简易电阻、电容和电感测量仪
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛题目:简易电阻、电容和电感测量仪
2012年4月10日
简易电阻、电容和电感测量仪
摘要:本系统是以STM32为控制系统的简易数字式电阻、电容和电感测量仪。系统利用半桥测量RLC的原理,设计了由信号产生电路、半桥电路、信号放大电路、真有效值测量电路、相位检测电路构成的系统。电阻、电容和电感的信息通过半桥电路变成电信号,由放大电路和检测电路变换为可测量量,由控制系统计算得到元器件信息。整个系统可以实现电阻、电容和电感的测量。
关键词:RLC测量仪半桥电路真有效值测量相位检测STM32
1.绪论
现今的万用表可以测量交流电压,交流电流,直流电压,直流电流,电阻,二极管正向压降,晶体管共发射极电流放大系数,有一些还能测试电容量,电导,温度等,但是对于电感量却不能直接测出,也不能够免掉在不同测量量之间切换的麻烦。在模拟电子技术中,最基本的元器件莫过于电阻、电容和电感,如何准确、快速的测出这三者各项系数对于快速选择元器件和设计和搭建电路至关重要。
本组成员通过参看国内外万用表数据资料,了解其工作原理,并借鉴有关RLC测量的方法,通过对比谐振法和电桥法,并根据客观条件,选用了一种既能够较准确的测量各项参数,又符合实际条件的方法——电桥法。
2.方案论证
总体方案
题目要求系统能对电阻、电容、电感测量,测量范围:电阻100Ω~1MΩ;电感100Pf~10000pF;电感100uH~10mH;测量精度为±10%。
方案一:运用谐振法,利用不同的频率使RLC电路产生谐振,从而测量出R、L、C参数。利用信号源产生两种不同分辨率、两种不同频率范围的纯正弦波信号;
经宽带稳压放大电路放大,形成检测电路需要的10V 恒压;测试接口电路根据测试参数自动切换量程;通过A/D 转换芯片检测接口电路中电容两端电压,经MCU 处理;MCU 根据谐振时,电容两端电压最大原理判断电路是否处于谐振,在谐振时,多次重复测量相关参数以减少随机误差,最后将计算结果显示。基本系统如下:
图1
缺陷:对信号源要求比较高,要发生几Hz到几十MHz的信号,在几Hz的频率下,容易有外部杂波干扰,使测试数据不准确,要发生MHz以上的信号时,硬件电路很难满足要求,要切换不同频率的信号,并且要在满足电容两端电压最大的条件下才能读取数据,使测量速度变得很慢。
方案二:电桥法:利用数字半桥的原理,R、L、C的参数通过半桥电路变为幅度信号和相位差信号,通过测量电路测量信号幅度和相位差,通过计算测量幅值关系和相位关系得到电阻电容电感各项参数。系统框图具体如下
图2
方案二中电阻、电容、电感测量都在半桥电路上进行的,因此只在半桥电路上设计几个档位,采用阻抗—有效电压法对分立元件进行参数测量,就可满足题目对测量范围和测量精度的要求综上所述,我们选择方案二。
信号产生方案
要测量电阻、电容和电感的参数,就必须将这些参数转换为电信号,因此就需要一个信号源,考虑到电容和电感的阻抗跟频率有关,因此我们需要一个能产生一定幅值,一定频率的正弦波发生器,我们考虑以下方案。
方案一:利用函数发生器ICL8038产生正弦波,ICL8038可以同时产生方波、三角波和正弦波,通过调节外部电路参数时,还可以获得不同频率不同占空比的波形。
方案二:采用DDS的方法使用CPLD+ROM+DA的方法查表产生正弦波,DDS 技术是一种数字化合成频率的技术,只要改变系统时钟和ROM表和相位累加字,便可不同频率不同类型的波形。
方案三:利用函数发生器MAX038产生正弦波,MAX038可以同时产生方波、三角波和正弦波,通过调节外部电路参数时,还可以获得不同频率不同占空比的波形。
方案比较:方案一产生测试频点的成本有很大的优势,但其产生正弦波是由三角波折线法变换而来,波形不纯粹谐波成分较多,因此测试的结果精度会被影响。方案二利用DDS技术产生波形有输出相位噪声低,对参考频率源的相位噪声求低,而且频率精准等优点,但是方案二中要改变系统时钟和ROM表和相位累加字,实现起来硬件电路较复杂,成本更高。方案三虽然只是与方案一的选用芯片不同,但是相比方案一,其外围电路更加简单,产生的信号谐波成分很少,精度很高,输出幅值稳定,频率稳定性高且可调。综上,方案一不能满足要求,方案二中DDS方法能够完全达到要求,而方案三已经能够满足此题的要求,并且电路简单,因此选择方案三。
半桥电路方案
我们利用半桥电路的原理对元件参数测量,半桥电路的种类不多,而且其效果也差不多不影响题目指标的实现,因此我们选择如下的经典电路作为半桥电路对元件进行测量。
图3
参数测量电路方案
参数测量电路是和半桥电路配合的,对器件相关参数进一步测量的电路,所以电路的性能会直接影响测量的精度,我们考虑了以下方案。
方案一:使用自由轴法的原理设计相敏检波器,同时对半桥电路输出信号的幅度和相位值的检测,变换为电压信号,利用微处理器强大的运算能力,计算出元件相关参数。本方法是工程上普遍使用的方法,其能达到的精度也相当不错。可是他需要两个相位差为严格90度的参考信号对信号检测,不容易实现这样的要求,并且电路也较复杂。
方案二:分别对半桥电路的电压和相位进行测量。电压用真有效值检测芯片来测量,现在已经有很准确的有效值检测集成电路AD637,能很好提高测量精度,且测量电路简单,利用A/D转换器将AD637输出的模拟量转化成能被处理器识别的数字量,从而通过微处理器计算出电容、电感和电阻的参数。相位测量使用微处理器的定时器计时功能测量出来,实际表明这种测量相位的方法精度满足了要求。
因此选择方案二。
控制和计算系统方案
这是一个对电阻、电感、电容进行测量的系统,因此需要计算的信息量和数据处理量相对比较大,涉及到大范围时档位的选择切换比较复杂,而题目没对系统功耗有相应的要求,我们有如下两种方案:
方案一:用51单片机作为控制系统。51作为控制系统理论上可以满足上述要求,但是51单片机处理速度有限,使得测量阻抗精度不高,而且片内资源有限,要测量Us和Ux还要外接AD,增加了硬件连接的复杂性。
方案二:考虑到STM32F103丰富的IO资源和出色的信号处理能力能很好的满足要求,且其自带有12位的A/D转换器的片内资源,不仅省掉了外接A/D 转换电路的麻烦,而且还能获得一个较为精确的测量值。因此我们选择了STM32F103为处理系统,负责A/D转换和整个系统参数测量计算及档位选择。
如图3所示,半桥电路的输出信号Us和基准信号Ux(没有经过半桥电路)的关系如下:
对于电阻R:R=Zx=Rs*Ux/Us
因此,只要通过有效值检测芯片测出有效值Us和Ux,通过以上公式就能计简便的算出电阻阻值,供电电源为+15V时,信号源输出电压有1V的Vpp时,输出Vpp最多达到10V,因此设计7个档位便能达到1~10M(如1k档能有效的测量100~1k电阻)的测量范围。
对于电感L:Zx=Rs*Ux/Us L=Zx/ω(ω=2πf)
因此,方法只在电阻的测量基础上除个频率相关量便可。
对于电容C;Zx=Rs*Ux/Us C=1/(Zx*ω)
因此,用此公式便可计算出容值。
显示方案
显示可用:方案一:数码管显示;方案二:LCD1602显示;方案三:LCD12864(带中文字库)显示。
数码管只能显示数字,没有中文指示效果,且占用IO口较多,故舍弃方