自组装技术经典实验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Self-Assembly & Self-Organization
Fluid Crystallization
Self-Assembly Lab & Arthur Olson
Fluid Crystallization, exhibited as part of the 2013 Architectural League Prize Exhibition, is a project that investigates hierarchical and non-deterministic self-assembly with large numbers of parts in a fluid and turbulent environment. Three hundred and fifty hollow spheres were submerged in a 200-gallon glass water-filled tank. Armatures, modeled after carbon atoms, followed intramolecular covalent bonding geometries within atoms. Intermolecular structures formed as spheres interacted with one another in 1, 2, or 3-Dimensional patterns. The highly dynamic self-assembly characteristic of the system offers a glimpse at material phase-change between crystalline solid, liquid, and gaseous states. Turbulence in the water introduced stochastic energy into the system, increasing the entropy and allowing structures to self-assemble; thus, transitioning between gas, liquid, and solid phases. Polymorphism could be observed where the same structures could solidify in more than one crystalline form, demonstrating the versatile nature of carbon as a building block for life.
Fluid Crystallization
BioMolecular Self-Assembly
Skylar Tibbits, Arthur Olson & Autodesk inc.
The BioMolecular Self-Assembly project, completed for the TED Global Conference in 2012, is a project done in collaboration with molecular biologist Arthur Olson at the Scripps Research Institute and Autodesk. This project demonstrates molecular self-assembly through tangible and physical models. The geometry and material components are based on various molecular structures including the tobacco plant virus, a ferritin protein assembly and catechol dioxygenase enzyme. Each beaker contains a single molecular structure colored either white, red or black, which could be shaken hard enough to break the structure apart, or consistently, yet randomly, to allow for the self-assembly of a complete and precise geometry.
BioMolecular Self-Assembly
Autonomous Mass-Assembly
Skylar Tibbits, Arthur Olson & Autodesk inc.
This project investigates chiral self-assembly with many parts in order to explore the aggregate behavior of simultaneous assembly and self-selection. Roughly 240 pieces are agitated stochastically to self-assemble closed dodecahedral molecular structures based on the polio virus capsid. Patterns of attraction are designed within each part to specify chemical complementarity and chirality (right and left-handedness). Over time and with the right amount of energy, precise structures emerge complete and self-sorted. This continual process shows the various stages
of assembly from independent parts to a mixture of assembled parts, then a bath of fully assembled structures and finally with additional energy input broken again into autonomous pieces. This work points towards a future of both tangible educational tools for non-intuitive scientific phenomena as well as new possibilities for industrial-scaleassembly applications.
Autonomous Mass-Assembly