高等工程数学课后习题答案

合集下载

知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案

知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案

第一章测试
1
【单选题】(2分)
有限维线性空间上范数1,范数2之间的关系是
A.
2强于1
B.
1强于2
C.
无法比较
D.
等价
2
【单选题】(2分)
赋范线性空间成为Banach空间,需要范数足?
A.
不变性
B.
可加性
C.
完备性
D.
非负性
3
【判断题】(2分)
标准正交系是一个完全正交系的充要条件是满足Parseval等式
A.

B.

4
【判断题】(2分)
在内积空间中,可以从一组线性无关向量得到一列标准正交系
A.

B.

5
【判断题】(2分)
矩阵的F范数不满足酉不变性
A.

B.

6
【单选题】(2分)
与任何向量范数相容的矩阵范数是?
A.
F范数
B.
极大列范数
C.
算子范数
D.
极大行范数
7
【单选题】(2分)
正规矩阵的谱半径与矩阵何种范数一致
A.
算子范数
B.
极大行范数
C.
极大列范数
D.
矩阵2范数
8
【单选题】(2分)
矩阵收敛,则该矩阵的谱半径
A.
无从判断
B.
大于1
C.
小于1
D.
等于1
9
【单选题】(2分)
矩阵幂级数收敛,则该矩阵的谱半径
A.
大于1
B.
等于1
C.
无从判断
D.
小于1。

《高等工程数学》科学出版社 吴孟达版习题答案(1-8章)

《高等工程数学》科学出版社  吴孟达版习题答案(1-8章)

《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]Ta 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。

解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R 2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。

解:其坐标为:x =( 3, -3, 2,-1 )T4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。

证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。

余略。

5.已知R 4中的两组基:T T T T 1234=[1,0,0,0],=[0,1,0,0],=[0,0,1,0],=[0,0,0,1]αααα和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。

解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:11234205612927331336112923x 112190018101373926x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-----1=--27--6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。

高等工程数学第二章习题及答案

高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。

高等工程数学第六章习题及答案

高等工程数学第六章习题及答案

第6章 常微分方程数值解法 讨论一阶常微分方程初值问题(,),,()dyf x y a x bdx y a η⎧=≤≤⎪⎪⎨⎪=⎪⎩ (6.1.1)的数值解法.数值解法可区分为两大类:(1) 单步法:此类方法在计算1n x + 上的近似值1y n + 时只用到了前一点n x 上的信息.如Euler 法,Runge-Kutta 法,Taylor 级数法就是这类方法的典型代表.(2) 多步法:此类方法在计算1yn +时,除了需要n x 点的信息外,还需要12,,n n x x -- ,等前面若干个点上的信息.线性多步法是这类方法的典型代表.离散化方法1. Taylor(台劳)展开方法2. 化导数为差商的方法3. 数值积分方法一、线性多步法基本思想:是利用前面若干个节点上()y x 及其一阶导数的近似值的线性组合来逼近下一个节点上()y x 的值. 1.一般公式的形式101',,1,,ppn in ii n i i i y a yh b y n p p +--==-=+=+∑∑其中i a ,i b 为待定常数,p 为非负整数.说明:(1)在某些特殊情形中允许任何i a 或i b 为零,但恒假设p a 和p b 不能同时全为零,此时称为1p +步法,它需要1p +个初始值01,,,.p y y y 当0p =时,定义了一类1步法,即称单步法.(2) 若10b -=,此时公式的右端都是已知的,能够直接计算出1n y +,故此时称为显式方法;若10b -≠,则公式的右端含有未知项111'(,),n n n y f x y +++=此时称其为隐式方法.2.逼近准则 准确成立:101()()'(),,1,.ppn in ii n i i i y x a y xh b y x n p p +--==-=+=+∑∑【定义 6.1】 如果对任意()r y x M =,某一线性多步法准确成立,而当()y x 为某一个1r +次多项式时,线性多步法不准确成立,则称此线性多步法是r 阶的. 注:(1)方法的阶越高,逼近效果越好. (2)1p +步法的最高阶可达 22r p =+. 3.线性多步法阶与系数的关系 局部截断误差101()()'(),,1,.ppn n in ii n i i i T y x a y xh b y x n p p +--==-=--=+∑∑()01()'()(),qq n n n q n T c y x c hy x c h y x =++++其中001011011,1[()],1{1[()()2,3,.!pi i p pi i i i p pq q q i i i i c a c i a b c i a i b q q ===--==-⎧=-⎪⎪⎪=--+⎪⎨⎪⎪⎪=--+-=⎪⎩∑∑∑∑∑【定理6.1】 线性多步法是r 阶的充分必要条件是0110,0r r C C C C +====≠称1r C +为误差常数.线性多步法是相容的:满足条件010C C ==,即0011,()1pi i ppiii i a i a b===-⎧=⎪⎪⎨⎪-+=⎪⎩∑∑∑4.线性多步法的构造方法 待定系数法:r 阶方法的系数,iia b 确定,可令010,r CC C ==== 即解下面方程得到1,0()1011()(),2,3,,01p a ii p pi a b i i i i p pq q i a q i q r i i i ⎧=∑⎪⎪=⎪⎪-+=∑∑⎪⎨==-⎪⎪⎪-⎪-+-=∑∑⎪==-⎩二、线性多步法的收敛性 记1(),pp p iii r ra rρ+-==-∑1().pi p ii r b rσ-=-=∑分别称为线性多步法的第一、第二特征多项式.()r ρ以及相应的线性多步法满足根条件:若()r ρ的所有根的模均不大于1,且模为1的根是单根。

《高等工程数学》习题三参考答案

《高等工程数学》习题三参考答案
1i n
1 P{ X 1 x, X 2 x, , X n x} 1 (1 P{ X x}) n 1 (1 F ( x)) n ;
因为 X ( n ) max X i ,所以 FX ( n ) ( x) P{ X ( n ) x} P{ X 1 x} P{ X n x} F ( x ) 。
11. 解:因 X ~ N (80,20 2 ) ,样本容量为 100,所以 X ~ N (80,4) ,
3
P{ X 80 3} P{
X 3 2
3 3 } 2(1 ( )) 2 * (1 - normcdf(3/2)) 0.1336 。 2 2
3 ), 10
12. 解:设 X 1 , X 2 , , X 10 和 Y1 , Y2 , , Y15 为 N ( 20,3) 两独立样本,则 X ~ N (20,
2
2 ( n) , X
X1 ~ t ( n) , X2 / n
所以 X
2
X1 /1 ~ F (1, n) 。 X2 / n
9. 解:MATLAB 命令为(1)norminv(0.99); (2)norminv(0.04); (3)chi2inv(0.975,15);(4) chi2inv(0.025,15);(5) chi2inv(0.95,50);(6) chi2inv(0.95,100);(7) tinv(0.975,19);(8) tinv(0.975,99); (9) finv(0.95,2,6);(10) finv(0.05,3,40);(11) finv(0.05,2,6);(12) finv(0.01,3,40) 10.解:因 X ~ N (1,4) ,样本容量为 16,所以 X ~ N (1,

最新《高等工程数学》吴孟达版习题答案(第二章)

最新《高等工程数学》吴孟达版习题答案(第二章)

最新《高等工程数学》吴孟达版习题答案(第二章)《高等工程数学》――科学出版社版习题答案(第二章)(此习题答案仅供学员作业时参考。

因时间匆忙,有错之处敬请指正,谢谢!)(联系地址:yangwq@/doc/3318299940.html, ) P50 1.求下列矩阵的特征值、代数重数核几何重数,并判断矩阵是否可对角化(1)110020112-(2)011121213--(3)411030102-解:(1)特征值:1231(1)()λλλ=代数重数和几何重数均为,==2代数重数和几何重数均为2可对角化。

(2)特征值:1231(1)()λλλ=代数重数和几何重数均为,==2代数重数为2和几何重数为1不可对角化。

(3)特征值:123(1)λλλ===3代数重数为3、几何重数均为不可对角化。

2.求下列矩阵的不变因子、初等因子和Jordan 标准形(1)3732524103-----(2)413002 10-1 (3)1234012300120001(4)3000013000001100002000112-解:(1)不变因子是:123d d d i λλλ+=1,=1,=(-1)(-i)()初等因子是:i λλλ+(-1),(-i),()Jordan 标准形是:1000000i i ??-??(2)不变因子是:123d d d λ3=1,=1,=(-3)初等因子是:λ3(-3)Jordan 标准形是:310031003(3)不变因子是:1234d d d d λ4=1,=1,=1,=(-1)初等因子是:λ4(-1)Jordan 标准形是:1100011000110001(4)不变因子是:12345d d d d d λλλλλ=1,=1,=1,=(-2)(-3),=(-1)(-2)(-3)初等因子是:λλλλλ(-2),(-3),(-1),(-2),(-3)Jordan 标准形是:10000020000020*******0003??3.设(1)110A 0012-=22(2)33A 613--1=-7-11-(3)010A 111011=--求可逆矩阵P ,使得P -1AP 是Jordan 标准形解:(1)A 的特征值为1231λλλ=,==2 对应的特征向量是:121,ααTT=(,0,-1)=(0,0,1)二级根向量是:(2)2αT=(-1,1,0)(2)122101(,,0110002102P P AP ααα--??=??=??1)=0-1100(2)A 的特征值为123λλλ===2 对应的特征向量是:11αT=(,2,1)二级根向量和三级根向量是:(2)(3)11,ααT T=(1,3,3)=(0,2,2)(2)(3)111110(,,3232102102P P AP ααα-??=??=??1)=21200(3)此题数据不便于求解特征值,A 的特征多项式是:3210()|A|11121011f I λλλλλλλλ-=---=-??-??=-+4.试求第2题最小多项式。

《高等工程数学》科学出版社 吴孟达版习题答案(1-8章)

《高等工程数学》科学出版社  吴孟达版习题答案(1-8章)

《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]T a 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。

解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。

解:其坐标为:x =( 3, -3, 2,-1 )T 4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。

证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。

余略。

5.已知R 4中的两组基:和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。

解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。

《高等工程数学》习题一参考答案

《高等工程数学》习题一参考答案
也是一组标准正交基。 19. 解:系数矩阵 A
2 1 1 1 3 1 0 0 1 4 ,可得基础解系为 1 1 1 0 1 0 1 1 1 5
f1 (0,1,1,0,0) , f 2 (1,1,0,1,0) , f 3 (4,5,0,0,1) ,Schmidt 正交化得,
1
13.按 P21 欧氏空间定义 2.1,逐条验证, 1) 不满足第 (2 ) 条, (4) 条, 故不是欧氏空间; 不满足第(4)条,故不是欧氏空间;3)都满足,故是欧氏空间。 14. 按 P21 欧氏空间定义 2.1,逐条验证,都满足,故是欧氏空间。 15. 设向量 ( x1 , x2 , x3 , x4 ) 与三个向量正交,则有
所以对两组基有相同坐标的非零向量可取为 (c, c, c,c)(c 0). 5. 由第 7 页子空间定义可得,1)向量满足加法和数乘封闭,是子空间;2)向量不满足加 法或数乘封闭,故而不是子空间。 注:从几何上看,子空间过原点,而不过原点的都不是。 6. 两个向量组生成相同子空间的充分必要条件是这两个向量组等价, 即可以互相线性表示。 解:因对应分量不成比例,故 α1 (1,1,0,0), α2 (1,0,1,1) , β1 (1,1,0,0), β2 (1,0,1,1) 线性
2
T1T2 ( x1 , x2 ) T1[T2 ( x1 , x2 )] T1 ( x1 , x2 ) ( x2 , x1 ) T2T1 ( x1 , x2 ) T2 [T1 ( x1 , x2 )] T2 ( x2 , x1 ) ( x2 , x1 )
11.略。 12. 解:1)因为 T ( x1 , x2 , x3 ) ( 2 x1 x2 , x2 x3 , x1 ) ,按照 P18 (1.21),可知

高等工程数学课后习题答案

高等工程数学课后习题答案

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。

解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。

解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。

(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。

高等工程数学Ⅲ智慧树知到课后章节答案2023年下南京理工大学

高等工程数学Ⅲ智慧树知到课后章节答案2023年下南京理工大学

高等工程数学Ⅲ智慧树知到课后章节答案2023年下南京理工大学南京理工大学第一章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。

()A:对 B:错答案:错2.二维热传导方程的古典显格式稳定性条件是()A: B: C:其余都不对 D:答案:3.关于边值问题和变分问题,下列说法不正确的是()。

A:所有选项都不对 B:Ritz形式和Galerkin形式的变分问题的解均称为相应边值问题的广义解 C:Ritz形式的变分问题比Galerkin形式的变分问题适用范围更广 D:Ritz形式的变分问题要求对称,而Galerkin形式的变分问题无此要求,因此两种变分形式之间无联系答案:所有选项都不对;Ritz形式的变分问题比Galerkin形式的变分问题适用范围更广;Ritz形式的变分问题要求对称,而Galerkin形式的变分问题无此要求,因此两种变分形式之间无联系4.无界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。

()A:错 B:对答案:对5.二维热传导方程的Crank-Nicolson格式是无条件稳定的。

()A:错 B:对答案:对6.考虑有界弦振动方程定解问题:其对应的本征值和本征函数分别是():A:B: C:D:答案:7.一维抛物型方程的Du-Fort-Frankel格式如下:,其截断误差为()A: B: C: D:答案:8.一维对流方程的蛙跳格式的截断误差为。

()A: B: C:答案:9.关于偏微分方程求解的有限元方法,下列说法正确的是()。

A:有限元方法通常选取分片连续的多项式函数空间作为近似函数空间 B:对于第二、三类边界条件的定解问题,采用有限元方法无需处理边界 C:二维情形,有限元方法在区域剖分时,只能选择三角形单元或者矩形单元 D:有限元方法是基于Ritz-Galerkin方法提出的,通常选取传统幂函数作为近似函数空间的基底答案:有限元方法通常选取分片连续的多项式函数空间作为近似函数空间;对于第二、三类边界条件的定解问题,采用有限元方法无需处理边界10.一维对流方程的隐式迎风格式是()A: B: C:D:答案:第二章测试1.在一元线性回归模型中,是的无偏估计。

高等工程数学科学出版社吴孟达版习题答案18章

高等工程数学科学出版社吴孟达版习题答案18章

《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]Ta 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。

解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R 2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。

解:其坐标为:x =( 3, -3, 2,-1 )T4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。

证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。

余略。

5.已知R 4中的两组基:T T T T 1234=[1,0,0,0],=[0,1,0,0],=[0,0,1,0],=[0,0,0,1]αααα和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。

解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:11234205612927331336112923x 112190018101373926x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-----1=--27--6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。

哈工大高等工程数学习题及答案第一章

哈工大高等工程数学习题及答案第一章

第一章习题1.设2()(3)x x c x ϕ=+-,如何选取c 才能使迭代1(),0,1,2,k k x x k ϕ+== 具有局部收敛性?c 取何值时,这个迭代收敛最快?解:不妨假设0c ≠,首先考虑迭代函数2()(3)x x c x ϕ=+-,由 2(3)x x c x =+-解得12x x **== ()12x cx ϕ'=+为了使迭代1(),0,1,2,k k x x k ϕ+== 具有局部收敛性,只需()1x ϕ*'<,事实上当1x *=1()11x ϕ*'=+<,解得0c <<;当2x *=2()11x ϕ*'=-<,解得0c >>. 为了使迭代收敛最快,只需()x ϕ*'最小。

事实上当1x *=1()10x ϕ*'=+=,解得c =当2x *=2()10x ϕ*'=-=,解得c2.设非线性方程()0f x =有单根α,比较求此单根时,下面3阶迭代方法'1'()(),0,1,2()()i i i i i i i i f x y x f x i f y x y f x +⎧=-⎪⎪=⎨⎪=-⎪⎩与Newton 迭代法的计算效率。

解:Newton 迭代法的效率指数1112EI θ+=此3阶迭代方法效率指数 1123EI θ+= 显然,当11111223++>时,Newton 迭代法的计算效率大于此3阶迭代方法的计算效率;当11112132θθ++>时,此3阶迭代方法的计算效率大于Newton 迭代法的计算效率。

高等工程数学习题答案

高等工程数学习题答案

高等工程数学习题答案【篇一:高等工程数学考试题及参考解答(仅供参考)】xt>一、填空题(每小题3分,共15分)2x12???x101,设总体x服从正态分布n(0,4),而(x1,x2?,x15)是来自x的样本,则u?222(x11???x15)服从的分布是_______ .解:f(10,5).?是总体未知参数?的相合估计量的一个充分条件是2,?n?)??, limvar(??)?0.解:lime(?nnn??n??3,分布拟合检验方法有_______ 与____ ___. 解:?检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.22?1二、单项选择题(每小题3分,共15分)1,设总体x~n(1,9),(x1,x2,?,x9)是x的样本,则(a)x?1x?1~n(0,1);(b)~n(0,1); 31x?1~n(0,1). ~n(0,1);(d92(c)2,若总体x?n(?,?),其中?已知,当样本容量n保持不变时,如果置信度1??减小,则?的2置信区间____b___ .(a)长度变大;(b)长度变小;(c)长度不变;(d)前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____b___ . (a)拒绝和接受原假设的理由都是充分的;(b)拒绝原假设的理由是充分的,接受原假设的理由是不充分的;(c)拒绝原假设的理由是不充分的,接受原假设的理由是充分的;(d)拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设st为总离差平方和,se为误差平方和,sa为效应平方和,则总有___a___ .(a)st?se?sa;(b)sa?2??2(r?1);(c)sa/(r?1)?f(r?1,n?r);(d)sa与se相互独立.se/(n?r)?)=?[in?x(xx???0n;(b)cov(??)x?];(a)???2?1(c)?????n?p?1是?2的无偏估计;(d)(a)、(b)、(c)都对.22三、(本题10分)设总体x?n(?1,?)、y?n(?2,?),(x1,x2,?,xn1)和(y1,y2,?,yn2)分别是来自x和y的样本,且两个样本相互独立,和sx、sy分别是它们的样本均值和样本方差,证明2222(n1?1)sx?(n2?1)sy其中s??.n1?n2?22?t(n1?n2?2),证明:易知??n(?1??2,?2n1??2n2),u??n(0,1).由定理可知2(n1?1)sx?2由独立性和?分布的可加性可得2??(n1?1),22(n2?1)sy?2??2(n2?1).v?2(n1?1)sx?2?2(n2?1)sy?2??2(n1?n2?2).由u与v得独立性和t分布的定义可得??t(n1?n2?2).?1?2?, 0?x??,??1,??x?1,其中参数?(0???1) 四、(本题10分)设总体x的概率密度为f(x;?)??2(1??)??0, 其他,???;?,xn)是来自总体的一个样本,是样本均值,未知,(x1,x2,(1)求参数?的矩估计量?(2)证明4不是2?2的无偏估计量.解:(1)e(x)??????xf(x,?)dx???01xx1?dx??dx??,?2(1??)2?42??2?令?e(x),代入上式得到?的矩估计量为?(2)1. 2111?1?4e(42)?42?4[?()2]?4?dx?(??)2??dx?????,424?n?n因为d(x)?0,??0,所以 e(4)??.故42不是?的无偏估计量.五、(本题10分)设总体x服从[0,?](??0)上的均匀分布,(x1,x2,?xn)是来自总体x的一个样本,试求参数?的极大似然估计.解:x的密度函数为,0?x??;??f(x,?)??0,其他,?222似然函数为???n,0?xi??,i?1,2,?,n,l(?)??其它??0,??max?x,x,?,x?是?的显然??0时,l(?)是单调减函数,而??max?x1,x2,?,xn?,所以?12n极大似然估计.六、(本题10分)设总体x服从b(1,p)分布,(x1,x2,?xn)为总体的样本,证明是参数p的一个umvue.证明:x的分布律为f(x;p)?px(1?p)1?x,x?0,1.容易验证f(x;p)满足正则条件,于是???1i(p)?e?lnf(x;p)??.?pp(1?p)??另一方面2var()?1p(1?p)1, var(x)??nnni(p)即得方差达到c-r下界的无偏估计量,故是p的一个umvue.七、(本题10分)某异常区的磁场强度服从正态分布n(?0,?),由以前的观测可知?0?56.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得?61, s?400, 问此仪器测出的结果与以往相2解:设h0:???0?56.构造检验统计量22t???0~t(15), n确定拒绝域的形式?t?t??.由??0.05,定出临界值t?/2?t0.025?2.1315,从而求出拒绝域t?2.1315.?????2而n?16,?60,从而 |t|???0.8?2.1315,接受假设h0,即认为此仪器测222出的结果与以往相比无明显的差异.2八、(本题10分)已知两个总体x与y独立,x~(?1,?1),y~(?2,?2),?1, ?2, ?1, ?2未知,?12(x1,x2,?,xn)和(y1,y2,?,yn)分别是来自x和y的样本,求2的置信度为1??的置信区间.?2122分别表示总体x,y的样本方差,由抽样分布定理知解:设s12,s2p?f?/2(n1?1,n2?1)?f?f1??/2(n1?1,n2?1)??1??,则22??s12/s2?12s12/s2p??2???1??, ?f1??/2(n1?1,n2?1)?2f?/2(n 1?1,n2?1)?22??s12/s2s12/s2?12,所求2的置信度为1??的置信区间为 ??.?2f(n?1,n?1)f(n?1,n?1)2?/212?1??/21?九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.答:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测【篇二:高等工程数学试题答案】>一、设总体x具有分布律其中?(0???1)为未知参数,已知取得了样本值x1?1,x2?2,x3?1,求?的矩估计和最大似然估计.解:(1)矩估计:ex??2?2?2?(1??)?3(1??)2??2??314?(1?2?1)?33??5. 令ex?,得?6(2)最大似然估计:l(?)?????2?(1??)?2??2?2256dln(?)?10?4?12?5?0 d???5得?6二、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度x~n(10,1),今阶段性抽取10个水样,测得平均浓度为10.8(mg/l),标准差为1.2(mg/l),问该工厂生产是22否正常?(??0.05,t0.025(9)?2.2622,?0.025(9)?19.023,?0.975(9)?2.700)解:(1)检验假设h0:?=1,h1:?≠1;取统计量:??222(n?1)s2?20;拒绝域为:?2≤?21?2222?=2.70或≥(n?1)??(9)?(n?1)???0.975?0.025=19.023, 22经计算:??2(n?1)s22?09?1.22??12.96,由于?2?12.96?(2.700,19.023)2,1故接受h0,即可以认为排出的污水中动植物油浓度的方差为?2=1。

高等工程数学课后习题答案-推荐下载

高等工程数学课后习题答案-推荐下载

1
n 1 i1
n
(xi x)2 ]=(n-1)σ2
~ X 2 (n 1)
n
( xi x)2
2
8、设 X1,X2,…X5 为总体 X~N(0,1)的样本,
(1)试确定常数 c1、d1,使得 c1(x1 x2 )2 d1(x3 x4 x5 )2 ~ 2 (n) 并求出 n;
(2)试确定常数
解:(1) S 2

1 n
c2、d2,使得
n i 1
( xi

c2 (x12 d2 (x3 x4
x22 ) x5 )2
x)2 且总体为 X~N(0,1),所以
因为 2 分布具有可加性,即若 Xi~ 2 (i=1,……k),且各样本相互独立,则
k
k
xi ~ 2 ( ni ) ,所以 n=2。
x1
x1
N



(0,
1 n
),
1 n
1 n
xn1
n 1 n
n
i1
n
i2
n
i 2
n 1 n
xi
xi
xi )
)
~
2


2
~
c2 d2

2 (n 1), xn1
n1
N (,
2)

)
(
n 1 n x1
n 1 n
n
n
1)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

高等工程数学课后习题答案

高等工程数学课后习题答案

版权说明
此PDF根据朱耀同学提供的纸质文档制作,据朱耀同学提供的情报,源文件由范文丽,万娣两位同学提供,衷心感谢以上同学的共享以及不知名的答案作者的辛勤工作!
PDF中有大部分课后习题的答案,不能保证正确,而且不全,尤其是第四章的答案木有,不过第四章题目很少,自己做做吧。

PDF中有书签,可以快速索引到对应章节,以及对应的第四版讲义的页码。

清晰度的问题:我已经尽可能处理清楚了,我手上的纸质版也没有更清楚,大家将就着看看吧。

因为马上就考试了,所以我觉得不必要维护此文档了,言下之意就是这是文档的第一版也是最后一版,不再做修订了。

如果发现内有错误,大家可以在群里互相讨论讨论。

最后祝大家考试顺利,平安夜快乐,圣诞,元旦双快乐!
第七天堂2013.12.24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。

解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。

解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。

(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。

(1)⎩⎨⎧≤>=-0,00,),(2x x e x x λλλϕ 0>λ (2)⎪⎩⎪⎨⎧≤>--2,02,1),()2(x x ex x βββϕ 0>β解:(1)λλλ2)(02==⎰-dx xe x X E xx ,所以λ的矩估计量是:x2ˆ=λ似然函数∏∏=--=∑===ni x i nx ini ni iiex ex x L 12121)()(λλλλ对数似然函数∑∏==-+=ni in i i xx n L 11)ln(ln 2)(ln λλλ02)(ln 1=-=∑=ni i x n L d d λλλ,所以λ的极大似然估计是:x2ˆ=λ(2)2)()2(2+==--⎰βββdx exX E x x,所以β的矩估计量是2ˆ-=x β似然函数:∑===-----=∏ni i i x n x ni ieex L 12)2(1)(βββββ对数似然函数:∑=---=ni i x n L 12ln )(ln βββ02)(ln 12=-+-=∑=n i i x n L d d ββββ,所以β的极大似然估计是:2ˆ-=x β 18、设总体X~N (μ,σ2),X 1,X 2,…X n ,为X 的样本(1)求k ,使得统计量∑=-=ni i x x k1221)(ˆˆσ是2σ的无偏估计,(2)求c ,使得统计量∑-=+-=112121)(ˆˆn i i i x xcσ是2σ的无偏估计。

解:(1)由于nk x A x n x k x x k n i ni i i ∙-=-=-=∑∑==)()()(ˆ22211222σ而22222222)]([)()(,)(μσμσμ+=+=+==nX E x D x E A E所以22222222)1()()()()ˆ(σμσμσσ=-=--+=-=k n nnk x E A E E所以11-=n k (2)21211212)()()]([)()(σ=+=-+-=-++++i i i i i i i i x D x D x x E x x D x x E所以222112)1()(σ-=-∑=+n c x x E c i i i ,故当11)1(22-=-=n n c 时,2111)(i n i i x x c -∑-=+是2σ的无偏估计。

21、设总体X 服从二项分布B (N ,P ),X 1,X 2,…X n ,为其样本,求参数P 的最小方差无偏估计。

解:)),(ln ()(22p p x f E p I ∂∂-=此时X 的概率函数为:2222)1(),(ln ,1),(ln ,)1(),(p xN p x p p x f p x N p x p p x f p p p x f xN xxN C ----=∂∂---=∂∂-=- )1()1()1()()1()()1(]))1([()(22222222p p N p p p Np X D p p N p X E p p N p p pN x E p I -=--=-=--=--=所以P 的无偏估计的方差下界是nN p p )1(-,若以样本均值x 作为P 的估计,显然Nx是P 的无偏估计,所以Nxp=ˆ是P 的最小方差无偏估计。

23、求X~N (μ,σ2),σ2已知,问需抽取容量n 为多大的样本才能使μ得置信度为α-1的置信区间长度不大于L ?解:μ的置信度为α-1的置信区间为)(21nx σμα-±,区间长度为nσμα212-,由22121)2(2ααμσσμ-->⇒<L n L n第七章025.0975.0-116845.289055.293.417)1(}{}{1.0)16(993.417)1()(:,3,,ˆ),1(~ 4.93}.{s 9055.2:,9:,0~82975.0222212229055.200222112020012222122222222120217212202====⨯=-=>===⇒<⨯-=≤⎭⎬⎫⎩⎨⎧<=∴⎭⎬⎫⎩⎨⎧<===-<===-==βχσχσβαχχασσχσχχσβασσσβσαασσ故)(,又得不真接受故有得为真拒绝)(为:根据题意可知,拒绝域为检验统计量即。

和求犯两类错误的概率的拒绝域为)的样本,假设(为总体,,、设nS n k k nS p H H p n k k nS p H H p k nS x x x x W nS n nS W H H N X X X X o n o o10、从甲、乙两煤矿各取若干样品,得其含碳率(%)为:甲 24.3 20.8 23.7 21.3 17.4 乙18.216.920.216.718.2假定含碳率服从正态分布,且2221σσ=,问甲、乙两煤矿的含碳率有无显著差异(α=0.05)? 的含碳率无明显差异。

,即认为甲、乙两煤矿接受下知,在显著水平故由而由观测值可算得:或拒绝域:,检验法,得拒绝域为:采用:假设:解:依题意,要求检验0975.02/1975.0025.02/22212/122212/2221251222512121222112221001.06.976.3104.0,6.9)4,4()4,4(104.06.91)4,4(1)4,4()1,1(79.3977.1505.7~~)1,1(~~)1,1(~~977.1)(41~,505.7)(41~08.185.21:,H F F F F n m F S S n m F S S n m F S S X Xi S X Xi S X X F H H =<<======--==-->--<=-==-===≠=--∑∑ασσσσαααα19、观察得两样本值如下: A20.5427.3329.1621.3424.4120.9829.9517.38B 26.27 25.09 21.85 23.39 28.41 22.60 24.64 13.62问两样本是否来自同一个总体(05.0=α)? 解:检验假设:)()(:),()(:211210x F x F H x F x F H ≠= 其中)(),(21x F x F 分别为A 、B 的分布函数,因为0)8()(3)3,5min(),min(05.0==>==-+S n S n n α故接受0H ,即来自同一个总体。

22、某药治疗效果如下 年龄 疗效 儿童 成年老年 ∙i n显著 58 38 32 128 一般 28 44 45 117 较差23 18 14 55 j n ∙10910091300解:题r=s=q=3,且91,100,109,55,117,128321321======∙∙∙∙∙∙n n n n n n 由此算得检验统计量的观测值为:91128)3009112832(100128)30010012838(109128)30010912858([3002222⨯⨯-+⨯⨯-+⨯⨯-⨯=χ10055)3001005518(10955)3001095523(91117)3009111745(100117)30010011744(109117)30010911728(22222⨯⨯-+⨯⨯-+⨯⨯-+⨯⨯-+⨯⨯-+9155)300915514(2⨯⨯-+=300⨯(0.0095+0.0017+0.004+0.017+0.0021+0.0085+0.0015+0.0020+0.0014)=14.31 而31.14507.15)8()1)(1)(1(22295.01=>==----χχχαq s r所以接受0H ,即与年龄有关。

相关文档
最新文档