直线l的方程
直线方程
新课引入不适用于倾斜角为90º的直线方程一、点斜式 1、点斜式方程引入 已知直线l 的斜率是k ,并且经过点()000,y x P ,直线是确定的,也就是可求的,怎样求直线l 的方程(图1-24)? 设点P(x ,y)是直线l 上不 同于0P 的任意一点,根据经过两点的斜率公式得 00x x y y k --=即:()00x x k y y -=- 2、点斜式方程应用 例1 求过点()3,2-P ,且倾斜角为45º的直线方程 解:145tan =︒=k ()()213-⨯=--∴x y ,即:023=---y x例2 求过点()()5,1,3,2B A -的直线方程 解:322135=+-=k ()2323+=-∴x y ,即:01332=+-y x例3 求以1为横截距,-2为纵截距的直线方程 解:直线过点()()2,0,0,1-两点式不适用于倾斜角为90度的直线截距式不适用于截距不存在和截距为零的直线()02212212=---=-∴=---=yxxyk,即注:两点式:121211xxyyxxyy--=--截距式:1=+byax要求学生掌握斜截式方程,而两点式和截距式只要学会其推导方法。
完成练习:P247 练习2 第1小题3、特殊直线()(),P yx过点⑴倾斜角为0º(平行或重合于x直线方程为:0yy=其中x轴所在的直线方程为:y=0⑵倾斜角为90º(平行或重合于y直线方程为:0xx=其中x轴所在的直线方程为:x=0例4 ⑴过点()2,3A,平行于x轴的直线方程y=3⑵过点()3,2-B,垂直于x轴的直线方程x=-2⑶过点()()1,2,1,2--DC的直线方程y=-1⑷y轴所在的直线方程x=0二、斜截式1、已知直线的斜率为k,在y轴的截距为b的直线方程点斜式方程:y-b=k(x-0),故y=kx+b上面的方程叫做直线的斜截式方程,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距。
3.2.2直线的两点式方程更新
探究:已知直线上两点P1(x1,y1), P2(x2,y2)
(其中x1≠x2, y1≠y2 ),如何求出通过这两 点的直线方程呢? y2 y1
y l
P1(x1,y1)
P2(x2,y2)
k
x2 x1
代入y y0 k ( x x0 )得
y2 y1 y y1 ( x x1 ) x2 x1
②截距可是正数,负数和零
四、课堂练习
1.根据下列条件求直线方程
(1)在x轴上的截距为2,在y轴上的截距是3;
x y 3 由截距式得: 1 , 整理得: x 2 y 6 0 2 3
(2)在x轴上的截距为-5,在y轴上的截距是6;
x y 由截距式得: 1 , 整理得: x 5 y 30 0 6 5 6
y 2x 3
y 5 x0 05 50
y0 x0 5 0 4 0
y x 5
5 y x 4
已知两点坐标,求直线方程的方法: • ①用两点式 • ②先求出斜率k,再用点斜式。
三、直线的截距式方程
例2:已知直线 l 与x轴的交点为A(a,0),与y轴的 交点为B(0,b),其中a≠0,b≠0,求直线l 的方程.
那还有一条呢?
y=2x (与x轴和y轴的截距都为0)
四、课堂练习
变式3.1过(1,2)并且在两个坐标轴上的截距 的绝对值相等的直线有几条?
解:三条
设
x y 1 a b a b
解得:a=b=3或a=-b=-1 直线方程为:y+x-3=0、y-x-1=0或y=2x
四、课堂练习
变3.2:过(1,2)并且在y轴上的截距是x轴上的 截距的2倍的直线是( ) A、 x+y-3=0 B、x+y-3=0或y=2x C、 2x+y-4=0 D、2x+y-4=0或y=2x
直线方程练习题
直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。
A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。
A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。
2. 直线方程y=2x+3与x轴的交点坐标为______。
3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。
4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。
5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。
三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。
2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。
3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。
4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。
5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。
四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。
直线方程的几种建立方式及其适用范围
直线方程的几种建立方式及其适用范围罗村高级中学 黄勉确定在不同条件下的直线方程,是高考试题重点考查的内容之一。
因此,需要熟练掌握直线方程的各种形式,以及各自的适用范围,以便在不同的情况下灵活地选用。
下面直线方程的几种建立方式及其适用范围列出,以供大家参考:一、 点斜式若直线l 过定点),(00y x P ,斜率为k ,则直线l 的方程为)(00x x k y y -=-; 它不适用平行于y 轴(包括y 轴)的直线,换句话说就是不适用于斜率不存在(即倾斜角为090)的直线。
当斜率不存在时,直线l 的方程为:0x x =;特别地,当k =0时,其方程为0y y =。
例1、 已知直线l 过点A (1,2),B(3,m ),求直线l 的方程。
分析:因为直线l 经过点B(3,m ),且m 是一个参数,因此需要对m 进行分情况讨论。
解:当m =1时,直线l 的倾斜角为090,其斜率是不存在的,故此直线l 的方程为1=x 。
当m ≠1时,直线l 的斜率为11-=m k ,又因为直线l 通过点A (1,2),所以直线l 的方程为:)1(112--=-x m y 。
例2、 已知直线l 经过点P (—3,4),且在两坐标轴上的截距相等,求直线l 的方程。
分析:不难看出,直线l 在经过原点和斜率为—1的两种情况下在两坐标轴上的截距相等。
因此,需要对这两种情况分类讨论。
解:若直线l 经过原点,则直线l 的斜率为34-=k ,从而直线l 的方程为:x y 34-=,即034=+y x 。
若直线l 不经过原点,由于它在两坐标轴上的截距相等,所以直线l 的斜率为1-=k ,从而直线l 的方程为:),3(4--=-x y 即01=-+y x 。
二、 斜截式若直线l 的斜率为k 且在y 轴上的截距为b ,则直线l 的方程为:b kx y +=; 它不适用于平行于y 轴(包括y 轴斜率)的直线,即不适用于斜率不存在(倾斜角为090)的直线。
322_直线的两点式方程(人教版)
1). 直线的点斜式方程:
y- y0 =k(x- x0 )
k为斜率, P0(x0 ,y0)为直线上的一定点
2). 直线的斜截式方程:
y=kx+b
k为斜率,b为截距
思考1
已知直线l过A(3,-5)和B(-2,5),如何求直
线l的方程. 解:∵直线l过点A(3,-5)和B(-2,5)
5 5 kl 2 2 3
. A
.
C
解:过B(3,-3),C(0,2)两点式方程为:
O
.M
.
x B 这就是BC边所在直线的方程.
y 2 x0 3 2 3 0 整理得, 5 x 3 y 6 0.
设BC的中点为M ,则M 的坐标为(
3 0 3 2 3 1 , ),即( , ) . 2 2 2 2
记忆特点:1.左边全为y,右边全为x
2.两边的分母全为常数 3.分子,分母中的减数相同
是不是已知任一直线中的两点就能用两点式 写出直线方程呢?
不是!
当x1 =x2或y1= y2时,直线P1 P2没有两点式程.(因 为x1 =x2或y1= y2时,两点式的分母为零,没有意义)
那么两点式不能用来表示哪些直线的方程呢 ? 注意: 两点式不能表示平行于坐标轴或与坐 标轴重合的直线.
x y 解: (1)由b 5, 知a 3,故直线方程为 1; 3 5 (2)由a 5, 知b 3或b 7, x y x y 故直线方程为 1, 或 1. 5 3 5 7
各类方程的适用范围 直线方程名称 直线方程形式 点斜式 斜截式 两点式 截距式 适用范围 不垂直x轴 不垂直x轴 不垂直两个坐标轴 不垂直两个坐标 轴且不经过原点
直线的方程(解析版)
第6讲直线的方程新课标要求根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式)。
知识梳理1.直线的点斜式方程2.直线的斜截式方程3.直线的两点式方程和截距式方程4.线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 22.5.直线的一般式方程6.直线的一般式与点斜式、斜截式、两点式、截距式的关系3.2.1 直线的点斜式方程名师导学【例1-1】(南京校级模拟)根据条件写出下列直线的点斜式方程: (1)过点A (-4,3),斜率k =3; (2)经过点B (-1,4),倾斜角为135°; (3)过点C (-1,2),且与y 轴平行; (4)过点D (2,1)和E (3,-4). 【分析】求直线的点斜式方程的思路【解答】 (1)由点斜式方程可知,所求直线方程为:y -3=3[x -(-4)].(2)由题意知,直线的斜率k =tan 135°=-1,故所求直线的方程为y -4=-(x +1).(3)∵直线与y 轴平行,斜率不存在,∴直线的方程不能用点斜式表示,由于直线上所有点的横坐标都是-1, 故这条直线的方程为x =-1. (4)∵直线过点D (2,1)和E (3,-4), ∴斜率k =-4-13-2=-5.由点斜式得y -1=-5(x -2).【变式训练1-1】(蜀山区校级月考)根据条件写出下列直线的点斜式方程: (1)经过点A (2,5),斜率是4; (2)经过点B (2,3),倾斜角是45°; (3)经过点C (-1,-1),与x 轴平行.【解析】 (1)由点斜式方程可知,所求直线方程为y -5=4(x -2); (2)∵直线的斜率k =tan 45°=1, ∴直线方程为y -3=x -2; (3)y =-1.【例2-1】(菏泽调研)根据条件写出下列直线的斜截式方程. (1)斜率为2,在y 轴上的截距是5; (2)倾斜角为150°,在y 轴上的截距是-2;(3)倾斜角为60°,与y 轴的交点到坐标原点的距离为3. 【分析】直线的斜截式方程的求解策略:(1)求直线的斜截式方程只要分别求出直线的斜率和在y 轴上的截距,代入方程即可. (2)当斜率和截距未知时,可结合已知条件,先求出斜率和截距,再写出直线的斜截式方程.【解答】 (1)由直线方程的斜截式可知, 所求直线方程为y =2x +5.(2)∵倾斜角α=150°,∴斜率k =tan 150°=-33. 由斜截式可得方程为y =-33x -2. (3)∵直线的倾斜角为60°,∴其斜率k =tan 60°= 3.∵直线与y 轴的交点到原点的距离为3, ∴直线在y 轴上的截距b =3或b =-3. ∴所求直线方程为y =3x +3或y =3x -3.【变式训练2-1】(宁波校级月考)写出下列直线的斜截式方程: (1)直线斜率是3,在y 轴上的截距是-3; (2)直线倾斜角是60°,在y 轴上的截距是5; (3)直线在x 轴上的截距为4,在y 轴上的截距为-2.【解析】 (1)由直线方程的斜截式可知,所求方程为y =3x -3. (2)∵k =tan 60°=3,∴y =3x +5.(3)∵直线在x 轴上的截距为4,在y 轴上的截距为-2, ∴直线过点(4,0)和(0,-2). ∴k =-2-00-4=12,∴y =12x -2.【例3-1】(新华区校级期末)(1)当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行? (2)当a 为何值时,直线l 1:y =(2a -1)x +3与直线l 2:y =4x -3垂直?【分析】在解决有关直线位置关系的问题时,常常用到数形结合思想和待定系数法.数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.而待定系数法是解析几何中求直线方程或其他曲线方程的重要方法.【解答】(1)∵l 1∥l 2,∴a 2-2=-1, 又2a ≠2,解得a =-1.(2)∵l 1⊥l 2,∴4(2a -1)=-1,解得a =38.【变式训练3-1】(黄冈期末)求证:不论m 为何值,直线l :y =(m -1)x +2m +1总过第二象限. 【证明】 法一 直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3),由于点(-2,3)在第二象限,故直线l 总过第二象限. 法二 直线l 的方程可化为m (x +2)-(x +y -1)=0.令⎩⎪⎨⎪⎧x +2=0,x +y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =3. ∴无论m 取何值,直线l 总经过点(-2,3). ∵点(-2,3)在第二象限,∴直线l 总过第二象限.【变式训练3-2】(赤峰期末)是否存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5? 【解析】 假设存在过点(-5,-4)的直线l ,使它与两坐标轴围成的三角形的面积为5.由题意可知,直线l 的斜率一定存在且不为零,设直线的斜率为k (k ≠0),则直线方程为y +4=k (x +5),则分别令y =0,x =0,可得直线l 与x 轴的交点为(-5k +4k ,0),与y 轴的交点为(0,5k -4).因为直线l 与两坐标轴围成的三角形的面积为5,所以12|-5k +4k |·|5k -4|=5,所以-5k +4k ·(5k -4)=±10,即25k 2-30k +16=0(无解)或25k 2-50k +16=0,所以k =85或k =25,所以存在直线l 满足题意,直线l 的方程为y +4=85(x +5)或y +4=25(x +5).名师导练A 组-[应知应会]1.(宣城期末)过点()3,2,斜率是23的直线方程是( ) A .243y x =+ B .223y x =+ C .230x y -=D .320x y -=【答案】C【解析】∵直线过点()3,2且斜率为23, 由直线方程的点斜式得:22(3)3y x -=-, 整理得:230x y -=. 故选C.2.(绵阳期末)已知直线的方程是y +2=-x -1,则( ) A .直线经过点(-1,2),斜率为-1 B 直线经过点(2,-1),斜率为-1 C .直线经过点(-1,-2),斜率为-1 D .直线经过点(-2,-1),斜率为1【答案】C【解析】方程可化为y -(-2)=-[x -(-1)],所以直线过点(-1,-2),斜率为-1.选C. 3.(上饶期末)直线y =3(x -3)的斜率与在y 轴上的截距分别是( ) A .3,3 B .3,-3 C .3,3 D .-3,-3 【答案】B【解析】由直线方程知直线斜率为3,令x =0可得在y 轴上的截距为y =-3.故选B. 4.(通州区期末)直线y =kx +b 经过第一、三、四象限,则有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0D .k <0,b <0【答案】 B【解析】 ∵直线经过第一、三、四象限,∴图形如图所示,由图知,k >0,b <0.5.(龙凤区校级期末)过点()2,0且与直线25y x =+垂直的直线l 的方程是( )A .24y x =-B .24y x =-+C .112y x =- D .112y x =-+ 【答案】D【解析】因为所求直线与直线25y x =+垂直,所以其斜率为12k =-, 又所求直线过点()2,0, 因此,所求直线方程为:()122y x =--,即112y x =-+. 故选D.6.(南关区校级期末)已知直线l 过点()2,0,且与直线21y x =-+平行,则直线l 的方程为( )A .24y x =-B .24y x =+C .24y x =-+D .24y x =--【答案】C 【解析】直线l 与直线21y x =-+平行,∴直线l 的斜率与21y x =-+的斜率相等,即直线l 的斜率:2k =-;又直线l 过点()2,0,则由点斜式可知直线方程为()022y x -=-- 整理可得:24y x =-+ 故选C.7.(兴庆区校级期末)直线y =2x -5在y 轴上的截距是________. 【答案】 -5【解析】 ∵令x =0,则y =-5, ∴直线y =2x -5在y 轴上的截距是-5.8.(无锡期末)在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是________. 【答案】 y =3x -6或y =-3x -6【解析】 与y 轴相交成30°角的直线方程的斜率为: k =tan 60°=3,或k =tan 120°=-3,∴y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是:y =3x -6或y =-3x -6.9.(金牛区校级期末)与直线l :y =34x +1平行,且在两坐标轴上截距之和为1的直线l 1的方程为________.【答案】 y =34x -3【解析】 根据题意知直线l 的斜率k =34,故直线l 1的斜率k 1=34.设直线l 1的方程为y =34x +b ,则令y =0,得它在x 轴上的截距a =-43b .∵a +b =-43b +b =-13b =1,∴b =-3.∴直线l 1的方程为y =34x -3.10.(南岗区校级期末)斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.【答案】 y =34x ±3【解析】 设所求直线方程为y =34x +b ,令y =0得x =-4b3.由题意得:|b |+⎪⎪⎪⎪-43b +b 2+16b 29=12, 即|b |+43|b |+53|b |=12,即4|b |=12,∴b =±3, ∴所求直线方程为y =34x ±3.11.(金华校级月考)写出下列直线的斜截式方程: (1)直线的倾斜角为45°且在y 轴上的截距是2; (2)直线过点A (3,1)且在y 轴上的截距是-1.【解析】 (1)斜率k =tan 45°=1,可得斜截式:y =x +2. (2)k =-1-10-3=23,可得斜截式方程:y =23x -1.12.(洛龙区校级期末)(1)求经过点(1,1),且与直线y =2x +7平行的直线的点斜式方程; (2)求经过点(-2,-2),且与直线y =3x -5垂直的直线的斜截式方程. 【解析】 (1)∵所求直线与直线y =2x +7平行, ∴所求直线斜率为2, 由点斜式方程可得 y -1=2(x -1).(2)∵所求直线与直线y =3x -5垂直, ∴所求直线的斜率为-13,由点斜式方程得:y +2=-13(x +2),即y =-13x -83.故所求的直线方程为y =-13x -83.B 组-[素养提升]1.(诸暨市校级期中)已知三角形的顶点坐标是A (-5,0),B (3,-3),C (0,2),试求这个三角形的三条边所在直线的斜截式方程.【解析】 直线AB 的斜率k AB =-3-03-(-5)=-38,又过点A (-5,0),∴直线AB 的点斜式方程为y =-38(x+5),即所求边AB 所在直线的斜截式方程为y =-38x -158.同理,直线BC 的方程为y -2=-53x ,即y =-53x +2.直线AC 的方程为y -2=25x ,即y =25x +2.∴边AB ,BC ,AC 所在直线的斜截式方程分别为y = -38x -158,y =-53x +2,y =25x +2. 3.2.2 直线的两点式方程名师导学知识点1 直线的两点式方程【例1-1】(武侯区校级期末)已知三角形的顶点是A (1,3),B (-2,-1),C (1,-1),求这个三角形三边所在直线的方程.【分析】当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程. 【解答】直线AB 过A (1,3),B (-2,-1),其两点式方程为y -3-1-3=x -1-2-1,整理,得4x -3y +5=0,这就是直线AB 的方程.直线AC 垂直于x 轴,其方程为x =1.直线BC 平行于x 轴,其方程为y =-1.【变式训练1-1】(开江县校级开学考)过(1,1),(2,-1)两点的直线方程为 ( ) A .2x -y -1=0 B .x -2y +3=0 C .2x +y -3=0 D .x +2y -3=0 【答案】C【解析】∵直线过两点(1,1)和(2,-1),∴直线的两点式方程为y -(-1)1-(-1)=x -21-2,整理得2x +y -3=0,故选C.知识点2 直线的截距式方程【例2-1】(诸暨市校级期中)求过点A (3,4),且在两坐标轴上的截距互为相反数的直线l 的方程. 【分析】如果题目中出现直线在两坐标轴上的“截距相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,采用截距式求直线方程,一定要注意考虑“零截距”的情况. 【解答】(1)当直线l 在两坐标轴上的截距互为相反数且不为0时,可设直线l 的方程为x a +y-a =1.又l 过点A (3,4),所以3a +4-a =1,解得a =-1.所以直线l 的方程为x -1+y1=1,即x -y +1=0.(2)当直线l 在两坐标轴上的截距互为相反数且为0时,即直线l 过原点时,设直线l 的方程为y =kx ,因为l 过点A (3,4),所以4=k ·3,解得k =43,直线l 的方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x -y +1=0或4x -3y =0.【变式训练2-1】若将例2-1中“截距互为相反数”改为“截距相等”呢? 【解析】(1)当截距不为0时,设直线l 的方程为x a +ya =1,又知l 过(3,4),∴3a +4a =1,解得a =7, ∴直线l 的方程为x +y -7=0.(2)当截距为0时,直线方程为y =43x ,即4x -3y =0.综上,直线l 的方程为x +y -7=0或4x -3y =0. 知识点3 直线的综合应用【例3-1】(沭阳县校级期中)已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),求BC 边所在直线的方程,以及该边上中线所在直线的方程.【分析】(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率. (2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距. (3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决. 【解答】如图,过B (3,-3),C (0,2)的两点式方程为y -2-3-2=x -03-0,整理得5x +3y -6=0.这就是BC 边所在直线的方程.BC 边上的中线是顶点A 与BC 边中点M 所连线段,由中点坐标公式可得点M 的坐标为(3+02,-3+22),即(32,-12).过A (-5,0),M (32,-12)的直线的方程为y -0-12-0=x +532+5,即x +13y +5=0. 这就是BC 边上中线所在直线的方程.【变式训练3-1】(天心区校级期末)求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程. 【解析】当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意. 此时,直线的斜率为12,所以直线l 的方程为y =12x ,即x -2y =0.当直线不过原点时,由题意可设直线方程为x a +yb =1.又因为过点A ,所以4a +2b =1. ①因为直线在两坐标轴上的截距的绝对值相等, 所以|a |=|b |. ② 由①②联立方程组,解得⎩⎪⎨⎪⎧a =6,b =6或⎩⎪⎨⎪⎧a =2,b =-2. 所以所求直线的方程为x 6+y 6=1或x 2+y-2=1,化简得直线l 的方程为x +y =6或x -y =2, 即直线l 的方程为x +y -6=0或x -y -2=0,综上,直线l 的方程为x -2y =0或x +y -6=0或x -y -2=0.名师导练A 组-[应知应会]1.(锡山区校级期中)过两点(-2,1)和(1,4)的直线方程为 ( ) A .y =x +3 B .y =-x +1 C .y =x +2D .y =-x -2【解析】 代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.【答案】 A2.(红桥区期中)经过P (4,0),Q (0,-3)两点的直线方程是 ( ) A.x 4+y3=1 B.x 3+y 4=1 C.x 4-y3=1D.x 3-y 4=1 【解析】 由P ,Q 两点坐标知直线在x 轴、y 轴上的截距分别为4,-3,所以直线方程为x 4+y -3=1,即x4-y3=1. 【答案】 C3.(江宁区校级月考)过点P (4,-3)且在坐标轴上截距相等的直线有 ( ) A .1条B .2条C .3条D .4条【解析】 当直线过原点时显然符合条件;当直线不过原点时,设所求直线的方程为x a +ya =1,把点P (4,-3)代入方程得a =1.因而所求直线有2条. 【答案】 B4.(临泉县校级月考)经过两点(5,0),(2,-5)的直线方程为 ( ) A .5x +3y -25=0 B .5x -3y -25=0 C .3x -5y -25=0D .5x -3y +25=0【解析】 经过两点(5,0),(2,-5)的直线方程为: y -0-5-0=x -52-5,整理,得5x -3y -25=0. 故选B. 【答案】 B5.(朝阳区校级月考)已知直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则实数a 的值是( ) A .1B .-1C .-2或-1D .-2或1【解析】 显然a ≠0.把直线l :ax +y -2=0化为x 2a +y2=1.∵直线l :ax +y -2=0在x 轴和y 轴上的截距相等, ∴2a =2,解得a =1,故选A. 【答案】 A6.(庐江县校级期末)点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则 ( ) A .m =-3,n =10 B .m =3,n =10 C .m =-3,n =5D .m =3,n =5【解析】 ∵M (4,m )关于点N (n ,-3)的对称点为P (6,-9),∴4+62=n ,m -92=-3;∴n =5,m =3,故选D. 【答案】 D7.(海淀区校级期末)已知A (2,-1),B (6,1),则在y 轴上的截距是-3,且经过线段AB 中点的直线方程为________.【解析】 由于A (2,-1),B (6,1),故线段AB 中点的坐标为(4,0), 又直线在y 轴上的截距是-3,∴直线方程为x 4-y3=1,即3x -4y -12=0.【答案】 3x -4y -12=08.(红岗区校级期末)过点P (3,2),且在坐标轴上截得的截距相等的直线方程是________. 【解析】 当直线过原点时,斜率等于2-03-0=23,故直线的方程为y =23x ,即2x -3y =0.当直线不过原点时,设直线的方程为x +y +m =0,把P (3,2)代入直线的方程得m =-5, 故求得的直线方程为x +y -5=0,综上,满足条件的直线方程为2x -3y =0或x +y -5=0. 【答案】 2x -3y =0或x +y -5=09.(兴庆区校级期末)求经过点A (-2,3),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. 【解】 (1)当横截距、纵截距都是零时,设所求的直线方程为y =kx ,将(-2,3)代入y =kx 中,得k =-32,此时,直线方程为y =-32x ,即3x +2y =0.(2)当横截距、纵截距都不是零时, 设所求直线方程式为x 2a +ya=1,将(-2,3)代入所设方程,解得a =2,此时,直线方程为x +2y -4=0. 综上所述,所求直线方程为x +2y -4=0或3x +2y =0.10.(城关区校级期末)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.【解】 过A ,B 两点的直线的两点式方程是y +13+1=x -4-2-4.点斜式为:y +1=-23(x -4),斜截式为:y =-23x +53,截距式为:x 52+y53=1.B 组-[素养提升]1.(鼓楼区校级期末)两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y-a=1.假定l 1的位置,判断a ,b 的正负,从而确定l 2的位置,知A 项符合. 【答案】 A2.(秦州区校级期末)直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是 ( ) A.⎝⎛⎭⎫-1,15B.⎝⎛⎭⎫-∞,12∪(1,+∞) C .(-∞,1)∪⎝⎛⎭⎫15,+∞D .(-∞,-1)∪⎝⎛⎭⎫12,+∞【解析】 设直线的斜率为k ,如图,过定点A 的直线经过点B (3,0)时,直线l 在x 轴上的截距为3,此时k =-1;过定点A 的直线经过点C (-3,0)时,直线l 在x 轴的截距为-3,此时k =12,满足条件的直线l的斜率范围是(-∞,-1)∪⎝⎛⎭⎫12,+∞.【答案】 D3.(金湖县校级期中)垂直于直线3x -4y -7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.【解析】 设直线方程是4x +3y +d =0,分别令x =0和y =0,得直线在两坐标轴上的截距分别是-d 3,-d4,∴6=12×|-d 3|×|-d 4|=d 224,∴d =±12,则直线在x 轴上的截距为3或-3.【答案】 3或-34.(启东市校级月考)已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________. 【解析】 直线AB 的方程为x 3+y 4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3,即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取得最大值3. 【答案】 35.(杨浦区校级期末)在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的方程. 【解】 (1)设C (x 0,y 0),则AC 边的中点为M ⎝⎛⎭⎫x 0+52,y 0-22,BC 边的中点为N ⎝⎛⎭⎫x 0+72,y 0+32.因为M 在y 轴上,所以x 0+52=0,得x 0=-5.又因为N 在x 轴上,所以y 0+32=0,所以y 0=-3.所以C (-5,-3). (2)由(1)可得M ⎝⎛⎭⎫0,-52,N (1,0),所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.3.2.3 直线的一般式方程名师导学知识点1 直线的一般式方程与其他形式的转化【例1-1】(水富市校级期末)(1)下列直线中,斜率为-43,且不经过第一象限的是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0(2)直线3x -5y +9=0在x 轴上的截距等于( ) A.3B .-5C.95D .-33【分析】(1)当A ≠0时,方程可化为x +B A y +C A =0,只需求B A ,C A 的值;若B ≠0,则方程化为A B x +y +CB =0,只需确定A B ,CB的值.因此,只要给出两个条件,就可以求出直线方程.(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式.【解答】(1)将一般式化为斜截式,斜率为-43的有:B 、C 两项.又y =-43x +14过点(0,14)即直线过第一象限,所以只有B 项满足要求. (2)令y =0,则x =-3 3.【变式训练1-1】(包河区校级期末)根据下列条件分别写出直线的方程,并化为一般式方程. (1)斜率是3,且经过点A (5,3); (2)斜率为4,在y 轴上的截距为-2; (3)经过A (-1,5),B (2,-1)两点; (4)在x ,y 轴上的截距分别是-3,-1.【解析】(1)由点斜式方程可知,所求直线方程为:y -3=3(x -5),化为一般式为:3x -y +3-53=0. (2)由斜截式方程可知,所求直线方程为:y =4x -2,化为一般式为:4x -y -2=0.(3)由两点式方程可知,所求直线方程为:y -5-1-5=x -(-1)2-(-1).化为一般式方程为:2x +y -3=0.(4)由截距式方程可得,所求直线方程为x -3+y-1=1,化成一般式方程为:x +3y +3=0.知识点2 直线的一般式方程的应用【例2-1】(上虞区期末)(1)若方程(m 2+5m +6)x +(m 2+3m )y +1=0表示一条直线,则实数m 满足________. (2)已知方程(2m 2+m -3)x +(m 2-m )y =4m -1表示直线.当m =____________时,直线的倾斜角为45°;当m =____________时,直线在x 轴上的截距为1.【解析】(1)若方程不能表示直线,则m 2+5m +6=0且m 2+3m =0.解方程组⎩⎪⎨⎪⎧m 2+5m +6=0,m 2+3m =0,得m =-3,所以m ≠-3时,方程表示一条直线. (2)因为已知直线的倾斜角为45°, 所以此直线的斜率是1,所以-2m 2+m -3m 2-m =1,所以⎩⎪⎨⎪⎧m 2-m ≠0,2m 2+m -3=-(m 2-m ),解得⎩⎪⎨⎪⎧m ≠0且m ≠1,m =-1或m =1.所以m =-1.因为已知直线在x 轴上的截距为1, 令y =0得x =4m -12m 2+m -3,所以4m -12m 2+m -3=1,所以⎩⎪⎨⎪⎧2m 2+m -3≠0,4m -1=2m 2+m -3,解得⎩⎨⎧m ≠1且m ≠-32,m =-12或m =2.所以m =-12或m =2.【例2-2】(柳南区校级期末)已知直线l 的方程为3x +4y -12=0,求满足下列条件的直线l ′的方程: (1)过点(-1,3),且与l 平行; (2)过点(-1,3),且与l 垂直. 【解析】l 的方程可化为y =-34x +3,∴l 的斜率为-34.法一 (1)∵l ′与l 平行,∴l ′的斜率为-34.又∵l ′过点(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)∵l ′与l 垂直,∴l ′的斜率为43,又l ′过点(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二 (1)由l ′与l 平行,可设l ′的方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9. ∴所求直线的方程为3x +4y -9=0.(2)由l ′与l 垂直,可设l ′的方程为4x -3y +n =0. 将(-1,3)代入上式得n =13. ∴所求直线的方程为4x -3y +13=0.【变式训练2-1】(佛山校级月考)已知直线l 经过点P (2,1),且与直线2x -y +2=0平行,那么直线l 的方程是( ) A .2x -y -3=0B .x +2y -4=0C .2x -y -4=0D .x -2y -4=0【解析】 由题意可设所求的方程为2x -y +c =0(c ≠2), 代入已知点(2,1),可得4-1+c =0,即c =-3, 故所求直线的方程为:2x -y -3=0,故选A. 【答案】 A【变式训练2-2】(西湖区校级月考)设直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0.若l 1∥l 2,则a =________;若l 1⊥l 2,则a =________.【解析】 直线l 1:(a +1)x +3y +2=0,直线l 2:x +2y +1=0,分别化为:y =-a +13x -23,y =-12x -12.若l 1∥l 2,则-a +13=-12,解得a =12.若l 1⊥l 2,则-a +13×(-12)=-1,解得a =-7.【答案】 12-7名师导练A 组-[应知应会]1.(芜湖校级月考)已知ab <0,bc <0,则直线ax +by =c 通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限【解析】 由题意可把ax +by =c 化为y =-a b x +c b .∵ab <0,bc <0,∴直线的斜率k =-ab >0,直线在y 轴上的截距cb<0.由此可知直线通过第一、三、四象限. 【答案】 C2.(南岸区校级期末)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=0【解析】 由题意,得所求直线斜率为12,且过点(1,0).故所求直线方程为y =12(x -1),即x -2y -1=0.【答案】 A3.(辽源期末)若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A .-1B .1C.12D .-12【解析】 由两直线垂直,得1×2+(-2)m =0,解得m =1. 【答案】 B4.(宜兴县校级期中)直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是( )【解析】 将l 1与l 2的方程化为斜截式得: y =ax +b ,y =bx +a ,根据斜率和截距的符号可得选C. 【答案】 C5.(城关区校级期末)直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,则m 的值为( ) A .-2 B .2C .-3D .3 【解析】∵直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角45°,当m 2=4时,与题意不符,∴2m 2-5m +2m 2-4=tan 45°=1,解得m =3或m =2(舍去). 故选D. 【答案】 D6.(金凤区校级期末)若直线ax +2y +1=0与直线x +y -2=0互相平行,那么a 的值等于________. 【解析】 ∵直线ax +2y +1=0与直线x +y -2=0分别化为y =-a 2x -12,y =-x +2,则-a2=-1,解得a =2. 【答案】 27.(越秀区校级期末)已知过点A (-2,m ),B (m ,4)的直线与直线2x +y -1=0互相垂直,则m =________. 【解析】 因为两条直线垂直,直线2x +y -1=0的斜率为-2,所以过点A (-2,m ),B (m ,4)的直线的斜率4-m m +2=-12,解得m =2.【答案】 28.(凯里市校级期末)已知两条直线a 1x +b 1y +4=0和a 2x +b 2y +4=0都过点A (2,3),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程为________________.【解析】 由条件知⎩⎪⎨⎪⎧2a 1+3b 1+4=0,2a 2+3b 2+4=0,易知两点P 1(a 1,b 1),P 2(a 2,b 2)都在直线2x +3y +4=0上,即2x +3y +4=0为所求. 【答案】 2x +3y +4=09.(和平区校级期中)若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线. (1)求实数m 需满足的条件;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由题意知⎩⎪⎨⎪⎧m 2-3m +2≠0,m -2≠0,解得m ≠2.(2)由题意知,m ≠2,由-m 2-3m +2m -2=1,解得m =0. 10.(如东县期中)(1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值;(2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?【解】 法一 (1)由l 1:2x +(m +1)y +4=0,l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行.②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2. 解得m =2或m =-3,∴m 的值为2或-3.(2)由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直.②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直. ③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3. 当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1, ∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2.法二 (1)令2×3=m (m +1),解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0,显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0,显然l 1与l 2不重合,∴l 1∥l 2.∴m 的值为2或-3.(2)由题意知直线l 1⊥l 2,∴(a +2)(a -1)+(1-a )(2a +3)=0,解得a =±1,将a =±1代入方程,均满足题意.故当a =1或a =-1时,直线l 1⊥l 2.B 组-[素养提升]1.(昌江区校级期末)若三条直线x +y =0,x -y =0,x +ay =3能构成三角形,则a 满足的条件是________.【解析】 由直线x +y =0与x -y =0都过(0,0)点,而x +ay =3不过(0,0)点,故只需满足x +ay =3不与x +y =0与x -y =0平行即可,故a ≠±1.【答案】 a ≠±12.(河南校级月考)已知直线l :5ax -5y -a +3=0.(1)求证:不论a 为何值,直线l 总经过第一象限;(2)为使直线不经过第二象限,求a 的取值范围.(1)【证明】 将直线l 的方程整理为y -35=a (x -15),∴l 的斜率为a ,且过定点A (15,35),而点A (15,35)在第一象限,故不论a 为何值,l 恒过第一象限.(2)【解】 当a =0时,直线l 的方程为5y -3=0,不符合题意,故要使l 不经过第二象限,需a >0且l 在y 轴上的截距不大于零,即⎩⎪⎨⎪⎧a >0,-a -35≤0,∴a ≥3. 3.(镜湖区校级期中)已知平面内两点A (8,-6),B (2,2).(1)求AB 的中垂线方程;(2)求过点P (2,-3)且与直线AB 平行的直线l 的方程;(3)一束光线从B 点射向(2)中的直线l ,若反射光线过点A ,求反射光线所在直线的方程.【解】 (1)因为8+22=5,-6+22=-2, 所以AB 的中点坐标为(5,-2).因为k AB =-6-28-2=-43, 所以AB 的中垂线的斜率为34, 故AB 的中垂线的方程为y +2=34(x -5) 即3x -4y -23=0.(2)由(1)知k AB =-43, 所以直线l 的方程为y +3=-43(x -2), 即4x +3y +1=0.(3)设B (2,2)关于直线l 的对称点为B ′(m ,n ),由⎩⎪⎨⎪⎧n -2m -2=34,4×m +22+3×n +22+1=0,解得⎩⎨⎧m =-145,n =-85,所以B ′(-145,-85),k B ′A =-6+858+145=-1127, 所以反射光线所在直线方程为y +6=-1127(x -8). 即11x +27y +74=0.。
《直线的方程》课件1(人教版必修2(A))1
5
直线L与直线4x+2y-3=0的距离为____1_0____
7. 若 直 线 l1 : mx+2y+6=0 和 直 线 l2:x+(m-1)y+m2-
1=0平行但不重合,则m的值是___-_1__.
8.若直线l1:y=kx+k+2与l2:y=-2x+4的交点在 第一象限,则k的取值范围是___-_2_/3_<__k_<__2___.
(6)向量式:
OP OA t为ta参数, 为方a向向量.
(7)参数式:设直线过 点 P(0 x0,y0),v=(a,b)
是它的一个方向向量 , P(x,y是)直线上任一点,
x
ab(t为参称数)为直线的参数方程
。
(8)点向式: x x0 y y0(ab 0a)、b称为方向数.
(2)若直线 则
l1:A1x+B1y+C1=0, l2:A2x+B2y+C2=0,
l1// l2 A1B2—A2B1=0 l1⊥l2 A1A2+B1B2=0
无论直线的斜率是否存在,上式均成立,所 以此公式用起来更方便.
2.两条直线l1,l2相交构成四个角,它们是两对
对 顶 角 , 把 l1 依 逆 时 针 方 向 旋 转 到 与 l2 重 合 时
4.直线l 在x,y轴上截距的倒数和为常数
1/m,则直线过定点____(_m_,_m__) __.
5.A、B是x轴上两点,点P的横坐标为2,
且|PA|=|PB|,若直线PA的方程为
x-y+1=0,则直线PB的方程为( B )
(A) 2x-y-1=0
(B) x+y-5=0
知识点1 直线的方程与方程的直线
注意:⑴以方程的解为坐标的点都在直线上;⑵直线上的点的坐标都是方程的解。
满足以上两点,直线就是方程的直线,方程就是直线的方程。
【例1】 给出四个命题:①一条直线必是某个一次函数的图像;②一次函数的图像必是一条直线且不过原点;③若一条直线上的所有点的坐标都是某个方程的解,则这个方程叫做直线的方程;④以一个二元方程的解为坐标的点都在某条直线上,则这条直线叫做方程的直线。
其中正确的命题有( ) 知识点2 直线的点斜式方程如图,斜率为k 的直线l 经过点000(,)P x y ,直线l 上任意一异于0P 的点(,)P x y ,则0y y k x x -=-,得方程00()y y k x x -=-。
这表明,直线l 上的任一点坐标(,)x y 都满足方程00()y y k x x -=-;另外,满足方程00()y y k x x -=-的每一个所对应的点(,)x y 也都在直线l 上。
由于这个方程由直线上一定点000(,)P x y 及其斜率k 确定,所以我们把这个方程叫做直线的点斜式方程,简称点斜式。
注意:⑴0y y k x x -=-与00()y y k x x -=-两个等式表示意义不一样,00y y k x x -=-表示直线上缺少一个点000(,)P x y ,00()y y k x x -=-表示整条直线。
⑵与x 轴垂直的直线上的所有点的横坐标都相等且等于0x ,而纵坐标任意,所以直线方程可表知识点1 直线的方程与方程的直线一般地,如果一条直线l 上任一点的坐标(,)x y 都满足一个方程,满足该方程的每一个数对(,)x y 所确定的点都在直线l 上,我们把这个方程称为直线l 的方程。
A.0个B. 1个C.2个 D.4个分析:说明一个命题为真,需严格证明;说明一个命题为假,只需举出一个反例即可。
解答:命题①不正确,如直线2x=不是某个一次函数的图像;命题②不正确,如一次函数2y x =的图像是一条直线,但过原点;命题③不正确,如直线 y x =上的所有点的坐标都是方程22y x =的解,但22y x =不是直线 y x =的方程;命题④不正确,如以方程 (0)y x x =≠的解为坐标的点都在直线 y x =上,但 y x =不是方程(0)y x x =≠的直线,以上四个命题都不正确。
直线的方程
练习1 根据下列条件写出直线方程, 并化成一般式
1 ( 1 )斜 率 是 , 经 过 点 ( 8 ,2 ) A 2 ( 2 )经 过 点B( 4 ,2 ),平 行 于x轴 3 ( 3 )在x轴 和y轴 上 的 截距 分 别 是 , 3 2 ( 4 )经 过 两 点 1 ( 3 ,2 ), P2 ( 5 ,4 ) P
若求过两点Ax1,y1 ,Bx2,y2 x1 x2 的直线方程呢?
直线方程的两点式:
已知直线l经过点Px1,y1 ,P2 x2,y2 x1 x2 . 1
求直线l的方程.
y 2 - y1 . 推导:直线l的斜率k x 2 - x1
当 y2 y 1时 ,方 程 可 写 成 y - y1 x - x1 .x 1 x 2 y1 y 2 y 2 - y1 x 2 - x 1
4 4 k 0 9k 2 9k 12 k k 4 2 当 且 仅 当 9k时,即k 时 取 最 小 值 . k 3 S 12
此时直线 l的方程为 2 x 3 y 12 0. :
2 2 2.截 距 和 2 3k 3 5 3k 5 2 6 k k 2 6 当 且 仅 当 3k 时,即k 时, k 3 截距和取到最小值为 2 6 :5
这 就 是 直 线 AB的 方 程 .
直 线 A C 过 A 5, 0、 C0, 2 点 , 由 距式 得 两 截
整理得 x y 1, 5 2 2x 5y 10 0.
这就 是直线AC的方 程 .
注意恰当选取直线方程 的形式解题 .
练 习:
1.求 过 下 列 两 点 直 线 的 两 式 方 程 化 成 斜 截 式 方 程 点 ,再 . y 1 x2 1. p1 2,1, p2 0,3 ; 整理得y 2 x 3 31 0 2
直线方程的五种形式之
2:一条直线经过点A(0,5),倾斜角为00, ),倾斜角为 例2:一条直线经过点A(0,5),倾斜角为00,求这直线 方程 y
解:这条直线经过点A(0,5) 斜率是k=tan00=0 代入点斜式,得 y - 5 = 0 O x 5
②直线的斜截式方程: 直线的斜截式方程:
已知直线l的斜率是 , 轴的交点是P( , ), ),求 已知直线 的斜率是k,与y轴的交点是 (0,b),求 的斜率是 轴的交点是 求这条直线的方程。 求这条直线的方程。 代入点斜式方程, 的直线方程 的直线方程: 代入点斜式方程,得l的直线方程:y - b =k ( x - 0) ) 即 y = kx + b。 (2)
3
BP95
㈣总结: ①直线的点斜式,斜截式方程在 直线斜率存在时才可以应用。 ②直线方程的最后形式应表示成 二元一次方程的一般形式。
③两种形式都有限制条件
直线方程的五种形式之: 直线方程的五种形式之: 点斜式方程和 斜截式方程
新课: 新课: 1、直线的点斜式方程:
已知直线l经过已知点 ),并且它的斜率是 并且它的斜率是k 已知直线l经过已知点P1(x1,y1),并且它的斜率是 求直线l的方程 的方程。 求直线 的方程。 设点P( , )是直线l上 设点 (x,y)是直线 上 不同于P 的任意一点。 不同于 1的任意一点。 l 根据经过两点的直线斜率 y P 公式, 公式,得
k
=
可化为
y y 1 = k (x x 1 )
y y1 x x1
. .
P1
O
x
由直线上一点和直线的斜率确定的直线方程,叫直 由直线上一点和直线的斜率确定的直线方程, 线的点斜式方程。 线的点斜式方程。
小结: 小结: 为直线上的任意一点, ⑴P为直线上的任意一点,它的 为直线上的任意一点 位置与方程无关 直线上任意一点P与这条直线上 直线上任意一点 与这条直线上 一个定点P 所确定的斜率都相等。 一个定点 1所确定的斜率都相等。
直线系与圆系方程
x2 y2 D1 x E1 y F1 ( x2 y2 D2 x E2 y F2 ) 0 ( 1 )
圆系方程
常见的圆系方程:
3、 过 直 线 与 圆 的 交 点 的圆 系 方 程 直线 l : Ax By C 0 圆 C : x2 y2 Dx Ey F 0
(3) 过两圆交点的圆系:若两圆 x 2 + y 2 + D1x + E1y + F1 = 0 和 x 2 + y 2 + D2x + E2y + F2 = 0 相 交,则过这两圆交点的圆系方程为
_x_2___y_2___D__x____E__y___F_____(_x__2 __y__2 __D__x____E y F ) 0
此方程不包括直线 l2 m( A1 x B1 y C1 ) n( A2 x B2 y C2 ) 0
此方程包括所有过两直线交点的直线。
【典型例题】
1.已知直线 l :(1 m)x (2 m) y (1 m) 0 , 求证:无论m取何实数,直线l 恒过定点,并求出定点坐标。
解: 整理该方程得: (x 2y 1) m(x y 1) 0
o
x
过定点的直线系方程
• 如何表示经过两条相交直线交点的直线系方程?
已知直线 l1 : A1x B1y C1 0 ( A12 B12 0) 和直线 l2 : A2x B2 y C2 0 (A22 B22 0) 相交,则过该交点的 直线系方程:
( A1 x B1 y C1 ) ( A2 x B2 y C2 ) 0
x2 y2 Dx Ey F+ ( Ax By C ) 0
空间直线及其方程
j
提示:
j j
^
^ = | ( s , n ) | s = | co s i , n ) | ns ( , . 2
方向向量为(m, n, p)的直线与法线向量为(A, B, C)的平面 的夹角j 满足 | A + B + Cp m | n s = in . 2 2 2 2 2 2 A + B + C m + n + p
y 3 x 2 z 4 例 6 = = 例 6 求 过 点 ( 2 , 1 , 2 ) 且 与 直 线 垂 直 相 交 1 1 2 的直线的方程.
解 过已知点且与已知直线相垂直的平面的方程为 (x-2)+(y-1)+2(z-2)=0, 即x+y+2z=7. 此平面与已知直线的交点为(1, 2, 2). >>> 所求直线的方向向量为 s=(1, 2, 2)-(2, 1, 2)=(-1, 1, 0),
i j k 提示: y + z = 2 y + 2 x 1 z . s = ( i + j + k ) ( 2 i j + 3 k ) = 1 1 1 = 4 i j 3 k 当 x = 1 时 , 有 , 此 方 程 组 的 解 为 y = 2 , z = 0 . = = = t 令 , 有 x = 1 + 4 t , y = 2 t , z = 3 t . y + 3 = 2 先求直线上的一点 ,z 再求这直线的方向向量 4 1 3 2 1 3 s.
提示: 我们要在通过已知直线的平面束中找出与已知平面相垂 这是平面束的法线向量 (1+l, 1-l, -1+l)与已知平面的法 直的平面 线向量 (1,, 1, 此平面与已知平面的交线就是所求的投影直线 1)的数量积. .
直线系方程
直线系方程 4、若直线l 1 : A1 x B1 y C 1 0与直线l 2 : A2 x B2 y C 2 0
相交,交点为 P ( x 0 , y 0 ),则过两直线交点 P的直线系方程为 m( A1 x B1 y C 1 ) n( A2 x B2 y C 2 ) 0( m , n是待定系数)
m 3n 7 m n 5 mn k
m 2 解得: n 3 k mn 6
即:k= -6 时方程表示两条直线。
直线系方程
3、方程x y 6 x y 3m 0表示的 图形是两条直线,求的 取值范围。
: ( x y ) 2 6 x y 3m 0 解: 将方程化作
2 得 : t 6t 3m 0 令t = x + y ≥ 0,
方程应有两不等非负根,故
所以
f (0) 0 f (3) 0
0m3
X=3
直线系方程
两条直线方程相乘可以 构成一个二元二次方程 , 如:l 1 : x + 2y - 1 = 0, l 2 : x - y = 0, 相乘后就得, 反过来,如果已知一个 二元二次方程是由两条 直线 的方程相乘所得,我们 也可以先设出这两条直 线的 方程,再用待定系数法 求出它们。 比如:
证明:方程 3 x 10 xy 3 y 9 x 5 y 12 0
直 线 系 方 程
1. 定义: 具有某种共同属性的所有直线的集合
2..类型
3. 应用
(1)求直线的方程 (2)直线恒过定点问题的证明 (3)灵活变换
直线系方程的种类
1.与直线L:Ax+By+C=0平行的直线系方程为: Ax+By+m=0 (其中m≠C);
直线的倾斜角、斜率与直线的方程考点和题型归纳
直线的倾斜角、斜率与直线的方程考点和题型归纳一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角叫做直线 l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0. (3)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)定义式:直线l 的倾斜角为α⎝⎛⎭⎫α≠π2,则斜率k =tan α. (2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上, 且x 1≠x 2,则l 的斜率 k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式 x a +y b=1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1; (2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1; (3)y 轴的方程为x =0; (4)x 轴的方程为y =0. 考点一 直线的倾斜角与斜率[典例] (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B.⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析] (1)直线2x cos α-y -3=0的斜率k =2cos α, 因为α∈⎣⎡⎦⎤π6,π3,所以12≤cos α≤32, 因此k =2·cos α∈[1, 3 ].设直线的倾斜角为θ,则有tan θ∈[1, 3 ]. 又θ∈[0,π),所以θ∈⎣⎡⎦⎤π4,π3, 即倾斜角的取值范围是⎣⎡⎦⎤π4,π3.(2) 设P A 与PB 的倾斜角分别为α,β,直线P A 的斜率是k AP =1,直线PB 的斜率是k BP=-3,当直线l 由P A 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,- 3 ].故直线l 斜率的取值范围是(-∞,- 3 ]∪[1,+∞). [答案] (1)B (2)(-∞,- 3 ]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:⎝⎛⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0. ∵A ,B 两点在直线l 的两侧或其中一点在直线l 上, ∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是⎣⎡⎦⎤13,3. 答案:⎣⎡⎦⎤13,33.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二 直线的方程[典例] (1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为________________.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为________________.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为________________.[解析] (1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时, 设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0. (3)设C (x 0,y 0),则M ⎝⎛⎭⎪⎫5+x 02,y 0-22,N ⎝ ⎛⎭⎪⎫7+x 02,y 0+32.因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3), 所以M ⎝⎛⎭⎫0,-52,N (1,0), 所以直线MN 的方程为x 1+y-52=1,即5x -2y -5=0.[答案] (1)x +2y +1=0或2x +5y =0 (2)3x -y +6=0 (3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________. 解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y +1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a =1,解得a =2或a =1,则直线的方程是x 2+1+y 2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三 直线方程的综合应用[典例] 已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解] 设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·| MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程. (3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22 解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.联立⎩⎪⎨⎪⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0), 则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66. ∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是( ) A.33B.3 C .- 3D .-33解析:选A 设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是( ) A.3x -y +1=0 B.3x -y -3=0 C.3x +y -3=0D.3x +y +3=0解析:选D 由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为( )A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C 由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是( )解析:选C 当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a <0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为( )A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n =-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 由⎩⎪⎨⎪⎧ kx -y =k -1,ky -x =2k 得⎩⎪⎨⎪⎧x =kk -1,y =2k -1k -1.又∵0<k <12,∴x =kk -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为( )A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B由l 的方程,得A ⎝ ⎛⎭⎪⎫-2+4k k ,0,B (0,2+4k ).依题意得⎩⎨⎧-2+4k k <0,2+4k >0,解得k >0.因为S =12|OA |·|OB |=12⎪⎪⎪⎪⎪⎪2+4k k ·|2+4k |=12·(2+4k )2k =12⎝⎛⎭⎫16k +4k +16≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43, 所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪⎝⎛⎭⎫12,+∞12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.。
直线参数方程的几何意义
一、参数方程及参数等的几何意义★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则|MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ⋅=⋅; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ⋅-+=-=-=,即.例1:已知直线l :01=-+y x 与抛物线2x y =交于B A ,两点,求线段AB 的长与点)2,1(-M 到B A ,两点的距离之积。
(1)如何写出直线l 的参数方程解:因为直线l 过定点M ,且l 的倾斜角为43π,所以它的参数方程是⎪⎪⎩⎪⎪⎨⎧+=+-=ππ43sin 243cos 1t y t x ,(t 为参数),即⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 222221,(t 为参数)① (2)如何求出交点A ,B 所对应的参数21t t ,?把①代入抛物线的方程,得 0222=-+t t ,(3)||||||MB MA AB ⋅、与21t t ,有什么关系? 由参数方程的几何意义可得:二、求弦的中点坐标★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:⎪⎪⎩⎪⎪⎨⎧+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或⎪⎪⎩⎪⎪⎨⎧++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零(其中 中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:⎩⎨⎧+=+=t p y y tp x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,则中点M 的相应参数:221t t t +==0(因为⎩⎨⎧+=+=t p y y tp x x 200100,而21p p ,均不为0,所以t=0)例2:直线l )(542531为参数,t t y t x ⎪⎪⎩⎪⎪⎨⎧+=+-=与双曲线1)2(22=--x y 相交于A 、B两点,求弦AB 中点M 的坐标。
高中数学必修二 直线的方程
若l与线段AB相交,
则kPA≤k≤kPB,
∵kPA=-2,kPB=
1, 2
∴-2≤k≤ 1 .
2
题型三 求直线的方程 【例3】 求适合下列条件的直线方程: (1)经过点P(3,2),且在两坐标轴上的截距 相等; (2)经过点A(-1,-3),且倾斜角等于直线y= 3x的倾斜角的2倍. 思维启迪 选择适当的直线方程形式,把所需要 的条件求出即可. 解 (1)方法一 设直线l在x,y轴上的截距均为a, 若a=0,即l过点(0,0)和(3,2), ∴l的方程为y= 2 x,即2x-3y=0.
D.第四象限
解析 由题意知A·B·C≠0.
直线方程变为y=- A x- C , BB
∵A·C<0,B·C<0,∴A·B>0,
∴其斜率k=- A<0,在y轴上的截距b=- C >0,
B
B
∴直线过第一、二、四象限.
5.一条直线经过点A(-2,2),并且与两坐标轴 围成的三角形的面积为1,则此直线的方程为 .
捷解题的目的.方法二则巧妙利用了不等式所表示
的平面区域的性质使问题得以解决.
知能迁移2 已知点A(1,3),B(-2,-1).若直
线l:y=k(x-2)+1
与线段AB相交,则k的取值范围是
A.k≥
1 2
B.k≤-2
C.k≥ 1 或k≤-2 2
D.-2≤k≤ 1 2
( D)
解析 由已知直线l恒过定点P(2,1),如图.
由已知3-
2
k =2-3k,解得k=-1或k=
2
,
k
3
∴直线l的方程为
y-2=-(x-3)或y-2=
2 3
(x-3),
即x+y-5=0或2x-3y=0.
直线的方程
例题讲练:
例4:直线L过点M(4,1),且分别交x轴、 y轴的正半轴于点A,B, O是坐标原点. (1)当三角形AOB面积最小时,求直线L方程;
(2)当直线L在两坐标轴上的截距之和最小 时,求直线L方程;
(3)当 MA MB 最小时,求直线L方程.
课后小结:
(1)本节课我们学过那些知识点; (2)直线方程的点斜式、斜截式的形式特点 和适用范围是什么? (3)求一条直线的方程,要知道多少 个条件?
Y
O
X
秘籍
知(1)
K>0
Y
.
p
K<0 X
O Y
O
(2) Y
p
O
.
K不存在
90o
.
p
0o
K=0
X
O
X (4)
(3)
例题讲练:
例2:直线L过点P(-1,3),倾斜角的 正弦值为4/5,求直线L的直线方程.
例3:过点P(3,0)作直线L,使它被 两直线L1:2x-y-2=0和L2:x+y+3=0所截 得的线段AB恰好被点P平分,求直线L 的方程.