍去),x
2
=5.
∴x=5.
当x=5时,原式=
1
5+3
=
1
8
.
9.(xx·德阳中江模拟二)若1
a
-
1
b
=2,则代数式
2a-13ab-2b
a-2ab-b
的值为
17
4
.
10.(xx·凉山)先化简,再求值:(
1
x-y
+
2
x2-xy
)÷
x+2
2x
,其中实数x,y满足y=x-2-4-2x+
1.
解:原式=
x+2
x(x-y)
·
2x
x+2
=
2
x-y
.
∵y=x-2-2(2-x)+1,
∴x-2≥0,2-x≥0,即x-2=0.解得x=2.∴y=1.
当x=2,y=1时,原式=2.
11.当a
1=1-
1
m
,a
2
=1-
1
a
1
,a
3
=1-
1
a
2
,…,则a
2 017
的值为1-
1
m
.(用含m的代数式表示),20621 508D 傍,~. 38758
9766 靦34740 87B4 螴34824 8808 蠈i37503 927F 鉿40098 9CA2 鲢25894 6526 攦29020 715C 煜20898 51A2 冢。