数学《数列极限》讲义

合集下载

数学分析讲解---数列极限ppt课件

数学分析讲解---数列极限ppt课件

无穷小,无穷大和无界的关系
定理 若xn
0,

lim
n
xn
lim
n
1 xn
0.
无穷大 无界,反之不成立
例8 当n
时,xn
n2
cos
n 是(
).
(A) 无穷小.
(B) 无穷大.
(C) 有界的,但不是无穷小. (D) 无界的,但不是无穷大.
15
Stolz定理
设{yn}严格增加,且
lim
n
yn
.

12
定理5 若
lim
n
xn
A,
lim
n
yn
B, 则有
lim (
n
xn
yn )
A
B
lim
n
xn
lim
n
yn ;
lim (
n
xn
yn )
A
B
lim
n
xn
lim n
yn ;
(lim n
xnm
Am ,
m N)
(lnim(cxn
)
cA
c
lim
n
xn
)
lim
xn
A
lim
n
xn
n yn
B
lim
n
yn
(B 0);
1 3
Ex. 求极限 lim1 2 L n
n
nn
2 3
五、数列收敛准则
1单调有界定理 设数列{xn}单调增加. 则当{xn}有上界时, {xn}收敛,当{xn} 上无界时, {xn}为正无穷大,且均成立
lim
n

《高数》数列极限课件PPT

《高数》数列极限课件PPT

定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。

《数列极限》课件

《数列极限》课件

数列极限的求法和定理
夹逼定理
当数列中的部分项趋近于某值 时,可以用夹逼定理计算数列 极限。
单调有界性原理
针对单调有界数列极限计算, 有效避免无关项的干扰。
等比数列求和公式
等比数列常用求和公式是根据 数列的公比、项数和首项等参 数来计算其总和。
数Байду номын сангаас极限的应用
1
概率论
数列极限可以用于计算连续抛硬币等随机事件的概率。
2
微积分
通过数列极限的积分运算,在空间形体的计算上取得模型化精确结果。
3
金融学
通过数列极限的公式及定理,对于计息的时间长度和贷款利率有精确的计算方法。
数列极限和函数极限的关系
概念解释
数列极限和函数极限都是极 限概念,数列极限为数列中 每一项趋向于某个常数值, 函数极限为自变量无限接近 某一值时因变量所趋向的极 限值。
《数列极限》PPT课件
欢迎大家来学习本课程,我们将深入了解数列极限的概念及应用,同时带您 领略数学的神奇之处。
数列极限概述
1 数列
数列就是按照一定次序排 列的一列数。
2 收敛与发散
数列收敛是指数列的值无 限地靠近某个数,发散表 示数列的值趋于正无穷或 负无穷。
3 应用
数列极限有诸如杨辉三角、 黄金分割数等数学问题的 解决方法。
针对实际问题,通过数列极限相 应的公式和求值技巧得出定量结 果。
数列的定义及分类
等差数列
其数列中每一项与前一项之差相 等。
等比数列
其数列中每一项与前一项之比相 等。
斐波那契数列
其数列中每一项都等于前两项之 和。
数列极限的定义和性质
1 数列极限的定义
数列极限是 指随着数列项数的增加,数列中 的每一项趋近于某个确定的常数。

《数列极限》课件

《数列极限》课件
性。
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛

《数列的极限》课件

《数列的极限》课件

单调有界定理
总结词
如果一个数列单调增加或单调减少,且存在上界或下界,则该数列存在极限。
详细描述
单调有界定理是数列极限存在性定理中的一个重要推论,它表明如果一个数列单调增加或单调减少,并且存在上 界或下界,那么这个数列存在极限。这是因为单调性保证了数列不会无限增大或减小,而有界性则保证了数列不 会趋于无穷大或无穷小。
数列的极限
目录
CONTENTS
• 数列极限的定义 • 数列极限的性质 • 数列极限的存在性定理 • 数列极限的应用 • 数列极限的证明方法
01 数列极限的定义
CHAPTER
定义及性质
定义
对于数列${ a_{n}}$,如果当$n$趋于无穷大时,$a_{n}$趋于某个常数$a$,则称数列${ a_{n}}$收敛 于$a$。
05 数列极限的证明方法
CHAPTER
定义法
总结词
通过直接使用数列极限的定义来证明数列的极限。
详细描述
定义法是最基本的证明数列极限的方法,它基于数列 极限的定义,通过直接计算数列的项与极限值之间的 差的绝对值,并证明这个差可以任意小,从而证明数 列的极限。
柯西收敛准则证明法
总结词
利用柯西收敛准则来证明数列的极限。
性质
极限的唯一性、四则运算法则、夹逼准则等。
收敛与发散
收敛
当数列的项逐渐接近一个常数时,该 数列称为收敛的。
发散
如果数列的项没有收敛到任何值,则 该数列称为发散的。
收敛的几何意义
几何解释
在数轴上,如果一个数列的项逐渐接 近一个点,那么这个数列就是收敛的 ,而这个点就是它的极限。
举例
考虑数列${ 1, -1, 1, -1, ldots }$,该 数列在$x=0$处收敛,因为当$n$趋 于无穷大时,该数列的项逐渐接近0 。

《高数》数列极限》课件

《高数》数列极限》课件

详细描述
几何级数是每一项都等于前一项乘以一个固 定比例的数列。数列极限的概念用于计算几 何级数的和,帮助我们了解这种数列的增长
趋势和规律。
05
数列极限的扩展知识
无穷级数的概念
要点一
无穷级数定义
无穷级数是无穷多个数按照一定顺序排列的数列,可以表 示为$sum_{n=0}^{infty} a_n$,其中$a_n$是级数的项。
《高数》数列极限》ppt课件
• 数列极限的定义 • 数列极限的性质与定理 • 数列极限的运算 • 数列极限的应用 • 数列极限的扩展知识
01
数列极限的定义
定义及性质
定义
数列的极限是指当项数n无限增大时 ,数列的项无限趋近的数值。
性质
极限具有唯一性、有界性、局部保序 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收敛。
单调有界定理
如果数列单调递增且有上界或单调递减且有下界,则 该数列收敛。
反例
举出一些不满足单调有界定理的数列,如无界且无周 期的数列等。
应用
单调有界定理在证明某些数学问题时具有重要应用, 如求函数的极值点等。
柯西收敛准则
柯西收敛准则
数列收敛的充要条件是对于任意 给定的正数$varepsilon$,存在 正整数$N$,使得当$n,m>N$时 ,有$|a_n - a_m|<varepsilon$ 。
幂级数求极限
幂级数求极限的方法
介绍如何利用幂级数的方法求极限,包 括将函数展开为幂级数,并利用幂级数 的性质求极限。
VS
举例说明
通过具体例子演示如何运用幂级数求极限 ,如求lim(x->0) (1+x)^1/x的极限值。

高等数学放明亮版课件1.2-数列的极限ppt.ppt

高等数学放明亮版课件1.2-数列的极限ppt.ppt

2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页

高等数学《数列的极限》课件

高等数学《数列的极限》课件
则有唯一极限 a 存在 .

则存在 N ,
但因
交替取值 1 与-1 ,
内,
而此二数不可能同时落在
长度为 1 的开区间
使当 n > N 时, 有
因此该数列发散 .
2. 收敛数列一定有界.
证: 设



时,
从而有

则有
由此证明收敛数列必有界.
说明: 此性质反过来不一定成立.
例如,
虽有界但不收敛 .
欲使

只要
因此 , 取
则当
时, 就有

例2. 已知
证明
证:
欲使
只要


则当
时, 就有

故也可取
也可由
N 与 有关, 但不唯一.
不一定取最小的 N .
说明:

例3. 设
证明等比数列
证:
欲使
只要

亦即
因此 , 取
, 则当 n > N 时,
就有

的极限为0 .
二、收敛数列的性质
证: 用反证法.
第一章
二 、收敛数列的性质
三 、极限存在准则
一、数列极限的定义
第二节
数列的极限
数学语言描述:
一 、数列极限的定义
引例.
设有半径为 r 的圆,
逼近圆面积 S .
如图所示 , 可知
当 n 无限增大时,
无限逼近 S .
当 n > N 时,
用其内接正 n 边形的面积
总有
(刘徽割圆术)
他对数学的贡献主要集中
在微积分学,

02数列的极限PPT课件

02数列的极限PPT课件
•数列与函数
数列{xn}可以看作自变量为正整数n的函数: xn=f(n), nN .
首页
上页
返回
下页
结束

❖数列极限的通俗定义 当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收 敛a, 记为
例如
首页
上页
返回
下页
结束

当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页
上页
返回
下页
结束
铃Байду номын сангаас
二、收敛数列的性质
❖定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一.
❖定理2(收敛数列的有界性)
如果数列{xn}收敛, 那么数列{xn}一定有界. ❖定理3(收敛数列的保号性)
首页
上页
返回
下页
结束

❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数e , 总存在正整数N, 使得当n>N 时, 不等式
|xn-a |<e
都成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收 敛于a, 记为
如果不存在这样的常数a, 就说数列{xn}没有极限,
•数列的几何意义
数列{xn}可以看作数轴上的一个动点, 它依次取数轴 上的点x1, x2, x3, , xn , .
x1
xn x4 x3 x5 x2
首页
上页
返回

数列的极限讲解课件

数列的极限讲解课件

取a 1 1 , b 1 1 代入,得
n
n1
(1 1 )n (1 1 )n1 ,
n
n1
即数列{(1 1 )n }是单调增加的. n
第26页/共30页
目录 上一页 下一页 退 出
第27页/共30页
目录 上一页 下一页 退 出
五、小结
数列:研究其变化规律; 数列极限:极限思想、精确定义、几何意义; 收敛数列的性质: 有界性、唯一性、子数列的收敛性.
第2页/共30页
R
目录 上一页 下一页 退 出
2.截丈问题:
“一尺之棰, 日截其半, 万世不竭”
第一天截下的杖长为 X1
1; 2
第二天截下的杖长总和为
X2
1 2
1 22
;
第n天截下的杖长总和为 X n
1 2
1 22
1 2n
;
Xn
1
1 2n
1
第3页/共30页
目录 上一页 下一页 退 出
一、数列极限的定义
只要 n 1000时,

xn
1
1, 1000
给定 1 , 10000
只要 n 10000时,

xn
1
1, 10000
给定 0,
只要 n N ( [1])时,

xn 1 成立.
第8页/共30页
目录 上一页 下一页 退 出
定义 如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于n N 时的一切 xn, 不等式 xn a 都成立,那末就称常数 a是数列
例2
设xn
C(C为常数),
证明 lim n
xn
C.

《数列极限的性质》课件

《数列极限的性质》课件

不存在的情况
如果极限不存在,例如 $lim_{n to infty} (frac{1}{n})$,则不能直接 应用四则运算性质。
03
单调有界定理
定理内容
定理
如果数列${ a_{n}}$是单调增加(或减少)的,并且存在一个正数$M$,使得 对于所有$n$,都有$a_{n} leq M$(或$a_{n} geq M$),则数列${ a_{n}}$ 收敛。
举例说明
解:根据极限的四则 运算性质,我们有
• $\lim_{n \to \infty} (a_n b_n) = 2 - 3 = 1$
• $\lim_{n \to \infty} (a_n + b_n) = 2 + 3 = 5$
举例说明
01
• $\lim_{n \to \infty} (a_n \cdot b_n) = 2 \cdot 3 = 6$
04
柯西收敛准则
柯西收敛准则的内容
柯西收敛准则
如果对于任意给定的正数$varepsilon$,存在一个正整数$N$,使得对于所有的$n>N$,都有$|a_n a|<varepsilon$,则称数列${a_n}$收敛于$a$。
柯西收敛准则的数学表达
如果对于任意正数$varepsilon$,存在正整数$N$,使得当$n>N$时,有$|a_{n+1}-a_n|<varepsilon$,则数 列${a_n}$收敛。
极限的四则运算性质
极限的加法性质
若$lim_{n to infty} a_n = A$且$lim_{n to infty} b_n = B$,则$lim_{n to infty} (a_n + b_n) = A + B$。

人教版高中数学课件:高二数学课件-数列的极限

人教版高中数学课件:高二数学课件-数列的极限
在研究数列的极限时,需要特别关注 初始项的选择,以确保数列的收敛性 和收敛速度。
收敛数列的性质
收敛数列具有唯一性,即收敛 数列只能收敛到一个唯一的极 限值。
收敛数列具有有界性,即收敛 数列的项值必须在一定范围内 波动,不会无限增大或减小。
收敛数列具有保序性,即如果 一个数列收敛到极限a,那么对 于任何正整数n,都有 an≥an+1。
03
数列极限的应用
利用极限求数列的通项公式
总结词
通过数列的极限,我们可以推导出数列的通项公式。
详细描述
在数列的极限中,如果一个数列的极限值存在,那么这个极限值就是数列的通项 公式。例如,对于等差数列,其通项公式可以通过求差分比值的极限得到。
利用极限证明数列的单调性
总结词
通过比较相邻项的极限,可以证明数 列的单调性。
极限的唯一性
极限的唯一性是数列极限的一个 重要性质,即一个数列只能有一
个极限值。
如果一个数列有两个不同的极限 值,那么这个数列就不会收敛。
极限的唯一性对于研究数列的性 质和函数的变化规律非常重要, 是数学分析中的一个基本原则。
THANK YOU
数列极限的存在性
01
02
03
单调有界定理
如果数列单调递增且有上 界或单调递减且有下界, 则该数列存在极限。
闭区间套定理
如果数列满足闭区间套的 条件,则该数列存在极限 。
柯西收敛准则
如果对于任意给定的正数 $varepsilon$,存在正整 数N,使得当$n, m > N$ 时,有$|a_n - a_m| < varepsilon$,则该数列 存在极限。
04
数列极限的求解方法
直接代入法

数学分析课件之第二章数列极限

数学分析课件之第二章数列极限

02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态

数列极限ppt课件

数列极限ppt课件

lim
n
xn
A,

xn
A(n ),
此时也称{ xn }的极限存在.
否则称{ xn }的极限不存在,或称{ xn } 发散.
5
定义5 设{ xn }是一个数列, A是一个常数,若对任给的 0, 存在正整数 N,使得当 n N时,都有| xn A | ,则称 A是
数列{ xn }的极限,或称{ xn }收敛于A,记作
特别地,若 xn
0
(或 xn
0
),则lim
n
xn
0
(或 lim
n
xn
0).
9
注:在推论2中即使是xn
yn
,也只能推出lim
n
xn
lim
n
yn .
定理4(夹逼定理)设数列{ xn },{ yn },{zn}满足xn yn zn (当
n
N时),且 lim
n
xn
lim
n
z
a
,则 lim
n
yn
a.
例2
lim
n
yn ,则存在正整数
N,当n
N 时,有xn
yn .
推论1(保号性定理)设 {
xn
}的极限存在,且lim
n
xn
0
(或
lim
n
xn
0),则存在正整数N,当n
N
时,有xn
0(或
xn
0).
推论2 设{ xn },{ yn }的极限存在,若 xn yn (当n N 时),则
lim
n
xn
lim
n
yn .
lim
n
xn
A,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数列极限1. 教学框架与内容教学目标①掌握数列极限概念,学会证明数列极限的基本方法.②掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限.③掌握单调有界定理;理解柯西收敛准则.教学内容①数列极限的分析定义,数列发散、单调、有界和无穷小数列等有关概念与几何意义;利用放缩法证明数列收敛或发散.②数列极限性质(唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则)的证明与应用,数列的子列及有关子列收敛的定理.③单调有界定理的证明及应用;柯西收敛准则,用柯西收敛准则判别数列的敛散性.2. 重点和难点①数列极限的Nε-语言,数列极限证明中N的存在性.②数列极限性质的分析证明, 数列极限性质的应用.③数列单调有界定理的证明和应用,利用柯西收敛准则判别数列的敛散性.3. 研究性学习选题● 数列极限证明的技巧将书后习题分类,首先自己总结数列极限证明的技巧,然后进行小组交流和讨论.● 如何利用单调有界原理求迭代数列的极限课后自己总结单调有界原理求极限的方法与步骤,选用经典习题小组讨论,进行讲解并评分.4. 综合性选题,尝试写小论文:★不等式技巧在数列极限证明中的应用.★数列极限存在的常用结论.5. 评价方法◎课后作业,计20分.◎研究性学习选题计30分.◎小论文计20分.◎小测验计30分§1数列极限概念一、数列若函数f 的定义域为全体正整数集合Z +(或N ),则称:f N R → 或()f n n N ∈为数列. 通常记为()n a f n =.或 12,,,,n a a a ⋅⋅⋅⋅⋅⋅ .数列表示法:通项、递推公式、1{}n n a ∞=或0{}n n a ∞=.特殊数列:常数数列、单调数列、有界数列、等比数列、等差数列. 二、数列极限------反映变量在某个变化过程中的变化趋势 [作图]1{}n、(1){}n n -、 {}n 、{(1)}n -、 {(1)}n n - 变化趋势: 1) 有一定的变化趋势; 无限接近于某数a ----收敛;震荡、无限增大、无限减小----定向发散;2) 无一定变化趋势----不定向发散.数列{}n a 收敛于a ,||0n a a -→(n a 与a 的距离越来越接近). 1、定义下面我们首先给出数列收敛及其极限的精确定义.定义1 ()N ε- 设{}n a 为数列, a 为一定数, 若对任给的正数0ε>,总存在 正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,而a 称为{}n a 的极限. 记作 lim n n a a →∞= 或 n a a →(n →∞).若数列{}n a 没有极限,则称{}n a 不收敛或发散, 也称{}n a 为发散数列.例1验证下列极限:1) 1lim 0n n →∞=;2) 1lim 02n n →∞=;3) lim 0n n q →∞=, ||1q <;4) 223lim 33n n n →∞=-.注1 ε的任意性.ε的作用在于刻画数列{}n a 与定数a 之间的接近程度.ε越小表示接近度越好,而正数ε—可任意小说明n a 与a 可以无限接近,ε虽具有任意性, 但一经给出,就可看作暂时固定的数,并由此确定N ,从而N 与ε有关系. 同时,ε主要用于刻画n a 与a 的逼近程度,因而n a a ε-<中的ε可用22εε,2,εk ε(0k >常数)等代替,同时n a a ε-<可改写成n a a ε-≤.注 2 N 的相应性. 前面说过N 与ε有关,可记作()N ε但并不意味着N 由ε唯一确定. 这里我们主要强调N 的存在性(一般来说,ε愈小,相应的N 越大),同时n N ≥时(对大于N 的任一n )有n a a ε-<.如对11,1000n a n ε==,相应的1001, 1002N =都可.例2 1) 0n →∞=;2) 1(1)n a =>;3) 1n =;4) 2lim 04n n n →∞=.思考 考虑1n =, 3lim 04n n n →∞=?2、几何意义 当n N >时,n a a ε-<d⇔所有下标大于N 的项n a 都落在a 的 邻域(,)U a ε内,而在(,)U a ε之外,数列{}n a 至多只有有限项(至多N 项). 定义1’任给0ε>,若在(,)U a ε之外{}n a 至多只有有限项,则称{}n a 收敛于a . 例3 改变或去掉数列的有限项,不改变数列的敛散性.例4 设n a a →,则n k a a +→. 这里k 为某固定的正整数.例5 设lim lim n n n n x y a →∞→∞==, 作数列{}n z 1122,,,,,,,n n x y x y x y ⋅⋅⋅⋅⋅⋅验证: lim n n z a →∞=. 思考 用N ε-定义如何证明?3、收敛的否定n a a →0, , ||dn N n N a a εε⇔∀>∃∀>-<:;0, (,)U a εε⇔∀>之外至多有{}n a 的有限项.n a →a 00000,, ||n N n N a a εε⇔∃>∀∃>-≥:; ⇔存在某00ε>,使数列{}n a 有无穷多项落在邻域0(,)U a ε之外.{}n a 收敛, 0, , ||n a R N n N a a εε⇔∃∈∀>∃∀>-<:. {}n a 发散0000, 0, , ||n a R N n N a a εε⇔∀∈∃>∀∃>-≥:.例6 验证 1) lim 01n nn →∞≠+;2) 2{}, {}n n (-1)为发散数列.4、N ε-定义的一些等价形式(变形)1D :20,, , (n N n N a a k εεε∀>∃≥-<:或. (k 为常数)2D :0(),, n c N n N a a εεε∀><∃>-<:. 3D :0,, n N n N a a εε∀>∃>-<有理数:. 4D :1,, n m N N n N a a m∀∈∃>-<:. 5、无穷小数列定义 若lim 0n n a →∞=,则称{}n a 为无穷小数列.定理 n a a →{}n a a ⇔-为无穷小数列.注 3 ||00n n a a →⇔→.例7 证明: 若lim n n a a →∞=,则lim ||||n n a a →∞=. 但反之未必成立,即||||n a a →⇒n a a →.习 题1. 用N -ε定义验证1) lim 12n nn →∞=+; 2) 2233lim 212n n n n →∞-=+;3) !lim 0n n n n →∞=; 4) limsin 0n nπ→∞=;5) lim cos1n nπ→∞=; 6) lim02nn n→∞=;2. 指出下列数列哪些是无穷小数列.; ; 11n ⎧⎫+⎨⎬⎩⎭; 32n n ⎧⎫⎨⎬⎩⎭; {}n n q α(,||1)R q α∈<.3. 证明:若a a n n =∞→lim ,则对任一正整数k , 有a a k n n =+∞→lim .4. 试用定义1'证明:1) 数列}1{n不以1为极限; 2) 数列}{)1(n n -发散.§2 收敛数列的性质一、收敛数列的性质1、唯一性 若数列{}n a 收敛,则它只有一个极限.2、有界性 若数列{}n a 收敛,则{}n a 为有界数列. 即0, , n M n N a M ∃>∀∈≤使得. (画图分析) 推论 无界数列必发散.注 1 有界数列未必是收敛的(定理2.3的逆未必成立).3、保号性 若lim 0 (0)n n a a →∞=><或,则对任何(0,)r a ∈(,0))a ∈(或r , 存在N ,使得n N >时,0 0n n a r a r >><<(或).推论 若lim 0n n a a →∞=>,则存在N ,n N >时,0n a > (保符号).若lim 0n n a a →∞=≠,则存在N ,n N >时,||||02n a a >>. 注 2 由lim 0n n a →∞≥不能推出 , , 0n N n N a ∃>≥.4、保不等式性 设{}n a 和{}n b 为收敛数列,若存在,,N n N >使得时n n a b ≤,则lim lim n n n n a b →∞→∞≤. [直接证明或反证法]定理 设lim , lim , n n n n a a b b a b →∞→∞==>, 则存在N ,n N >时,n n a b >.注 3 在定理2.5中,不等式若为n n a b <, 则不能推出a b <.例1 设0, 1,2,n a n ≥=⋅⋅⋅. 若n a a →.5、迫敛性 若数列{}n a 、{}n b 和{}n c 满足n n n a c b ≤≤,n N ∀∈,, n n a a b a →→, 则n c a →.注 4 用得较多的是0, 0 0n n n n c b b c ≤≤→⇒→.例2 1) 1lim sin 0n n n →∞=2) lim 3n →∞= .... 一般形式?思考 上述定理中若{},{}n n a b 均发散, 能否推出{}n c 发散? 6、四则运算定理 若, n n a a b b →→,则1) n n a b a b +→+, 2) n n a b a b ⋅→⋅,3) 若还有0,0n b b ≠≠,则n n a ab b→.思考 若{},{}n n a b 均发散或其中之一发散, 上述结论又如何?例3 求 11101110lim , , 0, 0m m m m m k k k n k k a n a n a n a m k a b b n b n b n b ---→∞-++⋅⋅⋅++≤≠≠++⋅⋅⋅++.例4 求 lim 1nn n a a →∞+ (1a ≠-).例5 求 1) (31)(5)lim (12)(25)n n n n n →∞++-+;2) 268n ;3) n .例6 求1) 21)sin(21)n n →∞+;2) 1lim nn i →∞=;3)1)21n n →∞⋅⋅⋅++.二、子列的收敛性定义(子列) 设{}n a 为一数列,{}k n N ⊂为无限子集,且12k n n n <<⋅⋅⋅<<⋅⋅⋅, 则数列 12,,,,k n n n a a a ⋅⋅⋅⋅⋅⋅, 称为数列{}n a 的一个子列,记作{}k n a .注 5 {}k n a 选自{}n a 中且保持{}n a 中的顺序不变, 注意k n a 为{}k n a 中的第k 项, 是{}n a 的第k n 项,故k n k ≥. 注意子列的子列仍为子列. 例 7 数列{(1)}n -,奇子列21{}k a +与偶子列2{}k a .注 6 平凡子列是指数列{}n a 本身或者去掉有限项得到的数列,易见平凡子列与 数列{}n a 本身的性质(态)完全一样.定理 数列{}n a 收敛⇔{}n a 的任一子列(非平凡子列)均收敛.⇔{}n a 的任一子列(非平凡子列)均收敛于同一个数.注 7 我们通常用上述定理来证明数列{}n a 不收敛,只需找到某个发散子列或某两个子列收敛但极限不同. 如{(1)}n -. 三、利用上述性质讨论极限*例8 证明: 数列2(1){}31n n nn +-⋅+发散.例9 1) 22231lim(12...)n n n→∞+++; 2) n ;3) n 11lim ()n nn n n a b a b a b++→∞+≠-+.例10 1) 1321lim 242n n n →∞-⋅⋅⋅⋅⋅⋅; 2) lim[(1)]n n n αα→∞+- 01α<<;3) 22lim(1)(1)(1)nn ααα→∞++⋅⋅⋅+ 1α<.例11 设1,...,m a a 为m个正数,则1max{,,}m n a a =⋅⋅⋅.例12 设lim nn na b →∞存在,则若0n b →,必有0n a →.例13 若1||||n n a q a +≤,01q <<,则lim 0n n a →∞=.例14 若0n a >,1lim1nn n a L a →∞+=>,则lim 0n n a →∞=, 并利用其求2lim 4n n n →∞, 3lim n n n q →∞以及213lim 22n →∞+ 212n n -+⋅⋅⋅+. 一般常用结论: 若1lim ||1n n na l a +→∞=<, 则lim 0n n a →∞=.习题1. 求下列数列的极限1) limn→∞(n2) limn→∞3) limn→∞(1n4) limn→∞11(2)3(2)3n nn n++-+-+5) limn→∞212232n nnn++++6) limn→∞12()22n nn+++-+7)limn→∞8) limn→∞11(1)nkk k=+∑2. 设{}n a为无穷小数列, {}n b为有界数列, 证明: {}n na b⋅为无穷小数列.3. 求下列极限1)122lim(2sin cos)nnn n→+∞+2)1lim(arctan)nnn→+∞3) 11lim(1)n n n→∞- 4) 22)nn →∞⋅5) 1!2!!lim!n n n →∞+++ 6) 1321lim 242n n n→∞-⋅⋅⋅4. 说明下列数列发散1) (1)1nn n ⎧⎫-⎨⎬+⎩⎭ 2) {}(1)n n- 3) sin 4n π⎧⎫⎨⎬⎩⎭5. 证明: 若0>n a , 且1lim 1>=+∞→l a a n nn , 则.0lim =∞→n n a6.设a a n n =∞→lim , 证明:1) a nna n n =∞→][lim;2) 若0,0>>n a a , 则1lim =∞→n n n a .§3 数列极限存在条件考察数列极限问题,首先应考察其极限是否存在 (极限存在性问题), 若极限存在,则应考虑如何求极限值(极限的计算问题). 一、单调有界原理 (充分条件)定理 (单调有界定理) 有界的单调数列必有极限.[上(下)有界的单调递增(递减)数列必有极限且极限为其上(下)确界] 例1 设111123n a nααα=+++⋅⋅⋅+, (2)α≥, 证明: {}n a 收敛.例2 设12,n a a a ==⋅⋅⋅=n 重根号), 证明:{}n a 单调有界, 并求其极限.注 1 在具递推关系式的数列{}n a 中,如1()n n a f a +=,若要求其极限,则我们可首先假定极限存在设为a ,则有()a f a =.由此方程解出a (此值一般即为极限), 其次一方面可考察n a a -(考虑用N ε-定义);另一方面,可考察是否有n a a ≤ (或n a a ≥)? 若n a a ≤,则一般证n a 递增(如n a a ≥,则证n a 递减),此时应考察1n n a a +-的符号(或1n na a +与“1”的大小关系).例3 设1, 0a x >,11()2n n nax x x +=+,n N ∈, 求证: {}n x 收敛,并求其极限.例4 证明: 极限1lim (1)n n n→+∞+存在,并利用其来求下列极限1) 1lim (1)n k n n +→+∞+ 2) 31lim (1)2n n n →+∞+3) 1lim (1)n n n -→+∞- 4) 1lim (1)n n n →-∞+5) 3lim ()2n n n n →+∞++ 6) 31lim (1)2n n n→+∞-.二、Cauchy 准则定义 (Cauchy 列) 如果数列{}n a 满足:0,,,:m n N m n N a a εε∀>∃>-<,则称 数列{}n a 为Cauchy 列或基本列.注 2 {}n a 为Cauchy 列0,,,:dn p n N n N p N a a εε+⇔∀>∃∀>∀∈-<. 定理 (Cauchy 准则) {}n a 收敛⇔{}n a 为Cauchy 列.注 3 Cauchy 准则方便之处在于无需知道具体极限值的情况下,就可以直接 判断{}n a 是否收敛.例6 利用Cauchy 准则证明:{}n a 收敛, 其中22211112n a n =++⋅⋅⋅+.例7 利用Cauchy 准则叙述{}n a 发散的条件, 并证明1112n a n =++⋅⋅⋅+发散.例8 利用Cauchy 准则证明limsin n n →∞不存在.三、邻域的语言*a R ∈,a 的邻域,(,)U a a εε=-+; ∞的邻域,(,)M -∞-⋃(,)M +∞,0M ∀>+∞的邻域, (,)M +∞,0M ∀> -∞的邻域,(,)M -∞-,0M ∀>lim n n a a →∞=0,,:n N n N a a εε⇔∀>∃>-<.⇔对a 的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=+∞0,,:n M N N n N a M ⇔∀>∃∈>>.⇔对+∞的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=-∞⇔……记*{,}R R =⋃-∞+∞,*a R ∈.*lim n n a a R →∞=∈⇔对a 的任一邻域U ,存在+∞的邻域V ,:n n N V a U ∀∈⋂∈.习 题1. 证明}{n a 收敛,并求其极限,,其中11n a a +==1,2,n =.2. 设c a =1)0(>c , 11,2...n a n +==, 证明数列}{n a 极限存在并求其值.3. 求下列极限1) 1lim(1)nn n→∞-; 2) 21lim(1)n n n →∞+; 3) 241lim ()2n n n n +→+∞++.4. 证明: 若单调数列}{n a 含有一个收敛子列, 则}{n a 收敛.5. 证明: 若}{n a 为递增(递减)有界数列, 则{}{}).(inf sup lim n n n n a a a =∞→又问逆命题成立否?7. 应用Cauchy 准则证明{}n x 收敛,其中 1) 2sin1sin 2sin 222n n nx =++⋅⋅⋅+2) 0.90.090.0009n x =++⋅⋅⋅+⋅⋅⋅(n 个0)8. 利用Cauchy 准则叙述数列}{n a 发散的充要条件,并用它证明下列}{n a 发散:1) n a nn )1(-=; 2) 2sinπn a n =.习题课一、知识复习1、n a a →d⇔0,,:n N n N a a εε∀>∃>-< ⇔{}n a 的任一子列均收敛于a ⇔{}n a 的奇偶子列均收敛于a . n a a →⇔2、 {}n a 收敛 ⇔{}n a 的任一子列均收敛⇔{}n a 的任一子列均收敛并且收敛于同一个数.⇔0,,,:n m N m n N a a εε∀>∃>-<. {}n a 发散⇔3、单调有界数列必收敛 1lim(1)n n e n →∞+=.4、n a a →的几何意义.5、收敛数列的性质及其证明. 二、典型方法 1、求极限的方法 1) 利用定义a) 观察确定极限值,利用定义验证.b) 对递推数列,可先假定极限存在,利用递推关系,求得极限,再用定义验证.2) 利用10nα→ (0)α>,0n a → (1)a <, 1(0)a →>,1及四则运算法则.3) 利用已知极限,如1lim(1)n n e n →∞+=.4) 利用单调有界原理(如何求极限).5) 利用适当的变换或变形(拆项、插项、裂项).2、证明极限存在方法 1) 用定义(先求极限值). 2) 利用单调有界原理. 3) 利用Cauchy 准则.3、证明极限不存在的方法 1) 定义.2) 找一个发散子列或两个收敛子列但极限不等. 3) 利用Cauchy 准则.4、一些常用结论1) lim 0n n a →∞=,{}n b 有界,则lim 0n n n a b →∞=.2) limnn na b →∞存在,且lim 0n n b →∞=,则lim 0n n a →∞=. 3) 设1lim ||1n n na l a +→∞=<,则lim 0n n a →∞=.4) 若数列满足{}n a 满足1n n a a q a a +-≤-, 01q <<,则lim n n a a →∞=.5) 若{}n x 满足11n n n n x x q x x +--≤- 01q <<,则{}n x 收敛. 6) 1,...,m a a 为m个正数,则1lim max{,,}m n a a =⋅⋅⋅.思考: 设{}n a为有界正数列,则?n =. 7) 设n n x a y ≤≤,0n n x y -→,则,n n x a y a →→.8) 设{}n x ↑,{}n y ↓, 0n n x y -→, 则{},{}n n x y 均收敛,且极限相同. 9) 0,n n a a b b →>→,则n b b n a a →.10) , n n a a b b →→,则max{,}max{,}n n a b a b →, min{,}min{,}n n a b a b →. 11) 设lim n n a a →∞=,则i) 12limnn a a a a n→∞++⋅⋅⋅+=,ii) 若0n a >,则n a =.并考察下列极限(教材43页第四题)(1)1112n n ++⋅⋅⋅+(2) 0)a >(3)……12) (Stolz 定理) 设{},{}n n x y 满足i) 1n n y y +>, ii) lim n n y →∞=+∞,iii)11lim n n n n n x x l y y +→∞+-=-,(l 为有限数), 则lim n n nxl y →∞=.并利用Stolz 定理求下列极限 i) 设n x a →,求1222limnn x x nx n →∞++⋅⋅⋅+.ii) 112lim p p pp n n n +→∞++⋅⋅⋅+ (0)p >.iii)113(21)lim p p pp n n n+→∞++⋅⋅⋅+- (0)p >.利用单调有界原理或Cauchy 准则考察下列命题.13) 设10x >,13(1)3n n n x x x ++=+,证明: lim n n x →∞存在并求极限.14) 证明: 若}{n a 为递增数列,}{n b 为递减数列,且0)(lim =-∞→n n n b a , 则n n a ∞→lim 与n n b ∞→lim 都存在且相等.15) 设011>>b a , 记 211--+=n n n b a a , 11112----+=n n n n n b a b a b .,3,2 =n 证明: 数列}{n a 与}{n b 的极限都存在且等于11b a .16) 给定正数1a 与)(111b a b >,作出等差中项2112b a a +=与等比中项112b a b =, 一般地令 21n n n b a a +=+, n n n b a b =+1, ,2,1=n . 证明: n n a ∞→lim 与n n b ∞→lim 皆存在且相等.17) 设0,0>>σa ,1111(), (), 1,2,.22n n n n a a a a n a a σσ+=+=+=证明: 数列}{n a 收敛, 且其极限为σ.18) 设数列}{n a 满足: 存在正数M , 对一切n 有 .12312M a a a a a a A n n n ≤-++-+-=-证明: 数列}{n a 与}{n A 都收敛.19) 若单调数列有一子列收敛,则该数列收敛.20) 若S 为有界集,则存在数列{}n x S ⊂,使得sup n x S →.21) 若S 为有界集,如果sup S S ∉,那么存在严格递增数列{}n x S ⊂,使得sup n x S →.22) 设S 为无界集,则存在{}n x S ⊂,使得n x →∞23) 若S 为无上界集, 则存在严格增的{},n n x S x ⊂→+∞.24) 证明: 任一数列必有单调子列.25) 证明: 任一有界数列必有收敛子列.。

相关文档
最新文档