液晶显示材料
液晶显示材料
液晶显示材料液晶显示技术是一种利用液晶材料来实现图像显示的技术。
液晶显示器广泛应用于电视、计算机显示器、智能手机和平板电脑等产品中。
液晶显示材料是液晶显示技术的核心,其性能直接影响到显示器的清晰度、色彩还原度和响应速度等方面。
在液晶显示材料的发展过程中,经历了多种类型的材料,包括液晶分子、液晶聚合物和无机液晶材料等。
液晶分子是液晶显示材料的最早应用形式之一。
它是一种具有特殊结构的有机分子,可以在电场的作用下改变其排列状态,从而实现光的透过或阻挡。
液晶分子材料具有响应速度快、刷新频率高和功耗低的优点,但其制备工艺复杂、成本较高,且易受温度影响,限制了其在大尺寸显示器上的应用。
液晶聚合物是近年来液晶显示材料的新兴发展方向。
它是将液晶分子与聚合物材料结合,形成一种新型的液晶材料。
液晶聚合物材料具有响应速度快、可制备大面积、柔性化等优点,可以应用于柔性显示器、透明显示器等领域。
然而,液晶聚合物材料的制备工艺尚不够成熟,其性能稳定性和可靠性有待提高。
无机液晶材料是液晶显示材料的又一重要形式。
它是利用无机晶体材料制备的液晶显示材料,具有优异的光学性能和稳定性。
无机液晶材料可以实现高分辨率、高对比度和宽视角等特点,适用于高端显示器和专业显示领域。
然而,无机液晶材料的制备成本较高,限制了其在大规模应用中的竞争力。
综合而言,液晶显示材料的发展方向将是向高分辨率、高对比度、高刷新率和柔性化方向发展。
未来,液晶显示材料将更加注重环保、节能和可持续发展,同时不断提高其制备工艺和成本效益。
液晶显示材料的不断创新和发展,将推动液晶显示技术在各个领域的广泛应用,为人们带来更加清晰、生动的视觉体验。
第六讲 液晶显示器的主要材料
注:光学密度越大,对光的吸收越强。
液晶显示器件的主要原材料
背光源 做为液晶显示器,因为液晶本身并不发光,就须外部施加照射光,这种外部的照 射光源,为背光源。 种类有: 冷阴极管(萤光)灯; 发光二级管(LED); 电致发光的(EL)。 冷阴极管做外部光源的背光源有:直下方式 侧灯方式 面状光源方式
6
液晶显示器件的主要原材料
彩膜 使有源矩阵LCD(TFT)屏幕显示彩色图像的功能,它决定LCD屏的彩色特性。 它安排在TFT基板的对面,在基板上设着色图形(红、绿、蓝),间隙处设置遮光的 黑矩阵,在上面加上保护层。 彩膜上的保护膜的作用: 作为着色层的保护树脂膜; 对ITO膜、取向膜的不平滑处理; 防止溶剂、洗剂的污染。 黑矩阵 参数种类 光学密度 膜厚 反射率 单层Cr 单层Cr 4.0 0.17µ 0.17µm 50~60% Cr/CrO的多层构造 Cr/CrO的多层构造 4.0 0.23µ 0.23µm 4% 树脂(新型) 4.0 1.2µm 1.2µ 2%
Байду номын сангаас
8
3
玻璃基板
无源矩阵LCD用玻璃基板: 在无源矩阵中,制造工艺的温度方面要求不如有源矩阵LCD苛刻,故从成本角 度考虑,使用窗玻璃等用的碱玻璃,但多半加上阻挡层SiO膜,也有用无保护膜的 低碱玻璃。这种碱玻璃的断面呈青绿色,故也称作青板玻璃。 有源矩阵LCD用玻璃基板: 在有源矩阵LCD中,制造工艺的处理温度较高,并且在薄膜晶体管中,由于钠 离子等的渗透引起性能下降,因此使用不含离子源的耐热性高的无碱玻璃。考虑到 TFT的稳定性和溅射栅极后的耐药性,及由于玻璃基板的热收缩而画面内部的栅电 容分布不均匀会引起闪烁和烧蚀等显示不良,另外也会引起TFT基板和CF基板的对 位偏移,因此对有源矩阵的热收缩率要求严格。 玻璃基板的特性:①低比重性;②耐药性;③尺寸的热稳定性;④平坦度⑤表 面缺陷及内部缺陷特性。 TFT LCD的1期线使用的基板尺寸是300×400mm;2期线使用的基板尺寸是 360×465mm;3期线使用的基板尺寸是550×650mm。
手机液晶显示触摸屏的原材料
手机液晶显示触摸屏的原材料触摸屏的种类1、电阻式触摸屏这种触摸屏利用压力感应进行控制。
电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。
当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。
控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。
这就是电阻技术触摸屏的最基本的原理。
电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟 [yīn],弱导电体,特性是当厚度降到1800个埃(1埃=0.1纳米=10的-10次方米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。
ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。
B、镍[niè]金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。
镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。
1.1四线电阻屏四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。
总共需四根电缆。
特点:高解析度,高速传输反应。
表面硬度处理,减少擦伤、刮伤及防化学处理。
具有光面及雾面处理。
一次校正,稳定性高,永不漂移。
1.2五线电阻屏五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。
液晶的材料
液晶的材料
液晶是一种特殊的物质状态,具有既有固态晶体的规则排列,又具有液态分子的流动性质。
液晶的材料主要由有机分子和无机分子组成,材料种类繁多,常见的有三维液晶、二维液晶和层状液晶等。
三维液晶是指分子排列呈等方向性,没有规则的排列结构。
它通常由有机化合物构成,具有较高的透明度和较低的粘度。
三维液晶常用于制造电视机和计算机显示屏等大型平面显示器件。
二维液晶是指分子排列呈二维结构,分子在水平方向有序排列,垂直方向没有规则结构。
常见的二维液晶材料有磷酸铷和磷酸锂等。
这类液晶材料通常具有较低的粘度和较快的响应速度,适用于制造智能手机、平板电脑等移动设备的显示器。
层状液晶是指分子呈层状排列,每一层的分子都在平面上有序排列,层与层之间没有规则的排列结构。
层状液晶常用的材料有蒙脱石和其他层状矿物等。
层状液晶材料具有较高的透明度和较好的光泽度,适用于制造高分辨率的电子书显示器和平面打印机等。
液晶材料的选择主要基于它们的光学性质、电学性质和物理性质等方面的考虑。
光学性质包括透射率、消光率、对偏振光的旋光等;电学性质包括导电性、带电传输性、电滞回线性等;物理性质包括粘度、分子自旋等。
通过选择不同的液晶材料和调整它们之间的相互作用,可以制造出具有不同性能的液晶显示器件。
液晶显示技术的发展不仅推动了电子显示器件的进步,也广泛应用于生物医学、光电通信和光电存储等领域。
在未来,随着研究不断深入和材料技术的不断创新,液晶材料将会在更多领域发挥重要作用。
LCD材料
第一章LCD三大主材第一节导电玻璃1.导电玻璃导电玻璃,是在普通玻璃的一个表面镀有透明导电膜的玻璃。
最常用的导电玻璃是氧化铟锡玻璃,通常简称为ITO玻璃。
根据用途,衬底玻璃的不同,ITO玻璃可分为两种结构,如图所示:玻璃材料为钠钙玻璃,这种玻璃衬底与ITO层之间要求有一层二氧化硅(SiO2)阻挡层,其作用是阻挡玻璃中的钠离子的渗透,以防止对器件性能产生影响。
玻璃衬底用无钠硼硅玻璃,ITO层结构就可以不必存在SiO2层。
2. 导电玻璃参数2.1.透光率在可见光范围内的透光率在80%以上。
ITO玻璃的透光率影响因素有:玻璃材料、ITO厚度、折射率.2.2.面电阻ITO膜导电性能采用的指标是方块电阻,用R□表示。
R□与ITO的体电阻率及ITO膜厚有关。
如下图是电流平行经过ITO膜层的情形。
图中,d为膜厚;I为电流;L1为膜层在电流方向上的长度;L2为膜层在垂直电流方向的长度。
当电流流过上图所示的方形导电膜层时,该层的电阻为:L1R=ρL1dL2膜膜玻璃衬底2式中,p ρ为导电膜的体电阻率。
对于给定的膜厚层,p 和d 可以认为是不变的定值,当L 1=L 2时,即为正方形的膜层,无论方块大小如何,其电阻均为定值p/d ,这就是方块电阻的定义,即式中,R □单位为:(Ω/□)。
方块电阻通常用四探针测试仪来测定。
2.3.平整度平整度是指玻璃表面在一定范围内的起伏程度。
平整度可用h/L 表示, 为在长度L 的范围内,表面最高点与最低点的差值为h.如图所示:ITO 玻璃基板平整度直接影响着液晶显示器的质量, 对STN 液晶显示器的影响更大。
一般TN LCD 用玻璃要求平整度小于0.5um/20mm ,STN LCD 用玻璃要求平整度小于0.05um/20mm 。
2.4 机械性能、化学抗蚀与抗热性能导电玻璃整体要有足够的机械强度,易于生产。
ITO 膜能抗强碱 ,易被酸腐蚀。
温度升高,面电阻增大。
与LCD 相关的不良品有: 对比度不均(uneven contrast ),底色(彩虹)(homogeneity/rainbow),化字(blooming),崩、裂( chip glass)公司现有的导电薄膜种类:ITO 玻璃、PET 导电膜.第二节. 液晶材料1. 液晶的基本概念液晶为一种新的物理相态。
液晶单体材料
液晶单体材料引言液晶单体材料是液晶显示技术的关键组成部分。
液晶显示技术在电子产品中得到了广泛应用,如平板电视、手机屏幕等。
液晶单体材料的性能直接影响着显示设备的图像质量、响应速度和能耗等方面。
本文将对液晶单体材料的种类、性质以及应用进行全面、详细、完整且深入地探讨。
一、液晶单体材料的种类液晶单体材料可以分为两大类:有机液晶单体和无机液晶单体。
1. 有机液晶单体材料有机液晶单体材料是由有机分子构成的,其分子结构通常由若干芳香环和侧链组成。
常见的有机液晶单体材料有三种类型:扁平型液晶单体、柱状型液晶单体和球形型液晶单体。
1.1. 扁平型液晶单体扁平型液晶单体具有扁平的分子结构,分子之间的相互作用力较弱。
它们适用于制作快速响应的液晶显示器件。
常见的扁平型液晶单体有:C8、C9、C10等。
1.2. 柱状型液晶单体柱状型液晶单体具有柱状的分子结构,分子之间的相互作用力较强。
它们适用于制作高对比度的液晶显示器件。
常见的柱状型液晶单体有:5CB、6CB、7CB等。
1.3. 球形型液晶单体球形型液晶单体具有球形的分子结构,分子之间的相互作用力较大。
它们适用于制作高温液晶显示器件。
常见的球形型液晶单体有:D8、D9、D10等。
2. 无机液晶单体材料无机液晶单体材料是由无机物质构成的,其分子结构通常由金属离子和配体组成。
无机液晶单体材料具有优异的光电性能,但由于其制备难度较大,应用相对较少。
常见的无机液晶单体材料有:钙钛矿、硫化物等。
二、液晶单体材料的性质液晶单体材料的性质直接影响着液晶显示器件的性能,主要包括光学性质、电学性质和热学性质。
1. 光学性质液晶单体材料具有良好的透光性和吸光性,在外界电场或光场的作用下会产生偏振现象。
它们的光学性质可以通过吸光光谱、偏光显微镜等工具进行表征。
2. 电学性质液晶单体材料具有较高的电阻率和电容率,可以通过外加电场调控其偏振状态。
电学性质的研究可以通过电流-电压特性曲线、电容-电压特性曲线等来表征。
液晶材料的种类特性及其应用
液晶材料的种类特性及其应用液晶材料是一类特殊的有机分子化合物或无机化合物,其具有一定的结晶性和流动性,可在一定的温度范围内异向地流动,同时具有电光性和热致性等特殊性质。
液晶材料广泛应用于液晶显示器、液晶电视、液晶电子墨水、液晶投影等领域。
根据液晶材料的分子排列方式,液晶材料可分为向列型(nematic)、粒晶型(smectic)、柱状型(columnar)和螺旋型(cholesteric)等不同种类。
1.向列型液晶材料:向列型液晶材料的分子排列呈现出一定的有序性,并且分子长轴大致保持垂直于液晶层面的状态。
向列型液晶材料具有快速的响应速度和良好的透明度,广泛应用于各种液晶显示器。
2.粒晶型液晶材料:粒晶型液晶材料的分子排列呈现出更有序的结构,形成层状结构。
粒晶型液晶材料具有机械强度高、导热性好、观察视角宽等特点,广泛用于液晶电子墨水和生物传感器等领域。
3.柱状型液晶材料:柱状型液晶材料的分子排列呈现出柱状的结构,分子间形成长程有序的堆积。
柱状型液晶材料具有高导电性和较好的电子输运性能,广泛用于有机太阳能电池和有机场效晶体管等领域。
4.螺旋型液晶材料:螺旋型液晶材料的分子排列呈现出一定的螺旋结构,形成螺旋向列型的液晶相。
螺旋型液晶材料具有结构色、光子晶体和布里渊散射等特性,广泛应用于光纤传感器和光学滤波器等领域。
液晶材料在液晶显示器和其他液晶设备中有广泛的应用。
液晶显示器是液晶材料最常见的应用之一,以便捷而高效的方式在屏幕上产生图像。
液晶电视、电脑显示器和手机屏幕都是以液晶材料为基础制造的。
液晶电子墨水则在电子书和电子纸等领域得到了广泛应用,具有较高的可读性和低功耗的优势。
液晶投影机则可以将图像以高清晰度投射到屏幕上。
此外,液晶材料还广泛用于光学信息存储、光学滤波器、光纤传感器、光学测量仪器和光子晶体等领域。
液晶材料还可以制成电子调制器件、电子窗帘和可变透明材料等,具有使窗户自动调节透光度和保护隐私的功能。
液晶显示材料
液晶显示材料
液晶显示材料是一种用于制造液晶显示器的重要材料。
液晶显示器是现代科技中最常见的显示设备之一,广泛应用于各种电子产品中,如电视、计算机显示器、手机等。
目前主流的液晶显示材料主要有n型液晶和p型液晶两种。
n型液晶是一种双偏振剪切型液晶,其分子结构中含有大量束
缚电子。
在电场作用下,束缚电子会形成长序有序排列的结构,从而改变液晶分子的排列方式,实现光的透射与反射。
n型液
晶通常具有快速响应速度和高透光率的特点,适用于动态显示。
p型液晶是一种非常稳定的液晶材料,其分子结构中含有大量
自由电子。
在电场作用下,自由电子会形成长序有序排列的结构,实现光的透射与反射。
p型液晶通常具有较低的响应速度
和较高的透光率,适用于静态显示。
除了n型液晶和p型液晶,还有其他一些液晶显示材料常用于制造液晶显示器。
例如,手电筒液晶材料常用于制造手机和手持设备的显示屏。
它具有较高的亮度和对比度,并且能够实现高速响应和低功耗。
另外,电子书液晶材料常用于制造电子书和电子阅读器的显示屏。
它能够实现高亮度、高对比度和高分辨率的显示效果,适合长时间阅读。
总的来说,液晶显示材料是液晶显示器的核心组成部分,直接影响液晶显示器的显示效果和性能。
随着科技的不断进步,液晶显示材料的研发也在不断创新和改进,以提高显示器的色彩
表现、对比度、亮度和视角等方面的性能。
同时,科学家们也在不断探索新的液晶显示材料,如有机光电材料、纳米液晶材料等,以期望未来的液晶显示器能够实现更高的分辨率、更广的色域和更低的功耗。
液晶材料及显示技术研究
液晶材料及显示技术研究第一章:背景介绍液晶显示技术是一种利用液晶分子的光学性质来显示图像的技术,它已经成为了当今电子娱乐行业的主流技术。
液晶技术主要分为TN、STN、TFT等类型,在显示器、电视等领域得到广泛的应用。
随着人们对视觉体验需求的不断提高,人们对液晶显示技术在颜色还原、反应速度、低功耗等方面的要求也不断增加。
为了满足这些要求,液晶显示材料也在不断的创新和研发。
目前液晶材料主要分为低分子液晶和高分子液晶两种,这两种液晶材料在不同的应用场合有着不同的优势。
本文将主要介绍液晶材料及其在显示技术中的运用,探讨其未来的发展趋势和应用前景。
第二章:液晶材料介绍液晶分子是具有一定有序性的有机分子,它们的化学结构和物理性质决定了它们的光学性质。
液晶分子能够调节光的传播路径和偏振状态,从而实现图像的显示。
液晶材料主要分为低分子液晶和高分子液晶。
低分子液晶分子结构单一,具有较好的电光性能和反应速度,是目前应用最广泛的液晶材料,但其复杂的制备流程和较高的成本限制了其进一步的应用。
高分子液晶分子结构多样,可以通过小分子液晶分子的修饰来改进其性能,同时具备低成本、易制备等优势。
但由于分子结构复杂,其电光性能较低,需要进一步的改进。
随着对显示技术在颜色还原、反应速度、低功耗等方面要求的不断提高,在液晶材料的研究领域也出现了很多创新性的成果。
比如,分子设计、功能化材料、辅助材料等领域的技术创新,不断地拓宽了液晶材料应用范围。
第三章:液晶显示技术液晶显示技术是利用液晶分子在电场作用下的电光效应,控制光的传播路径和偏振状态,从而实现图像的显示。
根据液晶技术的不同类型,可以分为TN、STN、TFT等类型。
TN(Twisted Nematic)液晶技术是最早应用于液晶产品中的一种液晶技术。
TN液晶技术结构简单,制造成本较低。
但其水平/垂直视角极度狭小,色彩还原度较低,限制了其在高端产品中的应用。
STN(Super Twisted Nematic)是TN液晶技术的改进型。
液晶材料在显示技术中的应用研究
液晶材料在显示技术中的应用研究液晶材料是一种特殊的物质,具有很多独特的性质和应用。
其中,液晶材料在显示技术中的应用研究也越来越受到广泛的关注。
本文将从液晶材料的基础性质、液晶显示器的原理、液晶材料在显示技术中的应用等多个方面来进行探讨。
一、液晶材料的基础性质液晶材料是一种介于固体和液体之间的物质。
它具有很多独特的性质,其中最重要的是其分子结构的长程有序性。
液晶材料分为向列型液晶、螺旋型液晶、热致变色液晶等多种类型。
这些液晶材料具有各自不同的物理、化学性质。
在液晶材料中,分子之间的排列方式是有序的,但是在空间上只是部分有序。
这种长程有序性使得液晶材料具有许多特殊的性质,其中最重要的就是其光学性质。
二、液晶显示器的原理液晶显示器是一种新型的显示技术,它利用了液晶材料的特殊性质而得以实现。
液晶显示器的原理是,利用液晶材料的电光效应和偏振片的作用来实现光的调制和显示。
液晶显示器主要由两个玻璃基板、液晶材料以及控制电路组成。
其中液晶材料填充在两个玻璃基板之间。
在液晶材料的两侧加上偏振片,并且两个偏振片的方向垂直,这时若给液晶材料加上电场,则液晶分子会发生排列,并使偏振的方向产生旋转,从而得到不同的光强度。
三、液晶材料在显示技术中的应用1. 液晶显示器液晶显示器可以说是目前应用最广泛的液晶材料产品。
它已经在电子产品、计算机、通讯等领域得到广泛应用。
液晶显示器具有功耗低、分辨率高、体积小等优点,越来越多的人开始用液晶显示器代替传统的显像器件。
2. 液晶投影仪液晶投影仪是一种利用液晶显示原理制作的显示技术产品。
液晶投影仪具有分辨率高、长寿命、颜色还原度高的优点,可以广泛应用于商业、教育、舞台演出等领域。
3. 液晶电视液晶电视是一种新型的电视产品,利用液晶显示原理制作。
液晶电视具有分辨率高、功耗低、颜色还原度高等优点,越来越多的家庭开始使用液晶电视代替传统的CRT电视。
4. 液晶材料在量子点显示技术中的应用液晶材料在新型领域的应用也得到了大量的研究。
液晶材料和液晶显示器的分类
液晶可以分为三类:1、近晶相液晶近晶相液晶分子分层排列,根据层内分子排列的不同,又可细分为近晶相A近晶相B等多种。
层内分子长轴互相平行,而且垂直于层面液晶拼接屏。
分子质心在层内的位置无一定规律。
这种排列称为取向有序,位置无序。
近晶相液晶分子间的侧向相互作用强于层间相互作用,所以分子只能在本层内活动,而各层之间可以相互滑动。
2.、胆甾相液晶胆甾相液晶是一种乳白色粘稠状液体,是最早发现的一种液晶,其分子也是分层排列,逐层叠合。
每层中分子长轴彼此平行,而且与层面平行。
不同层中分子长轴方向不同,分子的长轴方向逐层依次向右或向左旋转过一个角度。
3.、向列相液晶向列相液晶中,分子长轴互相平行,但不分层,而且分子质心位置是无规则的。
液晶显示面板的物理结构分类:(1)扭曲向列型(TN-Twisted Nematic);(2)超扭曲向列型(STN-Super TN);(3)双层超扭曲向列型(DSTN-Dual Scan Tortuosity Nomograph);(4)薄膜晶体管型(TFT-Thin Film Transistor)。
1.TN型采用的是液晶显示器中最基本的显示技术,而之后其它种类的液晶显示器也是以TN型为基础来进行改良。
而且,它的运作原理也较其它技术来的简单。
请参照下方的图片。
图中所表示的是TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。
广泛应用于入门级和中端的面板,在性能指标上并不出彩,不能表现16.7M色彩,并且可视角度有天然痼疾。
市场上看到的TN面板都是改良型的TN+film,film即补偿膜,用于弥补TN面板可视角度的不足,同时色彩抖动技术的使用也使得原本只能显示26万色的TN面板获得了16.2M的显示能力。
要说TN面板唯一胜过前面两种面板的地方,就是由于他的输出灰阶级数较少,液晶分子偏转速度快,致使它的响应时间容易提高,目前市场上8ms以下液晶产品均采用的是TN面板。
液晶是什么材料
液晶是什么材料液晶是一种特殊的材料,它在现代科技中扮演着重要的角色。
液晶是一种介于固体和液体之间的物质,它具有固体的结构和液体的流动性质。
液晶的独特性质使得它在显示技术、光电子学、生物医学等领域有着广泛的应用。
那么,液晶究竟是什么材料呢?接下来,我们将深入探讨液晶的性质和应用。
首先,液晶是由长链有机分子组成的。
这些有机分子具有两端不同的结构,一端是亲水性的,另一端是疏水性的。
在适当的条件下,这些有机分子可以自组装成为一种有序排列的结构,形成液晶相。
液晶分为各向同性液晶和各向异性液晶两种基本类型。
各向同性液晶中,分子的有序性不依赖于方向,而各向异性液晶中,分子的有序性与空间方向有关。
液晶材料的特殊性质使得它在显示技术中有着广泛的应用。
液晶显示器是目前最常见的显示设备之一,它利用液晶材料的光学特性来显示图像。
在液晶显示器中,液晶材料被置于两块玻璃基板之间,通过控制电场来改变液晶分子的排列状态,从而控制光的透过与阻挡,实现图像的显示。
与传统的显像管相比,液晶显示器具有体积小、重量轻、功耗低、图像清晰等优点,因此得到了广泛的应用。
除了在显示技术中的应用,液晶材料还在光电子学领域发挥着重要作用。
液晶的光学特性使得它可以被用来制作光学偏振器件、光学调制器等光学器件。
同时,液晶的电光效应和光学非线性效应也为光电子学研究提供了重要的材料基础。
此外,液晶材料还在生物医学领域有着广泛的应用。
例如,液晶材料可以被用来制作生物传感器、生物成像材料等生物医学器件,为生物医学研究和临床诊断提供了重要的技术支持。
总的来说,液晶是一种介于固体和液体之间的特殊材料,它具有独特的物理化学性质和光学特性,因此在显示技术、光电子学、生物医学等领域有着广泛的应用。
随着科技的不断发展,相信液晶材料将会发挥出更多的潜力,为人类社会的进步和发展做出更大的贡献。
新型显示关键材料之一-液晶材料
液晶材料凭借工艺不断成熟,显示效果不断提升,价格不断下降等优点,液晶显示已经成为当前显示技术的主流。
其中,液晶产业链上游基础材料和零部件由于进入门槛高、盈利效果好、技术垄断性强等特点,成为液晶产业后产能时代发展的重点。
其中液晶材料作为不可或缺的原材料,受到广泛关注。
液晶材料具有几十个合成步骤,对纯度的要求很高,要求纯度大于99.95%。
此外,近年来,TFT-LCD的显示性能朝向快速响应、宽工作温度范围、高显示视角、高稳定性的方向发展,这就对液晶材料提出了更高的要求,对液晶材料的旋转粘度、极性、电荷保持率等参数都提出了更高的要求。
性能优良的液晶产品是具有很高的技术壁垒,量产具有一定难度。
一、产业规模近年来,面板产线主要在中国大陆地区扩产,因此液晶材料的市场增量也将以中国大陆为主,预计2017年全球混合液晶材料需求在700吨左右,其中中国大陆TFT混合液晶材料市场需求将达到250吨,占全球混合液晶用量的40%左右。
我国本土企业产量在50吨左右,占中国大陆总体需求的20%。
预计未来三年,国内TFT-LCD混合液晶材料市场需求将达到350吨,本土企业产量有望接近150吨,国产化率接近43%。
二、行业布局和主要企业由于TFT-LCD具有的高技术壁垒,因此行业布局属于垄断状态。
目前德国默克(Merck)、日本智索(Chisso)和大日本油墨(DIC)三家基本垄断了TFT液晶市场,三家的市场总额高达90%以上。
其中默克市场份额超过50%。
我国目前生产液晶材料的企业有10家左右,主要是在低端的TN、STN产品,而在TFT液晶产品领域市场话语权较弱。
产品以液晶化学品、单体材料为主,混合液晶较少。
国内企业大多生产液晶化学品和单体材料给国外的液晶生产商。
因此,随着国内液晶面板产线布局的不断完成,加速提升TFT混合液晶本土化生产将是提升液晶显示产业竞争力的重要一环。
诚志股份、江苏和成、八亿时空、晶美晟光电、烟台显华等级也从事混合液晶生产,从事TFT-LCD液晶生产的企业有诚志永华、江苏和成和八亿时空。
液晶主要材料
,主要材料三大主要材料:液晶,ITO玻璃,偏光片(对手彩色液晶显示器还必须加上滤色膜);其他材料:取向材料,封接材料,衬垫料,金属引线腿等:还有一些参于液晶显示器的生产过程和最终在产品中不存在的原材料:如光刻胶,各种稀释剂,溶剂,清洗剂,摩擦布等.1.液晶显示用平板玻璃(1)液晶显示对平板玻璃的要求:①含钠成分很低.因玻璃板中含钠成分600度高温时变化极小.③要求玻璃板表面光滑平整,两板之间:的间隙均匀,同时要求在加工过程中经受一定温度时,仍然保持其间隙均匀.④玻璃板表面没有缺陷咸缺陷在10nm级以下,并且没有气泡.⑤玻璃板在加热过程中不产生应力.⑥有一定的抗蚀能力.目前,只有基本上符合上述要求的玻璃;但是用普通工艺,即使加上抛光工艺,也不能达到上述要求.(2)液晶显示玻璃板的生产技术首先对玻璃成分进行优选,将碱(Li20,Na20,K20等)成分控制在(0.1-0.2)Wt%以下,同时采用新的工艺,才能制出合格的LCD用平板玻璃.生产液晶显示平板玻璃有两项新技术:①熔融拉伸法:熔融的玻璃从两个高温管之间由于重力的作用流出,形成一定厚度的均匀玻璃板.该工艺可以产生真正无缺陷的玻璃板,而不需经抛磨加工.现在利用这项技术已能生产1m 宽的玻璃板;②浮法生产玻璃板:玻璃料连续地从熔化炉中流到熔化的锡槽内,玻璃在锡上慢慢冷却,取出并退火.浮法生产的玻璃板表面较粗糙,尚需进行抛光才能满足液晶显示器的要求.(3)液晶显示用的玻璃板含石灰的玻璃板和硼硅玻璃颇舶软化点为500t,可以用于a-Si:H FT的衬底.无碱玻璃系列的硼铝硅玻璃橡(7069,1733,1724型),膨胀系数低,加工特性好,适合作有源矩阵LCD的基板.其中1733型玻璃工艺温度为615°C,是设计用于p-Si:H TFT-LCD的基板,甄1724型玻璃的工艺温度为650℃,1729玻璃板变形点是799℃,工艺温度可达775℃,接近热栅多晶硅工艺温度范围.碱土铝玻璃变形温度高达800℃,若增加硅的成分,变形温度可高于800℃.若全部成分是Si02,就是石英,工艺温度可达1000℃.随着玻璃中Si02成分增加,熔化和加工都很困难,增加了工艺难度和制造成本.玻璃的最高使用温度(工艺温度)常选在它的变形点以下25℃.一般定义玻璃变形点的粘度为1014.5泊,退火点的粘度为1013泊,软化点的粘度为107.6泊.以上提到的几种玻璃型号都是美国康宁公司的产品.其中7059型玻璃是用熔融拉伸法制造的,适合作液晶基板·,已完全商品化,供应全世界.1733,玻璃也是用熔融拉伸法制造,工艺温度比7059高,也广泛用于液晶显示,而1724,1729型则是用浮法工艺生产的.(4)玻璃板的热稳定性液晶显示板在制造过程中,尤其是制造TFT-LCD时,需要几次光刻和退火,因而对玻璃板尺寸的热稳定性要求很高.对于TFT-LCD时的玻璃板,要求尺寸热稳定为几个ppm.玻璃的稳定结构是晶体,但玻璃板制造过程中有急冷过程,所以含有大量非晶态结构.玻璃的非晶态有向晶态转化的倾向,只是转化过程与温度有关.如7059玻璃,在900℃时,几秒钟就转化完毕;在600℃时转化需几天;在300℃时,转化需要1个世纪.,在转化过程中,伴随着尺寸的缩小,称为"密化".急冷的玻璃,在变形温度下退火,尺寸变化会达到1000ppm.这对TFT-LCD玻片是不能允许的,何况这种密化程度与退火温度,退火时间和冷却速度有关,即与玻璃板的热加工历史有关.为了在液晶显示板加工过程中,玻璃板不再有大的尺寸收缩量,应对来料玻璃板进行预退火,使密化增加.退火时间在50min以上,冷却速度在1℃/min左右能达到较好的预密化(退化温度为650℃),使玻板在加工过程中尺寸的变化控制在1.5 ppm左右.(5)在玻璃板上镀阻挡层阻止碱离子迁移平板显示用玻璃板要求没有碱离子,而真正的无碱玻璃的其他特性又不易做好.目前平板显示用的玻璃板是低碱玻璃;在工艺温度低时,尚能满足要求,但在P—Si:H TFT工艺温度较高时,甚至在玻璃中碱离子含量在几个ppm情况下,也会发生碱离子传染.在玻璃板表面上,镀一层约200nm的Al2O3阻挡层能有效阻止碱离子侵人;镀Al2O3的方法有电子束蒸发和射频溅射,但溅射制成的Al2O3膜对阻挡碱离子的效果更好.Na+于675℃下在Al2O3中的扩散系数和在550℃下在Si02中相同,即Al2O3的阻挡效果优于Si02.在普通硬玻璃上,镀一层Al2O3阻挡层,就可以制造Poly-Si:H TFT的基板.(6)液晶显示板的抗蚀性HCl,H2SO4,H20对7059和1733型平板玻璃的腐蚀作用如表3.19所示,表中数字单位为μg/cm2.由上表可知①1733玻璃板比7059玻璃板更耐酸,耐碱;②·盐酸的腐蚀作用远大于硫酸,③去离子水的腐蚀作用可以忽略不计;④在强酸作用下,碱土金属氧化物,硼氧化物有一定损失2.透明导电玻璃透明导电玻璃是指在普通玻璃的—个表面镀有透明导电膜的玻璃.最早的透明导电膜的商品名为NESA膜,它是为制造防止飞机舷窗结冻和制造监视加热液体内部反应情况的透明反应管而研制的,它的成分是SnO2.但SnO2透明导膜不易刻蚀.现在采甩的ITO(1ndiumTin Oxide 氧化铟锡)的成分是In2O3和SnO2,ITO膜是在In2O3的晶核中掺人高价Sn的阳离予,掺杂的量以Sn的含量为10%重量比最佳.ITO是一种半导体透明导电材料,禁带宽度为3eV以上,具有两个施主能级,为n型施主能级,离导带很近,自由电子密度=1020~1021个/cm3;迁移率为10—30 cm3/v.s.所以电阻率很低,可低至l0-4Ω.cm量级.用Sn+4离子占据晶格中In+3离子的位置,会形成一个正1价电荷中心和1个多余的价电子,这个价电子挣脱了束缚便成为导电电子.一般的玻璃材料为钠钙玻璃,这种玻璃衬底与ITO之间要求有1层SiO2阻挡层,似阻挡玻璃中的钠离子渗透.因ITO膜生产过程中,玻璃衬底处于150'℃~300℃温度下,如果玻璃中的钠离子扩散进入ITO膜中,形成受主能级,对施主起补偿作用,引起导电性能下降.如果玻璃村底为无钠硼硅玻璃;,则可不用SiO2阻挡层.对于某些高档产晶的制造,有时需在ITO外层加1层SiO2层,这是为了增加横向的绝缘性.在玻璃衬底上制备透明导电膜的方法有喷雾法,涂覆法,浸渍法,真空蒸发法,溅射法等多种.目前大生产中主要用直流磁控溅射法,气功以稳定,膜的质量好,但靶材料利用率只有25%-30%.现在已开发出使用交流电源驱动磁场移动的方法,可使靶材料利用率增至40%左右.溅射靶材过去用高纯铟锡合金,其比例为Sn/(In+Sn)=8%~13%,合金熔点为173℃.现在直接采用氧化铟锡靶镀膜工艺,但ITO靶比铟锡合金靶贵得多,目前还是靠进口-的.用于液晶显示器的导电玻璃必须符合一定要求,具体的指标为:①透光率好.一般要求大于85%;另一方面要求光干涉颜色均匀,其不均匀性小于10%;②方块电阻小.薄膜的电阻率常用方块电阻来表示,()对于低档的TN产品,ITO膜的方块电阻要求为100~30(Ω/口),相应的膜厚为200—300A;对于STN产品要求ITO膜的R口小于10Ω/口;(对于VGA为Ω/口,;对于SVGA为3—5Ω/口),相应的膜厚为1000-2000Ao 显然,ITO层厚度增加虽然可以降低R口,但是透光率必然也变差,所以控制ITO膜制造工艺使其电阻率小是最关键的.③平整度好.平整度是指玻璃表面在一定长度乙范围内的起伏程度,用h/L表示,其中丸为长度L范围内表面最高与最低点的差值.由于液晶层厚只有10μm左右,基片不平整直接影响液晶层厚的不均匀,所以对液晶显示器的质量有直接影响.ITO玻璃基片的平整度包括玻璃表面粗糙度,表面波纹度,基板翘曲度;基板平行度和ITO膜表面租糙度,膜厚均匀度.液晶盒使用的玻璃一般厚度为芍0.3~1.1mm的浮法玻璃,用于TN-LCD时,对于1.1mm厚的要求平整度小于0.15μm/20mm;:对于0.7mm厚的要求平整度小于0.2μm/20mm,电阻不均匀性小于土15%,允许有机少量的缺陷.用于中高档STN-LCD时,玻璃要经过抛光,要求平整度小于0.075—0.05μm/mm,电阻不均匀性小于±10%.不允许有任何缺陷.3.偏光片在液晶显示器中大量使用偏光片(偏振片),它的特殊性质是只允许某一个方向振动的光波通过,这个友向称为透射轴,而其他方向振动的光将被全部或部分地阻挡,这样自然光通过偏光片以后,就成了偏振光.同样,当偏振光透过偏光片时,如果偏振光振动方向与偏光片的透射方向平行一致时,就几乎不受到阻挡,这时偏光片是透明的;如果偏振光的振动方向与偏光片的透射方向相垂直,则几乎完全不能通过,偏光片就成了不透明的了.因此,偏光片可以起检测偏振光的作用.偏光片的制备过程有4步:{1)制膜偏光片的基片常采用聚乙烯醇(PV A)膜,它是一种线性高分子聚合物,在很长的分子键上均匀地挂着许多强极性的—OH基团用来制作偏光片的PV A膜在光学上是均匀各向同性的,大分子键在各个方向上都是完全均匀的,无规律排列聚集成膜.(2)浸液将用普通方法制得的各向均匀的PV A膜浸入含碘的有机或无机化合物中进行反应,在薄膜中形成碘链.碘链的特点是能吸收振动方向平行于碘链的光,而振动方向垂直于碘链的光将可以通过,即碘链具有三向色性.(3)拉伸将反应后的膜加以机械拉伸.在拉伸之后,几乎所有的大分子键都被迫按照拉伸力作用的方向伸展开来,虽然没有形成结晶式完全有序的规则排列,却达到了高度的取向,形成了像栅栏一样的结构.在这样的膜中,碘链将会沿拉伸方向整齐排列.从整体上讲,薄膜能强烈吸收沿拉伸方向振动的光,而让垂直于拉伸方向的振动光通过.(4)胶合保护膜由于PV A膜具有亲水性,在湿热环境下会很快变形,收缩,松弛,衰退,而且强度很低,质脆易破,不便于使用和加工,因而要在这种偏光膜的两边都复合上一层强度高,光学上各向同性,透光率高而又耐高热的高聚物片基,一般采用三醋酸纤维素脂,即TAC,赋予偏光片以良好的机械性能和耐气候性能,经浸液,拉伸后的PV A膜的两面复合上TAC膜后组成偏光片的基本结构,称为原偏光片.(5)粘附外保护膜原偏光片的两个外表面上通常都要粘附上一层柔软的外保护膜.为适应在液晶显示器中使用的需要,要在原偏光片的一面附上一层压敏胶,并贴上压敏胶的隔离膜,这就是透射性的偏光片.拆去隔离膜,露出压敏胶,偏光片可以方便牢固地妨剥液晶显示器的玻璃面上.反射型偏光片是在原偏光片的一面附上压敏胶及隔离膜,而在另一面复合上一层镀有金属垣光层舶反光膜.于图3—122中示出了透射型偏光片和反射型偏光片的基本结构.偏光片的总厚度约为0.45mm左右.偏光片的主要光学技术指标有:①颜色.普通偏光片为灰色,细分为中撂色和蓝灰色两种,但目前已开发出多种彩色偏光片,如红色,洋红色,蓝色,黄色,紫色,紫蓝色等.②偏光度.偏光片的偏光度也称偏光片的偏振效率,其定义为:目前,最好的偏振光的偏光度可达99%以上,通常对普通偏光片,要求偏光度大于85%;对彩色偏光片,要求偏光度大于80%.③透光串和透射光谱.实际偏光片的透光率都赂低于50%;只有在整个可见光范围内的透光率是均匀的,才能实现理想的黑白显示,否则出射光会带有颜色,影响显示效果;4.液晶显示器其他常用材料(1)取向材料液晶盒内直接与液晶接触的一薄层物质称为取向层.取向工艺虽有多种,但实际上广泛使用的工艺是:光在玻璃表面涂覆1层有机高分子薄膜,再用绒布类材料高速摩擦来实现取向.这种有机高分子薄膜最常用的材料是聚酰亚胺,简称PI.聚酰亚胺的单体是聚酰亚胺酸(PA),具有良好的可溶性,浓度和粘度调节容易,是一种透明的黄褐色液体.将PA先涂敷在液晶基片内表面,在250℃-300℃下,约1h左右,脱水固化形成PI 膜.PI膜具有优良的化学稳定性,优良的机械性能和优良的电介质特性.以摩擦方式使PI膜表面磨出沟槽;使液晶分子定向排列;以达到显示要求.液晶分子在取向层上排列时有一个预倾角,即表面分子长轴方向与取向层表面所形成的夹角.该角主要取决于PI材料的特性,另外与取向处理工艺也有关.通常TN型LCD器件要求PI层造成的预倾角为1.-2.,对于高档的STN型LCD显示器,则要求预倾角大于3'.(2) 环氧树脂环氧树脂是—种生活中常用粘接剂,具有良好粘接性,优异的电气以及机械性能的高分子化合物.在液晶显示器中作为胶粘剂将两片玻璃粘接起来,同时保持一定的间隙,称为封框胶.用于将上下玻璃电极导通时,称其为银点胶;环氧树脂的化学结构特点是大分子主链含有活泼的环氧基团.是线型大分子.在通常情况下,它是一种胶状流体.加人固化剂:如已二胺,二亚乙基三胺乙,酸酐等可将环氧树脂的单体中的环氧基团打开,使得分子间互相交联起来,形成网状结构;达到固化目的.用作边框的环氧树脂,为了提高它的粘接性和弹性,通常加入Al2O3,Si02粉末作为填料.银点胶是指在环氧树脂中加人银粉和固化剂;环氧树脂本身不导电,使用前把银点胶分为组分A和纽分B.组分A是环氧树脂和银粉,组分B是固化剂和银粉.使用时将AB两种成分以1定比例混合.如果以石墨代替银粉,则是石墨导电胶,也可用于连接上下玻片间的电极.常用封框胶固化温度在150℃左右,固化时网为1h;所以环氧树脂是热固化胶,应用比较广泛.但是在制作高精度的液晶显示屏时,则采用紫外光固化胶,固化时间小于15S.(3)紫外光固化胶紫外光固化胶是指在1定波长紫卦光照射下能发生聚合固化的高分子化合物.现在使用的紫外光固化胶是变性丙烯酸脂类化合物,外观为微黄色粘稠液体.紫外光固化胶用作封口胶,即将已灌好液晶后的注入口封死.这时不宜用热固化胶.先将封口处玻璃表面液晶擦干净,将有1定粘度的封口胶点在封口处,紫外光照射数秒钟左右即可.(4)衬垫料液晶显示器上下玻璃间的间隙决定了液晶的厚度,一般为几个微米.为保证间隙均匀性,必须加入—些村垫料,同时在显示区内也均匀散布一些衬垫料.这些衬垫料分为①玻璃纤维.这是一种直径均匀的玻璃纤维,.可根据液晶层间隙不同选择不同的玻璃纤维的直径,常用的尺寸是5.3μm,5.5μm,6.3μm,7.0μm,8.0μm等.它们以一定比例掺加到封框胶中,使两片玻璃在重合时支撑边框;②树脂粉.这是一种直径均匀的球状树脂粉,均匀地散布在液晶的显示区中,与封框胶中的玻璃纤维共同保证液晶盒间隙的一致性.树脂粉的直径要比边框中玻璃纤维直径小0.1μm ~0.3μm,其直径的不均匀性为±0.03μm.二,液晶显示器的主要工艺1.光刻工艺为了形成显示矩阵或显示字符图案,都要对透明导电层进行光刻.由于液晶显示器中线条尺寸大多是10μm以上,所以可采用接触式曝光进行光刻.其基本过程如下:(1)涂胶将光刻胶均匀地涂敷在ITO玻璃表面,涂胶方法有浸涂,甩涂,辊涂等.;辊涂质量最好,它是通过胶辊将光刻胶均匀辊涂在玻璃上.光刻胶中溶剂含量影响着光刻胶在ITO上的厚薄,选取原则是既使光刻胶具有良好的抗蚀能力,又要求有较高的分辨能力,而这两者之间对光刻胶厚度的要求是互相矛盾的,只能折衷选之.(2)前烘前烘的目的是促使胶膜内溶剂充分挥发使胶膜干燥以增加胶膜与ITO表面的粘附性和胶膜的耐磨性.目前多采用红外炉烘干,效果好且时间短.(3)曝光曝光就是在涂好光刻胶的玻璃表面覆盖掩模版,通过紫外光进行选择性照射,使受光照都位的光刻胶发生化学反应,改变了这部分胶膜在显影液中的溶解度.曝光过程中注意紫外灯预热,掩模版与ITO玻璃互相对准和控制好曝光量.(4)显影显影就是将感光部分光刻胶溶去,留下未感光部分的胶膜,从而显示出所需的图形,可见这是一种正性胶.显影时必须控制好显影的时间与温度,它们直接影响显影速度.显影过分会发生对未曝光区钻溶;显影不足,则感光区的光刻胶溶解不充分,留下残痕,保护了不该保护的ITO 部位.(5)坚膜坚膜是在显影后必须在适当温度下烘干玻璃以除去水分的工艺;增强胶膜与玻璃的粘附性. (6) 刻蚀刻蚀需用一定比例的酸液,把玻璃上未受光刻胶保护的ITO膜蚀掉;一般选用一定比例的HCl,HNO3和水的混合液作为腐蚀液,因为它能腐蚀掉1TO膜,而又不损伤玻璃表面与光刻胶.(7)去膜和清洗用碱液把刻蚀后玻璃上剩余的光刻胶去干净,同时用滚刷擦洗玻璃,最后用高纯水将玻璃上残留碱液与残胶冲洗干净.2.取向排列工艺在TN和STN液晶显示器件的制造工艺中,取向排列工艺是一个关键工艺.TN型要求两玻璃片内表面处液晶分子的排列方向互成90度;STN型要求两玻璃片内表面处液晶分子的排列方向互成180度—240度.取向排列的主要方法是倾斜蒸镀法和摩擦法,前者不适合于大生产,只能是一种实验室技术,所以在工业生产中全部使用摩擦法.直接用棉布等材料摩擦玻璃基片表面,有定向效果,但效果不佳.一般采用在玻璃基片上先涂覆一层无机物膜(如SiO2,MgO或MrF2等)或有机膜(如表面活性剂,硅烷偶合剂,聚酰亚胺树脂等),再进行摩擦可以获得良好的取向效果.由于聚酰亚胺树脂的突出优点,目前在液晶显示器制造中广泛被选用为取向材料.聚酰亚胺与A1的粘附性最好,Si次之,Si02最差.为了增加聚酰亚胺与ITO玻璃SiO2层之间的粘附性,可以在SiO2上先涂一层含硅的有机化合物活性剂,一般称为耦联剂.取向排列工艺有下列几个步聚:(1)清洗光刻工序处理后的1TO玻璃表面虽然已清洗干净,但在本工序中还必须用高纯水,超声波和高效有机溶剂作进一步彻底清洗,以除去微尘和保证玻璃表面有很小的接触角.(2)涂膜常用的涂膜方法有旋涂法,浸泡法和凸版印刷法三种.由于凸版印刷法是一种选择性涂覆,可以把指向膜只印在指定范围内,而不印在边框处和银点处,所以被广泛使用.凸版印刷法的原理如图3—123所示.先将取向材料溶液加到转印版上,然后用刮刀刮平,开动印刷滚筒,将转印板上的溶液粘附在印刷用的凸板上.当滚筒开到工作台上时,凸版上的溶液进而转印到ITO玻璃上.整个过程与印刷过程一样,只是用取向溶液代替溜墨.(3)预烘膜层刚涂印完时,膜面会起伏不平,适当加温可降低粘度,使膜面平坦化.预烘温度会影响预倾角,预烘温度为80℃.(4)固化需在300~350℃下固化1—2h才能将聚酰亚胺酸脱水,生成聚酰亚胺膜,这才是所需要的取向膜.(5)摩擦取向在取向膜上用绒布向一个方向摩擦,就可以形成取向层.摩擦取向的微观机理可以从下列几个方面来理解:①摩擦形成密集的深浅,宽窄不一的沟槽,其中与液晶分子尺寸相当的纳米量级沟槽必然会对液晶分子取向产生作用;②经过摩擦后,定向层高分子会发生定向排列和电介质发生定向极化,使液晶分子按一致取向排列.由此可知,摩擦强度大小对定向质量影响巨大,极细的沟槽在取向中起了关键作用,所以摩擦强度太大,则造成较多的宽沟槽,对取向效果无益;如果摩擦强度太小,则又将造成细微沟槽密度的下降. 目前摩擦取向工艺大多数已全部自动化.3.丝网印刷制液晶盒工艺制盒即上下两玻璃基片贴合,在贴合前要用丝网印刷技术把公共电极转印点和密封胶印刷到显示面玻璃基板上.丝网印刷是将丝织物或金属丝网绷在网框上,利用感光材料通过照相制版的方法制作丝网印匪,即使丝网印版上图文部分的丝网孔为通孔,而非图文部分的丝网孔被堵住.印刷时通过刮板的挤压,使印刷胶体通过图文部分的网孔转移到承印物上,形成与原稿一样的图文.在这儿,承印物便是玻璃基片,玻璃被分为两组,一组印封框胶,则丝网印版上的图文便是要涂覆上封框胶的地方,即有一定边宽的方框;印刷胶体便是混有玻璃纤维的环氧树脂;另1组印导电点胶,则丝网印版上的图文便是公共电极的转印点,印刷胶体便是导电胶.但这组玻璃在印好导电胶点后要经过喷粉工序,使该玻璃上均匀散布一定粒径的玻璃或塑料微粒,然后两片玻璃在对位压合机上对位成盒,再经热压一定时间,环氧树脂便固化,液晶空盒便制作好了.4.灌注液晶及封口工艺在向空盒注入液晶之前,需将空盒真空除气,以将吸附在盒内表面的水气及有害气体释放掉.抽气孔便是液晶注入孔,由于孔径小,抽气要花费一定时间.若对空盒加温,可以大大提高抽气效果.注入液晶是利用毛细管现象.使液晶空盒的注人孔与吸满液晶材料的海绵条接触,在一定真空条件下,利用液晶盒的毛细管现象平静地将液晶注人液晶盒内..但这只能灌满液晶盒的大半部分,因此需要将干燥氮气充人液且灌注室内进行加压,直到充满为止.于图3—124示出灌注示意图.一般不推荐边抽真空边吸人液晶的工艺,因为吸人液晶流有喷射状,会破坏液晶在表面的取向.灌注完毕后,将封口处擦净,便可进行封口.封口工艺有两种:(1)先用封口胶把封且封涂,然后冷冻使液晶收缩带人少量的封口胶,并固化.此种方法操作简单,成本低,但盒均匀性差.(2)让液晶盒内的液晶受热膨胀从盒内排出一少部分的液晶,然后点封口胶,让胶少量收缩再将胶固化.这种方法需要设备较复杂,但盒的均匀性好,STN产品生产多采用这种方法目前封口胶多用紫外光照射固化,其固化质量比热固化容易控制.液晶盒灌注液晶之后,通常液晶的排列取向达不到要求,需要进行再排向工艺处理是将液晶盒置于加温箱内,于80℃下保温30min.三, 液晶显示器的连接方法液晶显示器的上下两块玻璃贴合在一起,但不完全重合,其中一片(或两片)的一侧有凸出台阶.台阶上有密布的透明电极引脚/金属插胶,驱动信号就是通过这些引脚加到液晶上去的.液晶显示器件与线路板(PCB)和其他零部件的连接方式与传统焊接方式不同.1.导电橡胶连接导电橡胶条是由一薄层导电橡胶(黑色)和一薄层绝缘橡胶(白色)交替地一层层叠在一起,经热压成型后,垂直于薄层面切成一条条成品,外观为黑白间隔,类似于斑马身上条纹,所以常称为斑马橡胶条.显然斑马橡胶条纵向不导电,而横向导电.一般层与层之间只有0.4~0.5mm距离,可以确保不会有电极被漏接.在使用斑马橡胶条时,胶条被专用框紧紧压在液晶显示器和印刷电路板之间,使它们彼此间的对应电极互相导通.显然印刷电路板上电极的尺寸与排列必须设计得与液晶显示器上的引脚相符合.斑马橡胶条压接原理示于图于3-126.如图3—127中示出了各种斑马橡胶条的横截面.不同的类型适用于不同的连接要求,其中YL,YI,YS,YP为普通型,YI,YS两侧有绝缘保护层,YP两侧为海绵橡胶.其他为特殊型,如YD是一种双层导电橡胶条,专门为双层外引线液晶显示器设计的.2.金属插脚连接通常的焊接方法是很可靠的,并被人们广泛地认可,金属插脚连接就是为此设计的.金属插脚为金属冲压件,外形有图3—128所示几种.首先将金属插脚插在液晶显示器外引线部位,点上导电胶,使外引线与插脚可靠地电接触,然后在外面再涂覆一层环氧树脂予以固定.这样,用户即可直接将金属插脚焊接在线路板上或直接插在线路板的插座上.3.热压胶片软连接热压导电胶带的基片是聚酯膜片,在基片上印有一条条石墨导电条,然后在导电条上涂一层导电性热粘剂,最后在导电条间隙填满绝缘热压胶.如图3—129所示.热压导电胶带是一种软膜.使用时,将热压导电胶带的一端导电条纹对准液晶显示器件外引线端,贴上,加热,加压,然后将热压导电胶带的另一端导电条纹对准线路板引线端,贴上,加热,加压,这样通过石墨导电条将液晶显示器的外引线与线路板引线端连接起来.在安装连接时,对加压和加温有严格要求,需使用专门的热压机.。
液晶显示材料
液晶显示材料液晶显示材料是一种具有特殊光学性质的材料,广泛应用于电子产品的显示屏幕中。
液晶显示技术已经成为现代电子产品中不可或缺的一部分,如手机、电视、电脑等。
液晶显示材料的种类和性能对显示效果和产品质量有着重要影响。
首先,液晶显示材料主要分为有机液晶和无机液晶两大类。
有机液晶是由有机分子构成的液晶材料,具有低驱动电压、高对比度等特点,适用于小尺寸显示屏幕,如手机和平板电脑。
而无机液晶则是由无机晶体构成,具有高稳定性、长寿命等特点,适用于大尺寸显示屏幕,如电视和监视器。
其次,液晶显示材料的性能对显示效果有着重要影响。
首先是对比度,即显示图像中最亮部分和最暗部分的亮度之比。
高对比度可以使图像更加清晰鲜明。
其次是响应时间,即液晶分子从一个状态到另一个状态所需的时间。
较短的响应时间可以减少图像残影,提高显示效果。
此外,色彩饱和度、视角范围、亮度均匀性等性能指标也对显示效果有着重要影响。
最后,随着科技的不断进步,液晶显示材料的研发也在不断创新。
近年来,全彩超高清液晶显示技术、柔性液晶显示技术、透明液晶显示技术等新技术不断涌现,为液晶显示材料的发展带来了新的机遇和挑战。
未来,随着人们对显示效果要求的不断提高,液晶显示材料的研究和应用将会更加广泛和深入。
综上所述,液晶显示材料作为现代电子产品中不可或缺的一部分,对显示效果和产品质量有着重要影响。
随着科技的不断进步,液晶显示材料的研发也在不断创新,为电子产品的发展带来了新的机遇和挑战。
相信在不久的将来,液晶显示技术将会迎来更加广阔的发展空间,为人们的生活带来更多的便利和乐趣。
液晶显示材料研究现状
液晶显示材料研究现状一、基本概念与原理介绍液晶材料(Liquid CrySTal) 是一种高分子材料,因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。
液晶材料即具有液体的流动性,又具有晶体的各向异性物质。
液晶材料在液晶平面显示器的组成结构上所担任的角色是相当地重要,虽然其种类有数万种,但真正使用的也仅有数十多种。
人们通常根据液晶形成的条件,将液晶分为溶致液晶( Lyot ropic liquid crystal s ) 和热致液晶( Thermot ropic liquid crystal s) 两大类。
液晶材料分类1、溶致液晶将某些有机物放在一定的溶剂中,由于溶剂破坏结晶晶格而形成的液晶,被称为溶致液晶。
比如:简单的脂肪酸盐、离子型和非离子型表面活性剂等。
溶致液晶广泛存在于自然界、生物体中,与生命息息相关,但在显示中尚无应用。
2、热致液晶热致液晶是由于温度变化而出现的液晶相。
低温下它是晶体结构,高温时则变为液体,这里的温度用熔点( Tm)和清亮点( Tc ) 来标示。
液晶单分子都有各自的熔点和清亮点,在中间温度则以液晶形态存在。
目前用于显示的液晶材料基本上都是热致液晶。
液晶材料的发展历史*1854~1889年代,德国生理学家R.C.Virchow发现自然界的Myelin物质,此是一种溶致型液晶,在适当的水份混合後,会呈现光学异方向性之有机分子集合体。
*液晶材料的发现,正式於1988年,将胆固醇的笨二甲酸或以酸加热到145度时,有白浊稠状液体,再加热至178度,会变成透明液体,冷却下来则有紫色、橙红色、绿色等不同颜色变化。
*1920後时期,为液晶合成的开始及分类的确定,Friedel博士将液晶分类成层列型或距列型、向列型、胆固醇型.. *1960到1968年代,为液晶应用研究的蓬勃时期,G.H.Heilmeir博士发现动态散射模式(DSM),而使应用朝向液晶平面*电控复折射(ECB)的动作模式於1971年提出,後来发明扭曲向列型液晶平面显示器,应用在汽车仪表和表上*1973年後为液晶实用化和应用研究多样化时期,日本的sharp和Seiko-Eps改朝向向列型液晶平面显示器,1972年P.Brody提出主动性矩阵型模式,1980到1983年则有铁电性液晶平面显示器,1983到1985年发明超向列型液晶平面显示器(STN-)。
lcd各部件原材料成分
lcd各部件原材料成分一、液晶屏液晶屏是LCD的核心部件,由多个液晶单元组成。
液晶单元主要由液晶材料和玻璃基板构成。
液晶材料是液晶显示器中最重要的材料之一,它是一种特殊的有机化合物。
常见的液晶材料包括聚合物液晶、低分子液晶和液晶聚合物。
玻璃基板则是液晶屏的支撑结构,常用的材料有玻璃和塑料。
二、背光源背光源是液晶显示器提供背光的组件,使得液晶屏能够显示图像。
常见的背光源有冷阴极管(CCF)和LED背光。
冷阴极管主要由玻璃管、阴极和荧光粉组成,而LED背光则是由发光二极管组成。
这两种背光源的原材料成分都包括金属、塑料、玻璃和半导体材料。
三、驱动电路驱动电路是控制液晶屏显示的关键部件,它由多个芯片组成。
这些芯片主要由半导体材料制成,如硅、镓和砷化镓。
此外,驱动电路还包括电阻、电容、电感等元件,它们的主要成分是金属和陶瓷。
四、滤光片滤光片是液晶显示器中控制光线透过的部件,它由多个滤光膜组成。
滤光膜是由有机化合物和无机材料制成的。
常见的滤光膜有偏振膜、彩色滤光片和透光膜。
这些材料的成分包括聚合物、染料和无机化合物。
五、玻璃基板玻璃基板是液晶显示器中支撑液晶屏的组件,它通常由特殊玻璃制成。
这种特殊玻璃又称为ITO玻璃,它是一种导电玻璃。
ITO玻璃的主要成分是二氧化硅和氧化铟锡,其中氧化铟锡是一种导电材料。
六、封装材料封装材料用于封装液晶显示器的各个部件,以保护它们的安全和稳定。
常见的封装材料有环氧树脂、硅胶和塑料。
这些材料的成分主要包括聚合物和填充剂。
七、连接线连接线用于连接液晶显示器的各个部件,以传递电信号和数据。
常见的连接线有扁平电缆和柔性电缆。
扁平电缆主要由铜导线和绝缘材料组成,而柔性电缆则由导电材料和柔性基材组成。
总结:液晶显示器的各个部件都由不同的原材料成分构成。
液晶屏主要由液晶材料和玻璃基板组成,背光源由金属、塑料、玻璃和半导体材料制成,驱动电路主要由半导体材料制成。
滤光片由有机化合物和无机材料制成,玻璃基板由ITO玻璃制成,封装材料主要由聚合物和填充剂组成,连接线由导线和绝缘材料组成。
液晶材料的简介以及液晶显示器的基础知识
液晶材料的简介以及液晶显示器的基础知识1.关于液晶的简介1888年,奥地利叫莱尼茨尔的科学家,合成了一种奇怪的有机化合物,它有两个熔点。
把它的液晶显示屏固态晶体加热到145℃时,便熔成液体,只不过是浑浊的,而一切纯净物质熔化时却是透明的。
如果继续加热到175℃时,它似乎再次熔化,变成清澈透明的液体。
它应该是一种不同于固体(晶体),又不同于液体(各向同性可流动的液态)和气体的特殊物质态。
当时的德国的物理学家德曼D· Leimann将其称为液态晶体,英文又称为“Liquid Crystal”液晶,简称为LC,用它制成的液晶显示器件称为LCD。
2.液晶显示器的基础知识2.1液晶显示器技术的发展史液晶显示器件是指利用液晶的各种电光效应,把液晶对电场、磁场、光线和温度等外界条件的变化在一定条件下转换成为可视信号就可以制成显示器。
自1968年第一块液晶显示器诞生后,LCD的技术发展经历了5个阶段:第一阶段(1968—1972):1968年美国RCA公司研制了动态散射形液晶显示器,1972年执制造出动态散射形液晶手表,LCD技术从此走向实用化阶段。
第二阶段(1971-1984):1971年瑞士发明人扭曲向列型(TN)液晶显示器,日本厂家使其产业化,由于TN-LCD制造成本低,成为20世纪七八十年代液晶产品的主流。
第三阶段(1985-1990):1985年后,由于超扭曲(STN)液晶显示器的发展及非晶体硅薄膜晶体管液晶显示技术的发明,使LCD技术发展进入了人大容量显示的阶段。
第四阶段(1990-1995)在有源矩阵液晶显示器飞速发展的基础上,LCD技术开始进入高画质液晶显示阶段。
第五阶段(1996年后):LCD已在笔记本电脑中普及应用。
从1998年开始,TFT—LCD产品打入监视器市场,长期困扰液晶的三大难题视角、色饱和度和亮度问题已你基本解决。
目前我国是TN-LCD生产大国,STN-LCD生产量不大,TFT—LCD产品还是缺门,由于我们不掌握面积TFT矩阵制造工艺,使LCD产品停留在较低的水平上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液晶显示材料
摘要介绍了液晶的结构类型,液晶分子的光电效应,实现液晶显示的偏振片透光原理,包括扭曲向列型(TN)、超扭曲向列型(STN)、薄膜晶体管型(TFT)液晶显示的异同,可用于液晶显示的有机材料,以及液晶显示材料的产业现状及发展趋势。
关键词液晶原理有机材料
在过去的十多年内,信息技术的空前发展宣告了第三次工业革命的来临。
网络时代的出现,移动电话及电子贸易的蓬勃发展,所有这些新技术革命的诸多方面已经造就了一个信息时代的21世纪。
信息的捕捉、控制、储存、传输和显示已同人类知识的增长和生活质量的改善密切地联系在一起。
在这样的信息社会时代,信息材料,尤其是信息显示材料及器件显得尤为重要。
目前市场上的显示器件主要有阴极射线管(CRT)、等离子显示屏(PDP)、液晶显示器(LCD)和发光二极管(LED)等。
它们都有着不同程度的缺陷,如CRT体积大,不能实现平面显示;PDP功耗大;LED难以实现蓝色显示,分辨率低;刚走出实验室的OLED技术目前还不是很成熟,稳定性及寿命急待解决。
而LCD随着技术的进步,工艺的完善以及成本的降低,受到越来越多的青睐[1~3]。
LCD是一种靠液晶态物质的液晶分子排列状态在电场中改变而调制外界光的平板显示器。
通常LCD主要可划分为TN(扭曲向列型)、STN(超扭曲向列型)、TFT(薄膜晶体管型)等。
本文简要介绍液晶的类型,液晶显示的基本原理以及可用于液晶显示的有机材料,并作出展望。
1 液晶简介
1888年,奥地利植物学家莱尼茨尔在做加热胆甾醇苯甲酸脂结晶的实验时发现:在145.5℃时,结晶凝结成浑浊黏稠的液体,加热到178.5℃时,形成了透明的液体,德国物理学家莱曼用偏光显微镜观察时,发现这种材料有双折射现象,他阐明了这一现象并提出了“液晶”这一学术用语。
液晶分为2类:(1)热致液晶,即采用降温的方法,将熔融的液体降温,当降温到一定程度后分子的取向有序化,从而获得液晶态。
(2)溶致液晶,即有机分子溶解在溶剂中,使溶液中溶质的浓度增加,溶剂的浓度减小,有机分子的排列有序而获得液晶。
构成液晶态的结构单元主要有:棒状分子、盘状分子、由长链或盘状分子连接而成的柔性长链聚合物、以及由双亲分子自组装而成的膜。
液晶有3种结构类型:(1)向列型:分子倾向于沿特定的方向排列,存在长程的方序,分子的质心位置分布却是杂乱无章的,不存在长程的位置序,表现出液体的特征,具有流动性。
(2)胆甾型:在胆甾相中,长型分子是扁平的,依靠端基的相互作用,依次平行排列成层状。
它们的长轴在平面上,相邻两层间分子长轴的取向规则地扭转在一起,角度的变化呈螺旋型。
(3)近晶型:棒状分子相互平行地排列成层状结构,分子的长轴垂直于层面,在层内,分子的排列具有二维有序性,分子的质心位置排列则是无序的,分子只能在本层内活动,在层间具有一维平移序,层间可以相互滑移。
2 液晶显示的基本原理
2.1 液晶分子的光电效应
液晶分子大多由棒状或碟状分子形成,所以与分子长轴平行或垂直方向的物理特征会有所差异,这就是液晶分子结构的异方性。
由于液晶分子结构的异方性,所以液晶分子在介电系数和光电系数等光电系数上都具有异方性。
2.2 偏振片透光原理
偏振片只允许偏振方向与它的偏振化方向平行的光透过,如果让两个偏振片的偏振化方向相互垂直,由于第一次出射光的偏振方向与第二个偏振片的偏振化方向垂直,光不能通过第二个偏振片。
把液晶放在两个偏振片之间,在向列型液晶中,棒状分子的排列是彼此平行的。
如果上下两玻璃棒定向是彼此垂直的,液晶分子将采取逐渐过渡的方式被扭转成螺旋状。
如果有光线进入,通过第一个偏振片后,将被液晶分子逐渐改变偏振方向。
由于光线沿着分子排列的方向传播,光线最终将从另一端射出。
如果两玻璃板之间加上电压,分子排列方向将与电场方向平行,光线由于不能扭转将不会通过第二个极板。
液晶显示器就是利用这一特性,在上下两片栅栏相互垂直的偏光板之间充满液晶,利用电场控制液晶的转动,不同的电场大小就会形成不同的灰阶亮度。
而对于TN型液晶、STN型液晶以及TFT型液晶,各自的显示原理又不尽相同。
2.2.1 TN型液晶
将向列型液晶夹在两片玻璃中间,这种玻璃的表面上先镀有一层透明导电薄膜ITO(氧化铟锡)以作电极之用,然后在有薄膜电极的玻璃上涂取向层PI(聚酰亚胺),以使液晶顺着一个特定且平行于玻璃表面的方向排列。
液晶的自然状态具有90°的扭曲,利用电场可使液晶分子旋转,液晶的双折射率随液晶的方向而改变,结果偏振光经过TN型液晶后偏振方向发生转动。
只要选择适当的厚度使偏振光的偏振方向刚好改变90°,就可利用两个平行偏光片使得光完全不能通过。
而足够大的电压又可以使得液晶方向与电场方向平行,这样光的偏振方向就不会改变,光就可通过第二个偏光片。
2.2.2 STN型液晶
STN型的显示原理与TN相类似,不同的是TN扭转式向列场效应的液晶分子是将入射光旋转90°,而STN超扭转式向列场效应是将入射光旋转180°~270°。
单纯的TN液晶显示器本身只有黑白两种情形,而STN液晶显示器牵涉液晶材料的关系,以及光线的干涉现象,因此显示的色调都以淡绿色与橘色为主。
如果在单色STN液晶显示器加上一彩色滤光片,并将单色显示像素分成3个子像素,分别通过彩色滤光片显示红、绿、蓝三原色,再经由三原色比例之调和,也可以显示出全彩模式的色彩。
2.2.3 TFT型液晶
在玻璃基片上沉积一层硅,通过印刷光刻等工序作成晶体管阵列,每个像素都设有一个半导体开关,其加工工艺类似于大规模集成电路。
再把液晶灌注在两片玻璃之间,由于每个像素都可以通过点脉冲直接控制,因而,每个节点都相对独立,并可以进行连续控制,这样的设计不仅提高了显示屏的反应速度,同时可以精确控制显示灰度,所以TFT液晶的色彩更逼真,称为真彩。
对于TFT-LCD 而言彩色滤光片是很重要的,利用红、绿、蓝(RGB)三原色,可混合出各种不同的颜色,很多平面显示器就是利用此原理显示色彩,把3种颜色分成独立的3个点,各自拥有不同的灰阶变化,然后把邻近的3个RGB显示的点当作一个像素。
3 液晶显示材料
3.1 TN—LCD用液晶材料
TN型液晶材料的发展起源于1968年,当时美国公布了动态散射液晶显示(DSM—LCD)技术。
但由于提供的液晶材料的结构不稳定性,使它们作为显示材料的使用受到极大的限制。
1971年扭曲向列相液晶显示器(TN—LCD)问世后,介电各向异性为正的TN液晶材料便很快开发出来;特别是1974年相对结构稳定的联苯腈系列液晶材料由Gray等合成出来后,满足了当时电子手表、计算器和仪表显示屏等LCD器件的性能要求,从而真正形成了TN—LCD产业时代。
TN—LCD用液晶材料,主要为酯类、联苯类、苯基环己烷类和二氧六环类液晶化合物。
特别是酯类液晶[4],它是配制TN—LCD用液晶材料的主要成分,结构如下:
随着薄膜晶体管(Thin Film Transistor,TFT)阵列驱动液晶显示(TFT—LCD)技术的飞速发展,近年来TFT—LCD不仅占据了便携式笔记本电脑等高档显示器市场,而且随着制造工艺的完善和成本的降低,目前已向台式显示器发起挑战。
由于采用薄膜晶体管阵列直接驱动液晶分子,消除了交叉失真效应,因而显示信息容量大;配合使用低黏度的液晶材料,响应速度极大提高,能够满足视频图像显示的需要。
因此,TFT—LCD较之TN型、STN型液晶显示有了质的飞跃,成为21世纪最有发展前途的显示技术之一。
在TFT—LCD配方中广泛使用的单体液晶的典型分子结构如下:
4 展望
随着液晶化合物种类的不断增加,液晶化合物的结构与性能之间的关系逐渐为人们所认识。
反过来,由性能-结构之间的关系又可以指导具有新型结构、具备特定功能的液晶分子的合成。
我国液晶材料生产经过十多年的努力,从无到有,已逐步形成了相当规模的产业,由完全的进口转化为部分出口,年销售量达到20吨左右。
尽管发展较快,但在世界液晶材料市场中所占份额非常小,且多为国外专利所保护的材料。
因此,如何规避国外专利的陷阱,抢占核心技术的制高点,开发具有自主知识产权的新材料就显得尤为重要。
参考文献
[1]陈新兵,安忠维.化学进展,2006,18(2/3):246-251
[2]高鸿锦.产业透视,2004,127(6):48-55
[3]张松涛.上海化工,2004,(11):32-37
[4]Aizpurua J M, Palomo C. Science of Synthesis, 2002, 4: 595-632
[5]Gunjima T, Takei R. Asahi Garasu Kenkyu Hokoku, 1986, 36(2):275-84 [6]von Angerer S. Science of Synthesis, 2004, 16:379-572
[7]李建,安忠维,杨毅.液晶与显示,2002,17(2):104-113
[8]杭德余,裘灵光,叶昆元等.安徽化工,2001,112(4):2-5
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。