人教版 九年级数学 第28章 锐角三角函数 章末复习(含答案)
人教版初3数学9年级下册 第28章(锐角三角函数)期末综合复习题(含解析)
第二十八章 锐角三角函数 复习题一、单选题1.陕西渭南·九年级期末)如图,在ABC 中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则下面四个等式一定成立的是( )A .sin c bB =⋅B .cos a c B =⋅C .tan a b B =⋅D .tan b c B=⋅2.陕西咸阳·九年级期末)在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sin B =23B .cos B =23C .tan B =23D .tan B =323.陕西宝鸡·九年级期末)在△ABC 中,已知∠C =90°,AC =sin A =23,那么BC 边的长是( )A .B .8C .D .124.陕西咸阳·九年级期末)如图,点()3,4A 在第一象限,OA 与x 轴所夹的锐角为α,则cos α=( )A .34B .35C .45D .435.陕西渭南·九年级期末)2cos45°的值为( )A .2BC D .16.陕西西安·九年级期末)在ABC 中,A ∠,B ∠都是锐角,且sin A =,tan B =,则ABC 的形状是( )A .直角三角形B .钝角三角形C .等边三角形D .不能确定7.陕西咸阳·九年级期末)如图,从山下乘缆车上山,缆绳与水平方向成32°的夹角,已知缆车速度为每分钟50米,从山脚下A 到山顶B 需16分钟,则山的高度为( )A .800•sin32°B .800tan32︒C .800•tan32°D .800sin32︒8.陕西宝鸡·九年级期末)如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O )20米的点A 处,沿AO 所在直线行走12米到达点B 时,小明身影长度( )A .变长2.5米B .变短2米C .变短2.5米D .变短3米二、填空题9.陕西咸阳·九年级期末)如图所示的是一款可折叠的木制宝宝画板.若70cm AB AC ==,8cos 35ABC ∠=,则BC 的长为____________cm .10.陕西宝鸡·九年级期末)如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得 EC,连接AC ,AE ,则图中阴影部分的面积为________.11.陕西咸阳·九年级期末)在ABC ∆中,(tan cos 0A B =,则∠C 的度数为____.12.陕西宝鸡·九年级期末)已知sinA=12,则锐角∠A=______.三、解答题13.陕西西安·)sin 60cos 456⎫︒-︒-⎪⎪⎭14.陕西咸阳·九年级期末)计算:2221tan 45sin 303cos 304︒+︒-︒.15.陕西宝鸡·九年级期末)计算:4cos 24|+6.16.陕西渭南·九年级期末)计算:212cos302-⎛⎫︒ ⎪⎝⎭.17.陕西咸阳·九年级期末)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.18.陕西宝鸡·九年级期末)在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)19.陕西渭南·九年级期末)某地有一座大桥(图1),某初中数学兴趣小组想测量该大桥的外拱塔的最高点D 距离桥面的高度CD ,他们在桥面上选取了一个测量点A 测得点D 的仰角为26.6°,然后他们沿AC 方向移动40m 到达测量点B (即40m AB =),在B 点测得点D 的仰角为37°,如图2所示.求外拱塔的最高点D 距离桥面的高度CD .[参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈]20.陕西汉中·九年级期末)某中学数学实践小组决定利用所学知识去测量一古建筑的高度(如图1).如图2,在地面BC 上取E ,G 两点,分别竖立两根高为2m 的标杆EF 和GH ,两标杆间隔EG 为23m ,并且古建筑AB ,标杆EF 和GH 在同一竖直平面内,从标杆EF 后退2m 到D 处(即2m ED =),从D 处观察A 点,A 、F 、D 三点成一线;从标杆GH 后退4m 到C 处(即4m CG =),从C 处观察A 点,A 、H 、C 三点也成一线.已知B 、E 、D 、G 、C 在同一直线上,AB BC ⊥,EF BC ⊥,GH BC ⊥,请根据以上测量数据,帮助实践小组求出该古建筑AB 的高度.21.陕西咸阳·九年级期末)如图,琪琪在一座桥的附近试飞一架小型无人机,为了测量无人机飞行的高度AD ,琪琪通过操控装置测得无人机俯视桥头B ,C 的俯角分别为∠EAB =60°和∠EAC =30°,且D ,B ,C 在同一水平线上.已知桥BC =36米,求无人机的飞行高度AD .22.陕西渭南·九年级期末)如图,小华利用标杆和等腰直角三角尺测量楼高,他先在E 处竖立一根高1.5米的标杆DE ,发现地面上的点A 、标杆顶端D 与楼顶B 在一条直线上,测得1AE =米;然后他站在F 处利用等腰直角三角形测得视线GB 与水平面的夹角45BGM ∠=︒,小华的眼睛到地面的距离 1.5GF =米,1.5AF =米.已知点F 、A 、E 、C 在同一直线上,GF FC ⊥,DE FC ⊥,BC FC ⊥.请根据以上所测数据,计算楼高BC .23.陕西安康·九年级期末)如图,在矩形ABCD 中,O 为边AB 上一点,以点O 为圆心,OA 为半径的O 与对角线相交于点E ,连接BE ,且BC BE =.(1)求证:BE 是O 的切线;(2)若30CAB ∠=︒,BC 长为6,求O 的半径.24.陕西西安·九年级期末)如图,将矩形ABCD 沿AE 折叠,使点D 落在BC 边的点F 处.(1)求证:△ABF ∽△FCE ;(2)已知AB =3,AD =5,求tan DAE 的值.参考答案:1.B【解析】根据∠B 的正弦、余弦、正切的定义列式,根据等式的性质变形,判断即可.解:在△ABC 中,∠C=90°,∵sinB=bc ,∴c=sin b B,A 选项等式不成立;∵cosB=a c,∴a=c•cosB ,B 选项等式成立;∵tanB=b a ,∴a=tan b B,C 选项等式不成立;∵tanB=b a ,∴b=a•tanB ,D 选项等式不成立;故选:B .本题考查了锐角三角函数的定义,掌握锐角是三个三角函数的定义是解题的关键.2.C∵∠C =90°,AC =2,BC =3,∴,∴sinB=AC AB ==,cosB=BC AB ==,tanB=23AC BC =,故选C.3.B【解析】根据锐角三角函数和勾股定理求解即可.解:由sin A =23=BC AB,不妨设BC =2k ,则AB =3k ,由勾股定理得,AC 2+BC 2=AB 2,即(2+(2k )2=(3k )2,解得k =4(取正值),所以BC =2k =8,故选:B .本题考查锐角三角函数,勾股定理,理解锐角三角函数的定义和勾股定理是正确解答的前提.【解析】过A 作AP x ⊥轴于点P ,根据勾股定理求出OA ,再根据锐角三角形函数的定义求解即可过A 作AP x ⊥轴于点PA(3,4)∴4,3AP OP ==由勾股定理得:5OA ===3cos 5OP OA α∴==故选:B .本题考查了勾股定理和锐角三角函数的定义的应用,主要考查学生的理解和计算能力.5.C【解析】根据45°角的三角函数值代入计算即可.解: 2cos452== 故选C .此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.6.C【解析】根据特殊角锐角三角函数值,可得60,60A B ∠=︒∠=︒ ,再由三角形的内角和等于180°,可得60C ∠=︒ ,即可求解.解:∵sin A =,tan B =∴60,60A B ∠=︒∠=︒ ,∴18060C A B ∠=︒-∠-∠=︒ ,∴A B C ∠=∠=∠ ,∴ABC 是等边三角形故选:C本题主要考查了等边三角形的判定,特殊角锐角三角函数值,熟练掌握特殊角锐角三角函数值是解题的关键.【解析】根据题意可得,90BCA ∠=︒,32BAC ∠=︒,5016800AB =⨯=米,再根据三角函数的定义,即可求解.解:根据题意可得,90BCA ∠=︒,32BAC ∠=︒,5016800AB =⨯=米,根据三角函数的定义可得:sin sin 32BC BAC AB∠=︒=∴sin 32800sin 32BC AB =⨯︒=⋅︒(米)故选:A本题考查了解直角三角形的应用,找到直角三角形并熟悉三角函数的定义是解题的关键.8.D【解析】利用相似三角形的对应边成比例可求出AM 的长,同理求出BN 的长,再求出AM 与BN 的差即可.∵OF ⊥OM,DA ⊥OM ,∴QF ∥AD ,∴△ADM ∽△OFM ,∴AM AD AM OA OF =+ ,即 1.620+8AM AM = ,解得AM =5cm ;同理可得,∵△BNE ∽△ONF ,∴BN AD OA AB BN OF =-+ 即 1.620128BN BN =-+ ,解得BN =2m ,∴AM -BN =5-2=3m.故选D.本题考查了相似三角形的应用和中心投影,熟练掌握该知识点是本题解题的关键.9.32【解析】过点A 作AD ⊥BC 于点D ,根据余弦定义可求BD ,然后根据等腰三角形的性质即可求出BC .解:如图,过点A 作AD ⊥BC 于点D ,在Rt △ABD 中,cos BD ABC AB ∠=,又AB =70cm ,8cos 35ABC ∠=,∴87035BD =,∴BD =16cm ,又AB =AC ,∴BC =2BD =32cm .故答案为:32.本题考查了锐角三角函数,等腰三角形的性质等知识,添加辅助线AD 是解题的关键.10.2π【解析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中,AH=,∴AC,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴2CAE S π==扇形∴图中阴影部分的面积为2π,故答案为:2π.本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.11.90︒【解析】先根据平方、绝对值的非负性求得tan A 、cos B ,再利用锐角三角函数确定A ∠、B ∠的度数,最后根据直角三角形内角和求得90C ∠=︒.解:∵(tan cos 0A B =∴tan 0cos 0A B ⎧==∴tan cos A B ⎧=⎪⎨=⎪⎩∴6030A B ∠=︒⎧⎨∠=︒⎩∴90C ∠=︒.故答案是:90︒本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.12.30°【解析】根据sin30°=12进行解答即可.∵sinA=12,∠A 为锐角,∴∠A=30°,故答案为30°.本题考查了特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.13.-7【解析】首先代入特殊角的三角函数值,然后进行二次根式的混合运算.解:原式6⎫-⎪⎪⎭16=7- .本题考查特殊角的三角函数值以及二次根式的混合运算,解决问题的关键是牢记特殊角的三角函数值以及掌握二次根式的运算法则.14.74-【解析】先将特殊角三角函数值代入,再计算乘方,然后计算乘法,最后计算加减即可.解:原式222111342⎛⎫=⨯+-⨯ ⎪⎝⎭11313444=⨯+-⨯119444=+-74=-本题考查特殊角的三角函数值,实数混合运算,熟记特殊角三角函数值和实数运算法则是解题的关键.15.7【解析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.原式=4×2+4﹣=4+3=7.此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.16.4--【解析】根据特殊角的三角函数值、二次根式的性质、负整数指数幂的性质进行计算.解:原式24=4=4=-.本题主要考查了实数的运算,正确化简各数是解题的关键.17.(1)见解析(2【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ==∴sin AD ACB AC ∠===即222sin A C B ∠=此题考查了作图−位似变换,平移变换,以及解直角三角形,熟练掌握位似及平移的性质是解本题的关键.18.人民英雄纪念碑MN.的高度约为36.5米.试题分析:由题意得,四边形ACDB ,ACEN 为矩形,从而得EN=AC=1.5.AB=CD=15,在Rt △MED 中,由题意可得ME=DE ,设ME =DE =x ,则EC =x+15,在Rt △MEC 中,可得ME=EC ⋅tan ∠MCE ,从而有x≈0.7(x+15),求出x 的值,从而得MN=ME+EN≈36.5 .试题解析:由题意得,四边形ACDB ,ACEN 为矩形,∴EN=AC=1.5,AB=CD=15,在Rt MED 中,∠MED =90°,∠MDE =45°,∴∠EMD =∠MDE =45°,∴ME =DE ,设ME =DE =x ,则EC =x+15,在Rt MEC 中,∠MEC =90°,∠MCE =35°,∵tan ME EC MCE =⋅∠,∴()0.715x x ≈+ ,∴35x ≈ ,∴35ME ≈ ,∴36.5MN ME EN =+≈,∴人民英雄纪念碑MN.的高度约为36.5米.19.外拱塔的最高点D 距离桥面的高度CD 为60m【解析】分别在两个直角三角形中由三角函数值建立方程,联立即可求出.解:设m DC x =,在Rt ADC 中,26.6A ∠=︒,∴tan 26.60.50CD AC ︒≈=∴2AC CD=在Rt BDC 中,37DBC ∠=︒,∴tan 370.75CDBC︒≈=∴43BC CD =∵40AC BC -=,∴即42403CD CD -=,解得60CD =,答:外拱塔的最高点D 距离桥面的高度CD 为60m .本题考查了解直角三角形应用题,一般步骤为弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型,将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形,寻找直角三角形,并解这个三角形.20.古建筑AB 的高度为25m .【解析】设=AB x ,=BE y ,证明ABD FED ∽,得到222+=x y ,再证明∽ABC HGC △△,得到2724+=x y ,利用227=24++y y 求出=23y ,将=23y 代入222+=x y 得:25x =.解:设=AB x ,=BE y ,∵AB BC ⊥,EF BC ⊥,∴AB EF ∥,∵∠=∠ADB FDE ,∴ABD FED ∽,∴=AB BD FE DE ,即222+=x y ,同理:∽ABC HGC △△,∴=AB BC HG GC,∵=23427++=++=+BC BE EG GC y y ,∴2724+=x y ,∴227=24++y y ,解得:=23y ,将=23y 代入222+=x y 得:25x =,∴古建筑AB 的高度为25m .本题考查解直角三角形,相似三角形的判定及性质,解题关键是利用相似三角形的性质求出227=24++y y ,求出y ,再进一步求出x .21.【解析】由锐角三角函数定义得CD =,BD AD =,再由36BC CD BD AD =-==米,即可求出AD 的长.解:60EAB ∠=︒ ,30EAC ∠=︒,9060CAD EAC ∴∠=︒-∠=︒,9030BAD EAB ∠=︒-∠=︒,tan CD AD CAD ∴=⋅∠=,tan BD AD BAD AD =⋅∠=,36BC CD BD AD ∴=-==米,AD ∴=(米).答:无人机的飞行高度AD 为米.本题考查了解直角三角形的应用中的仰角俯角问题,掌握仰角俯角定义和锐角三角函数定义.22.9m【解析】连接GD ,并延长交BC 于点H ,证明BH =GH ,设BC =x ,则BH =x -1.5,用x 表示出GH 、BH 、EC 、DH ,根据tan DE BC BAE AE AC∠==列出关于x 的方程,解方程即可得出BC .解:连接GD ,并延长交BC 于点H ,∵GF ⊥CF ,DE ⊥CF ,HC ⊥FC ,∴GF DE HC ∥∥,∵GF =DE ,∴四边形DEFG 为平行四边形,∵∠GFE =90°,∴四边形DEFG 为矩形,∴DG =EF ,∵1m AE =, 1.5m AF =,∴ 2.5m DG EF AE AF ==+=,∵∠DEC =∠EDH =∠ECH =90°,∴四边形DECH 为矩形,∴∠DHC =90°,DH =CE ,DE =CH =1.5m ,∴∠DHB =90°,∵∠BGH =45°,∴∠GBH =45°,∴∠BGH =∠GBH ,∴GH =BH ,设BC =x ,则BH =x -1.5,∴GH =BH =x -1.5,∴EC =DH =GH -DG =x -1.5-2.5=x -4,∴143AC AE EC x x =+=+-=-,∵tan DE BC BAE AE AC ∠==,∴1.513x x =-,解得:9x =,即楼高BC 为9m .本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,解直角三角形,根据tan DE BC BAE AE AC∠==列出关于x 的方程,是解题的关键.23.(1)见解析(2)O 的半径为【解析】(1)根据矩形的性质得出∠ABC =90°,由等腰三角形的性质得出∠EAO =∠AEO ,∠CEB =∠ACB ,证出∠OEB =90°,则可得出结论;(2)证明△BCE 为等边三角形,由等边三角形的性质得出∠CBE =60°,CB =BE =6,由直角三角形的性质可得出答案.(1)证明:连接OE ,∵四边形ABCD 是矩形,∴90ABC ∠=︒,∵OA OE =,BE BC =,∴EAO AEO ∠=∠,CEB ACB ∠=∠,∴90ACB CAB AEO CEB ∠+∠=∠+∠=︒,∴90OEB ∠=︒,∵OE 为O 的半径,∴BE 是O 的切线;(2)解:∵30CAB ∠=︒,90ABC ∠=︒,∴60ACB ∠=︒,∵BC BE =,∴BCE 为等边三角形,∴60CBE ∠=︒,6CB BE ==,∴30OBE ∠=︒,∴tan 30OE BE =︒=∴6OE ==O 的半径为本题考查了切线的判定,矩形的性质、直角三角形的边角关系以及特殊锐角三角函数值,掌握直角三角形的边角关系以及矩形、等腰三角形的性质是解题的关键.24.(1)见解析(2)13【解析】(1)由折叠的性质得90AFE D ∠=∠=︒,进而得出BAF CFE ∠=∠,即可证明△ABF ∽△FCE ;(2)设DE x =,则3EC x =-,由折叠的性质知,EF DE x ==,5AF AD ==,利用勾股定理求出BF ,进而求出CF ,在△CEF 中根据勾股定理列方程求出x ,则tan DE DAE AD∠=.(1)证明:∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由折叠的性质知,90AFE D ∠=∠=︒,∴90CFE AFB ∠+∠=︒,90BAF AFB ∠+∠=︒,∴BAF CFE ∠=∠.在△ABF 和△FCE 中,BAF CFE B C ∠=∠⎧⎨∠=∠⎩,∴△ABF ∽△FCE ;(2)解:∵矩形ABCD 中,AB =3,AD =5,∴3DC AB ==,5BC AD ==,设DE x =,则3EC x =-,由折叠的性质知,EF DE x ==,5AF AD ==,由勾股定理得,4BF ===,∴541FC BC BF =-=-=,在△CEF 中,由勾股定理得:222EF EC CF =+,即()22231x x =-+,解得53x =,∴53DE =,∴511tan 353DE DAE AD ∠==⨯=.本题考查矩形的性质,折叠的性质,相似三角形的判定,勾股定理,三角函数解直角三角形等知识点,利用折叠的性质得出90AFE D ∠=∠=︒,EF DE =,AF AD =是解题的关键.。
人教版九年级数学下册第28章锐角三角函数28.2解直角三角形及其应用复习练习及答案
第28章锐角三角函数28.2 解直角三角形及其应用1. 在厶ABC中,/ A=120° AB=4 AC=2 贝卩sinB 的值是()A. 口B .-i C .2 D14 5 7 142. 在Rt△ ABC中,/ C=90 ,若AB=4 sinA=?,则斜边上的高等于()5A. 64 B .兰C . 16 D . 1225 25 5 53. 如图,在Rt△ ABO中,斜边AB= 1,若OC/ BA / AOC= 36°,贝S ()A. 点B到AO的距离为sin 54B. 点B到AO的距离为tan 36 °C. 点A到OC的距离为sin 36 ° sin 54D. 点A到OC的距离为cos 36 sin 544. 如图是教学用直角三角尺,边AC= 30 cm,/ C= 90° tan / BAC=则边BC的长为()A. 30 3 cm B . 20 3 cm C . 10 3 cm D . 5 3 cm\[2 35. 如图,在△ ABC中,cos B= ,sin C= , AC= 5,则厶ABC的面积是()2 5A.fB. 12C. 14D. 21 6•河堤横断面如图所示,堤高BC= 6 m,迎水坡AB的坡比为1 : 3,则AB的长为()A. 12 m B . 4 3 m C . 5 3 m D . 6 3 m7. 如图,在两建筑物之间有一旗杆,高15 m,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角a为60°,又从A点测得D点的俯角B为30°,若旗杆底部G为BC的中点,则矮建筑物的高CD为()A. 20 m B . 10 3 m C . 15 3 m D . 5 6 m8. 一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20 n mile,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A. 10:3 n mile/h B .30 n mile/h C . 20 ';3 n mile/h D . 30 : 3n mile/h9. 从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是(A. (6+2 .3) 米B (6+3 .3) 米C (6+6 .3 )米D . 12 米10. 如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30° 则B、C两地之间的距离为()3A. 100 3 m B 50 2m C. 50 3m D .咛11. 在Rt△ ABC中,CA= CB AB=込/2,点D在BC边上,连接AD 若tan1/ CAD= 3,贝y BD的长为 _____ .12. 在平面直角坐标系中,点A的坐标为(3 , 0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC= 2,设tan / BOC= m则m的取值范围是________ .13. 在等腰三角形ABC中,/ A= 30°, AB= 8,贝S AB边上的高CD的长是14. 在Rt△ ABC中,/ C=90 , tanA = 4, BC=8 则厶ABC的面积为.315. 等腰三角形的一腰长为6cm,底边长为673cm则其顶角为___________ .16. 在Rt△ ABC中,/ ACB=90 , CDLAB于点D.已知AC=5 , BC=2 那么sin / ACD= _____17. 如图,在Rt△ ABC中,/ C=90°, D为BC上一点,/ DAC=30 , BD=2 AB= 2怎,贝S AC的长是_______ .18. 如图,从地面上点A处测得山顶上铁塔BD的塔顶和塔底的仰角分别为B =60°和a =45°,已知塔高BD=100m那么山高CD= m .(结果保留根号)19. 如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C 点处的俯角为45°.则海底C点处距离海面DF的深度为________ 米(结果精确到个位,参考数据:2〜1.414 , . 3〜1.732 , 〜2.236 )…字二…一/产'即~~时•、\I 、20. 如图,一幢大楼的顶部竖有一块写有“校训”的宣传牌CD小明在山坡的底部A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45° .已知山坡AB垂直于视线AD AB=20米,AE=30米,则这块宣传牌CD的高度为________________ 米.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2〜1.414 , 3〜1.732 ).21. 如图,在△ ABC中,CDLAB 垂足为D.若AB=12 CD=6 tanA=?,求2 sinB+cosB 的值.22. 已知:如图,Rt△ AOB中,/ 0=90,以0A为半径作O Q BC切OO于点C,连接AC交QB于点P.(1) 求证:BP=BC(2) 若sin / PAQ= 1,且PC=7 求OO 的半径.323. 如图,已知某小区的两幢10层住宅楼间的距离为AC= 30 m,由地面向上依次为第1层、第2层,…,第10层,每层高度为3 m假设某一时刻甲楼在乙楼侧面的影长h m.(1)用含a的式子表示h;(不必指出a的取值范围)⑵当a= 30°时,甲楼楼顶B点的影子落在乙楼的第几层?若a每小时增加15°,从此时起几小时后,甲楼的影子刚好不影响乙楼采光?24. 如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、ND 在同一条直线上).求出旗杆MN勺高度.(参考数据:2〜1.4…3〜1.7 , 结果保留整数.)26.如图,在楼房AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角a为45° .从距离楼底B点1米的P点处经过树顶E点恰好看到塔的顶部C点,且仰角B为30°.已知树高EF=6米,求塔CD的高度.(结果保留根号)[Um答案:1 —10 DBCCA AADCA 11.612.5 m^-2"13.^3^或4 或4 314.2415. 120°16.二3 17. 318. 50 ( 3+1)19. 260020. 5.421. 解:在 Rt △ ACD 中,T/ADC=90,二 tanA 二 CD - 3,二 AD=4 AD AD 2••• BD=AB -AD=12-4=8 在 Rt △BCD 中,BDC=90 , BD=8 CD=6 BC= BD 2 CD 2 =10, • sinB 二 CD 3 , cosB=BD - , • sinB+cosB=3+« =7 . BC 5BC5 5 5 5 22. (1)证明:连接 OC T BC 是O O 切线,•/0(B=90°,「./OCA / BCA=90 , T OA=O , •/ OCA / OAC / BOA=90,•/ OAC+APO=90,T / APO / BPC •/ OAC / BPC=90,•/ BPC / BCA 二 BC=BP(2)解:延长 AO 交O O 于点 E ,连接 CE 在 Rt △ AOP 中, T sin / PAO=,3设 OP=x AP=3x 贝y AO=22x ,T AO=OE 二 OE=22x ,「. AE=^2x , 解得:x=3,・ AO=6 2 .23. 解:(1)如图,过点E 作EF ±AB 于点F.由题意可知,四边形 ACEF 为矩形,• EF = AC= 30, AF = CE= h ,Z BEF= T AB= 3X 10= 30,・ BF = AB- AF = 30- h.T sin / PAO=,3CE = 1 AE 3 AC 2一2 . 3x 7= .・ --------- - AE 3 '3「• h = 30— 30tan a .⑵ 当 a = 30° 时,h = 30 — 30tan 30 ° = 30 — 30^3〜12.7.3T 12.7 — 3~4.2,二当a= 30°时,B 点的影子落在乙楼的第五层.当 h = 0 时,30 — 30ta n a= 0,得 a= 45 °,Ta 每小时增加15°,二从此时起1小时后,甲楼的影子刚好不影响乙楼采光.24. 解:过点A 作AE± MN 于 E ,过点C 作CF 丄MN 于 F ,则 EF=AB-CD=1.7-1.5=0.2 (m ),在 Rt △ AEM 中, v/ AEM=90 , / MAE=45 , • AE=ME 设 AE=ME=xm 贝S MF=(x+0.2 ) m , FC= (28-x ) m在 Rt △ MFC 中, v/ MFC=90,/ MCF=30,二 MF=CF?ta / MCF• x+0.2二乜 (28-x ),解得 9.7,二 MN 二ME+EN=9.7+1.711 米.又•••在 Rt △ BEF 中,tan / BEF = ||, ••• tan a= 30—1,即 30— h = 30tan a, 30答:旗杆MN 的高度约为11米.解:由题意可知/ BAD W ADB=45,二 FD 二EF 二米,在 Rt △ PEH 中, tan B =CG ,二CG=( 5 3+6)?二=5+2 3,:. CD=( 6+2.3 ) 米. PG 326. tan B =EH PHBF ,八 BF =: 5 3,二 PG=BD=BF+FD=35+6, 在 RT A PCG K。
第二十八章 锐角三角函数++++复习课件+2024—2025学年人教版数学九年级下册
会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,
用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E
的高度可控制“天幕”的开合,AC=AD=2 m,BF=3 m.
【解析】原式=1-2 + =1- .
9
维度2基本技能(方法)、基本思想的应用
4.(2023·攀枝花中考)△ABC中,∠A,∠B,∠C的对边分别为a,b,c.已知a=6,b=8,c=10,
则cos A的值为( C )
3
A.
5
3
B.
4
4
C.
5
4
D.
3
5. (2023·陕西中考)如图,在6×7的网格中,每个小正方形的边长均为1.
答:遮阳宽度CD约为3.6 m;
13
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1 m).(参考数据:
sin 65°≈0.9,cos 65°≈0.42,tan 65°≈2.14, 2≈1.41)
【解析】(2)如图,
过点E作EH⊥AB于H,∴∠BHE=90°,
12
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1 m);
【解析】(1)由对称知,CD=2OD,AD=AC=2 m,∠AOD=90°,
在Rt△AOD中,∠OAD=∠α=65°,∴sin
α= ,
∴OD=AD·sin α=2×sin 65°≈2×0.9=1.8(m),∴CD=2OD=3.6 m,
3
课标 内容要求
人教版九年级下《第28章锐角三角函数》复习学案(含答案).doc
3121第28章 锐角三角函数复习学案【学习目标】1.理解锐角三角函数的定义,会用锐角三角函数值解决实际问题,能运用相关知识解直角三角形,会用解直角三角形的有关知识解决某些实际问题.2.运用数形结合思想、分类讨论思想和数学建模思想解决问题,提升思维品质,形成数学素养.3.解直角三角形有关知识解决实际应用问题,提升分析问题、解决问题的能力. 【重点难点】重点:从实际问题中提炼图形,将实际问题数学化,将抽象问题具体化. 难点:运用解直角三角形的知识灵活、恰当地选择关系式解决实际问题. 【新知准备】根据自己的理解构思出本章的知识架构 【课堂探究】 一、自主探究 1、如右图,在Rt △ABC 中,∠C 为直角,则∠A 的 锐角三角函数为(∠A 可换成∠B ):2、30°、45°、60°特殊角的三角函数值:3、解直角三角形方法:Rt △ABC (∠C =90°)的边、角之间有哪些关系:4、相关概念:(1)仰角: (2)俯角: (3)坡角: (4)坡度:二、尝试应用考点一,锐角三角函数的定义1、在Rt △ABC 中,∠C =90°,a =2,sin A = ,求cos A 和tan A 的值.2、如图所示,∠BAC 位于6×6的方格纸中,则tan ∠BAC =____.考点二 特殊角的三角函数值的考查3、已知sin A = ,且∠A 为锐角,则∠A 的度数为60tan 45cos30sin )1(42⋅-、对边邻边bAABC3αtan 30αtan 30αsin 3022)145(sin 230tan 3121)2(-+--5、锐角A 满足tan(A -15)o=,求∠A 的度数。
考点三 解直角三角形6、如图,为测楼房BC 的高,在距楼房30米的A 处测得楼顶的仰角为α ,则楼高BC 为( )米A B C考点四 解直角三角形在实际中的应用7、根据图中所给的数据,求避雷针CD 的长。
人教版九年级数学下册第28章:锐角三角函数全章测试含答案(20200714090018)
A. 2
B.
3
3
C.
2
1
D. 1
6
10. P 为⊙ O外一点, PA、 PB分别切⊙ O于 A、B 点,若∠ APB= 2,⊙ O的半径为 R,则 AB的长为 ( )
A. Rsin tan
二、填空题
B. R tan sin
C. 2Rsin tan
D. 2R tan sin
11. 计算: sin 60 cos30 1
.
2
12. △ ABC 中, ∠C
90 ,若 tan A
1 ,则 sin A
______
2
13. 已知山坡的坡度 i =1: 3 ,则坡角为 ________.
14. 在△ ABC中,∠ C= 90°,∠ ABC=60°,若 D是 AC边中点,则 tan ∠ DBC的值为 ______.
15. 在 Rt△ ABC中,∠ C= 90°, a= 10,若△ ABC的面积为 50 3 ,则∠ A= ______度. 3
底边 时 sad A =
BC . 容易知道一个角的大小与这个角的正对值也是相互唯一确定的
.
A
腰 AB
根据上述对角的正对定义,解下列问题:
( 1) sad 60 的值为(
1
) A.
2
B. 1 C.
3
D. 2
2
( 2)对于 0 A 180 ,∠ A 的正对值 sad A 的取值范围是
.
( 3)已知 sin
B处,测得海中灯塔 P在北偏东 30°方向上, 则灯塔 P 到环海路的距离 PC=
米(用根号表示) .
20. 在数学活动课上, 小敏, 小颖分别画了△ ABC ?和△ DEF ,数据如图 7 ,如果把小敏画的三角形面积
人教版九年级数学下第二十八章 锐角三角函数单元练习题(含答案)含答案
人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案)含答案一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A.30°B.45°C.60°D.90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A.5米B.6米C.6.5米D.12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A.2 kmB.(2+)kmC.(4-2) kmD.(4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A.100tanα米B.100cotα米C.100sinα米D.100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A =;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A 到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC +CE即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·cos 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN =,故cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.人教版九年级数学下第二十八章锐角三角函数单元复习卷(含答案)一、选择题1.在△ABC中,∠C=90°,tan A=,则cos A的值为()A.B.C.D.2.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50 m至D处,测得最高点A的仰角为60°.问摩天轮的高度AB约是()(结果精确到1 米,参考数据:≈1.41,≈1.73)A.120米B.117米C.118米D.119米3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tan A等于()A.B.2C.D.4.如图,每个小正方形的边长为1,点A、B、C是小正方形的顶点,则∠ABC的正弦值为()A.B.C.D.不能确定5.在Rt△ABC中,∠C=90°,则tan A·tan B等于()A.0B.1C.-1D.不确定6.在Rt△ABC中,∠C=90°,∠A=∠B,则sin A的值是()A.B.C.D.17.如图,水库大坝截面的迎水坡AD的坡比为4∶3,背水坡BC的坡比为1∶2,大坝高DE =20 m,坝顶宽CD=10 m,则下底AB的长为()A.55 mB.60 mC.65 mD.70 m8.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.9.当锐角a<60°,sin a的值()A.小于B.大于C.小于D.大于10.在Rt△ABC中,∠C=Rt∠,若BC∶AC=3∶4,BD平分∠ABC交AC于点D,则tan∠DBC 的值为()A.B.C.D.二、填空题11.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是________.12.某船自西向东航行,在A处测得某岛B在北偏东60°的方向上,前进8海里后到达C,此时,测得海岛B在北偏东30°的方向上,要使船与海岛B最近,则船应继续向东前进____________海里.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.在Rt△ABC中,斜边AB的长是8,cos B=,则BC的长是__________.15.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时,B处与灯塔P的距离约为__________ n mile.(结果取整数,参考数据:≈1.7,≈1.4)16.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.则BC的长____________.17.在△ABC中,∠ACB=90°,若tan A=,则cos A=__________.18.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.19.已知0<α<90°,且tanα=,则∠α=________.20.在Rt△ABC中,∠ABC=90°,AB=4BC,则sin A=__________.三、解答题21.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.22.在锐角△ABC中,AB=15,BC=14,S△ABC=84,求:(1)tan C的值;(2)sin A的值.23.如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.24.如图,海中一渔船在A处且与小岛C相距70 nmile,若该渔船由西向东航行30 nmile到达B处,此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.25.我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)26.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.27.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)28.小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.(1)求出大厦的高度BD;(2)求出小敏家的高度AE.答案解析1.【答案】D【解析】如图,∵tan A==,∴设BC=x,则AC=3x,∴AB==x,∴cos A===.故选D.2.【答案】C【解析】在Rt△ABC中,由∠C=45°,得AB=BC,在Rt△ABD中,∵tan ∠ADB=tan 60°=,∴BD===AB,又∵CD=50 m,∴BC-BD=50,即AB AB=50,解得AB≈118.即摩天轮的高度AB约是118米.故选C.3.【答案】B【解析】∵∠C=90°,AB=,AC=1,∴BC==2,则tan A==2,故选B.4.【答案】B【解析】如图,连接AC,根据勾股定理可以得到AC=AB=,BC=2.∵()2+()2=(2)2.∴AC2+AB2=BC2.∴△CAB是等腰直角三角形.∴∠ABC=45°,∴∠ABC的正弦值为.故选B.5.【答案】B【解析】根据正切函数的定义,利用△ABC的边表示出两个三角函数,即可求解.tan A·tan B=·=1,故选:B.6.【答案】B【解析】∵∠C=90°,∠A=∠B,∴∠A=45°,∴sin 45°=.故选B.7.【答案】C【解析】∵DE=20 m,DE∶AE=4∶3,∴AE=15 m,∵CF=DE=20 m,CF∶BF=1∶2,∴BF=40 m,∴AB=AE+EF+BF=15+10+40=65 m.故选C.8.【答案】D【解析】过A作AB⊥x轴于B,∵A(4,3),∴PB=3,OB=4,由勾股定理得OA==5,所以cosα==.故选D.9.【答案】A【解析】∵sin 60°=,a<60°,∴sinα<sin 60°=.故选A.10.【答案】B【解析】作DE⊥AB于E,在Rt△ABC中,设BC为3x,则AC为4x,根据勾股定理,AB=5x,设CD为a,BD平分∠ABC,则DE=CD=a,AD=4x-a,AE=5x-3x=2x,在Rt△ADE中,AD2=DE2+AE2,即(4x-a)2=a2+(2x)2,解得a=x,∴tan∠DBC===,故选B.11.【答案】【解析】∵在△ABC中,∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==.12.【答案】4【解析】根据题意画出图形,过B作BD⊥AD,如图所示,∵∠BAC=30°,∠BCD=60°,且∠BCD为△ABC的外角,∴∠ABC=∠BCD-∠BAC=30°,∴∠CAB=∠CBA,又AC=8海里,∴AC=BC=8海里,在直角三角形BCD中,BC=8海里,∠BCD=30°,∴CD=BC=4海里,则要使船与海岛B最近,则船应继续向东前进4海里.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】【解析】在Rt△ABC中,∵∠C=90°,AB=8,cos B=,∴=,∴BC=.15.【答案】102【解析】过P作PD⊥AB,垂足为D,∵一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,∴∠MPA=∠PAD=60°,∴PD=AP·sin ∠PAD=86×=43,∵∠BPD=45°,∴∠B=45°.在Rt△BDP中,BP===43×≈102(n mile).16.【答案】2+1【解析】∵在△ABC中,AD是BC边上的高,∴AD⊥BC,即∠ADB=∠ADC=90°,在Rt△ACD中,∠C=45°,∴∠DAC=45°,∴DC=AD=1,在Rt△ABD中,sin B=,AD=1,∴sin B==,即AB=3,根据勾股定理,得BD==2,则BC=BD+DC=2+1.17.【答案】【解析】∵tan A=,∴设b=x,则a=2x,根据a2+b2=c2,得c=x.∴cos A===.故答案为.18.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.19.【答案】30°【解析】∵tanα=,0<α<90°,∴α=30°.20.【答案】【解析】因为Rt△ABC中,∠ABC=90°,AB=4BC,所以AC==BC,所以sin A===.21.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC 的长即可.22.【答案】解(1)过A作AD⊥BC于点D.∵S△ABC=BC·AD=84,∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14-9=5.在Rt△ADC中,AC==13,∴tan C==.(2)过B作BE⊥AC于点E.∵S△ABC=AC·EB=84,∴BE=,∴sin ∠BAC===.【解析】(1)过A作AD⊥BC于点D,利用面积公式求出高AD的长,从而求出BD、CD、AC 的长,此时再求tan C的值就不那么难了.(2)同理作AC边上的高,利用面积公式求出高的长,从而求出sin A的值.23.【答案】解设建筑物AB的高度为x米.在Rt△ABD中,∠ADB=45°,∴AB=DB=x.∴BC=DB+CD=x+60.在Rt△ABC中,∠ACB=30°,∴tan ∠ACB=,∴tan 30°=,∴=,3x=(x+60)=x+60,(3-)x=60,x==30+30,∴x=30+30.经检验,x=30+30是分式方程的解.∴建筑物AB的高度为(30+30)米.【解析】设建筑物AB的高度为x米,在Rt△ABD中可得出AB=DB=x,在Rt△ABC中根据tan ∠ACB的值可求出x的值.24.【答案】解过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt△BCD中,BD=BC·sin 30°=x,CD=BC·cos 30°=x;∴AD=30+x,∵AD2+CD2=AC2,即+=702,解之得x=50(负值舍去),答:渔船此时与C岛之间的距离为50海里.【解析】过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,解直角三角形即可得到结论.25.【答案】解(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°-∠BAC-∠CBA=30°,∴BH=BC×sin ∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan ∠BAH==,∴AH=25海里,∴AD=DH-AH=(75-25)(海里).答:执法船从A到D航行了(75-25)海里.【解析】(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长即为所求;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.26.【答案】解如图,过点A作AD⊥BC的延长线于D,S△ABC=BC·AD=×6×AD=12,解得AD=4,在Rt△ABD中,BD===4,tan B===.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.27.【答案】解由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC-∠EBC=60°-30°=30°.又∵∠BCD=90°,∴∠BDC=90°-∠DBC=90°-60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=x m,则DE=BE=2EC=2x m,DC=EC+DE=x+2x=3x m,BC===x,由题意知,∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC.∴x+60=3x,解得x=30+10,2x=60+20.答:塔高约为(60+20)m.【解析】先求出∠DBE=30°,∠BDE=30°,得出BE=DE,然后设EC=x m,则BE=2x m,DE =2x m,DC=3x m,BC=x m,然后根据∠DAC=45°,可得AC=CD,列出方程求出x的值,然后即可求出塔DE的高度.28.【答案】解(1)如题图,∵AC⊥BD,∴BD⊥DE,AE⊥DE,∴四边形AEDC是矩形,∴AC=DE=20米,∵在Rt△ABC中,∠BAC=45°,∴BC=AC=20米,在Rt△ACD中,tan 30°=,∴CD=AC·tan 30°=20×=20(米),∴BD=BC+CD=20+20(米);∴大厦的高度BD为(20+20)米;(2)∵四边形AEDC是矩形,∴AE=CD=20米.∴小敏家的高度AE为20米.【解析】(1)易得四边形AEDC是矩形,即可求得AC的长,然后分别在Rt△ABC与Rt△ACD 中,利用三角函数的知识求得BC与CD的长,继而求得答案;(2)结合(1),由四边形AEDC是矩形,即可求得小敏家的高度AE.人教版九年级下册第二十八章《锐角三角函数》单元测试一、选择题1、3tan60°的值为()A. B. C. D.32、sin45°的值等于()A. B.1 C. D.3、在直角△ABC中,∠C=90°,∠A、∠B与∠C的对边分别是a、b和c,那么下列关系中,正确的是()A.cosA= B.tanA= C.sinA= D.cosA=4、在4×4网格中,∠α的位置如图所示,则tanα的值为()A. B. C.2 D.5、如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A. B. C. D.6、在Rt△ABC中,∠C=90º,,则的值为A. B.C.D.7、在Rt△ABC中,∠C=90°,sinA=,BC=6,则AB=()A.4 B.6 C.8 D.108、将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A. 3cm B. 6cm C.cm D.cm9、如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里 B.(10-10)海里 C.10海里 D.(10-10)海里二、填空题10、计算:= .11、如下图:直角三角形纸片的两直角边长分别为4,8,现将如图那样折叠,使点与点重合,折痕为,则的值是.12、如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=__________]m.13、.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为.14、如图,河坝横断面迎水坡AB的坡比是1:,堤高BC=5米,则坝底AC的长度是米.15、全球最大的关公塑像矗立在荆州古城东门外,如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为___米.(参考数据:tan78°12′≈4.8)16、如图,正方形ABCD的边长为4,点M在边DC上,M、N两点关于对角线AC对称,若DM=1,则tan∠ADN= .三、计算题17、计算:3tan30°﹣2tan45°+2sin60°+4cos60°.18、计算:.四、简答题19、在Rt△ABC中,∠C=90°,BC∶AC=3∶4,求∠A的三个三角函数值.20、如图,九(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度,标杆与旗杆的水平距离,人的眼睛与地面的高度,人与标杆的水平距离,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆的高度.21、小刚学想测量灯杆AB的高度,结果他在D处时用测角仪测灯杆顶端A的仰角∠AEG=30°,然后向前走了8米来到C处,又测得A的仰角∠AFG=45°,又知测角仪高1.6米,求灯杆AB的高度.(结果保留一位小数;参考数据:≈1.73)22、如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A.C之间选择一点B(A.B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m.(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示).23、山西绵山是中国历史文化名山,因春秋时期晋国介子推携母隐居于此被焚而著称,如图1,是绵山上介子推母子的塑像,某游客计划测量这座塑像的高度,由于游客无法直接到达塑像底部,因此该游客计划借助坡面高度来测量塑像的高度;如图2,在塑像旁山坡坡脚A处测得塑像头顶C的仰角为75°,当从A处沿坡面行走10米到达P处时,测得塑像头顶C的仰角刚好为45°,已知山坡的坡度i=1:3,且O,A,B在同一直线上,求塑像的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:cos75°≈0.3,tan75°≈3.7,≈1.4,≈1.7,≈3.2)24、如图,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,桥DC与桥EF的长相等.(1)求点D到直线AB的距离;(2)现在从A地到B地可比原来少走多少路程?(结果保留小数点后一位.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80).25、甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.26、如图,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在北偏东60°方向上,继续行驶20分钟后,到达B处又测得灯塔P在北偏东45°方向上,问客轮不改变方向继续前进有无触礁危险?参考答案一、选择题1、D【考点】特殊角的三角函数值.【分析】把tan60的数值代入即可求解.【解答】解:3tan60°=3×=3.故选D.【点评】本题考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是关键.2、D【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值得出即可.【解答】解:sin45°=,故选D.【点评】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.3、C【考点】锐角三角函数的定义.【分析】根据三角函数定义:(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.(3)正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.分别进行分析即可.【解答】解:在直角△ABC中,∠C=90°,则A、cosA=,故本选项错误;B、tanA=,故本选项错误;C、sinA=,故本选项正确;D、cosA=,故本选项错误;故选:C.【点评】此题主要考查了锐角三角函数的定义,关键是熟练掌握锐角三角函数的定义.4、C【考点】锐角三角函数的定义.【专题】网格型.【分析】根据“角的正切值=对边÷邻边”求解即可.【解答】解:由图可得,tanα=2÷1=2.故选C.【点评】本题考查了锐角三角函数的定义,正确理解正切值的含义是解决此题的关键.5、C【考点】锐角三角函数的定义.【分析】根据在直角三角形中,余弦为邻边比斜边,可得答案.【解答】解:△ABC中,∠C=90°,AB=3,BC=2,得cosB==,故选:C.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.6、B7、D【考点】解直角三角形.【分析】在直角三角形ABC中,利用锐角三角函数定义表示出sinA,将sinA的值与BC的长代入求出AB的长即可.【解答】解:在Rt△ABC中,∠C=90°,sinA==,BC=6,∴AB===10,故选D8、D9、D二、填空题10、;11、12、 5.513、.考点:解直角三角形;特殊角的三角函数值.分析:重叠部分为菱形,运用三角函数定义先求边长AB,再求出面积.解答:解:∵AC=,∴它们重叠部分(图中阴影部分)的面积为:×1=.故答案为:.14、.【解析】试题分析:∵河坝横断面迎水坡AB的坡比是1:,∴BC:A C=1:,∵堤高BC=5米,∴坝底AC=米.故答案为:.考点:解直角三角形的应用-坡度坡角问题.15、58_16、【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.【分析】M、N两点关于对角线AC对称,所以CM=CM,进而求出CN的长度.再利用∠ADN=∠DNC 即可求得tan∠ADN.【解答】解:在正方形ABCD中,BC=CD=4.∵DM=1,∴CM=3,∵M、N两点关于对角线AC对称,∴CN=CM=3.∵AD∥BC,∴∠ADN=∠DNC,∵tan=∠DNC==,∴tan∠ADN=.故答案为:.三、计算题17、原式=2.18、.解:原式=1+﹣1+2﹣=2四、简答题19、20、AB=13.5 m21、【考点】解直角三角形的应用-仰角俯角问题.【分析】设AG的长为x米,根据正切的概念分别表示出GF、GE的长,计算即可得到AG,求出AB即可.【解答】解:设AG的长为x米,在Rt△AGE中,EG==x,在Rt△AGF中,GF=AG=x,由题意得,x﹣x=8,解得,x≈10.9,则AB=AG+GB≈12.5米,答:灯杆AB的高度约为12.5米.22、解:(1)过点B作BE⊥AD于点E,∵AB=40m,∠A=30°,∴BE=AB=20m,AE==20m,即点B到AD的距离为20m;(2)在Rt△ABE中,∵∠A=30°,∴∠ABE=60°,∵∠DBC=75°,∴∠EBD=180°﹣60°﹣75°=45°,∴DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在Rt△ADC中,∠A=30°,∴DC==(10+10)m.答:塔高CD为(10+10)m.23、【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】过点P作PE⊥OB于点E,PF⊥OC于点F,设PE=x,则AE=3x,在Rt△AEP中根据勾股定理可得PE=,则AE=3,设CF=PF=m米,则OC=(m+)米、OA=(m﹣3)米,在Rt△AOC中,由tan75°=求得m的值,继而可得答案.【解答】解:过点P作PE⊥OB于点E,PF⊥OC于点F,∵i=1:3,AP=10,设PE=x,则AE=3x,在Rt△AEP中,x2+(3x)2=102,解得:x=或x=﹣(舍),∴PE=,则AE=3,∵∠CPF=∠PCF=45°,∴CF=PF,设CF=PF=m米,则OC=(m+)米,OA=(m﹣3)米,在Rt△AOC中,tan75°==,即m+=tan75°•(m﹣3),解得:m≈14.3,∴OC=14.3+≈17.5米,答:塑像的高度约为17.5米.24、【考点】解直角三角形的应用.【分析】(1)过点D作DH⊥AB于H,DG∥CB交AB于G,根据平行四边形的判定得出DCBG为平行四边形,在Rt△DGH中,根据DH=DG•sin37,即可求出点D到直线AB的距离;(2)根据(1)先求出GH、AD和AH的长,再根据两条路线路程之差为AD+DG﹣AG,代值计算即可得出答案.【解答】解:(1)如图,过点D作DH⊥AB于H,DG∥CB交AB于G,∵DC∥AB,∴四边形DCBG为平行四边形.∴DC=GB,GD=BC=11.在Rt△DGH中,DH=DG•sin37°≈11×0.60=6.60,∴点D到直线AB的距离是6.60km;(2)根据(1)得:GH=DG•cos37°≈11×0.80≈8.80,在Rt△ADH中,AD=DH≈1.41×6.60≈9.31.AH=DH≈6.60,∵两条路线路程之差为AD+DG﹣AG,∴AD+DG﹣AG=(9.31+11)﹣(6.60+8.80)≈4.9(km).即现在从A地到B地可比原来少走约4.9km.25、【考点】TB:解直角三角形的应用﹣方向角问题.【分析】(1)根据题意画出图形,再根据平行线的性质及直角三角形的性质解答即可.(2)根据甲乙两轮船从港口A至港口C所用的时间相同,可以求出甲轮船从B到C所用的时间,又知BC间的距离,继而求出甲轮船后来的速度.【解答】解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).26、解:过P作PC⊥AB于C点,如图,据题意知AB=9×=3,∠PAB=90°-60°=30°,[ ∠PBC=90°-45°=45°,∠PCB=90°,∴PC=BC.在Rt△APC中,tan 30°===,即=,∴PC=海里>3海里,∴客轮不改变方向继续前进无触礁危险.。
人教版九年级下册数学第二十八章 锐角三角函数含答案解析
人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。
人教新版九年级数学下册 单元复习 第28章 锐角三角函数 含答案
第28章锐角三角函数一.选择题(共11小题)1.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8 B.12 C.13 D.182.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.23.已知α为锐角,下列结论:(1)sinα+cosα=1;(2)若α>45°,则sinα>cosα;(3)如果cosα>,则α<60°;(4)=1﹣sinα.其中正确结论的序号是()A.(1)(3)(4)B.(2)(4)C.(2)(3)(4)D.(3)(4)4.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0 B.小于0 C.等于0 D.不能确定5.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.06.在△ABC中,∠A,∠B均为锐角,且有|tan B﹣|+(2cos A﹣1)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形7.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个8.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=2∠B.则sin B•sadA=()A.B.1 C.D.29.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A.B.C.D.10.如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB =2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米11.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.二.填空题(共8小题)12.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是.13.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.14.△ABC中,∠C=90°,tan A=,则sin A+cos A=.15.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sin B=,则DE的长为.17.如图,若△ABC和△DEF的面积分别为S1、S2,则S1:S2=.18.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2米,斜坡AB的坡度,现把图中的货物沿斜坡继续往前平移,当货物顶点D 与C重合时,恰好可把货物放平装进货厢,则BD=.19.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是m(结果保留根号);三.解答题(共5小题)20.已知α为一锐角,sinα=,求cosα,tanα.21.计算:2cos30°+sin45°﹣tan260°﹣tan45°.22.(1)已知∠A是锐角,求证:sin2A+cos2A=1.(2)已知∠A为锐角,且sin A•cos A=,求∠A的度数.23.如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tan B=(1)求AC和AB的长;(2)求sin∠BAD的值.24.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD 相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.参考答案与试题解析一.选择题(共11小题)1.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8 B.12 C.13 D.18【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.2.在Rt△ABC中,∠C=90°,若sin A=,AB=2,则AC长是()A.B.C.D.2【分析】根据∠A的正弦值得到BC的长,进而利用勾股定理得到AC长即可.【解答】解:∵∠C=90°,sin A=,AB=2,∴BC=AB×sin A=2×=,由勾股定理得:AC==.故选:A.3.已知α为锐角,下列结论:(2)若α>45°,则sinα>cosα;(3)如果cosα>,则α<60°;(4)=1﹣sinα.其中正确结论的序号是()A.(1)(3)(4)B.(2)(4)C.(2)(3)(4)D.(3)(4)【分析】根据锐角三角函数的定义、互余角的三角函数的关系、锐角三角函数的增减性、特殊角的三角函数值及绝对值的定义求解.【解答】解:(1)如果α=30°,那么sinα=,cosα=,sinα+cosα=≠1,错误;(2)∵90°>α>45°,∴0°<90°﹣α<45°<α,∴sinα>sin(90°﹣α),∴sinα>cosα,正确;(3)∵cos60°=,余弦函数随角增大而减小,∴如果cosα>,则α<60°,正确;(4)∵sinα≤1,∴sinα﹣1≤0,∴=|sinα﹣1|=1﹣sinα,正确.故正确结论的序号是(2)(3)(4).故选:C.4.若0°<∠A<45°,那么sin A﹣cos A的值()A.大于0 B.小于0 C.等于0 D.不能确定【分析】cos A=sin(90°﹣A),再根据余弦函数随角增大而减小进行分析.【解答】解:∵cos A=sin(90°﹣A),余弦函数随角增大而减小,∴当0°<∠A<45°时,sin A<cos A,即sin A﹣cos A<0.故选:B.5.α为锐角,若sinα+cosα=,则sinα﹣cosα的值为()A.B.±C.D.0【分析】将两式分别两边平方,利用sin2α+cos2α=1,求出sinαcosα的值,解答即可.【解答】解:∵sinα+cosα=,即sin2α+cos2α+2sinαcosα=2.又∵sin2α+cos2α=1,∴2sinαcosα=1.∴(sinα﹣cosα)2=sin2α+cos2α﹣2sinαcosα=1﹣2sinαcosα=1﹣1=0.∴sinα﹣cosα=0.故选:D.6.在△ABC中,∠A,∠B均为锐角,且有|tan B﹣|+(2cos A﹣1)2=0,则△ABC是()A.直角(不等腰)三角形B.等边三角形C.等腰(不等边)三角形D.等腰直角三角形【分析】直接利用特殊角的三角函数值得出∠B,∠A的度数,进而得出答案.【解答】解:∵|tan B﹣|+(2cos A﹣1)2=0,∴tan B=,2cos A=1,则∠B=60°,∠A=60°,∴△ABC是等边三角形.故选:B.7.关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0),合理利用这些公式可以将一些角的三角函数值转化为特殊角的三角函数来求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1利用上述公式计算下列三角函数①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0其中正确的个数有()A.1个B.2个C.3个D.4个【分析】直接利用已知公式法分别代入计算得出答案.【解答】解:①sin105°=sin(45°+60°)=sin60°cos45°+cos60°sin45°=×+×=,故此选项正确;②tan105°=tan(60°+45°)====﹣2﹣,故此选项正确;③sin15°=sin(60°﹣45°)=sin60°cos45°﹣cos60°sin45°=×﹣×=,故此选项正确;④cos90°=cos(45°+45°)=cos45°cos45°﹣sin45°sin45°=×﹣×=0,故此选项正确;故正确的有4个.故选:D.8.定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=2∠B.则sin B•sadA=()A.B.1 C.D.2【分析】证明△ABC是等腰直角三角形即可解决问题.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=2∠B,∴∠B=∠C=45°,∠A=90°,∴BC=AC,∴sin∠B•sadA=•=1,故选:B.9.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A.B.C.D.【分析】如图,作OH⊥AB于H.利用已知条件以及勾股定理构建方程组求出OA,OH即可解决问题.【解答】解:如图,作OH⊥AB于H.由题意:AB=8,OA﹣OH=3,∵OH⊥AB,∴AH=BH=4,∵AH2+OH2=OA2,∴42=(OA+OH)(OA﹣OH),∴OA+OH=,∴OA=,OH=,∴cos∠OAB===,故选:B.10.如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子顶端距离地面AB =2米,梯子与地面夹角α的正弦值sinα=0.8.梯子底端位置不动,将梯子斜靠在左墙时,顶端距离地面2.4米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米【分析】分别在Rt△ABC,Rt△DEC中求出AC,BC,CD即可.【解答】解:在Rt△ABC中,∵∠ABC=90°,AB=2米,∴sinα=,∴0.8=,∴AC=2.5米,BC==1.5米,在Rt△ECD中,∵∠EDC=90°,ED=2.4米,EC=AC=2.5米,∴CD==0.7,∴BD=CD+BC=0.7+1.5=2.2米,故选:C.11.如图已知斜坡AB长米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D 处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE和一条新的斜坡BE.若修建的斜坡BE的坡度为3:1,休闲平台DE的长是()米.A.20 B.15 C.D.【分析】延长DE交BC于H.解直角三角形求出BC=AC=30,再证明BH=CH=DH=30,EH=10,即可解决问题;【解答】解:延长DE交BC于H.由题意BH:EH=3:1,在Rt△ABC中,AB=60,∠BAC=45°,∵BC=AC=60,∵AD=DB,DH∥AC,∴BH=CH=30,∴DH=AC=30,∴EH=10,DE=30﹣10=20,故选:A.二.填空题(共8小题)12.在△ABC中,∠C=90°,sin A=,BC=4,则AB值是10 .【分析】根据正弦函数的定义得出sin A=,即=,即可得出AB的值.【解答】解:∵sin A=,即=,∴AB=10,故答案为:10.13.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.【解答】解:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.14.△ABC中,∠C=90°,tan A=,则sin A+cos A=.【分析】根据tan A=和三角函数的定义画出图形,进而求出sin A和cos A的值,再求出sin A+cos A的值.【解答】解:如图,∵tan A==,∴设AB=5x,则BC=4x,AC=3x,则有:sin A+cos A=+=+=,故答案为:.15.已知,在Rt△ABC中,∠C=90°,tan B=,则cos A=.【分析】根据正切的定义,可得直角边,根据勾股定理,可得斜边,根据余弦函数,可得答案.【解答】解:如图,由tan B=,得AC=4k,BC=3k,由勾股定理,得AB=5k,cos A===,故答案为:.16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CB于点F.交CD于点E.若AC=6,sin B=,则DE的长为.【分析】先由AF平分∠CAB,CD⊥AB,过点E作EG垂直于AC,利用角平分线的性质定理得EG等于DE,易得Rt△AED全等于Rt△AEG以及∠DCA等于∠B,从而求得AD,AG,CG,然后在Rt△CEG中,由勾股定理求出EG,即为DE的长度.【解答】解:过点E作EG⊥AC于点G,又∵AF平分∠CAB,CD⊥AB,∴EG=ED,在Rt△AED和Rt△AEG中,∴Rt△AED≌Rt△AEG(HL),AG=AD.∵∠ACB=90°,CD⊥AB,∴∠B+∠BAC=∠DCA+∠BAC=90°,∴∠DCA=∠B,∵AC=6,sin B=,∴sin∠DCA=sin B=,∴=,∴AD=,∴DC===,∴AG=AD=,CG=AC﹣AG=,∴在Rt△CEG中,CE2=EG2+CG2,∴(DC﹣ED)2=(DC﹣EG)2=EG2+CG2∴,∴EG=,∴DE=.故答案为:.17.如图,若△ABC和△DEF的面积分别为S1、S2,则S1:S2=1:1 .【分析】过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,根据三角函数可求AG,在Rt△ABG中,根据三角函数可求DH,根据三角形面积公式可得S1,S2,依此即可作出解答.【解答】解:过A点作AG⊥BC于G,过D点作DH⊥EF于H.在Rt△ABG中,AG=AB•sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt△DHE中,DH=DE•sin40°=8sin40°,S1=8×5sin40°÷2=20sin40°,S2=5×8sin40°÷2=20sin40°.则S1=S2.故答案为:1:118.如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图,已知长方体货厢的高度BC为2米,斜坡AB的坡度,现把图中的货物沿斜坡继续往前平移,当货物顶点D与C重合时,恰好可把货物放平装进货厢,则BD=米.【分析】利用斜坡AB的坡度得到=,进而证得△CBD∽△BAE,得到==,然后设CD=x米,则BD=3x米,在Rt△CBD中,利用勾股定理求得答案即可.【解答】解:如图,∵斜坡AB的坡度,∴=,∵∠CBD+∠ABE=90°,∠ABE+∠A=90°,∴∠CBD=∠A,∵∠CDB=∠AEB=90°,∴△CBD∽△BAE,∴==∴设CD=x米,则BD=3x米,货物顶点D与C重合,∴∠CDB=90°,在Rt△CBD中,BD2+CD2=BC2,即:x2+(3x)2=22,x=(负值舍去),∴BD=米.故答案为米.19.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知乙楼的高CD是45m,则甲楼的高AB是45m(结果保留根号);【分析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系得出答案.【解答】解:由题意可得:∠BDA=45°,则AB=AD,又∵∠CAD=30°,∴在Rt△ADC中,CD=45m.tan∠CDA=tan30°==,即=,解得:AD=45(m),∴AB=45m.故答案为:45.三.解答题(共5小题)20.已知α为一锐角,sinα=,求cosα,tanα.【分析】根据sinα=,设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出cosα的值,同理可得tanα的值.【解答】解:由sinα==,设a=4x,c=5x,则b==3x,故cosα==,tanα==.21.计算:2cos30°+sin45°﹣tan260°﹣tan45°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=2×+×﹣3﹣1=﹣3.22.(1)已知∠A是锐角,求证:sin2A+cos2A=1.(2)已知∠A为锐角,且sin A•cos A=,求∠A的度数.【分析】(1)利用三角函数的定义即可得出结论;(2)利用三角函数的定义得出c2=ab,再用勾股定理得出a2+b2=c2,进而得出a=b,即可得出结论.【解答】解:如图,在Rt△ABC中,sin A=,cos A=,根据勾股定理得,a2+b2=c2,(1)证明:sin2A+cos2A=()2+()2==1,(2)∵sin A•cos A=,∴=,∴c2=2ab,∴a2+b2=2ab,即:(a﹣b)2=0,∴a=b,在Rt△ABC中,tan A==1,∠A=45°.23.如图,在Rt△ABC中,∠C=90°,点D在BC边上,∠ADC=45°,BD=2,tan B=(1)求AC和AB的长;(2)求sin∠BAD的值.【分析】(1)由tan B==设AC=3x、BC=4x,据此得DC=4x﹣2,根据∠ADC=45°得AC=DC,即3x=4x﹣2,解之得出x的值,继而可得答案;(2)作DE⊥AB,设DE=3a、BE=4a,根据DE2+BE2=BD2可求得a的值,继而根据正弦函数的定义可得答案.【解答】解:(1)如图,在Rt△ABC中,∵tan B==,∴设AC=3x、BC=4x,∵BD=2,∴DC=BC﹣BD=4x﹣2,∵∠ADC=45°,∴AC=DC,即4x﹣2=3x,解得:x=2,则AC=6、BC=8,∴AB==10;(2)作DE⊥AB于点E,由tan B==可设DE=3a,则BE=4a,∵DE2+BE2=BD2,且BD=2,∴(3a)2+(4a)2=22,解得:a=(负值舍去),∴DE=3a=,∵AD==6,∴sin∠BAD==.24.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD 相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【分析】(1)根据已知条件得到CP=4,求得BP=2,根据三角形重心的性质即可得到结论;(2)如图1,过点B作BF∥CA交CD的延长线于点F,根据平行线分线段成比例定理得到,求得=,设CP=k,则PA=3k,得到PA=PB=3k根据三角函数的定义即可得到结论;(3)根据直角三角形的性质得到CD=BD=AB,推出△PBD∽△ABP,根据相似三角形的性质得到∠BPD=∠A,推出△DPE∽△DCP,根据相似三角形的性质即可得到结论.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则PA=3k,∵PD⊥AB,D是边AB的中点,∴PA=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.。
人教版九年级数学下册 第28章 锐角三角函数 单元复习练习及答案
第28章 锐角三角函数1.如图,在Rt △ABC 中,∠C =90°,AB =13,BC =12,则下列三角函数表示正确的是( )A .sinA =1213B .cosA =1213C .tanA =512D .tanB =1252.某段河堤的横断面如图所示,堤高BC =5 m ,迎水坡AB 的坡比为1∶3,则AC 的长是( )A .53mB .10 mC .15 mD .103m3.已知,在△ABC 中,∠C =90°.设sin B =n ,当∠B 是最小的内角时,n 的取值范围是( )A .0<n<12B .0<n<22C .0<n<33D .0<n<324.将一张矩形纸片ABCD 按如图所示的方式折起,使顶点C 落在点C′处,测量得AB =4,DE =8,则sin ∠C ′ED 的值是( ) A .2 B.12 C.22 D.325.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二踩档与第三踩档的正中间处有一条60cm 长的绑绳EF ,tan α=52,则“人字梯”的顶端离地面的高度AD 是( )A .144cmB .160cmC .180cmD .360cm6.如图,在Rt△AOB 中,两直角边OA ,OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A′O′B.若反比例函数y =kx 的图象恰好经过斜边A′B 的中点C ,S △ABO =4,tan∠BAO=2,则k 的值为( ) A. 3 B. 4 C. 6 D. 87. 如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( )A. 33B.22C.32D. 128. 如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )A .203mB .30mC .303mD .40m9.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影长为10m ,则大树的长约为 m .(结果精确到1,参考数据:2≈1.41,3≈1.73)10.如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)11.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A ,B ,O 三点,C 为ABO ︵上一点(不与O ,A 两点重合),则cosC 的值是 . 12.在Rt △ABC 中,∠C =90°,cosA =32, 则cosB = .13.若 3tan (x +10°)=1,则锐角x 的度数为____.14. 某楼梯的侧面如图所示,已测得BC 的长约为3.5米,∠BCA 约为29°,则该楼梯的高度AB 可表示为 米15. 如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是 海里16.规定:sin(-x)=-sinx ,cos(-x)=cosx ,sin(x +y)=sin x ·cosy +cosx ·siny .据此判断下列等式成立的是 (写出所有正确的序号). ①cos(-60°)=-12; ②sin75°=6+24; ③sin2x =2sinx ·cosx ;④sin(x -y)=sinx ·cosy -cosx ·siny.17. 计算:(1)sin 260°+tan45°-32cos30°-tan 260°;(2)sin30°-cos 245°+34tan 230°+sin 260°.18. 如图,在△ABC 中,∠C =90°,sinA =25,D 为AC 上一点,∠BDC =45°,DC =6,求AB 的长.19.如图,在△ABC 中,AD 是边BC 上的高,AC =BD ,已知sinC =1213,BC =12,求AD 的长.20.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(3+1) m,请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?21. 如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD,CB相交于点H,E,AH=2CH.(1)求sin B的值;(2)如果CD=5,求BE的值.答案:1---8 AABBC CDB 9. 17 10. 2.9 11. 4512. 1213. 20° 14. 3.5sin29° 15. 30 16. ② ③ ④ 17. (1)解:原式=(32)2+1-32×32-(3)2=34+1-34-3=-2. (2) 解:原式=12-(22)2+34×(33)2+(32)2=12-12+34×13+34=1.18. 解:∵∠C=90°,∠BDC =45°,∴∠DBC =45°,∴DC =BC =6. 又∵sin A =25,∴BC AB =25,∴AB =15.19. 解:∵AD⊥BC,∴△ADC 为直角三角形, 故sin C =AD AC =1213,设AD =12k ,则AC =13k ,∵AC =BD ,∴DC =BC -BD =12-13k ; 由勾股定理得(13k)2=(12k)2+(12-13k)2, 整理得6k 2-13k +6=0,解得k =23或32;∴AD =8或AD =18(不合题意,舍去).故AD=8.20. 解:如图,过点B作BD⊥AC,垂足为点D.在Rt△ABD中,∠A=30°,则AD=3BD.在Rt△BCD中,∠C=45°,则CD=BD.∵AC=AD+CD=3BD+BD=(3+1)BD=2(3+1),∴BD=2,2<2.1.故工人师傅搬运此钢架能通过这个直径为2.1m的圆形门.21. 解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD.∵AE⊥CD,∴∠CAH+∠ACH=90°.又∵∠ACB=90°,∴∠BCD+∠ACH=90°,∴∠B=∠BCD=∠CAH.∵AH=2CH,∴由勾股定理得AC=5CH,∴sin B=sin∠CAH=CHAC=55;(2)∵sin B=55,∴AC∶AB=1∶ 5.又∵CD=5,∴AB=25,∴AC=2.设CE=x(x>0),则AE=5x,则在Rt△ACE中,有x2+22=(5x)2,∴x=1,即CE=1.在Rt△ABC中,AC2+BC2=AB2,∴BC=4,∴BE=BC-CE=3.。
人教版九年级数学下册第28章锐角三角函数全章训练题含答案
人教版九年级数学下册第28章锐角三角函数全章训练题含答案1. 在Rt △ABC 中,∠C =90°,假定将各边长度都扩展为原来的2倍,那么∠A 的正弦值( D )A .扩展2倍B .增加2倍C .扩展4倍D .不变2. 如图,在△ABC 中,∠C =90°,cosB =45,那么AC ∶BC ∶AB =( A )A .3∶4∶5B .4∶3∶5C .3∶5∶4D .5∶3∶43. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为点D ,假定AC =5,BC =2,那么sin ∠ACD 的值为( A ) A.53 B.255 C.52 D.234.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,那么tan A =( D )A.35B.45C.34D.435.计算sin30°·tan45°的结果是( A )A.12B.32C.36D.246.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,那么以下结论正确的选项是( D )A .sin A =32B .tan A =12C .cos B =32D .tan B = 3 7.如图,AC 是电杆的一根拉线,测得BC =6米,∠ACB =52°,那么拉线AC 的长为( D )A.6sin52°米B.6tan52°米 C .6·cos52°米 D.6cos52°米 8.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,那么斜坡AB 的长为( B )A .43米B .65米C .125米D .24米9.在△ABC 中,∠C =90°,tan A =34,那么cos B 的值是( C ) A.45 B.34 C.35 D.4310.如图,渔船在A 处看到灯塔C 在北偏东60°方向上,渔船向正西方向飞行了12海里抵达B 处,在B 处看到灯塔C 在正南方向上,这时渔船与灯塔C 的距离是( D )A .123海里B .63海里C .6海里D .43海里11.如图,为测量B 点到河岸AD 的距离,在A 点测得∠BAD =30°,在C 点测得∠BCD =60°,又测得AC =100米,那么B 点到河岸AD 的距离为( B )A .100米B .503米 C.20033米 D .50米 12.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( B )A .(600-2503)米B .(6003-250)米C .(350+3503)米D .5003米13.在Rt △ABC 中,∠C =90°,假设AC =3,AB =5,那么cos B 的值是 __45__. 14.在△ABC 中,∠C =90°,BC =2,sin A =23,那么AC 的长是__5__. 15.如图,在空中上的点A 处测得树顶B 的仰角为α度,AC =7米,那么树高BC 为__7tan α__米.(用含α的代数式表示),第13题图) ,第14题图) ,第16题图) ,第17题图)16.如图,△ABC 中,∠C =90°,BC =4 cm ,tan B =32,那么△ABC 的面积是__12__cm 2.17.在△ABC 中,假定∠A ,∠B 满足|cos A -12|+(sin B -22)2=0,那么∠C =__75°__.18.长为4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如下图),那么梯子的顶端沿墙面降低了__(23-22)__m.19.如图,在修建平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B 的俯角为30°,平台CD 的高度为5 m ,那么大树的高度为3)__m .(结果保管根号)20.规则:sin (-x)=-sin x ,cos (-x)=cos x ,sin (x +y)=sin x ·cos y +cos x ·sin y.据此判别以上等式成立的是__②③④__.(写出一切正确的序号)①cos(-60°)=-12;②sin75°=6+24;③sin2x =2sin x ·cos x ; ④sin(x -y )=sin x ·cos y -cos x ·sin y . 21.计算:(1)sin 230°+cos 245°+3sin60°·tan45°;解:94(2)cos 230°+cos 260°tan60°·tan30°+sin 245°. 解:3222.在Rt △ABC 中,∠C =90°,a =10,c =20,解这个直角三角形. 解:∠A =30°,∠B =60°,b =10 323.假设是我国某海域内的一个小岛,其平面图如图甲所示,小明据此结构出该岛的一个数学模型如图乙所示,其中∠B =∠D =90°,AB =BC =15千米,CD =32千米.求∠ACD 的余弦值.解:衔接AC ,在Rt △ABC 中,AC =AB 2+BC 2=152千米,在Rt △ACD 中,cos ∠ACD =CD AC =32152=15,∴∠ACD 的余弦值为1524.如图,在Rt △ABC 中,∠C =90°,BC =8,tan B =12,点D 在BC 上,且BD =AD .求AC 的长和cos ∠ADC 的值.解:∵在Rt △ABC 中,BC =8,tanB =12,∴AC =4.设AD =x ,那么BD =x ,CD =8-x ,由勾股定理,得(8-x)2+42=x 2.解得x =5.∴cos ∠ADC =DC AD=3525.如图,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示衔接缆车站的钢缆.A ,B ,C 所处位置的海拔AA 1,BB 1,CC 1区分为160米,400米,1000米,钢缆AB ,BC 区分与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果准确到1米)解:依据题意知BD =400-160=240米,CB 2=1000-400=600米,在Rt△ADB 中,sin30°=BD AB ,∴AB =BD sin30°=480米,在Rt △BB 2C 中,sin45°=CB 2BC ,∴BC =CB 2sin45°=6002米,AB +BC =(480+6002)米≈1329米 26.如图,某高速公路树立中需求确定隧道AB 的长度.在离空中1500 m 的高度C 处的飞机上,测量人员测得正前方A ,B 两点处的俯角区分为60°和45°.求隧道AB 的长.(3≈1.73) 解:∵OA =1500×tan30°=5003,OB =OC =1500,∴AB =1500-5003≈1500-865=635(m)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版 九年级数学 第28章 锐角三角函数 章末复习一、选择题1. (2019•天津) 60sin 2的值等于A .1B .2C .3D .22. (2020·杭州)如图,在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B3. 一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米4. (2019•山东威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB 的长度,下列按键顺序正确的是A .B .C .D .5. (2019•江苏苏州)如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30,则教学楼的高度是A .55.5mB .54mC .19.5mD .18m6. (2020•湘西州)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边AB =a ,BC =b ,∠DAO =x ,则点C 到x 轴的距离等于( )A .a cos x +b sin xB .a cos x +b cos xC .a sin x +b cos xD .a sin x +b sin x7. (2019·浙江杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于A .asinx+bsinxB .acosx+bcosxC .asinx+bcosxD .acosx+bsinx8. (2019·浙江温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为CA.95sinα米B.95cosα米C.59sinα米D.59cosα米二、填空题9. 如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=________.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1 m,则旗杆高BC为__________m.(结果保留根号)11. (2019•湖北随州)计算:(π–2019)0–2cos60°=__________.12. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C 的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)13. (2019·浙江舟山)如图,在△ABC中,若∠A=45°,AC2–BC2 AB2,则tanC=__________.14. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点.当⊙APB为直角三角形时,AP=________.三、解答题15. 如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B、C、E在同一水平直线上),已知AB=80 m,DE=10 m,求障碍物B、C两点间的距离.(结果精确到0.1 m,参考数据:2≈1.414,3≈1.732)16. (2019•山东潍坊)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1AB的高度AE降低AC=20米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)17. (2019•铜仁)如图,A 、B 两个小岛相距10km ,一架直升飞机由B 岛飞往A 岛,其飞行高度一直保持在海平面以上的hkm ,当直升机飞到P 处时,由P 处测得B 岛和A 岛的俯角分别是45°和60°,已知A 、B 、P 和海平面上一点M 都在同一个平面上,且M 位于P 的正下方,求h(≈1.732)人教版 九年级数学 第28章 锐角三角函数 章末复习-答案一、选择题 1. 【答案】B【解析】锐角三角函数计算, 60sin 2=2×23=3,故选A .2. 【答案】B【解析】本题考查了锐角三角函数,因为sinB =b c,所以b =csinB ,因此本题选B .3. 【答案】B 【解析】⊙斜坡AB 的坡角是10°,∴选项A 是错误的;⊙坡度=坡比=坡角的正切,∴选项B 是正确的;⊙AC = 1.2tan10°米,∴选项C 是错误的;⊙AB = 1.2sin10°米,∴选项D 是错误的.4. 【答案】 A 【解析】在△ABC 中,sinA=sin20°=BC AB ,∴AB =sin 20BC ︒=2sin 20︒,∴按键顺序为:2÷sin20=, 故选A .5. 【答案】C【解析】过D 作DE AB ⊥交AB 于E,DE BC ==在Rt ADE △中,tan30AEDE=,18(m)AE ∴==,18 1.519.5(m)AB ∴=+=,故选C .6. 【答案】A【解析】本题考查了矩形的性质、坐标与图形性质、三角函数定义等知识;熟练掌握矩形的性质和三角函数定义是解题的关键.作CE ⊥y 轴于E ,如图:∵四边形ABCD 是矩形,∴CD =AB =a ,AD =BC =b ,∠ADC =90°,∴∠CDE +∠ADO =90°,∵∠AOD =90°,∴∠DAO +∠ADO =90°,∴∠CDE =∠DAO =x ,∵sin ∠DAO OD AD =,cos ∠CDE DECD=,∴OD =AD ×sin ∠DAO =b sin x ,DE =D ×cos ∠CDE =a cos x ,∴OE =DE +OD =a cos x +b sin x ,∴点C 到x 轴的距离等于a cos x +b sin x ;CA因此本题选A.7. 【答案】D【解析】如图,过点A作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cosx+b•sinx,故选D.8. 【答案】B【解析】如图,作AD⊥BC于点D,则BD32=+0.395=,∵cosαBDAB=,∴cosα95AB=,解得AB95cosα=米,故选B.二、填空题9. 【答案】22【解析】如解图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴BC=AB2-AC2=62-22=42,∵∠D=⊙A,∴tan D=tan A=BCAC=422=2 2.10. 【答案】103+1【解析】如解图,过点A作AE⊙BC,垂足为点E,则AE =CD=10 m,在Rt△AEB中,BE=AE·tan60°=10×3=10 3 m,∴BC=BE +EC=BE+AD=(103+1)m.11. 【答案】0【解析】原式=1–2×=1–1=0,故答案为:0.12. 【答案】208【解析】在Rt△ABD中,BD=AD·tan∠BAD=90×tan30°=303,在Rt△ACD中,CD=AD·tan∠CAD=90×tan60°=903,BC=BD+CD=303+903=1203≈208(米).13.【解析】如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2–BC2=(AD+DC)2–(DC2+BD2)=AD2+DC2+2AD•DC–DC2–BD2=2AD•DC=2BD•DC,∵AC2–BC2=,∴2BD•DC=2BD2,∴DC =BD,∴tan BDC DC=== 故答案为14. 【答案】3或3 3 或37 【解析】如解图,∵点O 是AB 的中点,AB =6,∴AO =BO =3.①当点P 为直角顶点,且P 在AB 上方时,∵∠1=120°,∴∠AOP 1=60°,∴△AOP 1是等边三角形,∴AP 1=OA =3;②当点P 为直角顶点,且P 在AB 下方时,AP 2=BP 1=62-32=33;③当点A 为直角顶点时,AP 3=AO·tan ∠AOP 3=3×3=33;④当点B 为直角顶点时,AP 4=BP 3=62+(33)2=37.综上,当△APB 为直角三角形时,AP 的值为3或3 3 或37.三、解答题15. 【答案】解:如解图,过点D 作DF⊙AB ,垂足为点F ,则四边形FBED 为矩形,(1分) ∴FD =BE ,BF =DE =10,FD ∥BE ,(2分)第12题解图由题意得:⊙FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =⊙FDC =30°,(3分)在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°,∵tan ∠DCE =DECE,(4分)∴CE =10tan 30°=103,(5分)在Rt △AFD 中,∠AFD =90°,∠ADF =⊙FAD =45°, ∴FD =AF ,又⊙AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,(6分) ∴BC =BE -CE =FD -CE =70-103≈52.7(m ).(7分) 答:障碍物B 、C 两点间的距离约为52.7 m .(8分)16. 【答案】∵∠AEB=90°,AB=200,坡度为1∴tan ∠3=,∴∠ABE=30°,∴AE=12AB=100,∵AC=20,∴CE=80,∵∠CED=90°,斜坡CD 的坡度为1:4, ∴14CE DE =,即8014ED =,解得ED=320,∴米,答:斜坡CD 的长是17. 【答案】由题意得,∠A=30°,∠B=45°,AB=10km ,在Rt △APM 和Rt △BPM 中,tanA=h AM tanB=h BM=1,∴3h ,BM=h ,∵AM+BM=AB=10,∴3h+h=10,解得h=15–≈6. 答:h 约为6km .。