数值分析第七章上机题
数值分析第

数值分析第7章答案第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程()0f x = (7.1)的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数()f x 的零点.若()f x 可以分解为()(*)()mf x x xg x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内仅有一个根.令00,a a b b ==,计算0001()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若00()()0f a f x <,则令10,10a ab x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ⊂,11001()2b a b a -=-.再令1111()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区间套1100...[,][,]...[,]n n n n a b a b a b --⊂⊂⊂⊂且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1lim()0,lim lim ()*2n n n n n n n n b a x a b x →∞→∞→∞-==+= 因此,1()2n n n x a b =+可作为()0f x =的近似根,且有误差估计11|*|()2n n x x b a +-≤- (7.2)2.迭代法将方程式(7.1)等价变形为 ()x x ϕ= (7.3)若要求*x 满足(*)0f x =则*(*)x x ϕ=;反之亦然.称*x 为函数()x ϕ的一个不动点.求方程(7.1)的根等价于求()x ϕ的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为1(),0,1,2...k k x x k ϕ+== (7.4)函数()x ϕ称为迭代函数.如果对任意1(),0,1,2...k k x x k ϕ+==,由式(7.4)产生的序列{}k x 有极限 lim *k k x x →∞= 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设()[,]x C a b ϕ∈满足以下两个条件: 1.对任意[,]x a b ∈有();a x b ϕ≤≤2.存在正常数1L <,使对任意,[,]x y a b ∈,都有|()()|||x y x y ϕϕ-≤- (7.5) 则()x ϕ在[,]a b 上存在惟一的不动点*x .定理7.2(不动点迭代法的全局收敛性定理)设()[,]x C a b ϕ∈满足定理7.1中的两个条件,则对任意0[,]x a b ∈,由(7.4)式得到的迭代序列{}k x 收敛.到()x ϕ的不动点,并有误差估计式1|*|||1k k k Lx x x x L --≤-- (7.6)和 1|*|||1kk k k L x x x x L --≤-- (7.7)定理7.3(不动点迭代法的局部收敛性定理)设*x 为()x ϕ的不动点,'()x ϕ在*x 的某个邻域连续,且|'()|1x ϕ<,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程()x x ϕ=的根*x ,如果迭代误差*k k e x x =-当k →∞时成产下列渐近关系式1(0)k k e C C e +→≠常数 (7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果()()K x ϕ在所求根*x 的邻近连续,并且(1)()'(*)''(*)...(*)0(*)0p p x x x x ϕϕϕϕ-====≠ (7.9)则该迭代过程在点*x 的邻近是收敛的,并有()11lim(*)!p k p k ke x e p ϕ+→∞= (7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为21(),()()20,1,2,...k k k k k k k k k k ky x z y y x x x z y x k ϕϕ+==-=--+= (7.11)此法也可写成如下不动点迭代式12(),0,1,2,...(())()(())2()k k x x k x x x x x x x ψϕψϕϕϕ+==-=--+ (7.12) 定理7.5(斯蒂芬森迭代收敛定理) 设*x 为式(7.12)中()x ψ的不动点,则*x 是()x ϕ的不动点;设''()x ϕ存在,'(*)1x ϕ≠,则*x 是()x ψ的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为其迭代函数为1(),0,1,2,...'()k k k k f x x x k f x +=-= (7.13)()()'()f x x x f x ϕ=-牛顿迭代法的收敛速度 当(*)0,'(*)0,''(*)0f x f x f x =≠≠时,容易证明,'(*)0f x ≠,''(*)''(*)0'(*)f x x f x ϕ=≠,由定理7.4知,牛顿迭代法是平方收敛的,且12''(*)lim2'(*)k k k e f x e f x +→∞=(7.14) 重根情形的牛顿迭代法 当*x 是()0f x =的m 重根(2)m ≥时,迭代函数()()'()f x x x f x ϕ=-在*x 处的导数1'(*)10x m ϕ=-≠,且|'(*)|1x ϕ<.所以牛顿迭代法求重根只是线性收敛.若*x 的重数m 知道,则迭代式1(),0,1,2,...'()k k k k f x x x mk f x +==-= (7.15)求重根二阶收敛.当m 未知时,*x 一定是函数()()'()f x x f x μ=的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法10(),0,1,2,...'()k k k f x x x k f x +=-=称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的'()k f x 用()f x 在1k x -,k x处的一阶差商来代替,即可得弦截法111()()()()k k k k k k k f x x x x x f x f x ++-=--- (7.17)定理7.6假设()f x 在其零点*x 的邻域:|*|x x δ∆-≤内具有二阶连续导数,且对任意x ∈∆有'()0f x ≠,又初值01,x x ∈∆,,则当邻域∆充分小时,弦截法(7.17)将按阶1.618p =≈收敛到*x .这里p 是方程210λλ--=的正根.5.抛物线法弦截法可以理解为用过11(,()),(())k k k k x f x x f x ---两点的直线方程的根近似替()0f x =的根.若已知()0f x =的三个近似根k x ,1k x -,2k x -用过1122(,()),(,()),(,())k k k k k k x f x x f x x f x ----的抛物线方程的根近似代替()0f x =的根,所得的迭代法称为抛物线法,也称密勒(Muller)法. 当()f x 在*x 的邻近有三阶连续导数,'(*)0f x ≠,则抛物线法局部收敛,且收敛阶为 1.839 1.84p =≈.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.表7-1k ka kb kx ()k f x 的符号0 1 2 31 1 1.25 1.252 1.5 1.51.3751.51.25 1.375 1.3125+ - + -610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1 若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.表7-24 2.120094976.73cos 3120cos c k x x x x ϕ≈=--+=∈≤4k+10-30k+1k+1k 此时x 已满足误差要求,即x*例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.表7-3此时5x 已满足误差要求,即5* 3.347529903x x ≈=(3)由于'(*)0.1363231290x ϕ≈≠,故根据定理7 .4知方法是线性收敛的,并且有1lim'(*)k k k e x e ϕ+→∞=。
研究生数值分析上机试题及解答

东华大学研究生数值分析试题(上机部分)A 卷2008年12月 时间:60分钟班级 学号 机号 姓名 得分 注意:要求写出M 函数(如果需要)、MATLAB 命令和计算结果。
1. 求下列方程组在0<α, β<1中的解⎩⎨⎧-=+=βαββααsin 2.0cos 7.0cos 2.0sin 7.0 命令fun=inline('[x(1)-0.7*sin(x(1))-0.2*cos(x(2)),x(2)-0.7*cos(x(1))+0.2*sin(x(2))]','x'); [x,f,h]=fsolve(fun,[0.5 0.5]) 结果α=0.5265,β=0.50792命令>> fun=inline('c(1)+c(2)*x.^2','c','x'); >> x=[1.1 1.3 1.4 1.6 1.8]; >> y=[26 22 23 24 25];>> c=lsqcurvefit(fun,[0 0],x,y) 结果 c =23.7256 0.12873.求解下列微分方程组2(0)2013(0)1x x yx t y x yy '=-=⎧<<⎨'=+=⎩(结果只要求写出t =1时的解) 命令>> fun=inline('[y(1)-2*y(2);3*y(1)+y(2)]','t','y'); >> [t,y]=ode45(fun,[0 1], [2 1]) 结果x(1)=-5.6020, y(1)=2.15634.用定步长Gauss 积分法(课本123页)计算积分31e ln(1)x x dx -+⎰的近似值(等分数取4,每段取2个Gauss 点)。
命令fun=inline('exp(-x).*log(1+x)','x'); nagsint(fun,1,3,4,2) 结果 0.30865.矩阵改进平方根分解(课本25页)的计算公式为: d 1=a 11, 对i =2, 3, ⋯, n ,iki k ik ii i j ij ij j k jk ik ij ij l s a d i j d s l l s a s ∑∑-=-=-=-==-=1111,1,,2,1 ,/ ,试编写矩阵改进平方根分解的程序,并求矩阵1111551514A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭的改进平方根分解。
最新(完美版)第七章习题答案_数值分析

第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。
完整版数值分析第7章答案

1数值分析第七章第七章非线性方程求根一、重点内容提要(一)问题简介求单变量函数方程f(x)?0(7.1)f(x*)?0x*x*x*为也称为方程的根是指求(7.1).(实数或复数),使得称的根,m f(x)?(x?x*)g(x)f(x)f(x)函数的零点.若可以分解为g(x)g(x)?0x*x*为单称m=1满足时,是方程(7.1)的根.,则当其中m为正整数,g(x)x*x*是方程(7.1)的m称,充分光滑,为m重根.若重根,则有根;当m>1时(m?1)(m)f(x*)?f'(x*)?...?f(x*)?0,f(x*)?0f(x)f(a)f(b)?0,则方程(7.1)在(a,b)[a,b]若上连续且内至少有一个实根,称在[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得.(二)方程求根的几种常用方法1.二分法f(x)f(a)f(b)?0f(x)?0f(x)?0*x在上连续,再设内有根,则设.在(a,b)在[a,b]1x?(a?b)a?a,b?bf(x)f(x)?0000计算和.,若则(a,b)内仅有一个根.令20000a?xb?b[a,b])f(a)f(x?0x*?x;,则令,结束计算;若若得新的有根区间,10,11001a?ab?x0)?(f(a)fx,得新,则令的有根区间0110,0011b?a?(b?a)x?(a?b)[a,b][a,b]?[a,b]f(x)0101111再令计算,.,.同上法得221110101[a,b],如此反复进行出新的有根区间,可得一有根区间套22...?[a,b]?[a,b]?...?[a,b]001?n1?nnn2数值分析第七章11a?x*?b,n?0,1,2,...,b?a?(b?a)?...?(b?a)0n0?1nnn?1nn且. 221lim(b?a)?0,lim x?lim(a?b)?x* nnnnn故2????n??nn1x?(a?b)f(x)?0nnn的近似根,可作为,且有误差估计因此21(b?a)|x?x*|?n1?n(7.2)22.迭代法?(x?)x等价变形为将方程式(7.1) (7.3)??(x*)?)(xf(x*)?0x**xx*的一个不动点为函数.;反之亦然则.若要求称满足?(x)的不动点由式(7.3)产生的不动点迭代关系式(也求方程(7.1)的根等价于求称简单迭代法)为?(x),k?0,1,2...x?(7.4)k1?k?(x),k??x0,1,2...?(x)称为迭代函数.函数如果对任意,由式(7.4)产生的序列??x有极限kk??k则称不动点迭代法(7.4)收敛.kk?1x?x*lim?(x)?C[a,b]满足以下两个条件: 定理7.1(不动点存在性定理)设?(x)??b;x?[a,b]a有1.对任意??(y)|?|x?y|?,y[a,b]|(x)?x 2.存在正常数使对任意, ,都有(7.5)1?L?(x)[a,b]x*.则在上存在惟一的不动点?(x)?C[a,b]满足定理7.2(定理不动点迭代法的全局收敛性定理)设7.1中的两个??x]b,?x[a?(x)并条件,由,(7.4),的不动点式得到的迭代序列则对任意到.收敛k0有误差估计式3数值分析第七章L|x?*|?x||x?x1kkk?(7.6)L1?k L|x?x*|?|x?x|1?kkk L1?(7.7)和??'(xx))(xx**的某,为设在的不动点定理7.3(不动点迭代法的局部收敛性定理)?'(x)|?|1,则迭代法(7.4)局部收敛个邻域连续,且.?(xx?)x*,的根如果迭代误差收敛阶的概念设迭代过程(7.4)收敛于方程e?x?x*k??时成产下列渐近关系式当kk e k?1?C(常数C?0)e(7.8) k则称该迭代过程是p阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.(K)?(x)x*的邻近连续,并定理7.4(收敛阶定理在所求根)对于迭代过程(7.4),如果且(p?1)???(x*)?...?*)?'(x*)?0''(x(p)?(x*)?0(7.9)*x的邻近是收敛的,则该迭代过程在点并有e1)(p?1k?*)x?lim(p!ep??k (7.10)k斯蒂芬森(Steffensen)迭代法当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为??(y?)(x),zy?kkkk2)?x(y kk x?x?kk?1z?2y?x kkk k?0,1,2,...(7.11)4数值分析第七章此法也可写成如下不动点迭代式?(x),kx??0,1,2,...kk?12?)?x(x)(?(x)?x????(x)?2?(x(x))(7.12)?(x)x**x是为式(7.12)中则的不动点7.5(定理斯蒂芬森迭代收敛定理)设,?(x)???1*)''(x)?'(x(x)*x的不动点,存在,的不动点;设则,则斯蒂芬森迭代法是(7.11)是2阶收敛的.3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为f(x)k,x?k?0,1,2,...?x k?k1)xf'(其迭代函数为(7.13)k f(x)??(x)?x f'(x)f(x*)?0,f'(x*)?0,f''(x*)?0时牛顿迭代法的收敛速度当,容易证f''(x*)??0*)?''(x 0'(x*)?ff'(x*),由定理,明,7.4知,牛顿迭代法是平方收敛的,且ef''(x*)1?k?lim2*)f'(ex2??k(7.14)k f(x)?0(m?2)*x时,迭代函数的m重顿重根情形的牛迭代法当根是f(x)1??x)?(x?'(x*)?1??0?'(x*)|?1|)xf'(*x.所以牛顿迭代法求处的导数在,且m x*的重数m知道,重根只是线性收敛.若则迭代式f(x)k,k?0,1,2,...??xx?m kk?1)'(xf(7.15)k f(x)??x()f'(x)*x此时迭代式,的单重零点一定是函数,未知时m当.求重根二阶收敛5数值分析第七章?(x)f(x)f'(x)kkk?xx??x?kk?1k?)f''(x)x)]?f(x'(x)[f'(kkkk k?0,1,2,...(7.16)也是二阶收敛的.f(x)k,?k?0,1,2,...x?x k1k?)xf'(如下迭代法简化牛顿法0称为简化牛顿法或平行弦法.牛顿下山法为防止迭代不收敛,可采用牛顿下山法.具体方法见教材.4.弦截法f'(x)xxf(x)在,处的一阶差商来代替,将牛顿迭代法(7.13)中的即可得弦用kkk?1截法f(x)k(xx?x??x)1kk?1k?k f(x)?f(x)(7.17)??x*|:|x??*x内具有二阶连续导数,的邻域在其零点定理7.6假设且对任1kk?)(xfx,x??10f'(x)?0?x?,又初值,,意则当邻域充分小时,有弦截法(7.17)将按阶?1?5?p?1.6182???1?0?*x2的正根收敛到是方程..这里p5.抛物线法(x,f(x)),(x?f(x))两点的直线方程的根近似替弦截法可以理解为用过kk?1kk?1xxx0x)?(fx)?0f(用,过三若的根.已知个近似根,的2kk?1k?(x,f(x)),(x,f(x)),(x,f(x))f(x)?0的根,的抛物线方程的根近似代替2??k?k121k?kkk所得的迭代法称为抛物线法,也称密勒(Muller)法.f(x)f'(x*)?0*x,则抛物线法局部收敛当,在,的邻近有三阶连续导数且收敛阶p?1.839?1.84. 为数值分析第七章二、知识结构图三、常考题型及典型题精解3上有一个实根x*,并用二分法2]在[1,?1?例7-1 证明方程x0?x-6-3,需二分区间[1,2]10.若要求|x-x*|?求这个根,要求|x-x*|?10kk多少次?3在[1,2],则f(1)=-1<0,f(2)=5>0,故方程f(x)=0x?解设f(x)=x1?2在[1,2]时,f'(x)>0,即f(x)=0-1,所以当x?上有根x*.又因f'(x)=3x上有惟一实根x*.用二分法计算结果如表7-1所示.[1,2]7-1表k abxf(x)的符号kkkk+ 2 0 1 1.5- 1.5 1 1 1.25+ 2 1.25 1.51.3751.3125 3 1.251.375 -1.375 1.3438 1.3125 4 +1.312551.3282+1.1341.3125-861.32041.32041.32827-1.32431.32431.32821.3263+87数值分析第七章9 1.3243 1.3282 1.3253 +1.32631-3-3,可以作为x*的近??10此时x=1.3253满足|x-x*|?10?0.97799102似值.1-6?6,只需|x10-x*|?-x*|即可,解得k+1?19.932, 若要求|x?10?kkk+12即只需把[1,2]二分20次就能满足精度要求.x=1,(1)确定有根区间[a,b];(2)构造不动e例7-2 已知函数方程(x-2)点迭代公式使之对任意初始近似x?[a,b],迭代方法均收敛;(3)用所构0?3.|?10造的公式计算根的近似值,要求|x?x1k k?xx因此区间[2,3]0,e解 (1)令f(x)=(x-2)-1>-1,由于f(2)=-1<0,f(3)=e x x)=-1,f(,lim,lim f(x)=+?是方程f(x)=0的一个有根区间.又因f'(x)=(x-1)e???xx???1-1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-?,+?)内f'(1)=-e有且仅有一根x*,即x*?[2,3].x?xx?.由于当?将(x-2)e[2,3].则=1等价变形为x=2+ee(x)=2+,x(2)2??x??<1'(x)|=|-e?e[2,3]x?时2?|(x)?3,|x?[2,3]均收敛.??故不动点迭代法x=2+e x,k=0,1,2,...,对k0k+1x?进行迭代计算,结果如表7-2所示.e(3)取x=2.5,利用x=2+k k+10表7-28数值分析第七章此时x已满足误差要求,即x*?x?2.120094976.44例7?3考虑求解方程2cos x?3x?12?0的迭代公式2 x=4+cos x,k=0,1,2,...k k+13(1)试证:对任意初始近似x?R,该方法收敛;0-3;10-x|?(2)取x=4,求根的近似值x,要求|x k0k+1k+1(3)所给方法的收敛阶是多少?2?(x)=4+cos x,解 (1)由迭代公式知,迭代函数322?(x)的值域介于(4-)与(4+由于)之间,且(??,??).x?3322?'(x)|=|-sin x|??1|33?(x)在(??,??)内存在惟一的故根据定理7.1,7.2知,??收敛于x*.x?x?R,迭代公式得到的序列不动点x*,且对k0(2) 取x=4,迭代计算结果如表7-3所示.0表7-3x*?xx?3.347529903已满足误差要求,即此时55?'(x*)?0.136323129?0,故根据定理7 .4)由于(3知方法是线性收敛的,并e?1k?'(x?*)lim e??k。
数值分析上机第七章+第九章

数值分析第三次上机实验报告学院班级:学生学号:学生姓名:同作者:实验日期:1.实验题目: P232 3.(1) 一、实验目的:设f(x)=1/x,(1)求f(x)在[1,2] 上的零次和一次最佳一致逼近多项式。
(2)求f(x)在[1,2] 上的零次和一次最佳平凡逼近多项式。
二、实验环境:1.matlab2014b/macOS Seirra2.G 楼机房三、实验内容及实验原理:1.零次最佳逼近多项式 原理1: ()()02M m P x +=所以f(x)=1/x 在[1,2]上的零次最佳一致逼近多项式()01132P 24x +== 原理2:()()()0000,,f P x ϕϕϕ=()101P x a a x =+f(x)=1/x 在[1,2]上的零次最佳平方逼近多项式()()()210020011,ln 2,dx f x P x dxϕϕϕ===⎰⎰ 2. 一次最佳逼近多项式 (1)一次最佳一致逼近多项式: 解:21'()f x x =- ,32''()0f x x =>∴ 1,2为交错点,设101P ()x a a x =+111()()12212f b f a a b a --===---且由112111'(),2f x x x =-=-=1111(1()()()322224f a f x a a xa-+++ =-==故得131P()42x x+=-(2)一次最佳平方逼近多项式解:设10101P(),1,x c c x xϕϕ=+==001000011111(,)(,)(,)=(,)(,)(,)c fc fϕϕϕϕϕϕϕϕϕϕ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦由0111,,x fxϕϕ===得:2001(,)1dxϕϕ==⎰221117(,)3x dxϕϕ==⎰2100113(,)(,)2xdxϕϕϕϕ===⎰2011(,)ln2f dxxϕ==⎰211(,)1f dxϕ==⎰得到法方程组:01013ln2237123c cc c⎧+=⎪⎪⎨⎪+=⎪⎩解之得:**01c8.9782,c0.4766==1P()8.97820.4766x x∴=+四、实验结果及其分析:经拟合结果无误。
数值分析 第七章 习题

郑州大学研究生课程(2010-2011学年上学期) 数值分析Numerical Analysis- 1 -第七章 习 题1. 应用对分法求三次方程324100x x +−=在区间[1,2]上的实根,并做误差估计. 2. 若应用对分法求方程sin02xxe π−=在区间[0,1]上误差不超过512的近似根,应对分几次?3. 求方程324100x x +−=在区间[1,2]上的根,并构造如下2个迭代格式:(1) 121110()()4k k kx x x ϕ+==+(2) 3212()410k k k k k x x x x x ϕ+==−−+试判定迭代格式的收敛性,对收敛的格式求近似根,并给出误差估计. 4. 试用迭代的方法证明函数()xf x e −=满足积分方程0()1()xf x f t dt =−∫.5.用不动点迭代法计算s =的近似值.6. 确定求230xx e −=正根的不动点迭代的收敛区间[],a b ,并求出满足4110k k x x −+−<的近似值1k x x +∗=,若要求近似值的误差410ε−≤,应迭代几步?7.6位有效数字.8. 用双点割线法求方程32210200x x x ++−=的根,要求6110k k x x −+−<. 9. 设x a =是()x a ϕ=在区间[],a b 上的不动点,试证:(1)当[]1,C a b ϕ∈且'()0a ϕ≠时,不动点迭代1()n n x x ϕ+=有线性收敛速度;(2)当[]2,C a b ϕ∈且'()0a ϕ=而''()0a ϕ≠,不动点迭代1()n n x x ϕ+=至少有平方收敛速度.10. 设方程1232cos 0x x −+=有迭代式124cos 3k k x x +=+(1)试证:对任意初值0x ,迭代序列{}n x 收敛;(2)取迭代初值04x =,求该方程在误差不超过310−的近似根; (3)此迭代法的收敛阶是多少?证明所得结论.。
数值分析_第七章_解线性方程组的直接解方法.

因‖R0‖<1,故lim‖R0‖k→∞2k=0.则2k‖Rk‖≤‖R0‖→0(k→∞),-1即Rk→0(k→∞).Rk=I-ACk,故当Rk→0时,Ck→A.四、习题1畅用Gauss消去法解方程组2x1+x2+x3=4,3x1+x2+2x3=6,x1+2x2+2x3=5.2畅(1)设A是对称矩阵且a11≠0,经过Gauss消去法一步后,A约化为a110证明A2是对称矩阵.(2)用Gauss消去法解对称方程组0畅6428x1+0畅3475x2-0畅8468x3=0畅4127,0畅3475x1+1畅8423x2+0畅4759x3=1畅7321,-0畅8468x1+0畅4759x2+1畅2147x3=-0畅86.3畅(1)用表达式(7畅4)证明其中aij=aij.(1)a1TA2.aij=aij-li1a1j-li2a2j-…-li,k-1ak-1,j,i,j≥k,(k)(1)(1)(2)(k-1)(r)(2)使Gauss消去法中arj=urj(j≥r),利用(1)证明urj=arj-k∑lrkukj(j=r,r+1,…,n),=1lir=(air-k∑likukr)/urr(i=r+1,…,n).=14畅设方程组x1+2x2+3x3=1,5x1+4x2+10x3=0,3x1-0.1x2+x3=2.r-1r-1318(1)试用Gauss全主元消去法求解.(2)试用Gauss列主元消去法求解.5畅设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零.2,…,n-1)时,则有6畅由Gauss消去法证明:当Δi≠0(i=1,A=LU,其中L为单位下三角阵,U为上三角阵.7畅设A为n阶矩阵,若|aii|>j∑|aij|(i=1,2,…,n),则称A=1j≠in为对角优势矩阵.试证明:设A是对角优势矩阵,又设经过Gauss消去法一步后,A具有形式a110α1TA2,则A2是对角优势矩阵.且由此推断:对于对称的对角优势矩阵,用Gauss消去法和部分(列)主元Gauss 消去法可得到同样的结论.8畅设Lk为指标是k的初等下三角矩阵,即1筹Lk=1mk+1,k…mnk1筹1.(除第k列对角元下元素外,Lk与单位阵I相同)求证当i,j>k时,L珟k=IijLkIij也是一个指标为k的初等下三角矩阵,其中Iij 为初等排列矩阵.9畅试推导矩阵A的Crout分解的计算公式:A=LU,其中L为下三角矩阵,U 为单位上三角矩阵.10畅设UX=b,其中U为三角矩阵.(1)就U为上及下三角矩阵推导一般的求解公式.(2)计算解三角形方程组UX=b的乘除法次数.319(3)设U为非奇异矩阵,试推导求U323T-1的计算公式.11畅用平方根法(Cholesky分解)解方程组2203591-2103012591701-21-2A=-4-64182x1x2x3x1x2x3001-28-16.-20,b=5=3.710=16.30110-1-112畅用LDL分解法解方程组335-2A=10013畅用追赶法解三对角方程组AX=b,其中.14畅求矩阵A的LU分解,并利用分解结果计算A.15畅下述矩阵能否分解为A=LU,其中L为单位下三角矩阵,U为上三角矩阵.若能分解,那么分解是否唯一?1A=24246370.60.10.50.31312311162515615.461,B=21,C=216畅设A=F唱范数.17畅求证:,计算A的行范数、列范数、2唱范数及(1)‖X‖∞≤‖X‖1≤n‖X‖∞,320(2)‖A‖F≤‖A‖2≤‖A‖F.n×n18畅设P∈R范数.定义且为非奇异矩阵,又设‖X‖为R上一向量‖X‖P=‖PX‖.n试证明‖X‖P是R上向量的一种范数.19畅设X∈R,X=(x1,x2,…,xn),求证:p→∞nTn20畅证明:当且仅当与Y线性相关且XY≥0时,才有Tlim(i∑|xi|=1np)1=1max|xi|=‖X‖∞.≤i≤n‖X+Y‖2=‖X‖2+‖Y‖2.21畅设A∈Rn×n,求证特征值相等λ(AA)=λ(AA).TT22畅证明:如果A=(α1,α2,…,αn)是按列分块的,则‖A‖2F=‖α1‖2+‖α2‖2+…+‖αn‖2.222-123畅证明:如果‖B‖<1,则‖I-(I-B)‖≤‖B‖.24畅证明:对任何矩阵算子范数有‖I‖=1(其中I是单位矩阵),‖A‖‖A-1‖≥1.nj≠i25畅(1)如果A是对角优势矩阵,即|aii|>j∑|aij|(i=1,2,=1…,n),证明aii≠0(i=1,2,…,n).(2)设A为对角优势矩阵,使A=DB,其中D=diag(aii),证明B=I-C,其中‖C‖∞<1,因此由定理(7畅16),A是非奇异阵.(3)证明:如果应用Gauss消去法解对角优势方程组,则所有元素akk≠0.(k)26畅设‖A‖s、‖A‖t为任意两种R明存在常数c1、c2>0,使n×n上矩阵算子范数,证n×nc1‖A‖s≤‖A‖t≤c2‖A‖s(对一切A∈R).32127畅设A=100999998,计算A的条件数cond(A)ν(ν=2,∞).28畅证明:如果A是正交阵,则Cond(A)2=1.29畅设A,B∈Rn×n且‖·‖为Rn×n上矩阵的算子范数,证明TT30畅设A为对称正定矩阵,且其分解为A=LDL=WW,其中W=L,求证:T1Cond(A·B)≤Cond(A)·Cond(B).(1)cond(A)2=(cond(W)2).2(2)cond(A)2=cond(W)2·cond(W)2.31畅设对称正定矩阵A=试计算‖A-1T2-1-12,λ2,且找出b1‖2=1/λ,‖A‖2=λ2及cond2(A)=(常数)及扰动δb,使‖δb‖2‖δX‖2=cond2(A).2232畅求下面两个方程组的解,并利用矩阵的条件数估计‖δX‖.240-179240-179畅5-319240240x1x2=x1x234=,即AX=b,34,即(A+δA)(X+δX)=b.-319畅533畅已知Hilbert矩阵3221H3=11T1=b时,若H3及b有微小误‖δX‖∞.∞7畅0003-7T.(1)计算H3的条件数cond∞(H).111347(2)解方程H3X=差(取3位有效数字),估计解X的误差34畅设A=2畅0001-2-11,b=,已知方程组AX=b的精确解为X=(3,-1).(1)计算条件数cond∞(A).计算剩余r=b-AX珚.(2)若近似解X珚=(2.97,-1.01),(3)利用定理7畅20计算不等式右端,并与不等式左端比较,此结果说明什么?35畅填空题(1)X=(2,3,-4),则‖X‖1=,‖X‖2=,‖X‖∞TT=.1-32-10201,则‖A‖1=,ρ(A)=.0-1则cond2(A)=.20a,为使A可分解为A=LL,其中L为323T(2)A=-12-112(3)A=(4)设A=10a2对角线元素为正的下三角形矩阵,a的取值范围,取a=1,则L=.五、习题解答1畅解为消去第2、3两个方程中的x1,取l21=,l31=.将第2个方程减去-l21倍的第1个方程,第3个方程减去-l31倍的第1个方程,得2x1+x2+x3-=4,x2+x3=0,x2+x3=3.为消去第3个方程中的x2,取l32=-3.将第3个方程减去-l32倍的第2个方程,得三角方程组2x1+x2+x3=4,-11x2+x3=0,3x3=3.回代,算出方程组的解x3=3/3=1,x2=0-1x3(1)-1=1,x1=(4-x2-x3)/2=1.2畅解(1)记A=(aij)=(aij).经Gauss消元一步后,A2的元素为a(2)ij(1)=a(1)ij(1)i1(1)-a1j.11(1)(1)(1)因A是对称的,所以有aij=aji,ai1=aj1,于是有324a故A2是对称的.(2)ij=a(1)jij1(1)(2)-a1i=aji.11(1)(2)用Gauss消去法求解所给对称方程组,得X=(4畅586035,-0畅6315228,2畅735199).倡T 3畅解(1)因aij=aij(k)(k-1)-li,k-1ak-1,j,(k-1)而故aij=aij(k)(k-2)(1)aij(k-1)=aij(k-2)-li,k-2ak-2,j,(k-2)(k-1)-li,k-2ak-2,j-li,k-1ak-1,j=…(k-2)(1)(2)(k-2)(k-1)=aij-li1a1j-li2a2j-…-li,k-2ak-2,j-li,k-1ak-1,j,i,j≥k.(2)由(1)有urj=a又0=air由此解出(r+1)(r)rj=arj-k∑lrkakj(j=r,r+1,…,n).=1(k)r-1=air-li1u1r-li2u2r-…-lirurr.lir=likukrair-k∑=1rrr-1.4畅解(1)选主元为10,将第一行与第二行交换,第1列与第3列交换,得10x3+4x2+5x1=0,3x3+2x2+x1=1,x3-0.1x2+3x1=2.消去第2、3方程中的x3,得10x3+4x2+5x1=0,0畅8x2-0.5x1=1,-0.5x2+2.5x1=1.第2次选的主元为2畅5.将上述第2个方程与第3个方程交325换,第2列与第3列交换,得10x3+5x12畅5x1消去第3方程中的未知数x1,得10x3+5x1+4x2=0,2畅5x1-0.5x2=2,0.7x2=1.4.回代求得,x2=2,x1=1.2,x3=-1.4.得(2)列主元为5,将第1行与第2行交换,再消去x1,5x1+4x2+10x3=0,1畅2x2+x3=1,-2.5x2-5x3=2.列主元为-2.5,将第2行与第3行交换,再消去x2,得5x1+4x2+10x3=0,-2畅5x2-5x3回代求得x3=-1.4,x2=2,x1=1.2.5畅证设A、L、U的k阶顺序主子矩阵分别为Ak、Lk、Uk(k=1,2,…,n),显然Ak=LkUk.由A=LU分解的定义可知,L1U的各阶顺序主子式均不为零,即故det(Lk)=1,det(Uk)≠0.det(Ak)=det(Lk)det(Uk)≠0,k=1,…,n,=2,-1畅4x3=1畅96.+4x2=0,-0.5x2=2,-0.5x1+0.8x2=1.即A的各阶顺序主子式均不为零.(i)6畅证因Δi≠0,(i=1,2,…,n-1)(Δi是i阶顺序主子式),所以aii≠0(i=1,2,…,n-1),则Gauss消去法可进行到底,即存326在指标为i的初等下三角阵Li,使Ln-1Ln-2…L1A=U,故A=L1其中L=L1-1-1-1(2)-1…Ln-2Ln-1U=LU,-1-1…Ln-2Ln-1为下单位三角阵,U是上三角阵.aij=aij-(2)7畅证记A2=(aij),则有i1a1j.11nj≠in又A是对角优势矩阵,可知|aii|>j∑|aij|,i=1,2,…,n.故=1∑|a|=j∑j=2=2(2)ijj≠innnj≠ii1aij-a1j11≤j∑|aij|+j∑=2=2j≠i|ai1||a1j|11j≠in|aij|n∑|a1j|=j∑|aij|-|ai1|+=111j=2j≠ij≠i≤|aii|-=|aii|-≤|aii|-≤aii-ni1(|a11|-j∑|a1j|)=211j≠ini1(|a11|-j∑|a1j|+|a1i|)=211ni1|a1i|(|a11|-j∑|a1j|>0.)=211i1(2)a1i=|aii|(i=2,…,n).11即A2也是对角优势矩阵.若A是对角优势矩阵,经Gauss消元一步后.A→A(2)=a110αTA2.由上述证明及第2题结论知,A2仍是对角优势矩阵,即|a|>j∑|aij|(i=2,…,n).=2(2)ii(2)j≠in由对称性也有327|a|>i∑|a|=i∑|aij|,(j=2,…,n).=2=2(2)jj(2)ji(2)i≠ji≠jnn这正好与Gauss顺序消去而第二步消元前所选列主元应为a22,(k)法的主元相同.以此类推第k次所选主元就是akk,所以用Gauss (2)顺序消去法和列主元消去法得到同样的结果.8畅证因1筹Lk=1mk+1,k…mnk0,1,0,…,0).故ek=(0,…,T第k列=I-lkek.筹1TT其中I是单位阵,lk=(0,…,0,-mk+1,k,…,-mik,…,-mn,k),L珟k=IijLkIij=Iij(I-lkek)Iij=IijIIij-(Iijlk)(ekIij)=I-lkek′TTT仍是指标为k的初等下三角阵,其中lk=(0,…,0,-mk+1,k,…,mjk,…,-mik,…,-mnk).′T9畅解设A=LU,即a11a12…a1na21a22…a2n…………an1an2…ann根据矩阵乘法,有ai1=li1u11=li1,i=1,…,n,a1j=l11u1j,得u1j=328a1j,j=2,…,n.11=l11l21l22……筹ln1ln2…lnn1u121…u23筹……筹筹u1nu2n…un-1,n1.现设L的前k-1列与U的前k-1行已算好,因akk-1ik=r∑=1lirurk=r∑=1lirurk+likukk(i=k,…,n,ukk=1),k-1所以lik=aik-r∑=1lirurk(i=k,…,n).同样akk-1kj=r∑=1lkrurj=r∑=1lkrurj+lkkukj(j=k+1,…,n),k-1kj所以u-r∑=1lkrurjkj=akk,j=k+1,…,n.综上,Crout分解公式li1=ai1,i=1,2,…,n,u1j=a1j/l11,j=2,…,n,lk-1ik=aik-r∑=1lirurk,i=k,…,n,uk-1kj=(akj-r∑=1lkrurj)/lkk,j=k+1,…,n.10畅解(1)设U为上三角阵,则有u11……u1nx1b1u22…u2nx2筹……=b2….unnxnbn由unnxn=bn,得xn=bn/unn.一般地,由uiixi+ui,i+1xi+1+…+uinxn=bi,得nxbi-j=∑ijxji=ui+1ii(i=n-1,n-2,…,1).当U是下三角矩阵时,有329u11u21…un1u22…un2筹…unnx1x2 (x)n=b1b2…bn.由u11x1=b1,得x1=b1/u11.一般地,由ui1x1+ui2x2+…+uiixi=bi,i=2,…,n,得xi=(bi-j∑uijxj)/uii,i=2,…,n.=1(2)乘法次数,对固定的i有n-i次,i从1到n,所以总乘法次数R (n-i)=i∑i=R=i∑=1=1除法次数D,D=n.+n故总的乘除法次数=+n=.2nn-1i-1.(3)设Uu11…筹-1=V,这里V也是上三角阵,即u1n…unnv11…筹v1n (v)nnj1=UV=1筹1.V按行计算,i=n-1,…,1,vij=-k=i+1∑uikvkjii,j=i+1,…,n.vii=,i=1,2,…,n.ii223=2>0,Δ3=232203012>0.11畅解因系数矩阵顺序主子式Δ1=3>0,Δ2=32且系数矩阵对称,故为正定方程组.按照算法(7畅9)得330l11=,l21=2/,l31=,l22=则有3232203012由2/得再由2/y1=-y1y2y35=3,7=2/-2/-.,l32=-,l33=.511,y2=-,y3=.x1x2x3=5/-1/,1/-得x3=11,x2=,x1=1.12畅解此方程组的系数矩阵为对称正定矩阵,因此可用改进的平方根法,用算式(7畅11)得到d1=a11=3,t21=a21=3,l21=d2=a22-t21l21=5-3=2,t32=a32-t31l21=9-1=8,l32=t213==1,1315=,1t31=a31=5,l31=3282==4,d3=a33-t31l31-t32l32=.23311则A=LDL=T3121115/32.15/3212/31由LY=b,即1y11011y2=16,5/321y330得y1=10,y2=6,y3=4/3.再解DLTX=Y,得x3=2,x2=-1,x1=1.13畅解设-21001u1d11-210l21u2d201-21=l 31u3001-2l41由分解公式(7畅15)计算得d1=1,d2=1,d3=1,u1=-2,l2=-1,u2=-3,l3=-2,u3=-4,l4=-3,u4=-5.由公式(7畅16)解1y11-11LY=b=痴y21-21y=30,-1y4-1得y1=1,y2=3,y3=1,y4=-1.再由公式(7畅17)解332d3.u4-2UX=Y痴1-x11-41-x2x3=131,1-x41376得x4=,x3=-,x2=-,x1=-.14畅解由矩阵的三角分解公式(7畅6),计算得1-248A=LU=21010-32.3-1100-76100-0.50畅2-0畅1369-1-1L=-210,U=0畅1-0畅04211.-511-0畅01316所以-0畅21550畅0631-0畅1369-1-1-1A=UL=0畅010550畅05789-0畅04211.0畅0653-0畅01316-0畅0131615畅解设A能分解,则有1A=LU=l21l3101l32001u1100u12u220u13u33u331=2424631.7由分解公式(7畅6)知,u11=1,u12=2,u13=3,l21=2,l31=4,u22=0,而a32=l32u22+l31u12=0+4×2=8与a32=6矛盾,故A的LU分解不能进行.但A为非奇异阵,所以存在排列阵P,使PA=LU.即将A的1行与2行交换,则可分解为LU.设B=LU,则12312311=11l21l3101l32001u1100u12u220u13u23u33333.由分解公式(7畅6)知,u11=u12=u13=1,l21=2,l31=3,u22=0.而由3=l31u12+l32u22,得3=3+l32u22.故l32可任选,即B的三角分解存在且不唯一.因C的各阶顺序主子均不为0,故由定理7畅4知,C的三角分解存在且唯一.16畅解A的行范数6+0.5,0.1+0.3}=1.1.‖A‖∞=max{0.A的列范数6+0.1,0.5+0.3}=0.8.‖A‖1=max{0.‖A‖F=(0.36+0.25+0.01+0.09)AA=T1/2=0.8426.0畅330畅34.0畅60畅50畅10畅30畅60畅10畅60畅3=20畅370畅33|λI-AA|=TTλ-0畅37-0畅33-0畅33λ-0畅34=λ-0.71λ+0.0169=0.所以λmax(AA)=0.685,则‖A‖2=17畅证(1)由定义知,‖X‖∞≈0畅83.n=1max|xi|≤i∑|xi|≤i≤n=1=‖X‖1≤i∑max|xi|=n‖X‖∞,=11≤i≤n∞n从而‖X‖2∞≤‖X‖1≤n·‖X‖TT.(2)由范数定义有‖A‖2=λmax(AA)≤λ1(AA)+λ2(AA)+…+λn(AA)TT=AA的对角元之和=i∑a+i∑a+…+i∑ani=1=1=1T21i222i2nnn=j∑∑a=i∑∑aij=‖A‖F.=1i=1=1j=12ji2nnnn又‖A‖2=λmax(AA)2T334≥=从而TTT[λ1(AA)+λ2(AA)+…+λn(AA)]12‖A‖F.‖A‖F≤‖A‖2≤‖A‖F.注:此处用到了矩阵的特征值之和等于其对角线上元素之和的概念.从所证不等式也知道,矩阵的2唱范数可由F唱范数得到控制;矩阵的2唱范数与F唱范数是等价的.18畅证只要证明‖X‖P=‖PX‖满足范数定义的(1),(2),(3).(1)因P非奇异,故对任意X≠0,PX≠0,则‖X‖P=‖PX‖>0;当X=0时,PX =0,则‖X‖(2)对任意实数α,‖αX‖P=‖PαX‖=‖αPX‖=|α|‖PX‖=|α|‖X‖(3)‖X+Y‖PPP=‖PX‖=0;当‖X‖P=‖PX‖=0时,则PX=0,即X=0..=‖P(X+Y)‖=‖PX+PY‖≤‖PX‖+‖PY‖=‖X‖P+‖Y‖P.综上所述,‖X‖P是R上的一种向量范数.19畅证因‖X‖p∞n=1max|xi|≤i∑|xi|≤n·1max|xi|=n·‖X‖≤i≤n≤i≤n=1‖X‖∞≤(i∑|xi|)=1np1/ppnppp∞,两边开p次方有≤n‖X‖∞.1而plim=1,故→∞20畅证由Cauchy不等式,有|(X,Y)|≤‖X‖2‖Y‖2,且当且仅当X、Y线性相关时,有335lim(i∑|xi|)p→∞=1pn1/p1=‖X‖∞.|(X,Y)|=‖X‖2‖Y‖2;又当且仅当XY≥0时,有|(X,Y)|=(X,Y).T故(X,Y)=‖X‖2‖Y‖2当且仅当X、Y线性相关,且XYT≥0时,所以‖X+Y‖2=(X+Y,X+Y)=(X,X)+2(X,Y)+(Y,Y)2=‖X‖2+2‖X‖2‖Y‖2+‖Y‖222=(‖X‖2+‖Y‖2)2当且仅当X、Y线性相关,且X,Y≥0时,即‖X+Y‖2=‖X‖2+‖Y‖2迟痴X,Y线性相关,且XY≥0.T21畅证由于I-A及记B=μIATTOμI-AIμIAATTAμIAμI==μIO22AμI-AATT,.(7畅26)(7畅27)μIOAμIμIμI-AAATOμI.对(7畅26)、(7畅27)两式两边取行列式得μdet(B)=μdet(μI-AA),nnnn22T记λ=μ≠0,故2μdet(B)=μdet(μI-AA).TTT22畅证设A=(α1α2…αn)按列分块,即αj=(α1j,α2j,…,αnj)(j =1,2,…,n),则‖αj‖=i∑αij.而=1222Tndet(λI-AA)=det(λI-AA).‖α1‖+‖α2‖22nn2ij22+…+‖αn‖=j∑‖αj‖2=1222nn22n=j∑(∑α)=j∑∑αij=‖A‖F.=1i=1=1i=123畅证因‖B‖<1,由定理7畅16知I-B可逆且‖(I-B)-1‖≤,所以336‖I-(I-B)-1‖=‖(I-B)≤‖(I-B)≤-1-1(I-B-I)‖‖‖B‖‖B‖.24畅证由矩阵算子范数定义有‖I‖=maxX≠O由矩阵范数的相容性有‖A‖‖A优势矩阵,则j=1j≠i0-1‖IX‖‖X‖=max=1.X≠O‖≥‖AA-1‖=‖I‖=1.25畅证(1)用反证法.若有某个i0使ai0i0=0,因A是对角∑|ai0j|<|ai0j0|=0.n这是不可能的.得证.(2)因A=DB,即a11A=a21…an1而1B=a2122…n1nn12111………………1n11a2n22…1=1111337…………a1na2n…anna11a22筹ann12122…n1nn a12111………………a1n112n22…1=DB.=0---a2122n1nn-12110…………-1n11=I-C.a2n220‖C‖∞=maxi∑j=1nj≠iaijii=max∑ij=1n|aij|<1iij≠in|aij|<|aii|).所以由定理(这是因为A是对角优势矩阵,则j∑=1j≠i7畅16知,B=I-C为非奇异阵.由(1)aii≠0,故D非奇异.因此A=DB 非奇异.2,…,n.而a11(3)设A为对角优势阵,由(1)知aii≠0,i=1,=a 11,所以a11≠0.又设经Gauss消元一步后A具有形式:(1)(1)a110(2)(k)α1TA2.(2)由习题7知,A2也是对角优势矩阵.又由(1)知aii≠0,i=2,…,n,即有a22≠0.如此类推akk≠0.26畅证因‖A‖s=maxX≠O‖AX‖s.s对一切X都有由定理7畅10知,存在a1,a2>0,b1,b2>0,a1‖AX‖s≤‖AX‖t≤a2‖AX‖s,与b1‖X‖s≤‖X‖t≤b2‖X‖s.于是1‖AX‖s‖AX‖t2‖AX‖s≤≤.1st2s令12=c1=c2,故有12c1‖AX‖s‖AX‖t‖AX‖s≤≤c2.sts338c1maxX≠0即‖AX‖s‖AX‖t‖AX‖s2max≤max≤c.X≠0X≠0stsc1‖AX‖s≤‖AX‖t≤c2‖AX‖s.10099A-127畅解A=9998=,则-9899‖A-199-100.‖A‖∞=199,‖A-1‖∞=199,所以∞因A是对称矩阵,故cond(A)∞=‖A‖‖∞=199×199=39601.λmax(A).min=λ-198λ-1=0,2cond(A)2=由det(λI-A)=得即λ-100-99-99λ-98λ1=198畅0050503,λ2=-0畅00505035.cond(A)2=λ1=39206.2T-128畅证因A是正交阵,故A=Acond(A)2=max=min,则max=1.minmax=min-1-129畅证由条件数的定义及矩阵范数的相容性,有cond(AB)=‖AB‖‖(AB)=‖A‖‖AT-1‖‖‖A-1-1≤‖A‖‖B‖‖B‖‖‖‖B‖‖B=cond(A)cond(B).30畅证(1)因A=WW,所以cond(A)2=‖A‖2‖A 2-1-1T‖2=‖WW‖2‖(WW)TT-1‖2=‖W‖2‖W‖2=(cond(W)2).22T(2)由习题21知,λ(WW)=λ(WW),则339‖W‖2=TTTmax=-T故由(1)得,cond(W)2=‖W‖2‖Wmax=‖W‖2.-1‖2=‖W‖2‖W2T‖2=cond(W)2.31畅解由cond(A)2=[cond(W)2]=cond(W)2cond(W)2.|λI-A|=λ-211λ-2=λ-4λ+3=0,2解得所以‖A设b=-1λ1=1,λ2=3.‖2=1,‖A‖2=3,cond(A)2=,δb=11,这时有λ2=3.11-1‖δX‖2‖δb‖2=cond(A)2.22事实上,设X+δX=Y,则A(X+δX)=b+δb,即2-1解得y1=又解得x1=所以δX=11‖δX‖2=2-12y1y2=20,42,y2=.2-111,x2=-.-12x1x2=1-1,+==3.而cond(A)2=340‖δb‖2=cond(A)22=cond(A)2=3,故‖δX‖2‖δb‖2=cond(X)2.2232畅解记A=T240-179-319240T,δA=0-0畅5-0畅50则AX=b的解X=(4,3),而(A+δA)(X+δX)=b的解(X+δX)=(8,6).故‖X‖而A-1∞=4,‖δX‖=240179-1-1∞=4.,∞∞319240‖A‖‖δA‖‖δA‖cond∞(A)=‖A∞‖‖∞∞=626畅2,=0畅56012.=0畅5,‖A由推论7畅19畅2得‖δX‖∞∞‖δA‖∞∞0畅56012≤=≤1畅274,∞1-cond∞(A)∞∞‖δX‖∞≤1畅274‖X‖∞≤5畅10,表明估计‖δX‖∞=4略大,是符合实际的.933畅解(1)H3-1-36192-18030-180;180=-3630‖H3‖∞=所以c ond∞(H3)=748.-1,‖H3‖∞=408,(2)方程组在H3及b有微小变化时为1畅000畅5000畅3330畅5000畅3330畅2500畅3330畅2500畅200x1+δx1x2+δx2x3+δx31畅83=1畅080畅783341简记为(H3+δH3)(X+δX)=b+δb,它的精确解为X+δX=(1畅089512538,0畅487967062,1畅491002798).T而H3X=b的精确解X=(1,1,1),于是δX=(0畅0895,-0畅5120,0畅4910).‖δH3‖∞‖δb‖∞-3≈0畅18×10<0畅02%,≈0畅182%3∞∞而‖δX‖∞≈51畅2%.∞这表明H3及b的相对误差不超过0畅3%,而引起解的相对误差超过50%.由推论7畅19畅2,可得‖δX‖∞≤∞≤3∞1-cond∞(H3)3∞‖δb‖∞‖δH3‖∞+3∞∞TT408((0畅0002)+0畅00182)≤0畅8974=89畅74%.这个估计结果比实际误差大是合理的.34畅解(1)先算出A于是cond∞(A)=‖A(2)r=b-AX珚==7畅0003-7-1=‖∞1000020000‖A‖-∞10000200012畅0001-2=,-1=40001×3畅0001≈120012.-110畅05-0畅05.2畅97-1畅017畅0003-7-6畅9503-6畅95∞∞(3)依定理7畅20,右端为cond∞(A)而左端为342‖r‖=120012×0畅05≤857畅192,‖X-X珚‖∞0畅03==0畅01.∞这表明当A为病态矩阵时,尽管剩余‖r‖很小,误差估计仍然较大,因此,当A病态时用‖r‖大小作为检验解的准确度是不可靠的.35畅解(1)‖X‖1=9,‖X‖2=2(3)由1120a>0,得a<3,故a的取值范围-<a<2,‖X‖∞=5.2(2)‖A‖1=4,ρ(A)=1(|λI-A|=(λ-1),λ1,2=1).0a2,取a=1时,L=10000.2343。
数值分析上机题参考答案.docx

如有帮助欢迎下载支持数值分析上机题姓名:陈作添学号: 040816习题 120.(上机题)舍入误差与有效数N11 3 1 1设S N,其精确值为 。
22 2 NN 1j 2j1(1)编制按从大到小的顺序111 ,计算 S 的通用程序。
S N1 321N 21 N22(2)编制按从小到大的顺序111,计算 S 的通用程序。
S N1(N 1)2 122 1NN 2(3)按两种顺序分别计算S 102 , S 104 , S 106 ,并指出有效位数。
(编制程序时用单精度)(4)通过本上机题,你明白了什么?按从大到小的顺序计算 S N 的通用程序为: 按从小到大的顺序计算 S N 的通用程序为:#include<iostream.h> #include<iostream.h> float sum(float N) float sum(float N) {{float j,s,sum=0; float j,s,sum=0; for(j=2;j<=N;j++) for(j=N;j>=2;j--) {{s=1/(j*j-1); s=1/(j*j-1); sum+=s;sum+=s;}}return sum;return sum;}}从大到小的顺序的值从小到大的顺序的值精确值有效位数从大到小从小到大0.7400490.740050.74004965 S 1020.7498520.74990.74994 4S 1040.7498520.7499990.74999936S 106通过本上机题, 看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差, 而按从小到大的顺序计算的值与精确值吻合。
从大到小的顺序计算得到的结果的有效位数少。
计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。
数值分析上机试题对应参考答案

一、 问答题1、什么是近似值x * 有效数字?若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
它可表示为X=±10m ×(a 1+a 2×10-1+…+a n ×10-(n-1),其中a i (i=1,2,…,n)是0到9中的一个数字,a 1≠0,m 为整数,且︱x -x *︱≠21×10m-n+12、数值计算应该避免采用不稳定的算法,防止有效数字的损失. 因此,在进行 数值运算算法设计过程中主要注意什么? (1)简化计算过程,减少运算次数; (2)避免两个相近的数相减;(3)避免除数的绝对值远小于被除数的绝对值; (4)防止大数“吃掉”小数的现象;(5)使用数值稳定的算法,设法控制误差的传播。
3、写出“n 阶阵A 具有n 个不相等的特征值”的等价条件(至少写3 个)(1)|A|不为零(2)n 阶矩阵A 的列或行向量组线性无关 (3)矩阵A 为满秩矩阵(4)n 阶矩阵A 与n 阶可逆矩阵B 等价4、迭代法的基本思想是什么?就是用某种极限过程去逐步逼近线性方程组精确解得方法。
其基本思想为:先任取一组近似解初值X 0,然后按照某种迭代原则,由X 0计算新的近似解X 1,以此类推,可计算出X 2,X 3,…X K ,。
,如果{X }收敛,则取为原方程组的解。
5、病态线性方程组的主要判断方法有哪些?(1)系数矩阵的某两行(列)几乎近似相关 (2)系数矩阵的行列式的值很小(3)用主元消去法解线性方程组时出现小主元(4)近似解x*已使残差向量r=b-Ax*的范数很小,但该近似解仍不符合问题要求。
6、Lagrange 插值的前提条件是什么?并写出二次Lagrange 插值的基函数。
前提条件是:⎩⎨⎧≠==i j i j x j,,(01)l i .2,1,0,n j i , = 二次Lagrange 插值的基函数:()))(())((2010210x x x x x x x x x l ----=()))(())((2101201x x x x x x x x x l ----= ()))(())((1202102x x x x x x x x x l ----=7、什么是数值积分的代数精度?如果某一个求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,则称该求积公式具有m 次代数精度(或代数精确度)。
数值分析上机题答案

数值分析上机题姓名:武均 学号:142648习题117.(上机题)舍入误差与有效数 设2211NN j S j ==-∑,其精确值为1311221N N ⎛⎫-- ⎪+⎝⎭。
(1)编制按从大到小的顺序22211121311N S N =+++---,计算N S 的通用程序。
(2)编制按从小到大的顺序2221111(1)121N S N N =+++----,计算NS 的通用程序。
(3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。
(编制程序时用单精度) (4)通过本上机题你明白了什么? 按从大到小的顺序计算N S 的通用程序为: #include<iostream.h>float sum(float N) { float j,s,sum=0; for(j=2;j<=N;j++) { s=1/(j*j-1); sum+=s; } return sum; } 按从小到大的顺序计算N S 的通用程序为: #include<iostream.h> float sum(float N) {float j,s,sum=0; for(j=N;j>=2;j--) {s=1/(j*j-1); sum+=s; }return sum; }从大到小的顺序的值从小到大的顺序的值精确值 有效位数 从大到小 从小到大210S 0.740049 0.74005 0.740049 6 5 410S0.749852 0.7499 0.7499 4 4 610S0.7498520.7499990.74999936通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。
从大到小的顺序计算得到的结果的有效位数少。
计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。
数值分析简单习题

重点考察内容第一章:基本概念第二章:Gauss消去法,Lu分解法第三章:题型:具体题+证明,误差分析三个主要迭代法,条件误差估计,范数的小证明第四章:掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数第五章:最小二乘法计算第六章:梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析高斯求积公式的构造第七章:几种常用的迭代格式构造,收敛性证明第九章:基本概念(收敛阶,收敛条件,收敛区域等)简单欧拉法第一章误差1. 科学计算中的误差来源有4个,分别是 _________ , ________ , ________ , ________ 。
2. 用Taylor 展开近似计算函数f (x ) :、f (x 0) f'(x 0)(x-x 0),这里产生是什么误差?3. 0.7499作3的近似值,是位有效数字,65.380是舍入得到的近似值,有 几4位有效数字,相对误差限为 _______ . 0.0032581是四舍五入得到的近似值,有 ________ 位有效数字.4. 改变下列表达式,使计算结果比较精确:(1) —|x|=1( 2) +J 1-丄,|x|=11 +2x 1 +x Y x Y x1「cosx(3), x=0,|x| 1. (4) sin : -sin :, 一—■x5. 采用下列各式计算(、、2-1)6时,哪个计算效果最好?并说明理由。
1 1(1) 6 ( 2) 99-70,2( 3) (3-2、月)6( 4) 3(V2+1)6(3 + 2问36. 已知近似数x *有4位有效数字,求其相对误差限。
上机实验题:kx匸 Xx1、 利用Taylor 展开公式计算 e,编一段小程序,上机用单精度计算 e 的函数k£k !值.分别取x =1, 5, 10, 20, -1,-5,-10,-15,-20,观察所得结果是否合理,如不合 理请分析原因并给出解决方法.1 n2、 已知定积分I n— dx,n =0,1,2,…,20,有如下的递推关系 ‘° x +6可建立两种等价的计算公式11(1) I n 61 nd ,取 I 。
数值分析上机题目详解

第一章一、题目设∑=-=NN j S 2j 211,其精确值为)11123(21+--N N 。
1) 编制按从大到小的顺序11131121222-+⋯⋯+-+-=N S N ,计算S N 的通用程序。
2) 编制按从小到大的顺序1211)1(111222-+⋯⋯+--+-=N N S N ,计算S N 的通用程序。
3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。
(编制程序时用单精度) 4) 通过本次上机题,你明白了什么?二、通用程序N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0);for a=2:N; Sn1=Sn1+1/(a^2-1); endSn2=single(0);for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); endfprintf('The value of Sn (N=%d)\n',N);fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')三、结果从结果可以看出有效位数是6位。
感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。
从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。
数值分析上机题答案

数值分析上机题答案【篇一:数值分析上机试题对应参考答案】么是近似值x* 有效数字?若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n位,就说x*有n位有效数字。
它可表示为2、数值计算应该避免采用不稳定的算法,防止有效数字的损失. 因此,在进行数值运算算法设计过程中主要注意什么?(1)简化计算过程,减少运算次数;(2)避免两个相近的数相减;(3)避免除数的绝对值远小于被除数的绝对值;(4)防止大数“吃掉”小数的现象;(5)使用数值稳定的算法,设法控制误差的传播。
3、写出“n 阶阵a 具有n 个不相等的特征值”的等价条件(至少写3 个)(1)|a|不为零(2)n阶矩阵a的列或行向量组线性无关(3)矩阵a为满秩矩阵(4)n阶矩阵a与n阶可逆矩阵b等价4、迭代法的基本思想是什么?就是用某种极限过程去逐步逼近线性方程组精确解得方法。
其基本思想为:先任取一组近似解初值x0,然后按照某种迭代原则,由x0计算新的近似解x1,以此类推,可计算出x2,x3,…xk,。
,如果{x}收敛,则取为原方程组的解。
5、病态线性方程组的主要判断方法有哪些?(1)系数矩阵的某两行(列)几乎近似相关(2)系数矩阵的行列式的值很小(3)用主元消去法解线性方程组时出现小主元(4)近似解x*已使残差向量r=b-ax*的范数很小,但该近似解仍不符合问题要求。
6、lagrange 插值的前提条件是什么?并写出二次lagrange 插值的基函数。
1,j?i?(x)? 前提条件是:l i ,j?0,1,2?,n.?ij0,j?i?二次lagrange 插值的基函数: (x?x)(x?x)12??lx0(xx)(xx) 0?10?2 (x?x)(x?x)02?? lx1(xx)(xx)1?01?2(x?x)(x?x)01?? lx2(x?x)(x?x)20217、什么是数值积分的代数精度?如果某一个求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,则称该求积公式具有m次代数精度(或代数精确度)。
数值分析上机题

上机题1舍入误差与有效数: 设2211N N j S j ==-∑,其精确值为1311()221N N --+。
(1) 编制按从大到小的顺序222111+2131N 1N S =++---…,计算N S 的通用程序; (2) 编制按从小到大的顺序222111+N 1N-1121N S =++---…(),计算N S 的通用程序; (3) 按两种顺序分别计算246101010S ,S ,S ,并指出有效位数(编制程序时用单精度);(4) 通过本上机题你明白了什么?Matlab 代码:Sb=single(0); %定义数据类型为单精度Ss=single(0);y=single(0);Y=single(0);N=single(2);a=1000000;while(1) %从大到小相加Y=1/(N^2-1);Sb=Sb+Y;if(N>=a)break;endN=N+1;endfprintf('Sb[%d]=%10.9f\n',N,Sb)n=single(a);while(1) %从小到大相加y=1/(n^2-1);Ss=Ss+y;if(n<=2)break;endn=n-1;endfprintf('Ss[%d]=%10.9f\n',a,Ss)St=(3/2-1/a-1/(1+a))/2; %准确值fprintf('St[%d]=%10.9f\a',a,St)分别计算246101010S ,S ,S 值为:Sb[100]=0.740049481Ss[100]=0.740049541St[100]=0.740049505从大到小S 计算有效位数为6位,从小到大为7位;Sb[10000]=0.749852121Ss[10000]=0.749899983St[10000]=0.749900005从大到小S 计算有效位数为3位,从小到大为3位;Sb[1000000]=0.749852121Ss[1000000]=0.749999046St[1000000]=0.749999000从大到小S 计算有效位数为3位,从小到大为7位;心得:按从小到大计算的有效数字要多与按从大到小计算所得。
数值分析习题第七章

第七章2.(1)设A 是对称阵且011≠a ,经过Gauss 消去一步后,A 约化为⎪⎪⎭⎫ ⎝⎛21110A a a T ,证明A 2是对称阵。
(2)用Gauss 消去法解对称方程组⎪⎩⎪⎨⎧-=++-=++=-+8621.02147.14759.08468.07321.14759.08423.13475.04127.08468.03475.06428.0321321321x x x x x x x x x (1) 证:记()())1(ij ij a a A ==经Gauss 消元一步后,A 2的元素为()())1(111111)2(j i ijija a a a a -= ∵A 是对称的 ∴()()11)1(11)1(,j i ji ij a a a a ==,于是有()()()2)1(111111)2(ji ij ji ija a a a a a =-=故A 2是对称的。
(2) 用Gauss 消去法求解所给对称方程组,得 ()T X 735199.2,6315228.0,586035.4*-=9.试推导矩阵A 的Crout 分解A=LU 的计算公式,其中L 为下三角阵,U 为单位上三角阵。
解:设A=LU ,即⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-111,122311221222111212222111211n n n n nn n n nn n n n n u u u u u l l l l l l a a a a a a a a a根据矩阵分解乘法,有nj l a u u l a n i l u l a j j j j i i i ,,,,得,, 2,11111111111111======现设L 的前k-1列与U 的前k-1行已算好,因()1,,111==+==∑∑=-=kkkr k r kkik rk ir rk ir ik u n k i u l u l u l a所以()n k i u l a l k r rkir ik ik ,,11 =-=∑-=同样()n k j u l u l u l a kr k r kjkk rj kr rj kr ik ,,1111+=+==∑∑=-=所以n k j l u l a u kkk r rjkr kj kj ,,111+=-=∑-=,综上,Crout 分解公式⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⎪⎭⎫⎝⎛-==-=====∑∑-=-=n k j l u l a u n k i u l a l n j l a u n i a l k r kk rj kr kj kj k r rk ir ik ik j ji i ,,1,/,,,,,2,/,2,1,111111111110.设Ux=d ,其中U 为三角阵(1)就U 为上及下三角阵推导一般的求解公式,并写出算法; (2)计算解三角方程组Ux=d 的乘除法次数;(3)设U 为非奇异阵,试推导求U -1的计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2');
hist = 0 -0.428571428571429 -0.000000000000101 0 1.557407724654902 1.000000000000127 -0.141348392468100 1.087738055836075 -0.002875590925150 1.001269946612821
数理强化班
数值分析第七章计算机实习题
写一程序实现下面问题的牛顿算法——求解方程组:
3 ( x1 3)( x2 7) 18, x1 sin( x e 1) 0. 2
源程序如下:
function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 % f % g % maxit % tol % OUTPUTS: % x % it % hist format long; if nargin<5, if nargin<4, if nargin<3, end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1; for k = 1:maxit, tol = 1e-7; maxit = 100; error('too few input!!'); solution iteration history of iteration initial point function gradient maximum iteration tolerance for convergence
0.000000056935424 1.000000431005363
由以上运行结果可知: 该方程组采用牛顿迭代法迭代 5 步可到足够精度,解为 x 1 .
0
>> [x,it,hist] = newton2([0;0],f,g)
得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x= -0.000000000000000 1.000000000000000
it = 5