应力应变状态分析

合集下载

第6章应力应变状态分析

第6章应力应变状态分析

300MPa
60
0
x y
2 200 200 sin 1200 300 cos 1200 323.2MPa 2
sin 2 xy cos 2
§ 6-2
平面应力状态分析
200MPa
2.求主应力和主方向
x 200MPa , y 200MPa , xy 300MPa
z , zx , zy
§ 6-1
基本概念
y
x
P
A
P
A
z

A


A

3
§ 6-1
基本概念
y
m
x
A
m
z

A


A

A
4
§ 6-1
基本概念
A l/2
F
y
C l
5 4 3 2 1
x
B
x
FS M
z
5
4 3 2
C左截面
1
5
2
1
1
2
2
x
2
3
x n D( , C O 2 O x
应力圆的半径
A(x ,xy)
两面夹角 且转向一致。
两半径夹角2 ;

B(y ,yx)
§ 6-2
平面应力状态分析
例题6-2-1:图示单元体,求:(1)指定斜截面上的应力; (2)主应力大小,并将主平面标在单元体图上。 解: 1.求斜截面的应力
7
§6-2 平面应力状态分析
y 一、解析法 1、斜截面上的应力 yz 已知 x , y , xy , ,求 和 yx xz y zx yx n zy xy x xy

工程力学-材料力学之应力应变状态分析

工程力学-材料力学之应力应变状态分析

σ1

μσ2

σ3
0
2

1 E
σ2

σ1

σ3


0
z
y
y
z
x
x
12
(Analysis of stress-state and strain-state)
解得
σ1

σ2

(1 1 2
)
σ
3

铜块的主应力为
0.34(1 0.34) 1 - 0.342
二、各向同性材料的体积应变(The volumetric strain for isotropic materials)
构件每单位体积的体积变化, 称为体积应变用θ表示.
各向同性材料在三向应力状态下的体应变
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
对于平面应力状态(In plane stress-state)
(假设 z = 0,xz= 0,yz= 0 )
y
1 εx E (σx μσ y )
εy

1 E
(σ y

μσx )
εz

μ E

y

σx)
z

xy

xy
G
y
yx xy
x
x
y yx xy x
6
(Analysis of stress-state and strain-state)
(Analysis of stress-state and strain-state)

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

第七章应力状态及应变状态分析

第七章应力状态及应变状态分析

第七章 应力状态及应变状态分析第一节 概 述在第一章中将应力定义为内力的集度或单位面积的内力值。

应力又分正应力σ和剪应力τ两种。

前面各章的知识表明,受力杆件中任一点的应力是随截面位置及点的位置的不同而不同,如7-1(a )中a 、b 两点分别在两个截面上,其应力是不同的。

同一截面上的各点,如图7-1(b )中b 、c 两点的应力一般情况下也是不同的。

同一点不同方向的应力也是不同的。

过一点各个方向上的应力情况称为该点的应力状态....,应力状态分析就是要研究杆件中某一点(特别是危险点)各个方向上的应力之间的关系,确定该点处的最大正应力和最大剪应力,为强度计算提供重要依据。

研究应力状态的方法是过杆件中的任一点取出一个微小的六面体——单元..体.。

如图7-1(a )中过a 点取出的单元体放大如图7-2所示。

单元体三个方向的边长很小且趋于零,则该单元体代表一点,即a 点,互相平行的平面上的正应力相等,剪应力也相等。

杆件在任意荷载作用下,从中所取出的单元体表面上一般既有正应为又有剪应力,如图7-2所示。

当图7-2所示的单元体各面上的,0,0,0,0,0,0======zy zx yx yz xz xy ττττττ 即六个面上均没有剪应力作用时,这种面叫做特殊平面,并定义为主平面...。

该主(a)(b)图7-1各点的应力情况平面上作用的正应力称为主应力...,用,,,321σσσ表示(,321σσσ≥≥),如图7-3所示。

各面均为主平面的单元体,称为主单元体....。

三个主应力中若有两个等于零一个不等于零,该单元体称为单向应力状态......,如图7-4(a );三个主应力中有一个等于零,两个不等于零,该单元体称为二向应...力状态...,如图7-4(b );三个主应力均不等于零,该单元体称为三向应力状态......,如7-3。

单向应力状态和二向应力状态属平面应力状态,三向应力状态属空间应力状.....态.。

应力应变分析

应力应变分析
§10 应力应变分析及应力应变关系
§10.1 应力的概念 一点处的应力状态
1.内力在变形体内某一截面上分布的描述
用截面法求某一截面上的内力,得出该截面上的
内力分量:FN , FS ,T , M ——截面分布内力系向截
y
FR FN
面形心简化后的等效力系 x
FS
T
为正确描述变形,应在 该截面上的每一点,描
Pi
2
注意
同理,某点的三个主应力中,任意二个主 应力都可找出一组切应力极值,分别为:
主切应力
P1
2
2
3
P2
1
3
2
P3
1
2
2
该点单元体的最大切应力应为三者当中的最大者,即
max
1
2
3
2
2
(10.5)
2
1
1
1
3 P3所在平面
3 P1 所在平面
3 P2 所在平面
而最大切应力所在平面的法向应为1,3两方向 的角平分线方向。

1,
2,

3
max
y
80
解: z 50MPa 为一个主应力
x
在 x,y 平面内
z
50
80 2
80 2 2
1 90MPa
2 10MPa
3 50MPa
302
40 50
9010MPa
50
Dy
10
C
max
1 3
2
70MPa
30
90
Dx
§11.6 应变分析
1. 某点处(单元体的)变形的描述——应变
x y
2
x

应力与应变状态分析

应力与应变状态分析

ma x
min
x y 2
(x 2y)2x2 y ——主应力的大小
1 ; 2 ; 3 ; m ;am x;i0 n
最大正应力(σmax)与X轴的夹角规定用“α0 ” 表示。 简易判断规律:由τ的方向判断。
α0 α0
2、 τ的极值及所在平面
x 2ysi2n xy co 2s
d 0 d
tg21
3、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。 空间应力状态:三向应力状态 简单应力状态:单向应力状态。 复杂应力状态:二向应力状态和三向应力状态的总称。 纯剪切应力状态:单元体上只存在剪应力无正应力。
§8-2 平面应力状态分析——解析法
一、任意斜面上的应力计算
主应力排列规定:按代数值由大到小。 1 2 3
10 σ1=50 MPa ;
50
30 σ2=10 MPa ; σ3=-30 MPa 。
单位:MPa
10 σ1=10 MPa ;
30 σ2=0 MPa ; σ3=-30 MPa 。
8、画原始单元体: 例 :画出下列图中的 a、b、c 点的已知单元体。
二、σ、τ的极值及所在平面(主应力,主平面)
1、 σ的极值及所在平面(主应力,主平面)
x 2 y x 2 yc2 o s xs y 2 i n d d 0 x 2 ys2 i n 0 xc y 2 o 0 s0 0 0
tg20
2xy x y
——主平面的位置
( 0;
0 0900 )
F
F a
x
a
x
x
F A
y b C
z
y b
C z
M F L

材料力学:第八章-应力应变状态分析

材料力学:第八章-应力应变状态分析
斜截面: // z 轴; 方位用 a 表示;应力为 sa , ta
正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态

第八章应力应变状态分析ppt课件

第八章应力应变状态分析ppt课件

+tx
sin
2
+ + x + y 常量 2
2)t
-t
+
2
2.主应力
t
x x
+
2
-
2
y y
+
x
-
2
y
cos
2
-t
x
sin 2 +t x cos 2
sin
2
和t 都是的函数。利用上式便可确定正应力和
剪应力的极值
d d
-2
x
2
y
sin 2
+
t
x
cos 2

x - y
P
A B C D E
A
B
C
D
E
二.基本概念
主平面 剪应力为零的平面 主应力:主平面上的正应力 主方向: 主平面的法线方向
可以证明:通过受力构件内的任一点,一定存在三个 互相垂直的主平面。 三个主应力用σ1、 σ2 、 σ3 表示,按代数值大小 顺序排列,即 σ1 ≥ σ2 ≥ σ3
应力状态的分类:

t
x x
+ y
2
- y
2
+
x
-
2
y
cos
2
-t
x
sin 2 +t x cos 2
sin
2
用完全相似的方法可确定剪应力的极值
dt d
( x - y ) cos2 - 2t x sin 2

1时,能使
dt d
0
( x - y ) cos21 - 2t x sin 21 0

第八章2应力应变状态分析

第八章2应力应变状态分析

第八章2应力应变状态分析应力应变状态分析是研究材料或结构在外力作用下所产生的应力和应变的过程。

应力是单位面积上的内力,用于描述材料或结构对外力的抵抗能力。

而应变是形变相对于初始状态的变化量,用于描述材料或结构的变形程度。

针对材料或结构的应力应变状态进行分析,可以帮助我们了解其力学性能和稳定性,为工程实践提供重要依据。

应力应变状态分析是弹性力学的基本内容之一、根据材料的力学性质和外力的作用,可以得到不同的应力应变状态。

在弹性力学中,线弹性和平面应变假定是常用的简化假设。

线弹性假定材料仅在拉伸和压缩的方向上有应力,而在横截面上的应力是均匀分布的。

一维拉伸和挤压是线弹性应力应变状态的基本类型。

平面应变假定材料在一个平面内有应力,而在垂直于该平面的方向上无应力。

二维平面应变是平面应变应力应变状态的基本类型。

在应力应变状态分析中,我们通常关注应力和应变之间的关系。

最常见的是材料的应力-应变曲线。

应力-应变曲线描述了材料在外力作用下的力学行为,可以帮助我们了解材料的强度、塑性和韧性等性能。

在弹性阶段,应力-应变曲线呈线性关系,符合胡克定律。

而在屈服点之后,材料会发生塑性变形,应力不再是线性关系。

当应力达到最大值时,材料会发生破坏。

除了应力-应变曲线外,还有一些其他重要的参数和指标可用于描述应力应变状态。

例如,弹性模量是描述材料刚度的重要参数,表示单位应力引起的单位应变量。

剪切弹性模量描述了材料抵抗剪切变形的能力。

同时,杨氏模量和泊松比也是用于描述材料力学性质的常用参数。

应力应变状态分析在材料工程、结构工程以及土木工程等领域具有重要应用。

通过对材料和结构的应力应变状态进行分析,可以帮助我们评估其性能和强度,并且对设计和优化具有指导意义。

例如,在结构工程中,通过应力应变状态分析可以确定材料的承载能力和极限状态,从而确保结构在设计荷载下的安全运行。

然而,应力应变状态分析也面临一些挑战。

首先,材料的力学性质和变形行为往往是非线性的,需要使用复杂的数学模型进行描述。

第八章 应力应变状态分析

第八章 应力应变状态分析

o
C
(σ x + σ y ) / 2
σ
半径为
Rσ = (
σ x −σ y
2
2 )2 + τ x
目录
应力圆(图解法) §8.3 应力圆(图解法)
二.应力圆的绘制与应用
σy σα τα σy τy
n
τ
σα τα
H(任意斜截面α) D(x截面对应)
τx
τx
t
-τ x
σx
α

C
σx
τx=τy DF=EG
将第一式移项后两边平方与第二式两边平方相加
σ x +σ y
σ x −σ y
(σ α −
σ x +σ y
2
) =(
2
σ x −σ y
2
cos 2α − τ x sin 2α ) 2
τα = (
2
σ x −σ y
2
sin 2α + τ x cos 2α ) 2
目录
应力圆(图解法) §8.3 应力圆(图解法)
τ max σ x −σ y 2 2 = ±CK = ± ( ) +τ x τ min 2
所在截面互相垂直,并与正应力极值截面呈45 °夹角。
目录
§8.4 极值应力与主应力
二.主应力
由图可知,正应力极值所在截面的切应力为零。 ab,bc,cd,da 均为主平面。 微体的前、后 两面不受力, 切应力也为零。 主平面:切应力为零的截面。 主平面微体:三对互相垂直的主平面所构成的微体。
三.纯剪切状态的最大应力与圆轴扭转破坏分析
σ 3 = −τ
τ τ A(0,τ)
−45

应力应变分析范文

应力应变分析范文

应力应变分析范文应力应变分析是一种工程力学中常用的分析方法,用于研究材料在受到力作用下的变形行为。

它可以帮助工程师了解材料的性能,并预测在不同条件下材料是否会发生破坏。

本文将介绍应力应变分析的基本原理、应力应变曲线、常见的应力应变关系及其工程应用。

应力应变分析的基本原理是基于胡克定律。

根据胡克定律,应变与应力之间的关系为线性关系。

应变是材料单位长度相对于初始长度的变化量,通常用ε表示;应力是材料单位截面上的受力,通常用σ表示。

胡克定律可以用以下公式表示:σ=Eε其中,E是杨氏模量,它是材料的一个重要物理特性,表示单位应力下单位应变的比例关系。

E的数值越大,材料的刚度就越大,即材料越难变形。

应力应变曲线可以用来描述材料在受力过程中的变形行为。

应力应变曲线通常由不同阶段组成:弹性阶段、屈服阶段、塑性阶段和断裂阶段。

在弹性阶段,材料的应变是可逆的,当外力作用消失后,材料恢复到原始状态。

在屈服阶段,材料开始发生可见的变形,但仍能恢复到原始状态。

在塑性阶段,材料发生不可逆的变形,并且应力不再随着应变的增加而线性变化。

在断裂阶段,材料发生破坏。

常见的应力应变关系有线弹性模型、非线性弹性模型和塑性模型。

线弹性模型是最简单的模型,它假设材料在弹性阶段的应力应变关系为线性。

非线性弹性模型考虑了材料在弹性阶段中的非线性变形行为。

塑性模型考虑了材料在塑性阶段的变形行为,其中最常用的是塑性流动模型,它可以通过流动规律描述材料的塑性变形。

应力应变分析在工程中有广泛的应用。

例如,在材料选型中,工程师可以通过应力应变分析来评估材料的强度和刚度,以选择最适合的材料。

在结构设计中,工程师可以通过应力应变分析来预测结构在不同荷载条件下的变形和破坏行为,从而优化结构设计。

在材料加工中,应力应变分析可以帮助工程师确定适当的变形工艺参数,以确保产品的质量和性能。

总之,应力应变分析是一种重要的工程力学分析方法,可以用于研究材料的力学行为和预测材料的性能。

材料力学(单辉组)第八章应力应变状态分析

材料力学(单辉组)第八章应力应变状态分析


tan
2a0

2t x sx s
y

cos 2a0
sx sy
2

s
x
s
2
y
2

t
2 x
sa

sx
sy
2

sx
s y
2
cos 2a
t x
sin 2a
最大和最小正应力(主应力)
s max s min

sx
sy
2


sx
s
2
y
2

t
2 x
应力状态:通过一点所有微截面上应力状况 应变状态:通过一点所有微截面上应变状况
6
如何描述复杂状态? 微体法:---关注一点 一点的应力状态(静力学关系) 一点的应变状态(几何关系) 二者之间的联系(物理关系) 能量法: 应变能---关注整体
目的:解决复杂状态下的强度、刚度、稳定性
7
微体法
• 平面应力状态
T
T
s1 0,s2 0,s3 =0
• 空间应力状态
F
s1 0,s2 0,s3 0
11
EX1 画出矩形梁在滑动铰支座
右侧横截面内不同点的应力状态 F
y
1
1
Fs
2
2
z
M
3
3
4
5
4
s M z y t FSSA1( y)
Iz
Izb
5
12
EX2 画出螺旋桨轴杆表面一点的应力状态
由上式可得相差为900的两个a0值,在这两个相
互垂直的截面上,正应力取得最大值和最小值;

拉深件的应力应变状态分析

拉深件的应力应变状态分析

拉深件的应力应变状态分析拉深件的应力应变状态十分复杂,由于拉深件的壁厚很不均匀,致使拉深件凸缘区在切向压应力作用下极易起皱,筒壁上的危险断面也很容易被拉裂。

如何解决起皱和拉裂问题,是拉深成形能否顺利完成的关键。

起皱主要是由于凸缘的切向压应力超过了材料临界切向压应力所引起的,在拉深过程中,凸缘变形区在不断缩小,其厚度在不断增加,这两个因素对起皱都会产生影响;常见的防皱措施是采用便于调节压边力的压边圈,把凸缘紧压在凹模表面上。

防止拉裂的根本措施是减小拉深力和提高筒壁材料的强度,在设计拉深模时,首先应控制材料的变形程度,然后再采取其它各种措施防止危险断面的拉裂。

标签:拉深成形;应力应变;起皱;拉裂拉深也叫拉延,是利用拉深模具将平板毛坯塑性成形为各种开口的空心零件的一种冲压加工方法。

在生产实际中,用拉深方法可以制成筒形、矩形、锥形、阶梯形、球面形和其它不规则形状的薄壁零件。

如果与其它冲压工艺配合,还可制造形状更为复杂的零件。

在拉深变形过程中,随着凸模的不断下行,留在凹模端面上的毛坯外径不断缩小,圆形毛坯逐渐被拉进凸、凹模之间的间隙中形成直壁,当板料全部进入凸、凹模间的间隙时,拉深过程结束。

拉深件可加工的尺寸范围很大,因此在工业领域和日用品加工中得到了广泛应用。

本文针对实际生产中的典型零件,基于塑性成形的基本理论,探讨拉深过程中应力应变变化的内在规律,为实际生产中壳罩类零件拉深工艺的设计提供参考和借鉴。

1 拉深成形拉深与冲裁的主要区别是:拉深模的凸模和凹模均有较大的圆角半径,凸、凹模之间的间隙也较大,其间隙值一般大于板厚t。

拉深是冲压工艺中很重要的一种成形工序,应用很广。

如汽车、拖拉机的一些罩件、壳件、覆盖件等,航空喷气发动机上的许多零件以及仪表、电器上的许多壳体件,还有很多日用品等都是采用拉深制成的。

拉深件的种类很多,大体可以划分为旋转体(轴对称)类零件、矩形(盒形)类零件、复杂形状零件等三类。

2 拉深变形过程拉深过程如图1所示。

材料力学-应力状态与应变状态分析

材料力学-应力状态与应变状态分析

s2 引起 1 s 2 E 2 s 2 E 3 s 2 E
s3 引起 1 s 3 E 2 s 3 E 3 s 3 E
小变形 i i i i i 1,2,3
1
1 E
s1
(s 2
s 3 )
广
2
1 E
s 2
(s 3
s1 )
义 虎 克 定
3
1 E
s 3
(s 1
s 2)
t T = 1 πD3 (1-a4) 16
1

1 E
[s1-
(s2+s3)]

1+
E
t
T=8.38 kN·m
二、体积应变
单元体边长:dx、dy、dz
体积:V0 = dx·dy·dz
dy
dx → dx +△dx = dx + 1dx = (1 + 1) dx
dy → dy +△dy = dy + 2dy = (1 + 2) dy
体积的绝对增量:△V = V-V0 = V0 (1+ 2+ 3)
单位体积增量:
V V0
1 2
3
体积应变 体积的相对增量
1 2
E
(s1
s2
s
3)
讨论:
V V0
1 2
E
(s1 s 2
s 3)
⒈ 若 s1 + s2 + s3>0,
则 >0 →△V >0,即体积增大;
若 s1 + s2 + s3<0,
s2
s3 dsz 1
dx
dz → dz +△dz = dz + 3dz = (1 + 3) dz

工程力学材料力学之应力应变状态分析

工程力学材料力学之应力应变状态分析
工程力学材料力学之应力应变状态分 析
二、材料破坏的两种类型(常温、静载荷) (Two failure types for materials in normal temperature and static loads)
1. 断裂失效(Fracture failure) (1)脆性断裂 : 无明显的变形下突然断裂. (2)韧性断裂 : 产生大量塑性变形后断裂.
剪切
扭转
工程力学材料力学之应力应变状态分 析
上述强度条件具有如下特点: (1)危险点处于单向应力状态或纯剪切应力状态; (2)材料的许用应力 ,是通过拉(压)试验或纯剪试验测定试 件在破坏时其横截面上的极限应力,以此极限应力作为强度指 标,除以适当的安全系数而得,即根据相应的试验结果建立的 强度条件.
胡克(1635-1703)
波义耳(1627-1691)
惠更斯(1629-1695)工程力学材料力学牛析之顿应力(应1变64状3态-分1727)
复杂应力状态的应变能密度
三向应力状态
体积改变能密度 畸变能密度
工程力学材料力学之应力应变状态分 析
§7-8 强度理论(The failure criteria)
构件每单位体积的体积变化, 称为体积应变用θ表示.
各向同性材料在三向应力状态下的体应变
如图所示的单元体,三个边长为 a1 , a2 , a3 变形后的边长分别为
a1(1+,a2(1+2 ,a3(1+3
变形后单元体的体积为
2
a2
1
3
a1
a3
V1=a1(1+·a2(1+2 ·a3(1+3
工程力学材料力学之应力应变状态分 析
二向应力状态下(In plane stress-state) 设 3= 0

7__应力状态及应变状态分析

7__应力状态及应变状态分析
确定构件上的危险点及危险方向
7.2 平面应力状态分析----解析法
平面一般应力状态,即空间应力状态中,z方向的 应力分量全部为零;或只存在作用于x-y平面内的 应力分量。
y
y
7.2.1平面一般应力状态斜截面上应力
斜截面平行于z轴且与x面成倾角 ,由力的平衡条件 可求得斜截面上应力σ ,τ 。
x
y
t 0
( x - y )sin cos + x (cos - sin )
2 2
1 ( x - y ) sin 2 + x cos 2 2
例 一单元体如图所示,试求在 = 30的斜截面 上的应力。
x 10 MPa, y 30 MPa , x 20 MPa, y -20 MPa, 30
2.一点处的应力状态:是指通过一点不同截面 上的应力情况的集合。
二、单元体分析法
一点处的应力状态可用围绕该点截取的微单元 体(微正六面体)上三对互相垂直微面上的应力情况 来表示。
轴向拉伸杆件内围绕点截取的两种微元体。
特点:
1、微元体三个方向的尺寸均无穷小;
2、每个面上的应力是均匀的;
3、微元体内相互平行的截面上,应力相同; 4、互相垂直的两个侧面上剪应力服从剪切互等关系。
7 应力状态及应变状态分析
7.1 应力状态概述
一、一点的应力状态
1.凡提到“应力”,必须指明:
在哪一点;在哪个面;在哪个方向。
7.1 应力状态概述
一、一点的应力状态
1.凡提到“应力”,必须指明:
在哪一点;在哪个面;在哪个方向。
目的:判断受力构件在那个点,那个方向最危险, 以便解决构件在复杂受力情况下的强度问题。

第七章 应力 应变状态分析

第七章 应力 应变状态分析
薄板:在厚度方向应力为0;厚体:很厚,在厚度方向应变为0。
§7-6 平面应变状态应变分析
(本章平面应力状态是重点) 点的应力状态:过某点各微截面的应力情况 应变状态:某点在不同方位的应变情况 平面应变状态:所有应变均发生在同一平面内 平面应力与平面应变状态对比:
方向应变(正应变和剪应变)
方向应力(正应力和剪应力) 为零,应力不为零
一、平面应力状态(一对平行侧面上无应力,其余面上的应力平行于这 对平面) 二、研究:任一斜截面的应力(与无应力平面垂直的平面)可画平面图 (单位厚度应力) 三、符号规定:
方位角
,(从
轴)逆时针正 正应力
:拉为正
剪应力 :使顺时针转正 四、方法:微体(微块)(单位厚度)的平衡
微三角块平衡 五、结果
六、已知 ,求 ,
到E。 三、最大应变与主应变
1.应变极值及方位
2.主应变:
方位的正应变,由应变圆,它总是存在。
表示。 3.适用范围: 应变圆:纯几何角度推导,小变形,与材料性质无关。 应力圆:线性、非线性(因为推导没用到材料常数和胡克定律)。 4.P221例7-6,代公式,自学(
不好测)
求 , 的公式中,包含 三个量,如反过来要求 ,可先测三个方向 ,联立方程求解。
略去高阶微量 代入广义胡克定律
3.体积与形状改变比能 应变比能能够分解为体积改变比能与形状改变比能之和 体积改变比能等于与之体积应变相等的三向等应力单元体(其应力 为 的应变比能,故
代入(1) 形状改变比能 二、非主应力微体 1.复杂应力状态下应变比能
2.纯剪应力状态引起的体积应变为零 非主应力微体的剪应力可看作三个纯剪应力状态的叠加 3.体积与形状应变比能 由2,可知
圆柱体内第三主应力mpa1535010300假定圆柱体膨胀塞满凹座0002102000002mpa153mpa43mpa1531778复合材料的应力应变关系选讲复合材料种类繁多长纤维短纤维颗粒增强金属基树脂本书仅介绍长纤维树脂基复合材料正交各向异性有三个互相垂直的对称面横观各向同性一正轴物理方程轴1纤维纵向轴2纤维横向构成直角坐标系轴123称为材料主轴1

应力状态与应变状态分析

应力状态与应变状态分析
概念
应变状态分析对应力状态分析起到补充作用,特别是在复杂受力情况下,能够更 准确地描述物体的变形行为。
应变状态的分类
单轴应变
物体在单向受力过程中发 生的应变,只有一个方向 的长度变化。
双轴应变
物体在双向受力过程中发 生的应变,长度变化发生 在两个相互垂直的方向上。
三轴应变
物体在三向受力过程中发 生的应变,长度变化发生 在三个相互垂直的方向上。
塑性变形
在某些高应力状态下,材料可能 会发生塑性变形,影响其机械性 能和稳定性。
断裂韧性
材料的断裂韧性可能会受到其内 部应力的影响,高应力状态可能 降低材料的断裂韧性,导致材料 更容易断裂。
02
应变状态分析
定义与概念
定义
应变状态分析是研究物体在受力过程中内部应变的分布和变化情况,以及应变与 应力之间的关系。
详细描述
在塑性行为下,材料发生屈服,即应力达到某一特定值后,应变开始急剧增加。这种行为通常发生在 材料承受的应力高于其屈曲点时。
脆性行为
总结词
当材料受到外力作用时,它可能会突然断裂,而不会发生显著的形变。
详细描述
在脆性行为下,材料在较低的应力状态下就会断裂,且断裂前几乎没有明显的塑性变形。这种行为常见于某些脆 性材料,如玻璃或陶瓷。
弹性行为
总结词
当材料受到外力作用时,会发生形变, 但当外力去除后,材料能够完全恢复 其原始形状和尺寸。
详细描述
在弹性行为下,材料的应力和应变之 间呈线性关系,即应力与应变成正比。 这种行为通常发生在材料承受的应力 低于其屈服点时。
塑性行为
总结词
当材料受到外力作用时,会发生形变,并且当外力去除后,材料不能完全恢复其原始形状和尺寸。

应力分析与应变分析

应力分析与应变分析

应力分析与应变分析概述应力分析和应变分析是材料力学与结构设计中重要的分析方法。

通过研究材料内部的应力和应变分布情况,可以评估材料的强度和稳定性,为结构设计提供依据。

本文将介绍应力分析和应变分析的基本概念、方法和应用领域。

应力分析应力的概念应力是材料内部的内力状态,是材料中单元体受到的单位面积上的力的大小。

常见的应力类型有正应力、剪切应力和法向应力。

正应力指的是垂直于面元的力,剪切应力指的是在面元平面上的切应力,法向应力是正应力的一种特殊情况。

应力分布材料内部的应力分布可以通过应力场来描述。

应力场是指空间中各点的应力分布情况。

常见的应力场模型包括均匀应力场、线性应力场和非线性应力场。

弹性力学弹性力学是研究材料受力后的变形和应力恢复的一门学科。

通过弹性力学理论,可以计算材料在受力后的应力分布和变形情况。

应力分析的应用应力分析在工程领域有广泛的应用。

例如,在结构设计中,可以通过应力分析来评估结构的强度和稳定性,确定合理的结构形式和尺寸。

此外,应力分析也用于材料疲劳寿命预测、断裂力学研究等领域。

应变分析应变的概念应变是材料内部形变程度的度量,是材料内部单位长度的变化量。

常见的应变类型有线性应变、剪切应变和体积应变。

线性应变指的是材料在受力后的线性变形;剪切应变是材料在受到切应力作用时沿切应力方向发生的形变;体积应变是材料在受力后发生的体积变化。

应变分布类似于应力分布,应变分布可以通过应变场来描述。

应变场是指空间中各点的应变分布情况。

应变分析的方法应变分析的常用方法包括拉伸试验、剪切试验、压缩试验和扭转试验等。

通过这些试验可以获取材料在不同受力状态下的应变数据,进而进行应变分析。

应变测量应变测量是应变分析中的重要环节。

常用的应变测量方法有电阻式应变计、光栅应变计和激光测量等。

这些方法可以准确地获取材料受力后的应变数据,并用于应变分析和应变场重构。

应变分析的应用应变分析在材料研究和工程设计中起着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值及所在截面的方位,以便研究构件破坏原因并进行失效分 析。
三、研究应力状态的方法—单元体法
1.单元体:围绕构件内一所截取的微小正六面体。
y z
Z z
应力与应变分析
tzy tzx
txy
tyx
tyz
txz
O
txy
x
tzy
tzx
x
txz tyz tyx
dz y
Y
dx
X O
y
x
dy z
2.单元体上的应力分量
- y )cos 2
+t x sin
2
+ + x + y 常量 2
2)t -t + 2
§8-3.主应力
和tt都是 xx -+22的函yy s+数in2。x-2利+ty用xcco上oss2式2便-t可x si确n 2定 正应力和
剪应力的极值
d d
-2 x
-
2
y
sin 2
+
t
x
cos
CL10TU8
二. 应力分析的解析法
(1)斜截面应力
y
y ty
n
tx
x
txx x
ty
y
n
x
tx
A
t Acos
ty
A sin
y
σ:拉应力为正
τ:顺时针转动为正
α:逆时针转动为正
2.斜面上的应力——微元体的平衡方程
平衡对象——用斜截
面截取的微元局部
参加平衡的量——应 力乘以其作用的面积
平衡方程
切向平衡
Ft 0
A
A cos
-t A + ( A cos) sin
At sin
x
+t ( A cos) cos
t
xy
-t ( A sin) sin
x
yx
t xy
- ( A sin) cos 0
t yx
t
( x
y
-
y )sin
cos
+t x (cos2
- sin
2)
y
注:三角公式
sin 2 2sin cos
x
-
y
2
2
+
t
2 x
1.莫尔(Mohr)圆
-
x
+ 2
y
2
+
t
2
x
- 2
y
2
+
t
2 x
t
圆心坐标为
x
+
2
y
,0
半径为
x
2
y
2
+t
2 x
2.应力圆的画法
y
t
t yx
D
t xy
2

x - y
2
0
时,能使
d d
0
sin 2 0 + t x cos2
0
0
该面上恰好切应力等于零t x 0
tan 2 0
-
2t x x -
y
0、0 + 900确定了两个正交平面,其中一个是最大
正应力作用面,另一个是最小正应力作用面。
max x + y
min
2
x
-
2
y
2
+t
②单元体各个面上的应力已知或可求;
③几种受力情况下截取单元体方法:
P
P
Me B
Me
A
A P/A
B tMe/Wn
a) 一对横截面,两对纵截面 P
Me
b) 横截面,周向面,直径面各一对
C Me
c) 同b),但从 上表面截取
C
t
P A
B C
A
A
A
B
tB
tC
C
C
C
为什么要研究一点的应力状态?
t [t ]; [ ]?
Fn 0 ,
Ft 0
x
t
t xy A
t yx
y
法向的平衡
A
Fn 0
A cos
A sin
A
-
( A cos) cos
x
+t
x
xy(
A
cos) sin
+tyx ( A sin) cos
t xy
- ( A sin) sin 0
y
t n
t yx y
x cos2 + y sin 2 - 2t x sin cos
tan 2 1
x - 2t x
y
1、 1 + 90, 它们确定两个互相垂直的
平面,分别作用着最大和最小剪应力
t max
t min
x
-
2
y
2
+
t
2 x
由:
tan 2 0
- 2t x x -
y
tan 2 1
x - 2t x
y
tan 2 1
1 -
tan 2 0
-ctg 2 0
2 1 2 0 + 90 即 1 0 + 45
2 x
由于该面上午切应力,所以他们就是最大主应 力和最小主应力。

t
x x
+ y
2
- y
2
+
x
-
2
y
cos
2
-t
x
sin 2 +t x cos 2
sin
2
用完全相似的方法可确定剪应力的极值
dt d
( x
- y ) cos2 - 2t x sin 2

1时,能使
dt d
0
( x - y ) cos21 - 2t x sin 21 0
sin 2 1- cos 2
2
cos2 1+ cos 2
2

x
+ y
2
+x
- y
2
cos 2
-t x
sin 2
t
x
-
2
y
sin 2
+t x
cos 2
讨论:
1) + 2
1 2
( x
+
y)+
1 2
( x
- y )cos 2(
+
2
)
-t
x
sin
2(
+)
2
+
2
1 2
(
x
+ y) -
1 2
(
x
第 八章 应力应变状态分析
§8-1 引言
一.研究应力状态的意义
(1)同一点各个方向的应力不同; (2)相同的受力方式不同的破坏形式,如铸铁与 低碳钢的压缩破坏。
P
P
应力与应变分析
二、一点的应力状态
1.一点的应力状态:通过受力构件一点处各个不同截面
上的应力情况。
2.研究应力状态的目的:找出该点的最大正应力和剪应力
即:最大和最小剪应力所在平面与 主平面的夹角为45
§8-4 应力分析的图解法—应力圆
-x
+ y
2
x
- y
2
cos2
- t x sin 2
(1)
t
x
- y
2
sin 2
+ t x cos2
(2)
(1)2 + (2)2 , 得 (x - x0 )2 + ( y - y0 )2 R2
-x
+
y
2
2
+
t
2
应力与应变分析
(1)应力分量的角标规定:第一角标表示应力作用面,第二 角标表示应力平行的轴,两角标相同时,只用一个角标表示。
(2)面的方位用其法线方向表示
t yz t zy,t zx t xz,t xy t yx
3.截取原始单元体的方法、原则
①用三个坐标轴(笛卡尔坐标和极坐标,依问题和构件形状 而定)在一点截取,因其微小,统一看成微小正六面体
低碳钢、铸铁试件受扭时的破坏现象。
低碳钢
铸铁
m
t
m
t
CL10TU2
P
A B C D E
A
B
C
D
E
二.基本概念
主平面 剪应力为零的平面 主应力:主平面上的正应力 主方向: 主平面的法线方向
可以证明:通过受力构件内的任一点,一定存在三个 互相垂直的主平面。 三个主应力用σ1、 σ2 、 σ3 表示,按代数值大小 顺序排列,即 σ1 ≥ σ2 ≥ σ3
应力状态的分类:
单向应力状态:三个主应力中只有一个不等于零; 二向应力状态(平面应力状态):两个主应力不等于零;
三向应力状态(空间应力状态):三个主应力皆不等于零
二向和三向应力状态统称为复杂应力状态
§8-2 平面应力状态下的应力分析
一.应力单元体
y y
t yx t xy x
x
y
y ty tx
x x
相关文档
最新文档