2018年福建省高考理科数学试题及答案(word版)

合集下载

福建省2018年高考理科综合试题及答案(Word版)

福建省2018年高考理科综合试题及答案(Word版)

福建省2018年高考理科综合试题及答案(Word版)(考试时间:150分钟试卷满分:300分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

可能用到的相对原子质量:H 1 Li 7 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127一、选择题:本题共13个小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.生物膜的结构与功能存在密切的联系。

下列有关叙述错误的是A.叶绿体的类囊体膜上存在催化ATP合成的酶B.溶酶体膜破裂后释放出的酶会造成细胞结构的破坏C.细胞的核膜是双层膜结构,核孔是物质进出细胞核的通道D.线粒体DNA位于线粒体外膜上,编码参与呼吸作用的酶2.生物体内的DNA常与蛋白质结合,以DNA—蛋白质复合物的形式存在。

下列相关叙述错误的是A.真核细胞染色体和染色质中都存在DNA—蛋白质复合物B.真核细胞的核中有DNA—蛋白质复合物,而原核细胞的拟核中没有C.若复合物中的某蛋白参与DNA复制,则该蛋白可能是DNA聚合酶D.若复合物中正在进行RNA的合成,则该复合物中含有RNA聚合酶3.下列有关植物根系吸收利用营养元素的叙述,错误的是A.在酸性土壤中,小麦可吸收利用土壤中的N2和NO-3B.农田适时松土有利于农作物根细胞对矿质元素的吸收C.土壤微生物降解植物秸秆产生的无机离子可被根系吸收D.给玉米施肥过多时,会因根系水分外流引起“烧苗”现象4.已知药物X对细胞增值有促进作用,药物D可抑制药物X的作用。

某同学将同一瓶小鼠皮肤细胞平均分为甲、乙、丙三组,分别置于培养液中培养,培养过程中进行不同的处理(其中甲组未加药物),每隔一段时间测定各组细胞数,结果如图所示。

(精品)2018高考全国3卷理科数学带答案

(精品)2018高考全国3卷理科数学带答案

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0 B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。

2018届福建省高三高考压轴卷理科数学试题及答案

2018届福建省高三高考压轴卷理科数学试题及答案

2018年福建省高考压轴卷理科数学参照公式:样本数据x1,x2,,xn的标准差锥体体积公式s=1(x1x)2(x2x)2⋯(x n x)2V=1Shn3此中x为样本均匀数此中S为底面面积,h为高柱体体积公式球的表面积、体积公式V=Sh S4R2,V4R33此中S为底面面积,h为高此中R为球的半径一、选择题(本大题共18小题,每题5分,共50分)1、已知全集U R, 会合A 1,2,3,4,5 ,B {x R|x 2},以下图中暗影部分所表示的会合为A.{1}B.C.{1,2}D.2、以下命题正确的选项是{0,1}{0,1,2}AA.存在x0∈R,使得e x00的否认是:不存在x0∈R,使得e x00;B.存在x0∈R,使得x0210的否认是:随意∈,均有x0210RC.若x=3,则x2-2x-3=0的否命题是:若x≠3,则x2-2x-3≠0. D.若pq为假命题,则命题p与q必一真一假3、已知平面,和直线m,给出条件:①m//;②m;③m;④;⑤//.为使m,应选择下边四个选项中的()A.③⑤B.①⑤C.①④D.②⑤4、直线y=5与y1在区间0,4上截曲线ymsin xn(m,n0)所得的弦长相2等且不为零,则以下描绘正确的选项是()(A)m3,n=5(B)m3,n22(C)m3,n=5(D)m3,n225、如图5,在△ABC中,AB=3,AC=5,若O为△ABC的外心,则AOBC的值是(()A.43B.8C.62D.66、履行下边的框图,若输入的N是6,则输出p的值是()K=K+1是开始输入NK=1,P=1P=P*KK<N?否结束输出PA.180B.720C.1840D.51807、如图,设圆弧x2y21(x0,y0)与两坐标轴正半轴围成的扇形地区为M,过圆弧上一点A做该圆的切线与两坐标轴正半轴围成的yB三角形地区为N.现随机在地区N内投一点B,若设点落在1地区M内的概率为P,则P的最大值为()AA.1B.C.1O 1482D.48、为检查某校学生喜爱数学课的人数比率,采纳以下检查方法:(1)在该校中随机抽取180名学生,并编号为1,2,3,,180;2)在箱内搁置两个白球和三个红球,让抽取的180名学生疏别从箱中随机摸出一球,记着其颜色并放回;3)请以下两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜爱数学课的学生.假如总合有26名学生举手,那么用概率与统计的知识预计,该校学生中喜爱数学课的人数比率大概是A.88%B.90%C.92%D.94%x2y29、已知F2、F1是双曲线a2-b2=1(a>0,b>0)的左右焦点F2对于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为A.3B.3C.2D.218、已知f(x)与g(x)都是定义在R上的函数,g(x)0,f/(x)g(x)f(x)g/(x),且f (x)a x g(x)(a0,且4,在有穷数列f(n)(n1,2,10)中,随意取前k项相加,3g(n)则前k项和大于15的概率是()16A .3B.4C.2 D.1 555二、填空题(本大题共5小题,每题4分,共20分)18、设常数a R.若x25a的二项睁开式中x7项的系数为-18,则a_______.x18、已知一个几何体是由上下两部分构成的组合体,其三视图如右图所示,若图中圆的半径为1,等腰三角形的腰长为5,则该几何体的体积是.18、小明在做一道数学题目时发现:若复数z1cos1isin1,z2cos2isin2,,z 3cos3isin3(此中1,2,3R),则z1z2cos(12)isin(1+2),z 2z3cos(23)isin(2+3),依据上边的结论,能够提出猜想:z·z·z=.2318、若函数flnex,则2014ke=_______________ xxk1201518、意大利有名数学家斐波那契在研究兔子生殖问题时,发现有这样一组数:1,1,2,3,5,8,18,此中从第三个数起,每一个数都等于他前而两个数的和.该数列是一个特别漂亮、和睦的数列,有好多巧妙的属性.比方:跟着数列项数的增添,前一项与后一项之比越迫近黄金切割.人们称该数列{an}为“斐波那契数列”.若把该数列{an}的每一项除以4所得的余数按相对应的顺序构成新数列{bn},在数列{bn}中第2018项的值是___3_____三、解答题:共6小题80分.解答应写出文字说明,证明过程或演算步骤.18、(此题满分18分)以下图是展望到的某地5月1日至18日的空气质量指数趋向图,空气质量指数小于180表示空气质量优秀,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月18日中的某一天抵达该市,并逗留2天(Ⅰ)求这人抵达当天空气质量优秀的概率;(Ⅱ)设X是这人逗留时期空气质量优秀的天数,求X的散布列与数学希望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)18、(本小题满分18分)已知函数f(x)2Acos2(x)A(xR,A0,||),yf(x)的部分图像如图所62示,P、Q分别为该图像的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及的值;(Ⅱ)若点R的坐标为(1,0),PRQ2,求A的值和PRQ的面积.318、(本小题满分18分)如图,在圆O:x2y24上任取一点P,过点P作x轴的垂线段PD,D为垂足.设M为线段PD的中点.P (Ⅰ)当点P在圆O上运动时,求点M的轨迹E的方程;(Ⅱ)若圆O在点P处的切线与x轴交于点N,试判断直线MN与轨迹E的地点关系.MN O D x19、(此题满分18分)以下图,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB3,BC4,作BB1AA1,分别交A1D1,AD1于点B1,P,作CC1AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,折叠,使得DD1与AA1重合,构成以下图的三棱柱ABCA1B1C1.CC1(1)求证:AB平面BCC1B1;A A1B P B AA 11C QC1BP B1D D1C QC1(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为33小值.,求|BE|的最20、(本小题满分18分)设f(x)exa(x1)(e是自然对数的底数,e),且f(0).(Ⅰ)务实数a的值,并求函数f(x)的单一区间;(Ⅱ)设g(x)f(x)f(x),对随意x1,x2R(x1x2),恒有g(x2)g(x1)m成立.求x2x1实数m的取值范围;(Ⅲ)若正实数1,2知足121,x1,x2R(x1x2),试证明:f(1 x12x2)1f(x1)2f(x2);并进一步判断:当正实数1,2,,n知足12n1(nN,n2),且x1,x2,,x n是互不相等的实数时,不等式f(1 x12x2nxn)1f(x1)2f(x2)nf(xn)能否仍旧成立.21.此题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分18分.假如多做,则按所做的前两题记分.作答时,先用 2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4-2:矩阵与变换在直角坐标平面内,将每个点绕原点按逆时针方向旋转45的变换R所对应的矩阵为M,将每个点横、纵坐标分别变成本来的2倍的变换T所对应的矩阵为N.(Ⅰ)求矩阵M的逆矩阵M1;(Ⅱ)求曲线xy1先在变换R作用下,而后在变换T作用下获得的曲线方程.(2)(本小题满分7分)选修4—4:极坐标与参数方程在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴成立极坐标系.已x1tcos 知曲线C的极坐标方程为4cos,直线l的参数方程为y 6 (t为参数).3 tsin6(Ⅰ)分别求出曲线(Ⅱ)若点P在曲线数.C和直线C上,且l的直角坐标方程;P到直线l的距离为1,求知足这样条件的点P的个(3)(本小题满分7分) 选修4—5:不等式选讲已知a b0,且ma1.b)b(a(Ⅰ)试利用基本不等式求m的最小值t;(Ⅱ)若实数x,y,z知足x24y2z2t,求证:x 2y z 3.2018福建省高考压轴卷理科数学参照答案一、选择题(本大题共18小题,每题5分,共50分)1、【答案】B分析:由图能够获得暗影部分表示的会合为CA(A B),AB={2,3,4,5},则CA(A B)={1}选A2、【答案】C分析:命题的否认和否命题的差别:对命题的否认不过否认命题的结论,而否命题,既否认假定,又否认结论。

2018高考数学试卷福建卷含答案

2018高考数学试卷福建卷含答案
13.直线x+2y=0被曲线x2+y2-6x-2y-15=0所截得的弦长等于.
(x≠0),
14.设函数f(x)=a(x=0).在x=0处连续,则实数a的值为.
15.某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:
①他第3次击中目标的概率是0.9;
②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是1-0.14.
其中正确结论的序号是(写出所有正
确结论的序号).
16.如图1,将边长为1的正六边形铁皮的六个角各
切去一个全等的四边形,再沿虚线折起,做成一
个无盖的正六棱柱容器.当这个正六棱柱容器的
底面边长为时,其容积最大.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
3.命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;
命题q:函数y= 的定义域是(-∞,-1 ∪[3,+∞ .则()
A.“p或q”为假B.“p且q”为真
C.p真q假D.p假q真
4.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是真正三角形,则这个椭圆的离心率是()
(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;
(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?
21.(本小题满分14分)
已知f(x)= (x∈R)在区间[-1,1]上是增函数.

2018年高考理科数学试卷及答案(清晰word版)

2018年高考理科数学试卷及答案(清晰word版)

理科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题 第2页(共9页)4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+理科数学试题 第3页(共9页)11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试题(全国Ⅱ卷)(Word版+答案+解析)

2018年高考理数真题试卷(全国Ⅱ卷)一、选择题1.1+2i1−2i=( )A. −45−35i B. −45+35i C. −35−45i D. −35+45i2.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z}.则A中元素的个数为()A. 9B. 8C. 5D. 43.函数f(x)=e x−e−xx2的图像大致为( )A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x6.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√57.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i=i+1B. i=i+2C. i=i+3D. i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A. 112 B. 114 C. 115 D. 1189.在长方形ABCD-A 1B 1C 1D 1中,AB=BC=1,AA 1= √3 ,则异面直线AD 1与DB 1所成角的余弦值为( ) A. 15 B. √56C. √55D. √2210.若 f(x)=cosx −sinx 在 [−a,a] 是减函数,则a 的最大值是( ) A. π4 B. π2 C. 3π4 D. π11.已知 f(x) 是定义为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i+=-A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为 A.y = B.y = C.y = D.y x =6.在ABC△中,cos2C 1BC =,5AC =,则AB = A.B.CD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年福建高考数学试题(理).doc

2018年福建高考数学试题(理).doc

2018年福建高考数学试题(理)第I卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数(32)z i i =-的共轭复数z 等于( ).23A i -- .23B i -+ .23C i - .23D i +2.某空间几何体的正视图是三角形,则该几何体不可能是( ).A 圆柱 .B 圆锥 .C 四面体 .D 三棱柱3.等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ).8A .10B .12C .14D4.若函数log (0,1)a y x a a =>≠且的图像如右图所示,则下列函数图象正确的是学科网( )5.阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于( ).18A .20B .21C .40D6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的( ).A 充分而不必要条件 .B 必要而不充分条件 .C 充分必要条件 .D 既不充分又不必要条件7.已知函数()⎩⎨⎧≤>+=0,cos 0,12x x x x x f 则下列结论正确的是( )A.()x f 是偶函数B. ()x f 是增函数C.()x f 是周期函数D.()x f 的值域为[)+∞-,1 8.在下列向量组中,可以把向量()2,3=表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e9.设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是( )A.25B.246+C.27+D.2610.学科网用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,而“ab ”则表示把红球和篮球都取出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A.0B. 12 C.1 D. √2 2、已知集合A={x|x 2-x-2>0},则C R A =( ) A 、{x|-1<x<2} B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、-10 C 、10 D 、125、设函数f (x )=x ³+(a-1)x ²+ax .若f (x )为奇函数,则曲线y= f (x )在点(0,0)处的切线方程为( )A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→建设前经济收入构成比例建设后经济收入构成比例7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.8 9.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。

此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC. △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 311.已知双曲线C : x 23 - y ²=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若△OMN 为直角三角形,则∣MN ∣=( ) A. 32 B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面α 所成的角都相等,则α 截此正方体所得截面面积的最大值为( ) A. B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

13.若x ,y 满足约束条件则z=3x+2y 的最大值为 .14.记Sn 为数列{an}的前n项和. 若Sn= 2an+1,则S6= .15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是 .三.解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC =,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把∆DFC折起,使点C 到达点P的位置,且PF⊥BF .(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.设椭圆C:x2+ y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).2(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20、(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件产品作检验,再根据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P (0<P<1),且各件产品是否为不合格品相互独立。

(1)记20件产品中恰有2件不合格品的概率为f(P),求f(P)的最大值点。

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为P的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用。

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?已知函数. (1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1 , x2, 证明: .(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C₁的方程为y=k∣x∣+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C₂的极坐标方程为ρ²+2ρcosθ -3=0.(1)求C₂的直角坐标方程:(2)若C₁与C₂有且仅有三个公共点,求C₁的方程.23. [选修4-5:不等式选讲](10分)已知f(x)=∣x+1∣-∣ax-1∣.(1)当a=1时,求不等式f(x)﹥1的解集;(2)若x∈(0,1)时不等式f(x)﹥x成立,求a的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.C 2.B 3.A 4.B 5.D 6.A 7.B8.D9.C10.A11.B12.A二、填空题 13.6 14.63- 15.16 16.332-三、解答题 17.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52,sin 45sin ADB=︒∠所以2sin 5ADB ∠=. 由题设知,90ADB ∠<︒, 所以223cos 1255ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD △中,由余弦定理得2222cos 22582522525.BC BD DC BD DC BDC=+-⋅⋅⋅∠=+-⨯⨯⨯=所以5BC =.18.解:(1)由已知可得,BF PF ⊥,BF EF ⊥,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -. 由(1)可得,DE PE ⊥. 又2DP =,1DE =,所以3PE =. 又1PF =,2EF =,故PE PF ⊥. 可得32PH =,32EH =.则(0,0,0)H ,3(0,0,)2P , 3(1,,0)2D --,33(1,,)22DP =,3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||3||||HP DP HPDP θ⋅===. 所以DP 与平面ABFD .19.解:(1)由已知得(1,0)F ,l 的方程为1x =. 由已知可得,点A 的坐标为或(1,. 所以AM的方程为y =y =-.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,11(,)A x y ,22(,)B x y ,则1x <2x <直线MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则3331212244128423()4021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补. 所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.20.解:(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<.所以()f p 的最大值点为00.1p =.(2)由(1)知,0.1p =.(ⅰ)令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,20225X Y =⨯+,即4025X Y =+.所以(4025)4025490EX E Y EY =+=+=. (ⅱ)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.21.解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(ⅰ)若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ⅱ)若2a >,令()0f x '=得,x =或x当2()2a a x+∈+∞时,()0f x '<;当x∈时,()0f x '>. 所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于 12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln x x x -+<0,即1212()()2f x f x a x x -<--.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x --⎧⎪=-<<⎨⎪⎩≤≥故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].。

相关文档
最新文档