应用数值分析(第四版)课后习题答案第2章

合集下载

应用数值分析(第四版)张明主编文世鹏主审课后答案

应用数值分析(第四版)张明主编文世鹏主审课后答案
-1,1)T。
5
1 1
1
1 1 1
4 1
解:由 x=sy 得
y-4=s-1x=
1 11
1 1 1
1 1 1
1 11
2 1 1
4 1
4 1
4
8、在 P2 (t ) 中向量 P2 (t ) 1 t 2t 2 ,取基 S t 1, t 2, t 2 ,求 P2(t)在基下的坐标 。
10、试导出计算积分
In
1 0
xn dx
1 4x
(n
1, 2, 3, 4) 的递推计算公式
In
1 4
1 ( n
In1 )
,用此递
推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解: In
1 0
xn dx
1 4x
1 4
1 0
4xn
xn1 1 4x
x n1 dx
11 (
40
x n1dx
设 A 是单位上(下)三角阵。证 A-1 也是单位上(下)三角阵。 证明:A 是单位上三角阵,故|A|=1,∴A 可逆,即 A-1 存在,记为(bij)n×n
n
由 A A-1 =E,则 aijb jk ik (其中 aij 0 j>i 时, aii 1) j 1
故 bnn=1, bni=0 (n≠j) 类似可得,bii=1 (j=1…n) bjk=0 (k>j) 即 A-1 是单位上三角阵 综上所述可得。Rn×n 中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三 角阵”对矩阵求逆是封闭的。 2、试求齐次线行方程组 Ax=0 的基础解系。
2x2
1 2x 1 x (1 2x)(1 x)
(3) (1 cos x) sin2 x

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

数值分析课后习题与解答

数值分析课后习题与解答

课后习题解答第一章绪论习题一1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。

解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式()有已知x*的相对误差满足,而,故即2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。

解:直接根据定义和式()(1.2.3)则得有5位有效数字,其误差限,相对误差限有2位有效数字,有5位有效数字,3.下列公式如何才比较准确?〔1〕〔2〕解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

〔1〕〔2〕4.近似数x*=0.0310,是 3 位有数数字。

5.计算取,利用:式计算误差最小。

四个选项:第二、三章插值与函数逼近习题二、三1. 给定的数值表用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1与n=2的Lagrange插值或Newton插值,并应用误差估计〔5.8〕。

线性插值时,用0.5与0.6两点,用Newton插值误差限,因,故二次插值时,用0.5,0.6,0.7三点,作二次Newton插值误差限,故2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少?解:用误差估计式〔5.8〕,令因得3. 若,求和.解:由均差与导数关系于是4. 若互异,求的值,这里p≤n+1.解:,由均差对称性可知当有而当P=n+1时于是得5. 求证.解:解:只要按差分定义直接展开得6. 已知的函数表求出三次Newton均差插值多项式,计算f(0.23)的近似值并用均差的余项表达式估计误差.解:根据给定函数表构造均差表由式(5.14)当n=3时得Newton均差插值多项式N3(x)=1.0067x+0.08367x(x-0.2)+0.17400x(x-0.2)(x-0.3) 由此可得f(0.23) N3(0.23)=0.23203由余项表达式(5.15)可得由于7. 给定f(x)=cosx的函数表用Newton等距插值公式计算cos 0.048与cos 0.566的近似值并估计误差解:先构造差分表计算,用n=4得Newton前插公式误差估计由公式〔5.17〕得其中计算时用Newton后插公式〔 5.18)误差估计由公式〔5.19〕得这里仍为0.5658.求一个次数不高于四次的多项式p(x),使它满足解:这种题目可以有很多方法去做,但应以简单为宜。

数值分析课后习题答案

数值分析课后习题答案

0 1
0 10 1 1 0 0 0 1
0 0 12 1 1 2 0 0 0

1 2
0 0 0 1 1 0
1 2

1 2


1 2
1
0 0 0 1 0

1 2

1 2


0
1 2

1 2
0
0
0
341 1 1
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
A 4 5 4 , b 2
8 4 22
3

16 A 4
4 5
84
44 11
2-3(1).对矩阵A进行LU分解,并求解方程组Ax=b,其中
2 1 1 A1 3 2
4 ,b6
1 2 2
5

2 A 1
1 3
1 2


2 11
22
1
5 2
1

3 21来自,所以 A12
1
2 1 1



5 3
2-2(1).用列主元Gauss消元法解方程组
3 2 6x1 4 10 7 0x2 7 5 1 5x3 6

3 2 6 4 10 7 0 7 10 7 0 7

r1r2
消元

10 7 0 7 3 2 6 4 0 0.1 6 6.1
r=0.5101-n/3.162…<0.5101-n/3<0.01% 因此只需n=5.即取101/2=3.1623

应用统计学(第四版)第2章 数据与数据收集

应用统计学(第四版)第2章 数据与数据收集

类型:解剖麻雀式和划类选典式 特点:属于非概率型抽样调查
具有所研究问 题的本质属性 或特征的单位
目的:为了描述或揭示事物的本质或规律
26
调查方式小结
调查方式
全面调查
非全面调查 (抽样调查)
定期统计报表制度——制度化的经常性调查
普查 (概率)抽样调查
判断调查
非概率抽样
重点调查 典型调查
方便调查
专门组织的一次性调查
• 调查方式:对法人单位和产业活动单位在全面清查的基础上进
行普查登记。对个体经营户在全面清查的基础上,按照《第四次 全国经济普查个体经营户抽样调查方案》进行抽样调查。
• 调查方法:在单位清查阶段,普查员使用PAD(手持移动终端)采
集清查对象数据; • 在普查登记阶段,采取网上直报、PAD采集、部门报送及其他方
第2章 数据与数据搜集
1
主要内容和学习目标
2.1 数据(理解) 2.2 数据的收集(掌握)
2
2.1 数据
2.1.1数据的测量尺度 2.1.2统计数据的常用类型
3
何为数据? 统计数据简称数据。数据是 所收集、分析、汇总的,用以描 述和解释的事实与数字。
统计数据的研究,首先涉及的是数据的测度。 在统计数据的收集、处理和分析中,不同特点的 统计数据,形成不同的类型,需要采用不同的统计 方法将数据转为有意义的而且易于理解的统计信息。
36
调查表的形式:单一 一览表
单一表每份只登记一个调查单位的资料。在调查项目 较多时使用单一表,便于分类和整理。
一览表的样式——表2—1
一览表每份可登记多个调查单位的资料,却不能容纳 较多的调查内容。适用于调查项目不多的调查,便于 资料的对比和汇总。

应用数值分析(第四版)课后习题答案第2章

应用数值分析(第四版)课后习题答案第2章

第二章习题解答1.(1) R n×n中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n×n中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

设A 是n×n的正交矩阵。

证明A -1也是n×n的正交矩阵。

证明:(1),n nA B A B R⨯∈证明:为上三角阵,为上三角阵,10(),0(),0(),,()(()),()()ij ij nij ik kj ij k n n T T T T T T T T T T a i j b i j C AB c a b c i j A B A B R AA A A E BB B B EAB AB ABB A E AB AB B A AB E AB =⨯∴=>=>==∴=>∴∈========∴∑则上三角阵对矩阵乘法封闭。

以下证明:为正交矩阵,为正交矩阵,为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2)A 是n×n的正交矩阵∴A A -1 =A -1A=E 故(A -1)-1=A∴A -1(A -1)-1=(A -1)-1A -1 =E 故A -1也是n×n的正交矩阵。

设A 是非奇异的对称阵,证A -1也是非奇异的对称阵。

A 非奇异 ∴A 可逆且A -1非奇异 又A T =A ∴(A -1)T =(A T )-1=A-1故A -1也是非奇异的对称阵设A 是单位上(下)三角阵。

证A -1也是单位上(下)三角阵。

证明:A 是单位上三角阵,故|A|=1,∴A 可逆,即A -1存在,记为(b ij )n×n由A A -1=E ,则∑==nj ik jkij ba 1δ (其中0=ij a j >i 时,1=ii a )故b nn =1, b ni =0 (n≠j)类似可得,b ii =1 (j=1…n) b jk =0 (k >j)即A -1是单位上三角阵综上所述可得。

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α

(完整版)数值分析第四版习题和答案解析

(完整版)数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xxx ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()nx ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差. 23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii) (0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x=在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()nn x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.2y a bx =+.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()h h f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

高等数值分析第二章答案

高等数值分析第二章答案

第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。

令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。

在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。

以上证明了求解,22b Ax b Ax −=等价于极小化即。

等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。

使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。

为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。

应用数值分析第四版(张明文世鹏)第一第二章答案

应用数值分析第四版(张明文世鹏)第一第二章答案

第一章习题解答3、设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

解:设=()u f x ,()()()()()()||||||||||()||()||||()||()||||r r rx e u df x e x df x e x e u u dx u dx u x df x x df x x e x x dx u dx u δ=≈==≤()||10.2(())||()||ln ln ln r r r r df x x x x f x x x dx u x x x xδδδδ==⋅⋅==4、长方体的长宽高分别为50cm ,20cm 和10cm ,试求测量误差满足什么条件时其表面积的误差不超过1cm 2。

解:设2()S xy yz zx =++{}[]{}(,,)(,,)(,,)()||()||()||()(,,)(,,)(,,)||||||max (),(),()2()2()2()max (),(),()1S x y z S x y z S x y z e S e x e y e z x y zS x y z S x y z S x y z e x e y e z x y z y z z x x y e x e y e z ∂∂∂≤++∂∂∂⎛⎫∂∂∂≤++ ⎪∂∂∂⎝⎭=+++++<{}[]11max (),(),()2()2()2()4()110.0031254(502010)320e x e y e z y z z x x y x y z <=+++++++===++测量误差小于0.00625时其表面积的误差不超过1cm 2。

7、计算61)1.414≈。

利用以下四种计算格式,试问哪一种算法误差最小。

(1(2)3(3- (3(4)99- 解:计算各项的条件数'()(())||()xf x cond f x f x =111.41461(),(())| 3.5147(1)x f x c o n d f x x ===+ 3221.414()(32),(())|49.3256x f x x c o n d f x ==-=331.41431(),(())| 1.4557(32)xf x c o n d f x x ===+ 441.414()9970,(())|4949x f x x c o n d f x ==-= 由计算知,第三种算法误差最小。

《应用多元分析》(第四版)习题解答(上财出版社,王学民编著)

《应用多元分析》(第四版)习题解答(上财出版社,王学民编著)

0 A22
1
所以
1 0 A11 I 2 A1 1 - A22 A21 I 0 1 0 I - A12 A22 1 A22 0 I
同理可证另一等式。 1.21 可求得对称矩阵 A 的最大特征值 λ1=11.745 和最小特征值 λ3=0.255, 这就分别 是 xAx xx 的最大值和最小值。
1 1 1 ; 可解得单位特征向量为 x1 = 同理, 从 A I x 0 可解得两个可能的正交单位特 3 1 1 1 1 1 1 和x3 = 征向量为 x2 = 1 。 2 6 0 2
1 x x2 x x2 1 x x 2 0 1 x2 x2 x 1 x2 1 x x 2 1 x x 2
x x2 x2 1 x2 x x 1 x2
2 2 1 x2 x 1 x 2 x 2 1 x 2 x 2 2 x 1 x
rank( A) rank( Λ) A 的非零特征值个数
1.14 (1)
xi x
i 1
n
2
xi2 nx 2 x x
i 1
n
1 2 1 x n
1 x I n 11 x x Ax n
3
这里 x x1 , x2 ,
同理,若 A11 0 ,则有 A A22 1 A11 ; (2)在习题 1.19 的“提示”中,关系式两边取逆,得
I 0 A11 - A 1 A 22 21 I A21
1 1 A12 I - A12 A22 A11 2 = A22 0 I 0 1 1

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

数值分析第四版习题及答案

数值分析第四版习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x b a x b f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x . 11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

《数值分析》第二章答案

《数值分析》第二章答案

习题21. 分析下列方程各存在几个根,并找出每个根的含根区间:(1) 0cos =+x x ; (2) 0cos 3=-x x ; (3) 0sin =--x e x ; (4) 02=--x e x 。

解:(1) 0cos =+x x (A) x x x f cos )(+= ,0sin1)(≥-='x x f ,),(∞-∞∈x10cos 0)0(=+=f ,01cos 1)1cos(1)1(<+-=-+-=-f ∴ 方程(A) 有唯一根 ]0,1[*-∈x (2) 0cos 3=-x x (B) x x x f c o s 3)(-=,0sin 3)(>+='x x f , ),(∞-∞∈x 时010c o s03)0(<-=-⨯=f ,01cos 31cos 13)1(>-=-⨯=f ∴ 方程(B) 有唯一根 ]1,0[*∈x (3)sin =--xex (C)xex -=sinx x f sin )(1=, xex f -=)(2方程(C)有无穷个正根,无负根 在[22,2πππ+k k ] 内有一根 )(1k x ,且0]2[lim )(1=-∞→πk x k k在[ππππ++k k 2,22]内有一根)(2k x ,且0])12([lim )(2=+-∞→πk x k k (示图如下) 3,2,1,0=k)(2x f x(4)02=--xex(D) xex-=2,)(21x x f = xex f -=)(2方程(D) 有唯一根 ]1,0[*∈x 当 0<x 时 (D)与方程2x ex -=- (E) 同解 当 0<x 时 (E)无根 2. 给定方程 012=--x x ; (1)(2)若在[0 , 2]上用二分法求根,要使精确度达到6位有效数,需二分几次? 解:012=--x x1) 01)(2=--=x x x f 1)1(-=f , 025.0)5.1(<-=f ,1)2(=f]2,5.1[*∈x, 618034.1251*=+=x)(5.1- 1.75(+) 2(+) )(5.1- 1.625(+) 1.75(+) )(5.1-1.5625(+) 1.625(+))(5625.1- )(59375.1-1.625(+)1102103125.02)5625.1625.1(-⨯<=-6.159375.1*≈≈x2位有效近似值为 1.6 2)00==a a , 20==b b)(21k k k b a c +=kk k a b c x 2121*=-≤-+5102121-⨯≤k,51102≥-k60.162ln 10ln 51=≥-k∴ 只要2等分18次3. 为求0353=--x x 的正根,试构造3种简单迭代格式,判断它们是否收敛,且选择一种较快的迭代格式求出具有3位有效数的近似根。

高等教育出版社第四版仪器分析课后习题答案第2章

高等教育出版社第四版仪器分析课后习题答案第2章

29.测得石油裂解气的气相色谱图(前面四个组分为经过衰减1/4 而得到),经测定各组分的f 值并从色谱图量出各组分峰面积为:
出峰次序 空气 峰面积 34 校正因子f 0.84
甲烷 二氧化碳 乙烯 乙烷 丙烯 丙烷
214 4.5
278 77 250 47.3
0.74 1.00
1.00 1.05 1.28 1.36
42.4 0.938
求甲酸、乙酸、丙酸的质量分数。
解:根据公式:
wi
Ai As
fi fs
ms m
100%
及f '1/ s'
求得各组分的校正因子分别为:
3.831; 1.779; 1.00; 1.07 代入质量分数的表达式中得到各组分的质量分数分别为: w甲酸=(14.8/133)×(0.1907/1.055) ×3.831 ×100% = 7.71% w乙酸 = (72.6/133) ×(0.1907/1.055) ×1.779 ×100% = 17.55% w丙酸=(42.4/133) ×(0.1907/1.055) ×1.07 ×100% = 6.17%
m i% nAiA sf10 % 0 or m i% nhihsf 10 % 0
AiA sf
hihsf
i1
i1
由上述计算公式可见,使用这种方法的条件是:经过色谱分离后、样品 中所有的组份都要能产生可测量的色谱峰. ·
该法的主要优点是:简便、准确;操作条件(如进样量,流速等)变化 时,对分析结果影响较小.这种方法常用于常量分析,尤其适合于进样 量很少而其体积不易准确测量的液体样品.
h
0 .9
0 .8
0 .7
0 .6
0 .5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题解答1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

-1设A是nXn的正交矩阵。

证明A也是nXn的正交矩阵。

证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n na ij 0(i j ),b ij 0(i j)nC AB 则G j a ik b kj, C j 0(i j)k1上三角阵对矩阵乘法封闭。

以下证明:A为正交矩阵,B为正交矩阵,A,B R n nAA T A T A E,BB T B T B E(AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB EAB为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2) A是nXn的正交矩阵A A-1 =A-1A=E 故(A-1) -1 =AA-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。

设A是非奇异的对称阵,证A也是非奇异的对称阵。

A非奇异.A可逆且A-1非奇异又A T=A .( A-1)T=( A T)-1=A-1故A-1也是非奇异的对称阵设 A 是单位上(下)三角阵。

证A-1也是单位上(下)三角阵。

-1证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xnn由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1)j1故b nn=1, b ni=0 (n 丰 j)类似可得,b ii =1 (j=1 …n) b jk=0 (k > j)即A-1是单位上三角阵综上所述可得。

F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0 的基础解系。

1 21 41A= 0 11 000 01 4512 1 411 2 1 41 解 : A=1 1 01 0 450 1451451 2 0 0 410 08 140 1 0 4 5 -14 514514581445故齐次线行方程组 Ax=0的基础解系为14, 2510 013. 求以下矩阵的特征值和特征向量。

34A 1=52解( 1I- A ) x=0 得 1343 解 : A 1=,| I- A 1|=5 2514 0解(2I- A ) x=0 得4、已知矩阵 A1 2 1 12 43 0,求A 的行空间R(A T)及零空间N(A)的基。

1 2 1 5 1 2 1T 24 2 解:Q A T1 3 1 1 0 51 2 1 1 2 1 0 0 0 0 1 0 0 5 0 0 0 1 02 40 0 07, 2 2r(A T) 34=an a 12 V,a 21 a 22 a 12 a 21 /、k E 12 E 21)( E 12 E 21)2E , E , E E , E E 是R 2 2中的一组基。

a 12 a 21有 Aa 11E 11a 22E 227、在 戊中求向量 x= (1 , 2, 1 , 1) T 在基 S= (1,2,3,4) (1, 1 , 1 , 1) T ,2= (1, 1, -1 , -1 ) T ,3= (1, -1 , 1, -1 ) ', 4= ( 1, -1 ,-1 , 1) T o下的坐标,其中 T对于任意二阶实矩阵E 12 E 21,E 12 E 211 01 0令 k 1En k 2E 22 k 3(E 12E 21) k 4(E 12 E 21)k 1k 3 k 4 因此E 11 k 2E 22k 3( E12E 21) k 4(E 12 E 21)0 Ok 1k 2 k 3 k3k 4 0 00 1 0 1k 3 k 4R(A T )的基为1T31215T11 ,2由Ax 0可解得x T 2 10 0N(A)的基为 5、、已知矩阵 试计算 A 的谱半径(A)。

解: f A (det( I A)2(3)(4)max3 .5(A)E 21解:EnE 11, E 22, E 12 E 21,E 12E 21 是 R 2中的一组基。

,其中 E 110 0 ,E12 0,E 120 0E 211 0,E 22解:P2(t) 1 t 2t2,基S t 1,t 2,t2令P2(t) k1(t 1) k2(t 2) k3t2则有k3 2, k1 k21, k1 2k2 1解之得k13, k22, k3 2。

F2(t)在基S t 1,t 2,t2下的坐标为(-3,2,2).9、已知戊中两组基1 1 0 1 0 1S 1={ 1, 2,3}= 1 , 0 , ,1 , S2={ 1 , 2, 3 }=0 ,0,11 1 1 1 1 1①求从S到S2的过度矩阵;②设已知u= (2, 1, 2)T R3求u 在S1 下的: 坐标和u在S2下的坐标。

1 1 0 11 0 12 1 1解:① A= S 1 S2= 1 0 1 0 0 1 1 1 01 1 1 1 1 12 1 2②对u=( 2,1, 2)T2在S下,由u=Sx可求出x= S -11 u= 11 1 1 1 114 1 1解:由x=sy 得y -4 =s-1 x=1 1 1 21 1 1 1 11 1 1 1 1 4 14 14 1 48、在P2(t)中向量P2 (t) 1 t 2t2,取基S t 1,t 2,t2,求P2(t)在基下的坐标3__ -1在S2下,由u=S2x可求出x= S 2- u= 111 1 3 110.已知A= 3 1 3 4 ,求dim(R(A)), dim(R(A T)),dim(N(A))1 5 9 81 13 1 解:A= 313 4 1 598dim(R(A))=dim(R(A T ))=r(A)=2 dim(N(A))=n-r=4-2=2-J11、已知 A=span{1,e x ,e -x },D= — 是X 上的线性变换,求dx① D 关于基S i ={1,2e x ,3e -x }的矩阵A ;② D 关于基 S 2={1, (e x +e -x ) /2 , (e x -e -x ) /2}的矩阵 B 。

解:①由 Dx=SA,设 A=[X (1),X (2),X⑶]D (1) =0, 0= S 1 X ⑴=0 - 1+0 - 2 e x +0 - 3e -x , X ⑴=(0,0,0)0 00 1 A 0丄0 210 0 -30 00 ②类似的可得 D 关于基S={1, (e x +e -x ) /2 , ( e x -e -x ) /2}的矩阵B 为0 110 11t12、已知线性变换 T : Pa (t )^P 3 (t ),定义T 为T ( P (t )) = P(t) dt 求线性变换T 在基偶(S={1,t,t2}, S2 2={1,t , t /2,t 3/3} ) 下的矩阵。

解::设所求矩阵为 A ,则有 T S 1 =S 2Att 3 T(1) = 1dtt 0 1 1 t 023t,2,2,3ttt T(t ) = tdt0 1 0 t 10 223t.3.2.3t,t ,tT(t 2) = t 2dt0 1 0 t 1 - 1 -323—/ x 、xX _(2)亠“1 -2 ex-x(2)1 TD (e )= =e ,e = S 1X =0 T + —+0 • 3e , X =(0,,0)22D (e -x) =-e -x , -e -x= S 1 X (3)=0 •1+0 -2 e 1x+1• 3e -x,X (2)=(0, 0,」)T33000的正交补 X(即所有与X 垂直的向量的全体)100 A010 00113、设 A 试证明 R mXn ,定义从R 1到R m 的变换 T 是线性变换。

T 为 T : x R n T y=Ax x R m证明: x R n, y R nT(x y) A(x y) AxAy Tx Ty Rm有 T(kx) A kx kAxkT(x)Rm故,由定义知, T 是线性变换。

14、已知R 3中取基S = 1, 1 ,R 2中取基S2= 1 线性变换 T : R 3TR 2 定义为 x= 求①T 在(S , S 2)下的矩阵A ; ② 解:① (x i , x 2 , x 3) T R 3, Tx=( x 2 +x 3 11,221 。

T2, x 1 +x 3) R .设 u=(2, -3 , 2) T R 3由题知, T (S 1)= S 2A ,u 在 S i 下的坐标和 Tu 在S 2下的坐标。

T( T( T( 1) 2)3)对 u= Tu由 Tu15、求由向量1T 1T T2Ts 21T(s 1)2, -3 , 2)s 1x 可求出 x S i11 s 11u123T1s 2 y 可求出 y s 2 Tu5 3T1=( 1 , 2, 1 ) 与 2=i , -i ,2)T张成的R 3的子空间X=span{ 1,2}解:令A 1 2解Ax o得x 01故X =spanx span 0116、试证明若{ 1 , 2,…,t}是内积空间H中不含零向量的正交向量组,贝U 1 ,2,…,t必线性无关。

证明:假设存在k1 ,k2, , k t使k1 1 k2 2k t t 0两边与i作内积得k i i i 0,(i 1,2, ,t)又i i 0(因i 0)故k i 0故1 , 2,…,t必线性无关。

17、计算下列向量的II x II a x II 1 和II x II 2。

① x= (3, -4 , 0, 3/2 ) T② x= (2, 1, -3 , 4) T③ x= ( sink,cosk,2 k) T k 为正整数。

解:① I x I a = maxx i 4n||x h X i 8.5i 11n2x 2 x 5.2202i 1nII xh Xi 10i 15.4772③ I x II a = maxx i2ki 1nX i sink cosk 2k i 122X ii 118、在C[a,b]中,试证明(1) || f || max | f (x)| 为f (x)的范数。

X [a ,b] b1(2) ||f||2 ( f 2(t)dt)2为f(x)的范数。

a证明:1、( 1)显然 || f || o,|| f || 0 f(x) 0(2)||kf || max | kf (x)| | k | max ] | f (x) | | k ||| f ||x [a,b]x [a,b](3) ||f g|| max | f(x) g(x)|x [a,b]max ]|f(x)|max|g(x)| ||f |||| f || max | f (x) | 为f (x)的范数x[a,b]2、(1)正定性 f 2(t) 0,则 || f ||2 0b1且(f 2(t)dt)20 f (t) 0ab 1⑵齐次性 k F,||kf(t)|2 ( k 2f 2(t)dt 尸 |k||| f ||2a(3)三角不等式|| f g||2 || f ||2 ||g||2|| ||是C[a,b]上的一个范数19、在内积空间R n 中给出Cauchy -Schawz 不等式,其中内积n(x,y):x T Ay x i C ij x j ,A 为对称正定矩阵。

相关文档
最新文档