立体几何基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1基本概念
数学上,立体几何(solid geometry)是3维欧氏空间的几何的传统名称。立体几何一般作为平面几何的后续课程,暂时在人教版数学必修二中出现。立体测绘(Stereometry)是处理不同形体的体积的测量问题。如:圆柱,圆锥,圆台,球,棱柱,棱锥等等。
立体几何空间图形
毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。
立体几何形戒指
尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
2基本课题
课题内容
包括:
各种各样的几何立体图形(10张)
- 面和线的重合
- 二面角和立体角
- 方块, 长方体, 平行六面体
- 四面体和其他棱锥
- 棱柱
- 八面体, 十二面体, 二十面体
- 圆锥,圆柱
- 球
- 其他二次曲面: 回转椭球, 椭球,抛物面,双曲面
公理
立体几何中有4个公理
公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2 过不在一条直线上的三点,有且只有一个平面.
公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4 平行于同一条直线的两条直线平行。
各种立体图形表面积和体积一览表
注:初学者会认为立体几何很难,但只要打好基础,立体几何将会变得很容易。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面知识来解决问题,立体几何在高考中肯定会出现一道大题,所以学好立体是非常关键的。
三垂线定理
在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
三垂线定理的逆定理:在平面内的一条直线,如果和穿过这个平面的一条斜线垂直,那么它也和这条斜线在平面的射影垂直。
1,三垂线定理描述的是PO(斜线),AO(射
影),a(直线)之间的垂直关系.
2,a与PO可以相交,也可以异面.
3,三垂线定理的实质是平面的一条斜线和
平面内的一条直线垂直的判定定理.
关于三垂线定理的应用,关键是找出平面(基准面)的垂线.
至于射影则是由垂足,斜足来确定的,因而是第二位的.
从三垂线定理的证明得到证明a⊥b的一个程序:一垂,
二射,三证.即
几何模型
第一,找平面(基准面)及平面垂线
第二,找射影线,这时a,b便成平面上的一条直线与
一条斜线.
第三,证明射影线与直线a垂直,从而得出a与b垂直.
注:
1.定理中四条线均针对同一平面而言
2.应用定理关键是找"基准面"这个参照系
用向量证明三垂线定理
已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b 垂直OA,求证:b垂直PA
证明:因为PO垂直a,所以PO垂直b,又因为OA垂直b 向量PA=(向量PO+向量OA)
所以向量PA乘以b=(向量PO+向量OA)乘以b=(向量PO 乘以b)加(向量OA 乘以b )=O,
所以PA垂直b。
2)已知:PO,PA分别是平面a的垂线,斜线,OA是PA在a内的射影,b属于a,且b垂直PA,求证:b垂直OA
证明:因为PO垂直a,所以PO垂直b,又因为PA垂直b,向量OA=(向量PA-向量PO)
所以向量OA乘以b==(向量PA-向量PO)乘以b=(向量PA 乘以b )减(向量PO 乘以b )=0,
所以OA垂直b。
2.已知三个平面OAB,OBC,OAC相交于一点O,角AOB=角BOC=角COA=60度,求交线OA于平面OBC所成的角。
向量OA=(向量OB+向量AB),O是内心,又因为AB=BC=CA,所以OA于平面OBC 所成的角是30度。
3二面角
定义
平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发
的两个半平面所组成的图形,叫做二面角。(这条直线叫做二面角的棱,每个半平面叫做二面角的面)
平面角
以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
平面角是直角的二面角叫做直二面角。
两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。
大小范围
0≤θ≤π
相交时0<θ<π,共面时θ=π或0
求法
有六种:
1.定义法
2.垂面法
3.射影定理
4.三垂线定理
5.向量法
6.转化法
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得
也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α
二面角的通常求法:
(1)由定义作出二面角的平面角;
(2)作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角;
(3)利用三垂线定理(逆定理)作出二面角的平面角;
(4)空间坐标求二面角的大小。
三垂线法
其中,(1)、(2)点主要是根据定义来找二面角的平面角,再利用三角形的正、余弦定理解三角形。
(3)中利用三垂线定理求二面角,如图,前提条件是平面α与平面β的交线为l。直线AB垂直于平面β于B点,交α于A点,步骤是:
第一步,过B作BP垂直于l与P。
第二步,连接AP。则∠APB为二面角A-l-B的平面角。
第三步,求出∠APB的大小,即为二面角A-l-B的大小。
如果是利用三垂线逆定理,前提条件相同,步骤是: