简易信号发生器

湖南工学院课程设计说明书课题名称:简易信号发生器设计

专业名称:电气工程及其自动化

学生班级:

学生姓名:

学生学号:

指导教师:

课程设计任务书

简易信号发生器设计

(一)设计目的

1、掌握信号发生器的设计方法和测试技术。

2、了解单片函数发生器IC8038的工作原理和应用。

3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。(二)设计技术指标与要求

1、设计要求

(1)电路能输出正弦波、方波和三角波等三种波形;

(2)输出信号的频率要求可调;

(3)拟定测试方案和设计步骤;

(4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;

(5)在面包板上或万能板或PCB板上安装电路;

(6)测量输出信号的幅度和频率;

(7)撰写设计报告。

2、技术指标

频率范围:100Hz~1KHz 1KHz~10KHz;

输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。

(三)设计提示

1、方案提示:

(1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。

(2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。

2、设计用仪器设备:

示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,

智能电工实验台。

3、设计用主要器件:

(1)双运放NE5532(或747) 1只(或741 2只)、差分管3DG100 4个、电阻电容若干;

(2)IC8038、数字电位器、电阻电容若干。

4、参考书:

《电子线路设计·实验·测试》谢自美主编华中科技大学出版社

《模拟电子技术基础》康华光主编高等教育出版社

《模拟电子技术》胡宴如主编高等教育出版社

(四)设计报告要求

1、选定设计方案;

2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值;

3、列出测试数据表格;

4、调试总结,并写出设计报告。

(五)设计总结与思考

1、总结信号发生器的设计和测试方法;

2、总结设计信号发生器所用的知识点;

3、三角波的输出幅度是否可以超过方波?

4、IC8038的输出频率与哪些参数有关?如何减小失真?

目录

第1章绪论 (5)

第2章系统设计方案及各部分电路设计 (6)

2.1 概述 (6)

2.2 设计目的 (6)

2.3 设计任务 (6)

2.4 设计要求 (6)

2.5 系统设计方案 (7)

2.6 电路原理分析 (7)

2.6.1 函数发生器的组成 (7)

2.6.2 方波--三角波转换电路的工作原理 (8)

2.6.3 三角波--正弦波转换电路的工作原理 (10)

2.7 参数的选取 (11)

2.7.1 方波电路参数的确定 (11)

2.7.2 三角波电路参数的确定 (11)

2.7.3 正弦波电路参数的确定 (12)

第3章 EWB电路仿真及仿真结果 (13)

3.1 方波--三角波电路仿真 (13)

3.2 三角波--正弦波电路仿真 (14)

第4章电路板的调试 (16)

4.1 方波--三角波发生电路的调试 (16)

4.2 三角波--正弦波发生电路的调试 (16)

4.3 总电路的调试 (17)

4.4 调试中遇到的问题及解决方法 (17)

4.4.1 方波--三角波发生器的装调 (17)

4.4.2 三角波--正弦波发生器的装调 (17)

第5章结论和心得 (18)

参考文献 (19)

附录 (20)

附录1 元件清单 (20)

附录2 电路原理图 (21)

第1章绪论

函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。有的函数发生器还具有调制的功能,可以进行调幅、调频、调相、脉宽调制和VCO控制。

函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。

信号发生器的实现方法通常有:(1)用分立元件组成的信号发生器;(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的信号发生器IC产生。早期的函数信号发生器IC,如L8038、BA205、XR2007等,它们的功能较少,精度不高,调节方式不够灵活,频率和占空比不可独立调节,两者相互影响;(3)利用单片集成芯片的信号发生器能产生多种波形,达到较高的频率,且易于调试。采用分立元件产生正弦波、三角波、方波的方案有多种,先产生正弦波,根据周期性的非正弦波与正弦波所成的某种特定的函数关系,再通过迟滞比较器电路将正弦波转化为方波,经过积分电路后将其转换为三角波;也可以先通过迟滞比较器产生方波,再经过积分电路产生三角波,最后通过振荡电路产生正弦波。

本次设计采用分立元件产生方波、三角波、正弦波。电路的原理部分的设计,采用单元电路的设计方法,对迟滞比较器、积分电路、振荡电路三部分单元电路进行原理的分析,参数的计算,最后通过EWB进行仿真,观察效果。

第2章系统设计方案及各部分电路设计

2.1 概述

信号发生器是一种能产生多种波形,如三角波,方波,正弦波的电路。信号发生器在电路实验和设备检查中具有十分广泛的用途。本设计通过对信号发生器的原理以及构成进行分析,设计了方波--三角波--正弦波简易信号发生器。设计中首先确定了电路方案:由迟滞比较器、积分电路、振荡电路组成;接着对各单元电路进行理论分析,由迟滞比较器产生方波,积分电路产生三角波,振荡电路产生正弦波,同时对电路中各元器件的参数进行了计算,最后利用相关仪器进行测量。

2.2 设计目的

1、掌握信号发生器的设计方法和测试技术。

2、了解单片函数发生器IC8038的工作原理和应用。

3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。

2.3 设计任务

电路能输出正弦波、方波和三角波等三种波形

频率范围:100Hz~1KHz 1KHz~10KHz;

输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。

2.4 设计要求

(1)电路能输出正弦波、方波和三角波等波形;

(2)输出信号的频率要求可调;

(3)拟定测试方案和设计步骤;

(4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图;

(5)在面包板上或万能板上安装电路;

(6)测量输出信号的幅度和频率;

(7)写出设计性报告。

2.5 系统设计方案

用差分放大电路以及集成运放组成的电路实现三角波到正弦波函数信号发

生器

图2-1 函数发生器原理图

2.6 电路原理分析

2.6.1 函数发生器的组成

函数发生器由正弦波发生器,过零比较器,和积分器三个部分组成,如图

2-1所示。电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数

发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题介绍方波、

三角波、正弦波函数发生器的方法。

方波三角波

正弦波过零比较器积分器正弦波发生器

图2-2 函数发生器组成框图

2.6.2 方波--三角波转换电路的工作原理

图2-3 方波--三角波转换电路原理图

图2-4 电路输出波形图

如果用线性积分电路代替方波产生电路的RC积分电路,则电容器两端就可获得理想的三角波输出。其电路图如2-3所示。波形如图2-4所示。

若反馈网络断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为

加速电容,可加速比较器的翻转。运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0 时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。设Uo1=+Vcc,则

31

2231231

()0CC ia R RP R U V U R R RP R R RP ++=

++=++++

(2-1) 将上式整理,得比较器翻转的下门限单位Uia-为

22

3131

()CC CC ia R R U V V R RP R RP ---=

+=++

(2-2) 若Uo1=-Vee,则比较器翻转的上门限电位Uia+为

22

3131

()EE CC ia R R U V V R RP R RP +-=

-=++

(2-3) 比较器的门限宽度2

31

2

H CC ia ia R U U U I R RP +-=-=+

(2-4) 反馈网络断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为214221

()O O U U dt R RP C -=

+?

(2-5) 1O CC U V =+ 时,2422422

()()()CC CC

O V V U t t R RP C R RP C -+-=

=++

(2-6) 1O EE U V =-时,2422422

()

()()CC EE O V V U t t R RP C R RP C --=

=++

(2-7) 可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系如图3-2所示。

反馈网络闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波、三角波。

三角波的幅度为 2

231

O m CC R U V R RP =

+ (2-8)

方波-三角波的频率f 为 31

2422

4()R RP f R R RP C +=

+ (2-9)

2.6.3 三角波--正弦波转换电路工作原理

图2-5 三角波--正弦波转换电路原理图

三角波——正弦波的变换电路主要由差分放大电路来完成。分析表明,传输特性曲线的表达式为:

11/1id T C E U U aI I aI e

-==+ (2-10)

式中 /1C E a I I =≈

0I :差分放大器的恒定电流(约为1mA )。

T U :温度的电压当量,当室温为25℃时,UT ≈26mV 。

如果Uid 为三角波,设表达式为

44434m id m U T t T U U T t T ???- ?????=?

-???- ????

? 022

T t T t T ??≤≤ ?????≤≤ ???

(2-11)

式中 Um :三角波的幅度。 T :三角波的周期。

2.7 参数的选取

从电路的设计过程来看电路分为三部分:①方波部分②三角波部分③正弦波部分

2.7.1 方波电路参数的确定 ∵2

31p R V V R R =

+三角方波

由输出的三角形幅值与输出方波的幅值分别为5v 和14v ,有

231514p R R R =

+?231p R R R +=5

14

∴2R =10k Ω

则1p R ≈47 k Ω,3R =20 k Ω

根据方波的上升时间为两毫秒,查询运算放大器的速度,可以选择741型号的运放。

由此可得调整电阻:

1231||()10p R R R R k =+≈Ω

2.7.2 三角波部分参数的确定 根据性能指标可知

由442314()1

P P R R R C T R R f

?+?=

=+,可见f 与c 成正比,若要得到1Hz~10Hz ,C 1

为10F μ。10Hz~100Hz,C 2为1F μ。 则42p R R +=7.5k Ω~75k Ω,则4R =5.1k Ω 则2p R =2.4k Ω或者2p R =69.9 k Ω ∴2p R 取100 k Ω

542()10p R R R k =+≈Ω

2.7.3 正弦波部分参数确定

由于我们选取差分放大电路对三角波——正弦波进行变换,首先要完成的工作是选定三极管,我们现在选择KSP2222A 型的三极管,其静态曲线图像如右图所示。根据KSP2222A 的静态特性曲线,选取静态工作区的中心。

5,0.250.12,20c ce I mA I mA V V ββ====

由直流通路有:

112CE c C R I V =?+?12c c R R ==2 k Ω

22 6.8B B B V R I R =??=B2 k Ω

图2-10三极管静态特性曲线

42

40.710022

p o E p R V I R =+??≈Ω 因为静态工作点已经确定,所以静态电流变成已知。根据KVL 方程可计算出镜像电流源中各个电阻值的大小:

可得 432,8E E R R k R k ==Ω=Ω

第3章 EWB电路仿真及仿真结果3.1 方波--三角波电路仿真

图3-1 方波仿真波形图

图3-2 三角波仿真波形图

图3-3 方波--三角波转换波形图3.2 三角波--正弦波电路仿真

图3-4 正弦波仿真波形图

图3-6 三角波--正弦波转换波形图

图形结果分析

波形方波三角波正弦波

要求指标V

P-P ≤24V V

p-p

=6V V

P-P

=1V

仿真结果V

P-P =22.2356V V

P-P

=5.0252V V

P-P

=1.0873V

第4章电路板的调试

4.1 方波——三角波发生电路的调试

1. 接入电源后,用示波器进行双踪观察。

2. 调节RP1,使三角波的幅值满足指标要求。

3. 调节RP2,微调波形的频率。电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。若要求输出频率的范围较宽,可用C2改变频率的范围。

4. 方波的输出幅度应等于电源电压+Vcc。三角波的输出幅度应不超过电源电压+Vcc。电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

5. 观察示波器,各指标达到要求后进行下一步安装。

4.2 三角波——正弦波转换电路的调试

1. 接入直流源后,把C4接地,利用万用表测试差分放大电路的静态工作点。

2. 测试V1、V2的电压值,当不相等时调节RP4使其相等。

3. 测试V3、V4的电压值,使其满足实验要求。

4. 在C4端接入信号源,利用示波器观察,逐渐增大输入电压,当输出波形刚好不失真时记入其最大不失真电压。为使输出波形更接近正弦波,由下图可见:

图4-1 三角波--正弦波变换特性曲线

(1)传输特性曲线越对称,线性区越窄越好;

(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区;

(3)图为实现三角波——正弦波变换的电路。其中Rp3调节三角波的幅度,Rp4调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。电容

C3,C4,C5为隔直电容,C6为滤波电容,以滤除谐波分量,改善输出波形。

4.3 总电路的调试

1. 把两部分的电路接好,进行整体测试、观察。

2. 针对各阶段出现的问题,逐各排查校验,使其满足实验要求,即使正弦波的峰峰值等于1V。

4.4 调试中遇到的问题及解决方法

方波-三角波-正弦波函数发生器电路是由三级单元电路组成的,在装调多级电路时通常按照单元电路的先后顺序分级装调与级联。

4.4.1 方波-三角波发生器的装调

由于比较器A

1与积分器A

2

组成正反馈闭环电路,同时输出方波与三角波,

这两个单元电路可以同时安装。需要注意的是,安装电位器R

P1与R

P2

之前,要先

将其调整到设计值,应先使R

P1=10KΩ,R

P2

取(2.5-70)KΩ内的任一值,否则电

路可能会不起振。电路接线正确,通电后,U

O1的输出为方波,U

O2

的输出为三角

波,微调R

P1,使三角波的输出幅度满足设计指标要求有,调节R

P2

,则输出频率在

对应波段内连续可变。

4.4.2 三角波---正弦波变换电路的装调

(1)经电容C4输入差模信号电压Uid=1v,Fi =100Hz正弦波。调节Rp4及电阻R,使传输特性曲线对称。再将C4左端接地,测量差份放大器的静态工作点I0 ,Uc1,Uc2,Uc3,Uc4.

(2) Rp3与C4连接,调节Rp3使三角波输出幅度经Rp3等于Uidm值,这时Uo3的输出波形应接近正弦波,调节C6大小可改善输出波形。

第5章结论和心得

这学期我们学习了模电,老师给我们布置了模电课程设计的任务、因为学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期模电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的认知,而且还及时、真正的做到了学以致用。

通过这段时间不懈的努力与切实追求,我们小组终于做完了课程设计。通过这次课程设计,我掌握了常用元件的识别和测试;熟悉了常用的仪器仪表;了解了电路的连接、焊接方法;知道了如何判断三极管的管脚;如何接六脚开关以及如何提高电路的性能等等。

在实验过程中,我们也遇到了不少的问题。比如:波形失真,甚至不出波形这样的问题。还有就是焊接实物的问题,我们以为很简单,但其实很复杂,要对焊板上的元件进行布置和焊接电路元件连线,这有很大的难度。在此期间,除

了对元件较好的焊接外,还要考虑电路元件间的影响(即元件之间信号的干扰等问题),还要考虑元件连线的不相交以及焊板面积的大小、元件摆放和连线的美观性等,所以想要焊出一块实用又美观的板子,还要经过一番考虑和布置。但是最后在老师和同学的帮助以及自己的不断努力下,把问题一一解决了,那种心情别提有多高兴啊。实验中暴露出我们在理论学习中所存在的问题,有些理论知识还处于懵懂状态,所以,我们要加强对理论知识的学习。

作为一个电气工程及其自动化专业的学生,我深知课程设计的重要性。这次课程设计我从刚开始的什么都不懂不会不敢不碰,到现在的基本了解了一个电路元件是如何构成的,还有以前看的集成板上让人难琢磨的电路焊接图我都可以看懂一些了,其中的电路仿真也让我对以前学习的电路知识有了详细地了解。总的来说我们顺利完成了这次的模拟电子技术的课程设计。

很感谢老师这次布置的作业,为我们以后的实践打下了坚实的基础。

参考文献

《电子线路设计·实验·测试》谢自美主编华中科技大学出版社

《模拟电子技术基础》康华光主编高等教育出版社

《模拟电子技术》胡宴如主编高等教育出版社

开题报告(简易多功能信号发生器)

枣庄学院 本科生毕业设计(论文) 开题报告 (20**届) 简易多功能信号发生器的电路设计 姓名:*** 学号:20080613**** 专业:过程装备与控制工程 班级:2008级本科(*)班 学院:机电工程学院 指导老师:** 20**年2月25日

一、研究的目的与意义 信号发生器作为科学实验必不可少的装置,被广泛地应用到教学、科研等各个领域。高等学校特别是理工科的教学、科研需要大量的仪器设备,例如信号源、示波器等,常用仪器都必须配置多套,但是有些仪器设备价格昂贵,如果按照传统模式新建或者改造实验室投资巨大,造成许多学校仪器设备缺乏或过时陈旧,严重影响教学科研。如果运用虚拟仪器技术构建系统,代替常规仪器、仪表,不但可以满足实验教学的需要、节约大量的经费、降低实验室建设的成本,而且能够提高教学科研的质量与效率。目前我国经济开始进入一个新的发展时期,经济的快速发展将加快企业的技术改造步伐,各行业特别是电子、通信行业对先进任意波发生器的需求更加强劲。高档台式仪器加工工艺复杂,对制造水平要求高,生产突破有困难,而采用虚拟技术后,就可通过只采购适合自己应用情况的通用仪器硬件,依靠虚拟仪器软件开发平台,设计出所需的高性能价格比的仪器系统。虚拟仪器是在以通用计算机为核心的硬件平台上,由用户自己设计定义,具有虚拟面板,测试功能由测试软件实现的一种计算机仪器系统。虚拟仪器是以计算机为基础,配以相应测试功能的硬件作为信号输入输出的接口,利用虚拟仪器软件开发平台在计算机的屏幕上虚拟出仪器的面板,人们通过鼠标或键盘操作虚拟仪器面板上的旋钮、开关和按键,去选用仪器功能,设置各种工作参数,启动或停止一台仪器的工作。它能够实现普通仪器的全部功能,如示波器、逻辑分析仪、信号发生器、频谱分析仪等,也能够实现一些在普通仪器上无法实现的功能。这种方式不但让用户享用到通用 PC 机不断升级的性能,还可体会到完全自定义的测量系统功能的灵活性,最终构建起满足特定需求的系统。虚拟仪器是测试技术与计算机深层次结合的产物,其实质是利用最新的计算机技术来实现和扩展传统仪器的功能。虚拟仪器应用软件是整个系统的关键。因此,从某种意义上可以说:软件就是仪器。与传统的仪器相比,虚拟仪器更通用、更灵活、更经济,而且更能适应当代科学技术对测量仪器不断提出的更新、扩展功能和性能的要求。 二、国内外的研究状况 波形发生器亦称函数发生器,作为实验用信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿、正弦、方波、三角等波形。信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用 555 振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的 RC 很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。一旦工作需求功能有增加,则电路复杂程度会大大增加。 波形发生器是能够产生大量的标准信号和用户定义信号,并保证高精度、高稳定性、可重复性和易操作性的电子仪器。函数波形发生器具有连续的相位变换、和频率稳定性等优点,不仅可以模拟各种复杂信号,还可对频率、幅值、相移、波形进行动态、及时的控制,并能够与其它仪器进行通讯,组成自动测试系统,因此被广泛用于自动控制系统、震动激励、通讯和仪器仪表领域。 在 70 年代前,信号发生器主要有两类:正弦波和脉冲波,而函数发生器介于两类之间,能够提供正弦波、余弦波、方波、三角波、上弦波等几种常用标准波形,产生其它波形时,

简易信号发生器课程设计1

2011~ 2012学年第二学期 《简易信号发生器》 课程设计报告 题目:简易信号发生器设计 专业:电气工程及其自动化 班级:10电气工程本一班 姓名:李鹏、王松、薛冬冬、汤聪、戚传 东、刘欢冯登宇、张正义、、靳垒垒、 杨磊 指导教师:江春红 电气工程系 2012年5月04日

1、任务书

-1- 简易信号发生器设计 摘要 信号发生器是工业生产、产品开发、科学研究等领域必备的工具,它产生的锯齿波和正弦波、矩形波、三角波是常用的基本测试信号。它根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如ICL8038,Max038以及国产的5G8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的。 通过这次设计,我们的理论知识掌握得更扎实,动手能力明显提高。同时,通过网上搜索等多方面的查询资料,我们学到许多在书本上没有的知识,也认识到理论联系实践的重要。理论学得好,但如果只会纸上谈兵,一点用都没有。以后也很难找到工作。通过本次设计能使我们对电子工艺的理论有了更进一步的系统了解。我们了解到了设计小电子产品的一些常规方法,以及培养了我们团队合作的能力,在讨论设计方案,计算元件参数,购买元件,制作电路板,安装调试方面都体会到了团队的力量。 本次课程设计的课题是简易信号发生器,本课程设计将简易信号的工作原理、参数计算、元件选取等做详细的介绍和说明。

简易矩形波发生器报告

数字电路设计研讨 --简易矩形波信号发生器 姓名:尹晨洋 学号:13211023 班级:通信1301 同组成员:程永涛 学号:13211007 指导老师:任希

目录 一、综述************************************************************ 1 二、电路元件结构及工作原理***************************** 1 1)、555计数器******************************************************** 1 2)、74ls160同步计数器************************************************ 2 3)、74ls175 4位寄存器************************************************* 4三、频率可调的矩形波发生器***************************** 4 1)、频率可调的矩形波发生器电路图仿真电路图******************************* 4 2)、频率可调的矩形波发生器工作原理分析*********************************** 4 3)、仿真结果分析******************************************************** 5四、可显示频率计数器***************************************** 6 1)、可显示频率计数器仿真电路图******************************************** 6 2)、工作原理分析********************************************************* 6 3)、仿真结果分析********************************************************** 7 4)、实验误差************************************************************** 9 五、总结与体会************************************************** 9 六、参考文献*******************************************************

基于STM32的简易信号发生器

绍兴文理学院 数理信息学院 课程设计报告书题目基于STM32的简易信号发生器电子信息工程专业 1班 姓名 xxx 指导教师 xxx 时间 2014年 7月12日

课程设计任务书

基于STM32的简易波形发生器 摘要 函数信号发生器是一种能够产生多种波形,如正弦波、方波、三角波、锯齿波等的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出以上波形的波形发生器。本课题采用STM32[1]为控制芯片,采用DDS[2]的设计方法,可将采样点经D/A[3]转换后输出任意波形,可通过调节D/A转换的频率来调节输出波形的频率,也可通过改变取点的起始位置来调节波形的初始相位。 关键词信号发生器STM32 DDS

目录 课程设计任务书.............................................................................................................................. I 摘要……………………………………………………………………………………………….II 1 设计概述 (1) 2 设计方案 (2) 3 设计实现 (3) 3.1 设计框图及流程图 (3) 3.2 MCU控制模块 (5) 3.3 按键控制模块 (5) 3.4 信号输出模块 (6) 3.5 LCD显示模块 (8) 4 设计验证 (8) 5 总结 (11)

1设计概述 信号发生器作为一种历史悠久的测量仪器,早在20年代电子设备刚出现时就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使得信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或作脉冲调制器的脉冲信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器。这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。 自从70年代微处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对D/A的程序控制,就可以得到各种简单的波形。 在80年代以后,数字技术日益成熟,信号发生器绝大部分不再使用机械驱动而采用数字电路,从一个频率基准有数字合成电路产生可变频率信号。 90年代末出现了集中真正高性能的函数信号发生器,HP公司推出了型号为HP770S的信号模拟装置系统,它是由HP8770A任意波形数字化和HP1770A波形发生软件组成。 信号发生器技术发展至今,引导技术潮流的仍是国外的几大仪器公司,如日本横河、Agilent、Tektronix等。美国的FLUKE公司的FLUKE-25型函数发生器是现有的测试仪器中最具多样性功能的几种仪器之一,它和频率计数器组合在一起,在任何条件下都可以给出很高的波形质量,能给出低失真的正弦波和三角波,还能给出过冲很小的快沿方波,其最高频率可达到5MHz,最大输出幅度可达到10Vpp。 国内也有不少公司已经有了类似的仪器。如南京盛普仪器科技有限公司的SPF120DDS信号发生器,华高仪器生产的HG1600H型数字合成函数\任意波形信号发生器。国内信号发生器起步晚,但发展至今,已经渐渐跟上国际的脚步,能够利用高新技术开发出达到国际水平的高性能多功能信号发生器。 信号发生器在生产实践和科技领域中有着广泛的应用,各种波形曲线均可用三角函数方程式来表达。函数信号发生器是各种测试和实验过程中不可缺少的工具,在通信、测量 雷达、控制教学等领域应用十分广泛。不论是在生产、科研还是在教学上,信号发生器都是电子工程师信号仿真实验的最佳工具。而且,信号发生器的设计

简易信号发生器单片机课程设计报告

课程设计(论文)任务书 电气学院电力系统及其自动化专业12(1 )班 一、课程设计(论文)题目:简易信号发生器设计 二、课程设计(论文)工作自 2015年1 月12 日起至2015 年 1月16 日止。 三、课程设计(论文) 地点:电气学院机房 10-303 四、课程设计(论文)内容要求: 1.课程设计的目的 (1)综合运用单片机原理及应用相关课程的理论知识和实际应用知识,进行单片机应用系统电路及程序设计,从而使这些知识得到进一步的巩固,加深和发展;(2)熟悉和掌握单片机控制系统的设计方法,汇编语言程序设计及proteus 软件的使用; (3)通过查阅图书资料、以及书写课程设计报告可提高综合应用设计能力,培养独立分析问题和解决问题的能力。 2.课程设计的内容及任务 (1)可产生频率可调的正弦波(64个点)、方波、锯齿波或三角波。 (2)显示出仿真波形。 (3)通过按键选择输出波形的种类。 (4)在此基础上使输出波形的幅值可控。

3.课程设计说明书编写要求 (1)设计说明书用A4纸统一规格,论述清晰,字迹端正,应用资料应说明出处。(2)说明书内容应包括(装订次序):题目、目录、正文、设计总结、参考文献等。应阐述整个设计内容,要重点突出,图文并茂,文字通畅。 (3)报告内容应包括方案分析;方案对比;整体设计论述;硬件设计(电路接线,元器件说明,硬件资源分配);软件设计(软件流程,编程思想,程序注释,) 调试结果;收获与体会;附录(设计代码放在附录部分,必须加上合理的注释)(4) 学生签名: 2015年1月16 日 课程设计(论文)评审意见 (1)总体方案的选择是否正确;正确()、较正确()、基本正确()(2)程序仿真能满足基本要求;满足()、较满足()、基本满足()(3)设计功能是否完善;完善()、较完善()、基本完善()(4)元器件选择是否合理;合理()、较合理()、基本合理()(5)动手实践能力;强()、较强()、一般()(6)学习态度;好()、良好()、一般()(7)基础知识掌握程度;好()、良好()、一般()(8)回答问题是否正确;正确()、较正确()、基本正确()、不正确() (9)程序代码是否具有创新性;全部()、部分()、无() (10)书写整洁、条理清楚、格式规范;规范()、较规范()、一般()总评成绩优()、良()、中()、及格()、不及格() 评阅人:

基于单片机的多功能信号发生器的系统设计与应用

基于单片机的多功能信号发生器的系统设计与应用 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。 随着集成芯片制造工艺的进一步发展,一些高性能的波形产生专用芯片逐渐被应用到该领域并获得成功。波形发生装置的电路设计得到进一步简化,而与此同时,所产生的波形的质量却得到了显著提高。例如应用比较广泛的DDS芯片AD9833系列,能制作出各种频带宽,质量高的波形信号,例如应用高性能的AD9833芯片,可以做出频率1GHZ以上,频率分辨率0.1HZ以下的优质波形[2]。 科技不断发展,在各个领域对信号产生电路提出了越来越高的要求。以往那些只具有单一优势的波形发生装置的应用越来越受到限制。例如用模拟器件构成的波形发生器电路简单可靠、信号频率较高,但可调节性差;采用数字电路为核心的波形发生装置所产生的信号可调节性好,但电路复杂,而频率又不易做的很高。较为理想的波形发生装置应该同时具备多方面的优良品质,信号的频带应该较宽,而且步进精确。另外,微型化也是信号产生装置的发展趋势之一,这样,才能将信号发生装置方便的嵌入到各种仪器设备中。随着芯片制造工艺的不断提高,性能更高、体积更小的专用信号处理芯片必将会越来越多地应用到信号产生电路中,使更高质量的信号的产生成为可能。 DDS技术的实现,一般有如下几种可选的方案。首先是使用专用的DDS芯片,例如应用比较广泛的DDS芯片AD9833系列。专用DDS芯片性能可靠,特别是在高频领域,有着无可替代的地位。但在中低频领域,专用DDS芯片却不一定是唯一的选择。

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

信号发生器实验报告(DOC)

信号发生器 F组 组长:*** 组员:***、*** 2013年8月12日星期一

1系统方案 (4) 1.1系统方案论证与选择 (4) 1.2方案描述 (4) 2理论分析与计算 (5) 3电路与程序设计 (6) 3.1电路的设计 (6) 3.1.1 ICL8038模块电路 (6) 3.1.2 放大电路 (6) 3.2程序的设计 (7) 4测试方案与测试结果 (9) 4.1测试仪器与结果 (9) 4.2调试出现的问题及解决方案 (9) 5 小结 (10)

本系统设计的是信号发生器,是以 ICL8038和 STC89C51为核心设计的数控及扫频函数信号发生器。ICL8038作为函数信号源结合外围电路产生占空比和频率可调的正弦波、方波、三角波;该函数信号发生器的频率可调范围1~100kHz,波形稳定,无明显失真。单片机控制LCD12864液晶显示频率、频段和波形名称。 关键字:信号发生器ICL8038、 STC89C51、波形、LCD12864

信号发生器实验报告 1系统方案 1.1系统方案论证与选择 方案一:由单片机内部产生波形,经DAC0832输出,然后再经过uA741放大信号后,最后经过CD4046和CD4518组成的锁相环放大频率输出波形,可是输出的波形频率太低,达不到设计要求。 方案二:采用单片机对信号发生器MAX038芯片进行程序控制的函数发生器,该发生器有正弦波、三角波和方波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。MAX038为核心构成硬件电路能自动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯片价格太高,过于昂贵。 方案三:利用芯片ICL8038产生正弦波、方波和三角波三种波形,根据电阻和电容的不同可以调节波形的频率和占空比,产生的波形频率足够大,能达到设计要求,而且ICL8038价格比较便宜,设计起来成本较低。 综上所述,所以选择第三个方案来设计信号发生器。 1.2方案描述 本次设计方案是由ICL8038 芯片和外围电路产生三种波形,由公式: ,改变电阻和电容的大小可以改变波形的频率,有开关控制频段和波形并给单片机一个信号,由单片机识别并在LCD液晶屏上显示,电路的系统法案框图为下图1所示: 图1 总系统框图

多功能信号发生器课程设计要点

课题:多功能信号发生器专业:电子信息工程 班级:1班 学号: 姓名: 指导教师:汪鑫 设计日期: 成绩: 重庆大学城市科技学院电气学院

多功能信号发生器设计报告 一、设计目的作用 1.掌握简易信号发生器的设计、组装与调试方法。 2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。 3.加深对模拟电子技术相关知识的理解及应用。 二、设计要求 1.设计任务 设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下: (1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波; (2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%; (3)输出三角波幅度V=0-5V可调。 (4)输出方波幅度可在V=0-12V之间可调。 2.设计要求 (1)设计电路,计算电路元件参数,拟定测试方案和步骤; (2)测量技术指标参数; (3)写出设计报告。 三、设计的具体实现 1、系统概述 1.1正弦波发生电路的工作原理: 产生正弦振荡的条件: 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。 正弦波振荡电路的组成判断及分类: (1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。 (2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。 (3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。 判断电路是否振荡。方法是: (1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产

简易函数信号发生器

课程设计任务书 (一)设计目的 1、掌握信号发生器的设计方法和测试技术。 2、了解单片函数发生器IC8038的工作原理和应用。 3、学会安装和调试分立元件与集成电路组成的多级电子电路小系统。 (二)设计技术指标与要求 1、设计要求 (1)电路能输出正弦波、方波和三角波等三种波形; (2)输出信号的频率要求可调; (3)拟定测试方案和设计步骤; (4)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (5)在面包板上或万能板或PCB板上安装电路; (6)测量输出信号的幅度和频率; (7)撰写设计报告。 2、技术指标 频率范围:100Hz~1KHz 1KHz~10KHz; 输出电压:方波V P-P≤24V,三角波V P-P=6V,正弦波V P-P=1V;方波t r小于1uS。 (三)设计提示 1、方案提示: (1)设计方案可先产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波;也可先产生三角波-方波,再将三角波变成正弦波。 (2)也可用单片集成芯片IC8038实现,采用这种方案时要求幅度可调。 2、设计用仪器设备: 示波器,交流毫伏表,数字万用表,低频信号发生器,实验面包板或万能板,智能电工实验台。 3、设计用主要器件: (1)双运放NE5532(或747)1只(或741 2只)、差分管3DG100 4个、电阻电容若干; (2)IC8038、数字电位器、电阻电容若干。 4、参考书: 《电子线路设计·实验·测试》谢自美主编华中科技大学出版社 《模拟电子技术基础》康华光主编高等教育出版社 《模拟电子技术》胡宴如主编高等教育出版社 (四)设计报告要求 1、选定设计方案; 2、拟出设计步骤,画出设计电路,分析并计算主要元件参数值; 3、列出测试数据表格; 4、调试总结,并写出设计报告。 (五)设计总结与思考 1、总结信号发生器的设计和测试方法;

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

多功能信号发生器

电子技术课程设计题目:多功能信号发生器 院系:xxxxxxxxx 专业:xxxxxxxxxx 班级:xxxxxxxxxxxxxx 学号:xxxxxxxxxxxxxxxxxxxxxx 姓名: xxxxxxxxxxx 指导老师:xxxxxxxxxx 日期:2012年12月21日

目录 一.课程设计的目的............................................................................... 二.课程设计任务书............................................................................... 三.时间进度安排.................................................................................... 1. 方案选择及电路工作原理........................................................... 2. 单元电路设计计算、电路图及软件仿真........................................ 3. 安装、调试并解决遇到的问题....................................................... 4. 电路性能指标测试............................................................................ 5. 写出课程设计报告书........................................................................ 四.总体方案............................................................................................ 五.电路设计............................................................................................ 1.8038原理和LM318的原理.............................................................. 2.性能、特点及引脚............................................................................ 3.电路设计的原理............................................................................. 4.振动频率及参数计算........................................................................ 六.电路调试............................................................................................ 七.收获和体会.......................................................................................

简易函数信号发生器的设计

单片机课程设计报告书 课题名称 简易函数信号发生器的设计 姓 名 ** 学 号 ** 院、系、部 ** 专 业 电子信息科学与技术 指导教师 ** 2011年12月12日 ※※※※※※※※※ ※ ※ ※※ ※ ※ ※※※※※※※※※ **级学生单片机 课程设计

目录 一、绪言 (1) 二、系统方案论证 (1) 2.1设计要求 (1) 2.2 简易函数信号发生器方案论证 (1) 2.3 单片机的控制方案论证 (1) 2.4 键盘选择方案论证 (2) 三、系统设计 (2) 3.1 硬件电路设计 (2) 3.2 程序流程图 (4) 3.3 C语言程序设计 (5) 四、简易函数信号发生器的仿真 (8) 4.1 系统仿真 (8) 4.2工作原理分析 (10) 结束语 (11) 参考文献 (11) 修改通篇页面设置里面的左右边距

一绪言 函数发生器是一种多波形的信号源。它可以产生正弦波、方波、三角波、锯齿波,甚至任意波形。函数发生器有很宽的频率范围,使用范围很广,它是一种不可缺少的通用信号源。因此设计使用的AT89S52单片机构成的发生器,可以产生正弦波和方波。 二系统方案论证 2.1设计要求 1、设计一个基于AT89S52单片机的信号发生器; 2、能够输出方波和正弦波(正弦波是双极性的),要求可用按键选择; 3、可选电压值为1V、2V、3V、4V、5V五个档位; 4、可选频率值为:10Hz、20Hz、50Hz、100Hz、200Hz、500Hz、1KHz七个档位; 5、能够通过显示模块显示输出波形的主要参数。 2.2 简易函数信号发生器方案论证 方案一:用分立元件组成函数发生器,通常是单函数发生器且频率不高,其工作不很稳定,不易调试。 方案二:可以由晶体管,运放 IC等通用器件制作,更多的则是用专用的函数信号发生器IC产生。早期的函数信号发生器IC,如L8083、BA205等,他们的功能少,精度不高,频率上限只有300KHz,频率和占空比不能独立调节,二者相互影响。 方案三:利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并且达到很高的频率。但成本很高。 方案四:采用 AT89S52单片机和DAC0832芯片,直接连接按键和显示。该种方案主要对AT89S52单片机的各个I/0口充分利用,不再多用其他的芯片,从而减小了系统的成本,也对按照系统便携式低频信号发生器的要求所完成,占用空间小,使用空间小,使用芯片少,低功耗。 综合考虑,方案四各项性能和指标都优于其他各种方案,能使输出频率有较好的稳定性,充分体现了模块化设计的要求,而且这些芯片和器件均为通用器件,在市场上较常见,价格也低廉,样品制作成功的可能性比较大,所以本设计采用方案四。 2.3 单片机的控制方案论证 方案一:采用可编程逻辑期间CPLD 作为控制器。CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

简易函数信号发生器的设计报告

漳州师范学院《模拟电子技术》课程设计 设计题目:简易函数型号发生器的设计姓名: 学号 系别:物理与电子信息工程系 专业:电气工程及其自动化 年级: 指导教师: 2012年5月9日

目录 摘要 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 4 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 4 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 4 二方案选择与比较┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 5 三电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 7 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄7 2.方波--三角波发生电路┄┄┄┄┄┄┄8 3.正弦波发生电路┄┄┄┄┄┄┄┄┄9 4.M ultisim软件仿真┄┄┄┄┄┄┄┄┄11 四PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14五实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄┄15 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄15 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄16

3.实验结果分析及与仿真对比┄┄┄┄┄┄19 六设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20七原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21

摘要 本方案采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易函数信号发生器。LM324集成运放放大器芯片中四个独立的运算放大器可分别构成滞回比较器、积分器和二阶有源低通滤波器电路。通过滞回比较器产生方波,再由积分器将方波变换为三角波然后通过二阶有源低通滤波器电路将三角波转换为正弦波。这样就可以构成一个简易的函数信号发生器。 关键词:LM324;滞回比较器;积分运算器;二阶有源低通滤波电路

一系统设计 1 设计任务 利用集成运算放大器LM324设计一个简易函数信号发生器,要求能产生正弦波、方波和三角波三种波形。 2 设计要求 采用双电源供电形式:电源Vcc=+12V、V EE=-12V;要求在2KW 输出信号满足: (1)正弦波:V pp≥10V;方波:V pp≤14V;三角波:V pp≤8V;(2)频率范围:200Hz~3KHz范围内连续可调; (3)波形无明显失真。

简易脉冲信号发生器

学号10780133 EDA技术及应用 设计说明书 简易脉冲信号发生器 起止日期:2013 年12 月16日至2013 年12 月20 日 学生姓名高雪 班级10信科1班 成绩 指导教师(签字) 计算机与信息工程学院 2013年12 月20 日

天津城建大学 课程设计任务书 2013—2014学年第1学期 计算机与信息工程学院电子信息科学与技术专业一班级 课程设计名称:EDA技术及应用 设计题目:简易脉冲信号发生器 完成期限:自2013 年12月16 日至2013 年12 月20 日共 1 周 一.课程设计依据 在掌握常用数字电路原理和技术的基础上,根据EDA技术及应用课程所学知识,利用硬件描述语言(VHDL或VerilogHDL),EDA软件(QuartusⅡ)和硬件开发平台(达盛试验箱CycloneⅡFPGA)进行初步数字系统设计。 二、课程设计内容 设计一个简易方波信号发生器,要求能够根据输入信号选择输出不同频率和占空比的脉冲波。输出频率为100,1K,10KHz,每个频率占空比均可在0.1,0.2 ….0.9,档位调节。要求频率可在数码管显示100Hz 的输出至LED灯上显示结果,1K信号输出后经滤波器驱动蜂鸣器测试。 三、课程设计要求 1、要求独立完成设计任务。 2、课程设计说明书封面格式要求见《天津城市建设学院课程设计教学规范》附表1。 3、课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4、测试要求:根据题目的特点,采用相应的时序仿真或者在实验系统上观察结果。 5、课程设计说明书要求: 1)说明题目的设计原理和思路、采用方法及设计流程。 2)系统框图、Verilog HDL语言设计程序或原理图。 3)对各子模块的功能以及各子模块之间的关系做较详细的描述。 4)详细说明调试方法和调试过程。 5)说明测试结果:仿真时序图和结果显示图,并对其进行说明和分析。 指导教师(签字): 教研室主任(签字): 批准日期:2013 年12月12日

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

课设报告——简易信号发生器

简易信号发生器设计 摘要 随着电子技术的飞快发展,单片机也应用得越来越广泛,基于单片机的智能仪器的设计技术不断成熟。 单片机构成的仪器具有高可靠性,高性价比。单利用单片机采用程序设计方法来产生波形,线路相对简单,结构紧凑,价格低廉,频率稳定度高,抗干扰能力强等优点,而且还能对波形进行细微的调整,改良波形,易于程序控制。只要对电路稍加修改,调整程序,就能实现功能的升级。 本系统利用单片机AT89C51采用程序设计方法产生正弦波、三角波、方波、锯齿波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,并通过按键来控制四种波形的类型选择。本次设计主要由信号发生模块、数模转换模块和仿真模块。 关键词:单片机;数模转换;液晶显示屏

目录 第1章概述 (1) 第2章系统总体方案选择 (1) 2.1 系统硬件设计图 (1) 2.2 系统软件设计 (1) 第3章各单元硬件设计及工作原理 (2) 3.1 单片机最小系统的设计 (2) 3.2 函数信号发生器的设计 (2) 3.2.1 DAC0832芯片工作方式的选择 (2) 3.2.2 DAC0832芯片外围电路的设计 (2) 3.3 LCD12864显示屏 (3) 3.3.1 LCD12864与LCD1602的区别 (3) 3.3.2 LCD12864显示屏原理及其硬件设计 (3) 第4章软件设计与说明 (3) 4.1 软件设计思路 (3) 4.2 波形数据输出程序设计 (4) 4.3 LCD12864显示程序设计 (5) 第5章调试结果及其说明与使用说明 (6) 5.1调试过程中遇到的问题 (6) 5.1.1 LCD12864显示问题 (6) 5.1.2 幅值调节问题 (6) 5.2使用说明 (6) 第6章总结 (7) 第7章参考文献 (8) 附录 (9)

相关文档
最新文档