二元一次方程组的应用13种类型

合集下载

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。

(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。

【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。

解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。

14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。

x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。

设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。

a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。

二元一次方程组解应用题专题分类常见十三类

二元一次方程组解应用题专题分类常见十三类

逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

A车路程+B车路程=相距路程总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?A甲、乙二人相距2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。

根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是3.24%-X,则有:2000*X*(1-20%)+1000*(3.24%-X)*(1-20%)=43.92即:1600X+25.92-800X=43.92800X=18X=2.25%3.24%-2.25%=0.99%所以,2000的存款利率是2.25%,1000的存款的利息率是0.99%.法二:也可用二元一次方程组解。

13二元一次方程组的应用

13二元一次方程组的应用

13二元一次方程组的应用
1.经济学中的供求关系
在经济学中,供求关系是非常重要的概念。

供给方程和需求方程可以表示为二元一次方程组。

假设商品的供给方程为G:P=a+bQ,需求方程为D:P=c-dQ,其中P为价格,Q为数量,a、b、c、d为系数。

求解这个二元一次方程组可以得到供给量和需求量的平衡价格。

2.几何学中的图形相交
在几何学中,我们经常需要求解两条直线的交点坐标。

这可以通过求解二元一次方程组来实现。

假设有两条直线L1:y=k1x+b1,L2:
y=k2x+b2,其中k1、b1、k2、b2为常数,通过求解方程组可以得到直线L1和直线L2的交点坐标。

3.实际生活中的联立问题
在现实生活中,我们也经常会遇到一些需要求解二元一次方程组的问题。

比如,地的温度和湿度之间的关系可以表示为二元一次方程组,通过求解这个方程组可以得到温度和湿度之间的关系。

4.物理学中的运动问题
在物理学中,经常会遇到一些运动问题,如两车相遇问题、抛掷问题等。

这些问题往往可以转化为二元一次方程组,并通过求解方程组来得到问题的解。

总之,二元一次方程组的应用非常广泛,涉及到经济学、几何学、实际生活和物理学等不同领域。

熟练掌握二元一次方程组的求解方法,对于
解决实际问题具有重要的意义。

通过学习和应用二元一次方程组,我们可以更好地理解和应用数学知识,提高问题解决能力。

二元一次方程组应用题的常见类型分析+练习题(含答案)

二元一次方程组应用题的常见类型分析+练习题(含答案)

二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即ab=甲产品数乙产品数;(2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:abc==甲产品数乙产品数丙产品数.四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离. 五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.《二元一次方程组实际问题》赏析【知识链接】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案. 【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x 解得,⎩⎨⎧==.35,15y x故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元); 全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工. 由题意,得⎩⎨⎧=+=+.140166,15y x y x解得,⎩⎨⎧==.5,10y x故应安排10天进行精加工,5天进行粗加工. 【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246...22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x 为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x m x yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)•有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,•使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?答案:一、选择题1.D 解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.2.A解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.3.B 解析:不加限制条件时,一个二元一次方程有无数个解.4.C 解析:用排除法,逐个代入验证.5.C 解析:利用非负数的性质.6.B7.C 解析:根据二元一次方程的定义来判定,•含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程.8.B二、填空题9.424332x y--10.43-1011.43,2 解析:令3m-3=1,n-1=1,∴m=43,n=2.12.-1 解析:把2,3xy=-⎧⎨=⎩代入方程x-ky=1中,得-2-3k=1,∴k=-1.13.4 解析:由已知得x-1=0,2y+1=0,∴x=1,y=-12,把112xy=⎧⎪⎨=-⎪⎩代入方程2x-ky=4中,2+12k=4,∴k=1.14.解:12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;当x=3,y=2;当x=4时,y=1.∴x+y=5的正整数解为12344321 x x x xy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩15.x+y=12 解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,此题答案不唯一.16.1 4 解析:将2316x m x yy x ny=-=⎧⎧⎨⎨=--=⎩⎩代入方程组中进行求解.三、解答题17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,∵方程3x+5y=•-•3•和3x-2ax=a+2有相同的解,∴3×(-3)-2a×4=a+2,∴a=-119.18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,∴a-2≠0,b+1≠0,•∴a≠2,b≠-1解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.(•若系数为0,则该项就是0)19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,∴x=1,y=1.将x=1,y=•1•代入kx+(k-1)y=3中得k+k-1=3,∴k=2 解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-12.当x=1,y=-12时,x-y=1+12=32;当x=-1,y=-12时,x-y=-1+12=-12.解析:任何有理数的平方都是非负数,且题中两非负数之和为0,则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.21.解:经验算41xy=⎧⎨=⎩是方程12x+3y=5的解,再写一个方程,如x-y=3.22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得130.8220x yx y+=⎧⎨+=⎩.(2)解:设有x只鸡,y个笼,根据题意得415(1)y xy x+=⎧⎨-=⎩.23.解:满足,不一定.解析:∵2528x yx y+=⎧⎨-=⎩的解既是方程x+y=25的解,也满足2x-y=8,•∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,如x=10,y=12,不满足方程组25 28x yx y+=⎧⎨-=⎩.24.解:存在,四组.∵原方程可变形为-mx=7,∴当m=1时,x=-7;m=-1时,x=7;m=•7时,x=-1;m=-7时x=1.。

(完整版)二元一次方程组应用题的常见类型

(完整版)二元一次方程组应用题的常见类型

(二元一次方程组实际应用〔1〕(列方程解应用题的根本关系量(〔1〕行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆(水速度=静水速度—水流速度(2〕工程问题:工作效率×工作时间=工作量(3〕浓度问题:溶液×浓度=溶质(4〕银行利率问题:免税利息=本金×利率×时间(二元一次方程组解决实际问题的根本步骤(1、审题,搞清量和待求量,分析数量关系.〔审题,寻找等量关系〕(2、考虑如何根据等量关系设元,列出方程组.〔设未知数,列方程组〕(3、列出方程组并求解,得到答案.〔解方程组〕(4、检查和反思解题过程,检验答案的正确性以及是否符合题意.〔检验,答〕(列方程组解应用题的常见题型(1〕和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2〕产品配套问题:加工总量成比例(3〕速度问题:速度×时间=路程(4〕航速问题:此类问题分为水中航速和风中航速两类(1.顺流〔风〕:航速=静水〔无风〕中的速度+水〔风〕速(2.逆流〔风〕:航速=静水〔无风〕中的速度--水〔风〕速(5〕工程问题:工作量=工作效率×工作时间(一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问(题(6〕增长率问题:原量×〔1+增长率〕=增长后的量,原量×〔1+减少率〕(=减少后的量(7〕浓度问题:溶液×浓度=溶质(8〕银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9〕利润问题:利润=售价—进价,利润率=〔售价—进价〕÷进价×100%(10〕盈亏问题:关键从盈〔过剩〕、亏〔缺乏〕两个角度把握事物的总量(11〕数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12〕几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13〕年龄问题:抓住人与人的岁数是同时增长的【典题精析】例1〔南京市〕某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x辆,小型汽车有y辆.由题意,得x y 50,6x4y230.x15,解得,35.y故中型汽车有15辆,小型汽车有35辆.例2〔四川省眉山市〕某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利〔元〕100250450现在该公司收购了140吨蔬菜,该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨〔两种加工不能同时进行〕.〔1〕如果要求在18天内全部销售完这140吨蔬菜,请完成以下表格:销售方式全部直接全部粗加工尽量精加工,剩余局部销售后销售直接销售获利〔元〕〔2〕如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,那么应如何分配加工时间?解:〔1〕全部直接销售获利为:100×140=14000〔元〕;全部粗加工后销售获利为:250×140=35000〔元〕;尽量精加工,剩余局部直接销售获利为:450×〔6×18〕+100×〔140-6×18〕=51800〔元〕.〔2〕设应安排x天进行精加工,y天进行粗加工.由题意,得x y15,6x16y140.x10,解得,y 5.故应安排10天进行精加工,5天进行粗加工.1、小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的3、〔分配问题〕某幼儿园分萍果,假设每人3个,那么剩2个,假设每人4个,邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票那么有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,题中的两个相等关系:萍果有y个=总枚数1、10分邮票的枚数可列方程为:+20分邮票的枚数题中的两个相等关系:1、萍果总数可列方程为:2、萍果总数=每人分=3个+2、10分邮票的总价+=全可列方程为:部邮票的总价可列方程为:10X+=4、〔金融分配问题〕需要用多少每千克售元的糖果才能与每千克售元的糖果混合成每千克售糖果为x千克,每千克售元的杂拌糖200千克?解:设每千克售元的糖果为y千克元的2、小兰在玩具工厂劳动,做题中的两个相等关系:4个小狗、7个小汽车用去3小时42分,做5个元的糖果销售总价+=1、每千克售小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时可列方程为:间?2、每千克售元的糖果重量+=题中的两个相等关系:可列方程为:1、做4个小狗的时间+=3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:二元一次方程组实际应用〔1〕〔李老师〕姓名:一、和差倍分例1、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,那么乙盒球就是甲盒球数的6倍,假设从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?例2、我区某学校原方案向内蒙察右旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原方案的120%,高中学生捐赠了原方案的115%,问初中学生和高中学生各比原方案多捐赠了图书多少册?例3、(2021年浙江省宁波市)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表〞生活用水阶梯式计费价格表的一局部信息:小王家2021年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元,求a,b的值自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a超过17吨不超过30吨的局部b超过30吨的局部例4、为满足市民对优质教育的需求,某中学决定改变办学条件,方案撤除一局部旧校舍,建造新校舍,撤除旧校舍每平方米需80元,建新校舍每平方米需700元.方案在年内撤除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了方案的80%,而撤除旧校舍那么超过了方案的10%,结果恰好完成了原方案的拆、建总面积.1〕求:原方案拆、建面积各是多少平方米?2〕假设绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?同步练习:1、班上有男女同学32人,女生人数的一半比男生总数少10人,假设设男生人数为x人,女生人数为y人,那么可列方程组为2、甲乙两数的和为10,其差为2,假设设甲数为x,乙数为y,那么可列方程组为3、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为4、学校购置35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,那么列方程组,方程组的解是5、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y,那么列的二元一次方程组为6、〔2021广东肇庆〕顺安旅行社组织200人到怀集和德庆旅游,到德庆的人数是到怀集的人数的2倍少1人,那么到两地旅游的人数各分别为7、〔2021湖北咸宁〕某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,那么入住单人间和双人间各5个共需元.8、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,那么这个队胜了场,平了场,负了场。

二元一次方程组的应用题,总结了十个题型,学透很容易!

二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。

为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

二元一次方程组应用题的常见类型分析

二元一次方程组应用题的常见类型分析

二元一次方程组应用题的常见类型分析1.自由度为1的问题:这类问题的特点是方程组中的未知数个数和方程个数相等,且存在一个未知数可以任意取值。

例如:已知二元一次方程组2x+y=4,3x-2y=1,求解该方程组的解集。

2.自由度为2的问题:这类问题的特点是方程组中的未知数个数和方程个数相等,且方程组中的每个未知数都可以任意取值。

例如:已知二元一次方程组x+y=2,2x+2y=4,求解该方程组的解集。

3. 带参数的问题:这类问题的特点是方程组中的未知数个数大于方程个数,方程组中存在参数。

例如:已知二元一次方程组 x+2y=a,3x+ay=1,求解该方程组中的参数 a。

4.几何问题:这类问题与几何图形有关,方程组中的未知数通常表示几何图形中的一些量。

例如:已知二元一次方程组x+y=5,x-y=1,求解该方程组表示的直线的交点坐标。

5. 混合问题:即同时涉及了自由度为 1 或 2 的问题和参数问题,通常需要综合运用相关知识来解决。

例如:已知二元一次方程组 x+y=a,3x-2y=1,求 a 的取值范围;已知二元一次方程组 x+2y=a,3x-2ay=1,求 a 的取值范围。

二、解题思路对于以上几种类型的问题,可以采用不同的解题思路和方法:1.代入法:将一个方程的未知数表示为另一个方程的未知数的函数,然后代入到另一个方程中求解。

2.消元法:通过加减乘除等操作,将方程组中的一些未知数消去,从而得到只含一个未知数的方程。

3.参数法:将方程组中的一个未知数表示为另一个未知数的函数,并引入参数,然后对参数进行求解。

4.几何法:将方程组的两个方程表示为几何图形上的两条直线或曲线,通过图像求解交点坐标。

5.综合运用:将几种解题思路和方法进行综合运用,根据具体问题的特点选取合适的解题方法。

三、解题步骤1.分析问题类型,并确定解题思路和方法。

2.分别列出方程组的各个方程。

3.根据所选解题方法进行相应的计算和推导。

4.求解得出方程组的解集或参数的取值范围。

二元一次方程组的应用13种类型

二元一次方程组的应用13种类型

二元一次方程组的应用13种类型追击另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.钟行90了多少米?追及问题:两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”.关系式是: 追及的...路程..÷.速度差=追及时间........ 顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程A 、B 两地相距28千米,甲乙两车同时分别从A 、B 两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?甲、乙二人相距6km ,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少? 解:设甲每小时走x 千米,乙每小时走y 千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+ 可列方程为:2、相向而行:甲的路程+ = 可列方程为:【变式】1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。

根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

二元一次方程组经典应用题

二元一次方程组经典应用题

知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程; 时间速度路程⨯=;时间路程速度=; 速度路程时间= (2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2) %100⨯-=进价进价售价利润率;(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

二元一次方程组的应用

二元一次方程组的应用

二元一次方程组的应用二元一次方程组是数学中常见的问题形式,可以通过解方程组来求解未知数的取值。

在实际生活和工作中,二元一次方程组有着广泛的应用。

本文将讨论二元一次方程组的一些常见应用场景。

一、消费问题在购物中,我们常常需要计算多个商品的总价。

假设商品A的价格为x元,商品B的价格为y元,购买A商品m件,B商品n件,总花费为p元。

此时可以列出如下二元一次方程组:mx + ny = p (1)m + n = t (2)其中,t为商品的总件数,p为总花费金额。

通过求解方程组,可以得到商品A和商品B的价格。

二、速度问题在物理学中,速度问题通常为二元一次方程组的典型应用。

设一个物体的速度恒定不变,物体在t秒内运动了s米,根据匀速运动的定义,可以得到如下方程组:vt - s = 0 (3)v' - v = 0 (4)其中,v为物体的速度,s为物体的位移,v'为物体的平均速度。

通过解方程组,可以求解物体的速度和位移。

三、投资问题在投资领域,经常需要计算不同投资项目的收益率。

假设我们有两个投资项目A和B,投资A的金额为x元,投资B的金额为y元,A项目的收益率为r1,B项目的收益率为r2,可以列出如下方程组:rx = r1x + r2y (5)x + y = t (6)其中,t为总投资金额。

通过求解方程组,可以得到投资项目A和B的收益率。

四、运动员的成绩在体育竞技中,运动员的成绩常常可以用二元一次方程组来表示。

假设运动员A和运动员B分别参加了两个项目,A在第一个项目中获得了x分,在第二个项目中获得了y分,B在第一个项目中获得了p分,在第二个项目中获得了q分。

根据成绩的计算方法,可以列出如下方程组:x + y = t (7)p + q = t (8)其中,t为满分。

通过解方程组,可以得到运动员A和运动员B在两个项目中的得分情况。

五、人员分配问题在人员分配和调度问题中,可以利用二元一次方程组来求解不同人数的分配。

二元一次方程组应用题类型大全

二元一次方程组应用题类型大全

根据题意, 得 x+y =22
2×1200x=2000y
解得 x=10
Y =12
所以为了使每天生产的产品刚好配套,应安排10人生产螺 钉,12人生产螺母
例2.某工地需雪派48人去挖土和运土,如果 每人每天平均挖土5方或运土3方,那么应该 怎样安排人员,正好能使挖的土能及时运走?
每天挖的土等于每天运的土
分析题意:1、有鲜奶9吨,
2.若在市场上直接销售鲜奶,每吨可获利润500元,
3.若制成酸奶销售,每吨可获利润1200元,
4.若制成奶片销售,每吨可获利润2000元.
5.每天可加工3吨酸奶或1吨奶片, 两种方式不能同时进行.
6.受季节的限制,这批牛奶必须在4天内加工并销售完毕.
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
例:某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元,若制成酸奶销售, 每吨可获利润1200元,若制成奶片销售,每吨可获 利润2000元.该厂生产能力如下:每天可加工3吨酸 奶或1吨奶片,受人员和季节的限制,两种方式不能 同时进行.受季节的限制,这批牛奶必须在4天内加 工并销售完毕,为此该厂制定了两套方案:
160千米 甲
汽车行驶1小时20分的路程
汽车行驶半小时的路程
乙 拖拉机行驶1小时 20分的路程
拖拉机行驶1个半小时 行驶的路程
1、同时同地相向而行第一次相遇(相当 于相遇问题):
甲的路程 + 乙的路程 = 跑道一圈长
2、同时同地同向而行第一次相遇(相当于 追击问题):
快者的路程 - 慢者的路程 = 跑道一圈长
解之得
X=77 Y=8
答:这批零件有77个,按计划需8 小时完成

二元一次方程组应用12种类型经典题及标准答案

二元一次方程组应用12种类型经典题及标准答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型五:列二元一次方程组解决——生产中的配套问题【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。

【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。

现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。

七年级:二元一次方程组的应用题12种题型

七年级:二元一次方程组的应用题12种题型

七年级:二元一次方程组的应用题12种题型类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

类型三:商品销售利润问题【例1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?【例2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表,求该商场购进A、B两种商品各多少件。

注:获利= 售价- 进价类型四:银行储蓄问题【例】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱。

第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%。

三年后同时取出共得利息303.75元(不计利息税),求小敏的爸爸两种存款方式各存入了多少元。

类型五:生产中的配套问题【例1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?【例2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【例3】一张方桌由1个桌面、4条桌腿组成,1立方米木料可以做50个桌面或300条桌腿。

二元一次方程组的应用题10大题型

二元一次方程组的应用题10大题型

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

二元一次方程组应用题题及答案

二元一次方程组应用题题及答案

二元一次方程组应用题题及答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:+2)x+=363x+(3+2)y=36解得: x=6,y=答:甲的速度是6千米/每小时,乙的速度是千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩【变式2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:类型四:列二元一次方程组解决——银行储蓄问题【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息元.已知两种储蓄年利率的和为%,问这两种储蓄的年利率各是百分之几(注:公民应缴利息所得税=利息金额×20%)解:设2000的存款利率是X,则1000的存款利率是%-X,则有:2000*X*(1-20%)+1000*%-X)*(1-20%)=即:1600X+=800X=18X=%%%=%所以,2000的存款利率是%,1000的存款的利息率是%.法二:也可用二元一次方程组解。

二元一次方程组二元一次方程组的应用

二元一次方程组二元一次方程组的应用

详细描述
利润最大化问题通常是每个生产商所追求的目标。通 过建立二元一次方程组来表示这个问题,我们可以找 到最优的生产策略,以实现最大的利润。
05
二元一次方程组的应用场 景三:几何问题
三角形问题
总结词
二元一次方程组在三角形问题中有着广泛的应用,可以 通过建立方程来求解三角形的边长、面积等问题。
详细描述
A可以给B一部分钱,而自己保留另一部分 。这种分配方式是基于比例的,而不是绝对
的。
时间问题
总结词:时间计算
详细描述:时间问题也是日常生活中常见的应用场景 之一。例如,假设一个人早上8点出发,他需要在下午 5点到达目的地。那么他需要计算从早上8点到下午5 点的时间间隔,以便安排他的行程。这可以通过简单 的减法计算得出,即5(下午) - 8(早上)= 7小时 。
二元一次方程组的应用
2023-11-07
目录
• 引言 • 二元一次方程组的解法 • 二元一次方程组的应用场景一:
行程问题 • 二元一次方程组的应用场景二:
生产问题
目录
• 二元一次方程组的应用场景三: 几何问题
• 二元一次方程组的应用场景四: 日常生活中的问题
01
引言
背景介绍
二元一次方程组是数学中一种重要的代数方程组形式,它涉及到两个未知数和两 个等式。
详细描述
在矩形问题中,我们通常会用二元一次方程组来表示边长之间的关系。比如,设矩形的长为x,宽为y,则矩形 的周长为2x+2y,面积为中心思想的矩形面积公式xy。通过建立方程组并求解,我们可以得到矩形的周长和面 积等属性值。
圆的问题
总结词
圆是一种常见的几何图形,具有无边无际的特点。利用二元一次方程组可以求解圆的半径、面积等问 题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组的应用要点突破:应用二元一次方程组解决实际问题的基本步骤回顾: 关键(1)理解问题(审题,搞清已知和未知,分析数量关系)(2)制定计划(考虑如何根据等量关系设元,列出方程组)(3)执行计划(列出方程组并求解,得到答案)(4)回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意)列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.(1)行程问题:(2)工程问题;(3)销售中的盈亏问题;(4)储蓄问题;(5)产品配套问题;(6)增长率问题;(7)和差倍分问题;(8)数字问题; (9)浓度问题; (10)几何问题; (11)年龄问题;(12)优化方案问题.一、行程问题(1)三个基本量的关系:路程s=速度v×时间t 时间t=路程s÷速度V 速度V=路程s÷时间t(2)三大类型:①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程相遇问题:两个运动物体作相向..运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。

它的特点是两个运动物体共同走完整个路程。

A车路程B车路程A 车后行路程B 车追击路程A 车先行路程追击另一个速度=甲乙速度和-已知的一个速度甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分时两人相遇,求甲、乙两人的速度.练习:学校距活动站670米,小明从学校前往活动站每分钟行80米,2分钟后,小丽从活动站往学校走,每分钟行90米,小明出发多少分钟后和小丽相遇?相遇时二人各行了多少米?追及问题:两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”.关系式是: 追及的路程÷速度差=追及时间..............顺速–逆速 = 2水速;顺速 + 逆速 = 2船速 顺水的路程 = 逆水的路程A 、B 两地相距28千米,甲乙两车同时分别从A 、B 两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?甲、乙二人相距6km ,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少? 解:设甲每小时走x 千米,乙每小时走y 千米 题中的两个相等关系:1、同向而行:甲的路程=乙的路程+ 可列方程为:【变式】1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?2. 甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。

根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?3. 从甲地到乙地的路有一段上坡、一段平路与一段3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。

甲地到乙地全程是多少?4. 甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.5. 两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.6. 某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.7. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。

求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

一只船在河中航行,水速为每小时2千米,它在静水中航行每小时8千米,顺水航行每小时行多少千米?逆水航行每小时行多少千米?顺水航行50千米需要用多少小时?练习: 1.某船在静水中的速度是每小时7千米,水流速度是每小时2千米,那么它逆水中的速度是多少?若逆水航行3小时,可航行多少千米?2.某船顺水速度是每小时17千米,逆水航行速度是每小时10千米,那么此船的静水速度是每小时多少千米?水流速度是每小时行多少千米?3.两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

二、工程问题三个基本量的关系:工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”。

一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。

【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.1.现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件2.某检测站要在规定时间内检测一批仪器,原计划每天检测30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?这批仪器共多少台?3. 甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件?5.一项工程,甲单独做12天完成,乙队单独要做15天完成,丙队单独要20天完成,按计划要求在7天内完成,现在甲乙先合作若干天,丙队也同时加入这项工作,这样比原定时间提前一天完成任务。

甲乙两队合做了多少天?丙队做了多少天?6.甲乙两个车间原计划装车床180台,甲车间完成计划的112% ,乙车间完成了计划的110% ,这样共装机床200台,两车间各比计划多完成多少台?7..某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:销售方式直接销售粗加工后销售精加工后销售每吨获利(元)100 250 4508.现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:销售方式全部直接销售全部粗加工后销售尽量精加工,剩余部分直接销售获利(元)(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?三:商品销售利润问题利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?【变式】1. 某商场用36万元购进A 、B 两种商品,销售完后共获利6万元,其进价和售价如下表:A B 进价(元/件) 1200 1000 售价(元/件)13801200求该商场购进A 、B 两种商品各多少件;3. 一.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需96角。

3种包装的饮料每瓶各多少元?3. 2008年5月12日,四川省汶川县发生里氏8.0级强烈地震,给当地人民造成巨大的损失.全国迅速组织捐款支援灾区,我校七年级(1)班55名同学共捐款830元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.4. 甲乙两种商品的进价和是100元,为促销而打折出售,若甲商品打8折,乙商品打6折,可赚50元,若甲商品打6折,乙商品打8折可赚19.5元,求甲乙两种商品原定价各是多少元。

捐款 10 15 30 50 人数1845.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?6.有甲乙两种电饭锅原来的单价之和是200元,现因市场销售情况的变化,甲商品商品降价15%,乙商品单价提高了40%,调价后,两种电饭锅的单价和比原来的单价和提高了12.5%。

甲乙两种商品原来的单价各是多少?四、银行储蓄问题银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.【变式】1. 小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?2. 某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元的不予优惠;(2)一次购买金额超过1万元,但不超过3万元的九折优惠;(3)一次购买金额超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠。

相关文档
最新文档