《概率论与数理统计》第九章
概率论与数理统计(第9章)习题详解
习题九1 灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡【解】14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242...11==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7, =-E T A S S S =151350.8, 0.05/(1)44360.7/3 2.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响.. 【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=199462-185776.9=13685.1, 232...11==-∑A i i iT S T n n =186112.25-185776.9=335.35, =-E T A S S S =13349.65, 0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F故各班平均分数无显著差异.取显著性水平α=0.05,试分析操作工之间,机器之间以及两者交互作用有无显著差异? 【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.表9-3-122 (111)22 (12)2.....122. (11)1106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S表9-3-2得方差分析表0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.rsT ij i j r A i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑表9-4-1得方差分析表由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响.5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用L 9(34)表作9次试验及试验结果见下表:(2) 给定α=0.05,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.由于要求油体膨胀越小越好,所以从表9-5-1的极差R j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C 最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =0.128方差分析表如表9-5-3.由于0.05(2,2)19.00=F ,故因素C 作用较显著,A 次之,B 较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC ,这与前面极差分析的结果是一致的. 6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A ),施氮肥量(B ),氮、磷、钾肥比例(C ),插植规格(D )4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见下表:(2) 给定α=0.05,作方差分析,与(1)比较.【解】被考察因素有4个:A ,B ,C ,D 每个因素有两个水平,所以选用正交表L 8(27),进行极差计算可得表9-6-1.从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D 最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=18.330,f e =3,所以ee sf =6.110.而在上表中其他列中j e j es s f f <.故将所有次均并入误差,可得ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3.表9-6-3由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.。
概率论与数理统计(英文) 第九章
9. Nonparametric Statistics9.1 Sign Test 符号检验1The simplest of all nonparametric methods is the sign test, which is usually used to test the significance of the difference between two means in a paired experiment.最简单的非参数检验是符号检验检验两个总体均值差的显著程度It is particularly suitable when the various pairs are observed under different conditions, a case in which the assumption of normality may not hold. However, because of its simplicity, the sign test is often used even though the populations are normally distributed. As is implied by its name in this test only the sign of the differencebetween the paired variates is used.若两个总体的均值相等,那么符号‘+’、‘-’的概率一样。
D = sign of (X 1-X 2 )If p denotes the probability of a difference D being positive andq the probability of its being negative, we have as hypothesis p=1/2. appropriate test statistic is X , X~B (n, p), X --- N(‘+”)we will reject 0Hin favor of1Honly if the proportion of plussigns is sufficiently less than 1/2, that is , when the value x of our random variable is small. Hence, if the computed P -value12()P P X x when p =≤=is less than or equal to the significance level α, we reject 0Hinfavor of1H .we reject0Hin favor1Hwhen the proportion of plus signs issignificantly less than or significantly greater than 1/2. This, of course, is equivalent to x being sufficiently small or sufficiently large, respectively. Therefore, if /2x n < and the computed P-value 122()P P X x when p =≤=is less than or equal to α, or if /2x n > and the computed P-value 122()P P X x when p =≥= is less than or equal to α, we reject 0Hin favor1H .Car Radial tires Belted tires D1 4.2 4.1 + 2 4.7 4.9 -3 6.6 6.2 +4 7.0 6.9 +5 6.7 6.8 -6 4.5 4.4 +7 5.7 5.78 6.0 5.8 +9 7.4 6.9 +10 4.9 4.911 6.1 6.0 +12 5.2 4.9 +13 5.7 5.3 +14 6.9 6.5 +15 6.8 7.1 -16 4.9 4.8 +符号检验的利弊n 必须比较大因为对于n =5的样本,会出现永远不拒绝“总体均值相等“的假设。
海南大学《概率论与数理统计》课件 第九章 点估计
令 X ,
则 ˆ x 1 (0 75 1 90 6 1) 1.22
250
二.极大似然估计法 特点:适用总体的分布类型已知的统计模型
极大似然估计法是求估计用的最多的方法, 它最早是由高斯在1821年提出,但一般将之归 功于费舍尔(R.A.Fisher),因为费舍尔在1922 年再次提出了这种想法,并证明它的一些性质, 从而使得极大似然法得到了广泛的应用。
18
第二节 估计方法
矩估计法 极大似然估计法
19
一.矩估计法 定义:用样本矩来代替总体矩,从而得到总体 分布中参数的一种估计.这种估计方法称为 矩估计法.它的思想实质是用样本的经验分 布和样本矩去替换总体的分布和总体矩.也 称之为替换原则.
特点:不需要假定总体分布有明确的分布类型。
20
设总体X具有已知类型的概率函数 f(x;θ), θ=(θ1,…,θk) ∈Θ是k个未知参数.(X1,X2,…,Xn)是 来自总体X的一个样本.
2
参数估计的分类:
参 点估计 估计未知参数的值
数
估 计
估计未知参数的取值范围,
区间估计 并使此范围包含未知参数的
真值的概率为给定的值
3
这里所指的参数是指如下三类未知参数:
1.分布中所含的未知参数 .
如:两点分布B(1,p)中的概率p;
正态分布 N (, 2 )中的,. 2、分布中所含的未知参数的函数. 如:服从正态分布N (, 2 )的变量X不超过给定值a的
Xi=1,反之记 Xi= 0 i 1,, n .则
X1, X2 , , Xn 就是样本.总体分布为二点分
布 B1, ,参数空间 0,1 ,容易得到统计
模型
n
xi
i1
2014概率论与数理统计9-数理统计4 [兼容模式]
数学基础课许述文副教授假设检验雷达信号处理国家重点实验室许述文作品前言FOREWORD统计推断的另一类重要问题是假设检验问题。
在总体的分布函数完全未知或只知其形式、但不知其参数的情况,为了推断总体的某些未知特性,提出某些关于总体的假设。
例如,提出总体服从泊松分布的假设,又如,对于正态总体提出数学期望等于μ的假设等。
我们要根据样本对所提出的假设作出是接受还是拒绝的决策。
假设检验是作出这一决策的过程。
LOGO过渡页TRANSITION PAGE第一部分假设检验LOGO假设检验根据样本的信息检验关于总体的某个假设是否正确。
参数假设检验非参数假设检验LOGO参数假设检验让我们先看一个例子:罐装可乐的容量按标准为355毫升。
生产流水线上罐装可乐不断地封装,然后装箱外运。
怎么知道这批罐装可乐的容量是否合格呢?LOGO通常的办法是进行抽样检查:如每隔1小时,抽查5罐,得到一个容量为5的子样(x1,…,x5)。
每隔一定时间,抽查若干罐。
如何根据这些值来判断生产是否正常?LOGO在正常生产条件下,由于种种随机因素的影响,每罐可乐的容量应在355毫升上下波动。
这些因素中没有哪一个占有特殊重要的地位。
因此,根据中心极限定理,假定每罐容量服从正态分布是合理的。
μσX N(,)~2LOGOLOGO要检验的假设:0μμ=H 0:(= 355)0μ对立假设:H 1:0μμ≠称H 0为原假设(零假设);称H 1为备择假设(对立假设)。
在实际工作中,往往把不轻易否定的命题作为原假设。
LOGO如何判断原假设H 0是否成立?X 355-∴不应太大X μ∵为的无偏估计X 355-考虑对差异作定量的分析,以确定其性质:1.差异可能是由抽样的随机性引起的,称为“抽样误差”或随机误差LOGO X 355 若较大合理的界限在何处?应由什么原则来确定?认为这个差异反映了事物的本质差别,即反映了生产已不正常。
这种差异称作“系统误差”2.LOGO带概率性质的反证法小概率事件在一次试验中基本上不会发生。
浙大版概率论与数理统计答案---第九章
第九章 方差分析与回归分析注意: 这是第一稿(存在一些错误)1.解:()()()211,,n niii i i i L f y y f y x αβσεαβ======--∏∏()()()221222211122ni i i i i y x y x nni e eαβαβσσπσπσ=------=∑==∏()()()()22212,,ln ,,ln22ni i i y x l L n αβαβσαβσπσσ=--==--∑()()()()()()212212221242,,0,,0,,1022ni i i n i i i i n i i i y x l y x x l y x l n αβαβσασαβαβσβσαβαβσσσσ===⎧--⎪∂⎪==∂⎪⎪--⎪∂⎪==⎨∂⎪⎪--⎪∂⎪=-=⎪∂⎪⎩∑∑∑ 解得2ˆˆ,ˆ,ˆ.xyxxy x s s SSE n αββσ⎧⎪=-⎪⎪=⎨⎪⎪=⎪⎩则α、β的极大似然估计与最小二乘估计一致。
2σ的极大似然估计为SSE n ,最小二乘估计为2SSE n -,为2σ的无偏估计。
2.解: (1)由题意,知0123:H μμμ==,1123:,,H μμμ不全相等计算有112312.54ni i i x n x n n n ⋅===++∑ 321()0.738i A i i S n x x ⋅==-=∑,321() 5.534in T ij i i jS x x ===-=∑∑4.796E T A S S S =-=,/(31)0.369A A MS S =-=123/(3)0.178E E MS S n n n =++-=,/ 2.077A E F MS MS == 所以单因素方差分析表为: 方差来源 自由度 平方和 均方 F 比 因素A 2 0.738 0.369 2.077 误差 27 4.796 0.178 总和295.534由于 2.077F =<(2,27) 3.3541F α=,接受0H(2)2σ的无偏估计量为:123/(3)0.178E E MS S n n n =++-=3.解:(1)61n =,4r =,(2)0.05(3,57) 2.76 3.564F ≈<,则拒绝原假设,即认为不同年级学生的月生活费水平有显著差异。
自考04183概率论与数理统计(经管类) 自考核心考点笔记 自考重点资料
《概率论与数理统计(经管类)》柳金甫、王义东主编,武汉大学出版社新版第一章随机事件与概率第二章随机变量及其概率分布第三章多维随机变量及其概率分布第四章随机变量的数字特征第五章大数定律及中心极限定理第六章统计量及其抽样分布第七章参数估计第八章假设检验第九章回归分析前言本课程包括两大部分:第一部分为概率论部分:第一章至第五章,第五章为承前启后章,第二部分为数理统计部分:第六章至第九章。
第一章随机事件与概率本章概述.内容简介本章是概率论的基础部分,所有内容围绕随机事件和概率展开,重点内容包括:随机事件的概念、关系及运算,概率的性质,条件概率与乘法公式,事件的独立性。
本章内容§1.1 随机事件1.随机现象:确定现象:太阳从东方升起,重感冒会发烧等;不确定现象:随机现象:相同条件下掷骰子出现的点数:在装有红、白球的口袋里摸某种球出现的可能性等;其他不确定现象:在某人群中找到的一个人是否漂亮等。
结论:随机现象是不确定现象之一。
2.随机试验和样本空间随机试验举例:E1:抛一枚硬币,观察正面H、反面T出现的情况。
E2:掷一枚骰子,观察出现的点数。
E3:记录110报警台一天接到的报警次数。
E4:在一批灯泡中任意抽取一个,测试它的寿命。
E5:记录某物理量(长度、直径等)的测量误差。
E6:在区间[0,1]上任取一点,记录它的坐标。
随机试验的特点:①试验的可重复性;②全部结果的可知性;③一次试验结果的随机性,满足这些条件的试验称为随机试验,简称试验。
样本空间:试验中出现的每一个不可分的结果,称为一个样本点,记作。
所有样本点的集合称为样本空间,记作。
举例:掷骰子:={1,2,3,4,5,6},=1,2,3,4,5,6;非样本点:“大于2点”,“小于4点”等。
3.随机事件:样本空间的子集,称为随机事件,简称事件,用A,B,C,…表示。
只包含一个样本点的单点子集{}称为基本事件。
必然事件:一定发生的事件,记作不可能事件:永远不能发生的事件,记作4.随机事件的关系和运算由于随机事件是样本空间的子集,所以,随机事件及其运算自然可以用集合的有关运算来处理,并且可以用表示集合的文氏图来直观描述。
概率论与数理统计第9章
n
x i 127 . 5
n
i1
n
y i 113 . 1
n
i1
n
x i 829 . 61
2
i1
yi
2
650 . 93
i1
x i y i 731 . 6
15
i1
x
n
n
1
n
xi
127 . 5 24
2
5 . 31
n
y 1 n
n
i1
n
2
1
5
若考虑两个变量
x和 y
且假定 x 和 y 之间具有线性相关关系 y 一元线性回归方程为 ~ f ( x ) 0 1 x
一元线性回归模型为 Y f ( x ) 0 1 x
0 , 1 称为回归系数
若根据样本得到
0 , 1的估计量(值)
其中 X i 是可以控制或精确观测
Y 是依赖 X i 变化的量 , 但 X i 取一固定值时
不过 Y 是一个随机变量
, 并可以确定 Y 的概率分布
y 的数学期望 EY 与 X i 有关 , 并且是 X i的函数 , 记为
EY f ( x 1 , x 2 , , x m )
因此可用函数
~ y f ( x1 , x 2 , , x m )
27
ˆ ˆ ˆ y 0 1x
ˆ ˆ 0,1
则称方程
为 y 对 x 的样本线性回归方程
6
三、样本线性回归方程的建立 1.散点图 例1.考察某种纤维的强度与其拉伸倍数的关系,下表是
实际测定的24个纤维样品的强度与相应的拉伸倍数的
概率论与数理统计第九章 方差分析
第九章方差分析在生产过程和科学实验中,我们经常遇到这样的问题:影响产品产量、质量的因素很多.例如,在化工生产中,影响结果的因素有:配方、设备、温度、压力、催化剂、操作人员等.我们需要通过观察或试验来判断哪些因素对产品的产量、质量有显著的影响.方差分析(Analysis of variance)就是用来解决这类问题的一种有效方法.它是在20世纪20年代由英国统计学家费舍尔首先使用到农业试验上去的.后来发现这种方法的应用范围十分广阔,可以成功地应用在试验工作的很多方面.第一节单因素试验的方差分析在试验中,我们将要考察的指标称为试验指标,影响试验指标的条件称为因素.因素可分为两类,一类是人们可以控制的;一类是人们不能控制的.例如,原料成分、反应温度、溶液浓度等是可以控制的,而测量误差、气象条件等一般是难以控制的.以下我们所说的因素都是可控因素,因素所处的状态称为该因素的水平.如果在一项试验中只有一个因素在改变,这样的试验称为单因素试验,如果多于一个因素在改变,就称为多因素试验.本节通过实例来讨论单因素试验.1.数学模型例9.1某试验室对钢锭模进行选材试验.其方法是将试件加热到700℃后,投入到20℃的水中急冷,这样反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表9-1.表9-1试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异.这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水平,这项试验叫做4水平单因素试验.例9.2考察一种人造纤维在不同温度的水中浸泡后的缩水率,在40℃,50℃, (90)的水中分别进行4次试验.得到该种纤维在每次试验中的缩水率如表92.试问浸泡水的温度对缩水率有无显著的影响?表9-2 (%)单因素试验的一般数学模型为:因素A 有s 个水平A 1,A 2,…,A s ,在水平A j (j =1,2,…,s )下进行n j (n j ≥2)次独立试验,得到如表9-3的结果:表9-3x 11 x 12 … x 1s x 21 x 22 … x 2s … … … … 11n x 22n x … s n s xT ·1 T ·2 … T ·s1x • 2x • … s x •μ1 μ2 … μs假定:各水平A j (j =1,2,…,s )下的样本x ij ~N (j ,),i =1,2,…,n j ,j =1,2,…,s ,且相互独立. 故x ij -μj 可看成随机误差,它们是试验中无法控制的各种因素所引起的,记x ij -μj =εij ,则⎪⎩⎪⎨⎧==+=.,),0(~,,,2,1;,,2,1,2相互独立各ij ij j ij j ij N s j n i x εσεεμ (9.1) 其中μj 与σ2均为未知参数.(9.1)式称为单因素试验方差分析的数学模型.方差分析的任务是对于模型(9.1),检验s 个总体N (μ1,σ2),…,N (μs ,σ2)的均值是否相等, 即检验假设012112:;:,,,s s H H μμμσσσ===⎧⎨⎩不全相等. (9.2) 为将问题(9.2)写成便于讨论的形式,采用记号μ=11sj j j n n μ=∑,其中n =1sjj n=∑,μ表示μ1,μ2,…,μs 的加权平均,μ称为总平均.δj =μj -μ, j =1,2,…,s ,δj 表示水平Aj 下的总体平均值与总平均的差异.习惯上将δj 称为水平A j 的效应.利用这些记号,模型(9.1)可改写成:x ij =μ+δj +εij ,x ij 可分解成总平均、水平A j 的效应及随机误差三部分之和120,~(0,),.1,2,,;1,2,,.sj j j ijij j n N i n j s δεσε=⎧=⎪⎨⎪==⎩∑各相互独立 (9.1)′假设(9.2)等价于假设012112:0;:,,,s s H H δδδδδδ====⎧⎨⎩不全零.(9.2)′ 2.平方和分解我们寻找适当的统计量,对参数作假设检验.下面从平方和的分解着手,导出假设检验(9.2)′的检验统计量.记S T =211()jn sijj i xx ==-∑∑, (9.3)这里111jns ij j i x x n ===∑∑,S T 能反应全部试验数据之间的差异.又称为总变差.A j 下的样本均值 11jn j iji jx xn •==∑. (9.4)注意到2222()()()()2()()ij ij j j ij j j ij j j x x x x x x x x x x x x x x ••••••-=-+-=-+-+--,而 1111()()()()jj n n ssij j j j ij j j i j i x x x x x x x x ••••====⎡⎤--=--⎢⎥⎣⎦∑∑∑∑=11()0.j n sj ij j j j i x x x n x ••==⎛⎫--= ⎪ ⎪⎝⎭∑∑记 S E =211()jn sijj j i xx •==-∑∑, (9.5)S E 称为误差平方和;记 S A =22111()()jn ssjj j j i j xx n x x ••===-=-∑∑∑, (9.6)S A 称为因素A 的效应平方和.于是S T =S E +S A . (9.7)利用εij 可更清楚地看到S E ,S A 的含义,记111jns ij j i n εε===∑∑为随机误差的总平均,11jn j iji jn εε•==∑, j =1,2,…,s .于是S E =221111()()jjn n ssijj ij j j i j i xx εε••====-=-∑∑∑∑; (9.8)S A =2211()()ssj jj j j j j n xx n δεε••==-=+-∑∑. (9.9)平方和的分解公式(9.7)说明.总平方和分解成误差平方和与因素A 的效应平方和.(9.8)式说明S E 完全是由随机波动引起的.而(9.9)式说明S A 除随机误差外还含有各水平的效应δj ,当δj 不全为零时,S A 主要反映了这些效应的差异.若H 0成立,各水平的效应为零,S A 中也只含随机误差,因而S A 与S E 相比较相对于某一显著性水平来说不应太大.方差分析的目的是研究S A 相对于S E 有多大,若S A 比S E 显著地大,这表明各水平对指标的影响有显著差异.故需研究与S A /S E 有关的统计量.3.假设检验问题当H 0成立时,设x ij ~N (μ,σ2)(i =1,2,…,n j ;j =1,2,…,s )且相互独立,利用抽样分布的有关定理,我们有22~(1)AS s χσ-, (9.10) 22~()ES n s χσ-, (9.11)F =()(1)AEn s S s S -- ~F (s -1,n -s ). (9.12)于是,对于给定的显著性水平α(0<α<1),由于P {F ≥F α(s -1,n -s )}=α, (9.13)由此得检验问题(9.2)′的拒绝域为F ≥F α(s -1,n -s ).(9.14)由样本值计算F 的值,若F ≥F α,则拒绝H 0,即认为水平的改变对指标有显著性的影响;若F <F α,则接受原假设H 0,即认为水平的改变对指标无显著影响. 上面的分析结果可排成表9-4的形式,称为方差分析表.当F ≥F 0.05(s -1,n -s )时,称为显著, 当F ≥F 0.01(s -1,n -s )时,称为高度显著.在实际中,我们可以按以下较简便的公式来计算S T ,S A 和S E .记T ·j =1jn iji x=∑, j =1,2,…,s ,T ··=11jn sijj i x==∑∑,即有22221111222211,,.j jn n s s T ij ij j i j i s s j A j j j j j E T AT S x nx x n T T S n x nx n n S S S ••====••••==⎧=-=-⎪⎪⎪⎪=-=-⎨⎪⎪=-⎪⎪⎩∑∑∑∑∑∑ (9.15) 例9.3 如上所述,在例9.1中需检验假设H 0:μ1=μ2=μ3=μ4;H 1:μ1,μ2,μ3,μ4不全相等.给定α=0.05,完成这一假设检验.解 s =4,n 1=7,n 2=5,n 3=8,n 4=6,n =26.S T =22211(4257)69895926jn sij j i T x n ••==-=-∑∑=1957.12, S A =2221(4257)697445.4926sj j j T T n n •••=-=-∑=443.61, S E =S T -S A =1513.51.得方差分析表9-5.表9-5因 F (3,22)=2.15<F 0.05(3,22)=3.05. 则接受H 0,即认为4种生铁试样的热疲劳性无显著差异.例9.4 如上所述,在例9.2中需检验假设H 0:μ1=μ2=…=μ6; H 1:μ1,μ2,…,μ6不全相等.试取α=0.05,α=0.01,完成这一假设检验.解 s =6, n 1=n 2=…=n 6=4,n =24.S T =2211jn sij j i T x n ••==-∑∑=112.27,S A =221sj j j T T n n•••=-∑=56,S E=S T-S A=56.27.得方差分析表9-6.0.050.01由于 4.25=F0.01(5,18)>F A=3.583>F0.05(5,18)=2.77,故浸泡水的温度对缩水率有显著影响,但不能说有高度显著的影响.本节的方差分析是在这两项假设下,检验各个正态总体均值是否相等.一是正态性假设,假定数据服从正态分布;二是等方差性假设,假定各正态总体方差相等.由大数定律及中心极限定理,以及多年来的方差分析应用,知正态性和等方差性这两项假设是合理的.第二节双因素试验的方差分析进行某一项试验,当影响指标的因素不是一个而是多个时,要分析各因素的作用是否显著,就要用到多因素的方差分析.本节就两个因素的方差分析作一简介.当有两个因素时,除每个因素的影响之外,还有这两个因素的搭配问题.如表9-7中的两组试验结果,都有两个因素A和B,每个因素取两个水平.表9-7(b)表9-7(a)中,无论B在什么水平(B1还是B2),水平A2下的结果总比A1下的高20;同样地,无论A是什么水平,B2下的结果总比B1下的高40.这说明A和B单独地各自影响结果,互相之间没有作用.表9-7(b)中,当B为B1时,A2下的结果比A1的高,而且当B为B2时,A1下的结果比A2的高;类似地,当A为A1时,B2下的结果比B1的高70,而A为A2时,B2下的结果比B1的高30.这表明A的作用与B所取的水平有关,而B的作用也与A所取的水平有关.即A 和B不仅各自对结果有影响,而且它们的搭配方式也有影响.我们把这种影响称作因素A和B的交互作用,记作A×B.在双因素试验的方差分析中,我们不仅要检验水平A和B的作用,还要检验它们的交互作用.1.双因素等重复试验的方差分析设有两个因素A,B作用于试验的指标,因素A有r个水平A1,A2,…,Ar,因素B有s个水平B1,B2,…,B s,现对因素A,B的水平的每对组合(A i,B j),i=1,2,…,r;j=1,2,…,s都作t(t≥2)次试验(称为等重复试验),得到如表9-8的结果:表9-8设x ijk ~N (ij ,), i =1,2,…,r ; j =1,2,…,s ; k =1,2,…,t ,各x ijk 独立.这里ij ,均为未知参数.或写为⎪⎩⎪⎨⎧===+=.,,,2,1),,0(~,,,2,1;,,2,1,2相互独立各ijkijk ijk ij ijk t k N s j r j x εσεεμ (9.16) 记μ=111,r s ij i j rs μ==∑∑, 11si ij j s μμ•==∑, i =1,2,…,r ,11rj ij i r μμ•==∑, j =1,2,…,s ,,i i αμμ•=-, i =1,2,…,r , j j βμμ•=-, j =1,2,…,s ,ij ij i j γμμμμ••=--+.于是 μij =μ+αi +βj +γij . (9.17)称μ为总平均,αi 为水平A i 的效应,βj 为水平B j 的效应,γij 为水平A i 和水平B j 的交互效应,这是由A i ,B j 搭配起来联合作用而引起的.易知1rii α=∑=0,1sjj β=∑=0,1riji γ=∑=0, j =1,2,…,s ,1sijj γ=∑=0, i =1,2,…,r ,这样(9.16)式可写成⎪⎪⎪⎩⎪⎪⎪⎨⎧=======++++=∑∑∑∑====.,,,2,1;,,2,1;,,2,1),,0(~,0,0,0,0,21111相互独立各ijkijk s j ij r i ij s j j r i i ijk ij j i ijk t k s j r i N x εσεγγβαεγβαμ (9.18) 其中μ,αi ,βj ,γij 及σ2都为未知参数.(9.18)式就是我们所要研究的双因素试验方差分析的数学模型.我们要检验因素A ,B 及交互作用A ×B 是否显著.要检验以下3个假设:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ ⎩⎨⎧=====.,,:,0:121113121103不全为零rs rs H H γγγγγγ 类似于单因素情况,对这些问题的检验方法也是建立在平方和分解上的.记1111r s tijk i j k x x rst ====∑∑∑, 11tij ijk k x x t •==∑, i =1,2,…,r ; j =1,2,…,s ,111s ti ijk j k x x st ••===∑∑, i =1,2,…,r , 111r tj ijk i k x x rt ••===∑∑, j =1,2,…,s , S T =2111()rstijk i j k x x ===-∑∑∑. 不难验证,,,i j ij x x x x •••••分别是μ,μi ·,μ·j ,μij 的无偏估计.由 ()()()()ijk ijk ij i j ij i j x x x x x x x x x x x x ••••••••••-=-+-+-+--+,1≤i ≤r ,1≤j ≤s ,1≤k ≤t得平方和的分解式:S T =S E +S A +S B +S A ×B , (9.19)其中S E =2111()rstijkij i j k xx •===-∑∑∑,S A =1()2ri i stxx ••=-∑,S B =21()sj j rtxx ••=-∑,S A ×B =211()rsij i j i j txx x x •••••==--+∑∑.S E 称为误差平方和,S A ,S B 分别称为因素A ,B 的效应平方和,SA ×B 称为A ,B 交互效应平方和.当H 01:α1=α2=…=αr =0为真时,F A =[](1)(1)A ES S r rs t -- ~F (r -1,rs (t -1));当假设H 02为真时,F B =[](1)(1)BES S s rs t --~F (s -1,rs (t -1));当假设H 03为真时,F A ×B =[](1)(1)(1)A BES S r s rs t ⨯--- ~F ((r -1)(s -1),rs (t -1)).当给定显著性水平α后,假设H 01,H 02,H 03的拒绝域分别为:(1,(1));(1,(1));(1)(1),(1)).A B A BF F r rs t F F s rs t F F r s rs t ααα⨯≥--⎧⎪≥--⎨⎪≥---⎩ (9.20) 经过上面的分析和计算,可得出双因素试验的方差分析表9-9.在实际中,与单因素方差分析类似可按以下较简便的公式来计算S T ,S A ,S B ,S A ×B ,S E . 记 T ···=111r s tijki j k x===∑∑∑,T ij ·=1tijkk x=∑, i =1,2,…,r ; j =1,2,…,s ,T i ··=11stijkj k x==∑∑, i =1,2,…,r ,T ·j ·=11r tijki k x==∑∑, j =1,2,…,s ,即有221112212212211,1,1,1,.r s tT ijk i j k r A i i s B j j r s A B ij A B i j E T A B A B T S x rst T S T st rst T S T rt rst T S T S S t rst S S S S S •••===•••••=•••••=•••⨯•==⨯⎧=-⎪⎪⎪=-⎪⎪⎪⎨=-⎪⎪⎪=---⎪⎪⎪=---⎩∑∑∑∑∑∑∑ (9.21) 例9.5 用不同的生产方法(不同的硫化时间和不同的加速剂)制造的硬橡胶的抗牵拉强度(以kg ·cm -2为单位)的观察数据如表9-10所示.试在显著水平0.10下分析不同的硫化时间(A ),加速剂(B )以及它们的交互作用(A ×B )对抗牵拉强度有无显著影响.表9-10010203r =s =3, t =2, T ···,T ij ·,T i ··,T ·j ·的计算如表9-11.表9-11S T =22111,r s tijki j k T xrst•••===-∑∑∑=178.44, S A =2211r i i T T st rst•••••=-∑=15.44,S B =2211s j j T T rt rst •••••=-∑=30.11,S A ×B =22111r s ij A B i j T T S S t rst••••==---∑∑ =2.89,S E =S T -S A -S B -S A ×B =130,得方差分析表9-12.由于F 0.10(2,9)=3.01>F A ,F 0.10(2,9)>F B ,F 0.10(4,9)=2.69>F A ×B ,因而接受假设H 01,H 02,H 03,即硫化时间、加速剂以及它们的交互作用对硬橡胶的抗牵拉强度的影响不显著.2.双因素无重复试验的方差分析在双因素试验中,如果对每一对水平的组合(A i ,B j )只做一次试验,即不重复试验,所得结果如表9-13.这时ij x •=x ijk ,S E =0,S E 的自由度为0,故不能利用双因素等重复试验中的公式进行方差分析.但是,如果我们认为A ,B 两因素无交互作用,或已知交互作用对试验指标影响很小,则可将S A ×B 取作S E ,仍可利用等重复的双因素试验对因素A ,B 进行方差分析.对这种情况下的数学模型及统计分析表示如下:由(9.18)式,112,0,0,~(0,),1,2,,;1,2,,,.ij i j ij r si j i j ij ijk x N i r j s μαβεαβεσε===+++⎧⎪⎪==⎪⎨⎪==⎪⎪⎩∑∑各相互独立 (9.22)要检验的假设有以下两个:⎩⎨⎧=====.,,:,0:21112101不全为零r r H H αααααα ⎩⎨⎧=====.,,:,0:21122102不全为零s s H H ββββββ 记 1111111,,,r s s rij i ij j ij i j j i x x x x x x rs s r ••=======∑∑∑∑平方和分解公式为:S T =S A +S B +S E , (9.23)其中 22111(),(),rssT ijA i i j j S xx S s x x •====-=-∑∑∑22111(),(),srsB j E ij i j j i j S r x x S x x x x •••====-=--+∑∑∑分别为总平方和、因素A ,B 的效应平方和和误差平方和.取显著性水平为α,当H 01成立时,F A =(1)AEs S S - ~F ((r -1),(r -1)(s -1)), H 01拒绝域为F A ≥F α((r -1),(r -1)(s -1)). (9.24)当H 02成立时,F B =(1)BEr S S - ~F ((s -1),(r -1)(s -1)), H 02拒绝域为F B ≥F α((s -1),(r -1)(s -1)). (9.25)得方差分析表9-14.例9.6 测试某种钢不同含铜量在各种温度下的冲击值(单位:kg ·m ·cm ),表9-15列出了试验的数据(冲击值),问试验温度、含铜量对钢的冲击值的影响是否显著?(α=0.01)解 由已知,r =4,s =3,需检验假设H 01,H 02,经计算得方差分析表9-16.0.01A 01F 0.01(2,6)=10.92<F B ,拒绝H 02.检验结果表明,试验温度、含铜量对钢冲击值的影响是显著的.第三节 正交试验设计及其方差分析在工农业生产和科学实验中,为改革旧工艺,寻求最优生产条件等,经常要做许多试验,而影响这些试验结果的因素很多,我们把含有两个以上因素的试验称为多因素试验.前两节讨论的单因素试验和双因素试验均属于全面试验(即每一个因素的各种水平的相互搭配都要进行试验),多因素试验由于要考虑的因素较多,当每个因素的水平数较大时,若进行全面试验,则试验次数将会更大.因此,对于多因素试验,存在一个如何安排好试验的问题.正交试验设计是研究和处理多因素试验的一种科学方法,它利用一套现存规格化的表——正交表,来安排试验,通过少量的试验,获得满意的试验结果.1.正交试验设计的基本方法正交试验设计包含两个内容:(1)怎样安排试验方案;(2)如何分析试验结果.先介绍正交表.正交表是预先编制好的一种表格.比如表9-17即为正交表L4(23),其中字母L表示正交,它的3个数字有3种不同的含义:(1) L4(23)表的结构:有4行、3列,表中出现2个反映水平的数码1,2.列数↓L4 (23)↑↑行数水平数(2)L4(23)表的用法:做4次试验,最多可安排2水平的因素3个.最多能安排的因素数↓L4(23)↑↑试验次数水平数(3) L4(23)表的效率:3个2水平的因素.它的全面试验数为23=8次,使用正交表只需从8次试验中选出4次来做试验,效率是高的.L4(23)↑↑实际试验数理论上的试验数正交表的特点:(1)表中任一列,不同数字出现的次数相同.如正交表L4(23)中,数字1,2在每列中均出现2次.(2)表中任两列,其横向形成的有序数对出现的次数相同.如表L4(23)中任意两列,数字1,2间的搭配是均衡的.凡满足上述两性质的表都称为正交表(Orthogonal table).常用的正交表有L9(34),L8(27),L16(45)等,见附表.用正交表来安排试验的方法,就叫正交试验设计.一般正交表L p(n m)中,p=m(n-1)+1.下面通过实例来说明如何用正交表来安排试验.例9.7 提高某化工产品转化率的试验.某种化工产品的转化率可能与反应温度A,反应时间B,某两种原料之配比C和真空度D有关.为了寻找最优的生产条件,因此考虑对A,B,C,D这4个因素进行试验.根据以往的经验,确定各个因素的3个不同水平,如表9-18所示.表9-18分析各因素对产品的转化率是否产生显著影响,并指出最好生产条件.解本题是4因素3水平,选用正交表L9(34).将各因素的诸水平所表示的实际状态或条件代入正交表中,得到9个试验方案,如表9-20所示.表9-20从表9-20看出,第一行是1号试验,其试验条件是:反应温度为60℃,反应时间为2.5小时,原料配比为1.1∶1,真空度为500毫米汞柱,记作A1B1C1D1.依此类推,第9号试验条件是A3B3C2D1.由此可见,因素和水平可以任意排,但一经排定,试验条件也就完全确定.按正交试验表9-20安排试验,试验的结果依次记于试验方案右侧,见表9-21.2.试验结果的直观分析正交试验设计的直观分析就是要通过计算,将各因素、水平对试验结果指标的影响大小,通过极差分析,综合比较,以确定最优化试验方案的方法.有时也称为极差分析法.例9.7中试验结果转化率列在表9-21中,在9次试验中,以第9次试验的指标86为最高,其生产条件是A 3B 3C 2D 1.由于全面搭配试验有81种,现只做了9次.9次试验中最好的结果是否一定是全面搭配试验中最好的结果呢?还需进一步分析. (1) 极差计算在代表因素A 的表9-21的第1列中,将与水平“1”相对应的第1,2,3号3个试验结果相加,记作T 11,求得T 11=151.同样,将第1列中与水平“2”对应的第4,5,6号试验结果相加,记作T 21,求得T 21=183.一般地,定义T ij 为表9-21的第j 列中,与水平i 对应的各次试验结果之和(i =1,2,3; j =1,2,3,4).记T 为9次试验结果的总和,R j 为第j 列的3个T ij 中最大值与最小值之差,称为极差.显然T =31iji T=∑,j =1,2,3,4.此处T 11大致反映了A 1对试验结果的影响,T 21大致反映了A 2对试验结果的影响, T 31大致反映了A 3对试验结果的影响,T 12,T 22和T 32分别反映了B 1,B 2,B 3对试验结果的影响, T 13,T 23和T 33分别反映了C 1,C 2,C 3对试验结果的影响, T 14,T 24和T 34分别反映了D 1,D 2,D 3对试验结果的影响.R j 反映了第j 列因素的水平改变对试验结果的影响大小,R j 越大反映第j 列因素影响越大.上述结果列表9-22.(2) 极差分析(Analysis of range)由极差大小顺序排出因素的主次顺序:主→次 B ;A 、D ;C这里,R j 值相近的两因素间用“、”号隔开,而R j 值相差较大的两因素间用“;”号隔开.由此看出,特别要求在生产过程中控制好因素B ,即反应时间.其次是要考虑因素A 和D ,即要控制好反应温度和真空度.至于原料配比就不那么重要了.选择较好的因素水平搭配与所要求的指标有关.若要求指标越大越好,则应选取指标大的水平.反之,若希望指标越小越好,应选取指标小的水平.例9.7中,希望转化率越高越好,所以应在第1列选最大的T 31=185;即取水平A 3,同理可选B 3C 1D 3.故例9.7中较好的因素水平搭配是A 3B 3C 1D 3.例9.8 某试验被考察的因素有5个:A ,B ,C ,D ,E .每个因素有两个水平.选用正交表L 8(27),现分别把A ,B ,C ,D ,E 安排在表L 8(27)的第1,2,4,5,7列上,空出第3,6列仿例9.7做法,按方案试验.记下试验结果,进行极差计算,得表9-23.试验目的要找出试验结果最小的工艺条件及因素影响的主次顺序.从表9-23的极差R j的大小顺序排出因素的主次顺序为主 → 次 A 、B ;D ;C 、E最优工艺条件为A 2B 1C 1D 2E 1.表9-23中因没有安排因素而空出了第3,6列.从理论上说,这两列的极差R j 应为0,但因存有随机误差,这两个空列的极差值实际上是相当小的.3.方差分析正交试验设计的极差分析简便易行,计算量小,也较直观,但极差分析精度较差,判断因素的作用时缺乏一个定量的标准.这些问题要用方差分析解决.设有一试验,使用正交表L p (n m ),试验的p 个结果为y 1,y 2,…,y p ,记T =1pi i y =∑, y =11p i i Ty p p ==∑,S T =21()pii yy =-∑为试验的p 个结果的总变差;S j =222111nn ij ij i i T T T r T r p r p ==⎛⎫-=- ⎪⎝⎭∑∑ 为第j 列上安排因素的变差平方和,其中r =p/n .可证明S T =1mij S=∑即总变差为各列变差平方和之和,且S T 的自由度为p -1,S j 的自由度为n -1.当正交表的所有列没被排满因素时,即有空列时,所有空列的S j 之和就是误差的变差平方和S e ,这时S e 的自由度f e 也为这些空列自由度之和.当正交表的所有列都排有因素时,即无空列时,取S j 中的最小值作为误差的变差平方和S e .从以上分析知,在使用正交表L p (n m )的正交试验方差分析中,对正交表所安排的因素选用的统计量为:F =1jeeS S n f -.当因素作用不显著时,F ~F (n -1,f e ),其中第j 列安排的是被检因素.在实际应用时,先求出各列的S j /(n -1)及S e /f e ,若某个S j /(n -1)比S e /f e 还小时,则这第j 列就可当作误差列并入S e 中去,这样使误差S e 的自由度增大,在作F 检验时会更灵敏,将所有可当作误差列的S j 全并入S e 后得新的误差变差平方和,记为S e Δ,其相应的自由度为f e Δ,这时选用统计量F =1je eS S n f - ~F (n -1,f e Δ).例9.9 对例9.8的表9-23作方差分析.解 由表9-23的最后一行的极差值R j ,利用公式S j =2211n ij i T T r p=-∑,得表9-24.表9-24表9-24中第3,6列为空列,因此S e =S 3+S 6=1.250,其中f e =1+1=2,所以S e /f e =0.625,而第7列的S 7=0.125,S 7/f 7=0.1251=0.125比S e /f e 小,故将它并入误差. S e Δ=S e +S 7=1.375,f e Δ=3.整理成方差分析表9-25.eeS fC 3.125 1 3.125 6.818D 6.125 1 6.125 13.364E Δ 0.125 1 0.125 e 1.1250 2 0.625 e Δ 1.37530.458由于F 0.05(1,3)=10.13, F 0.01(1,3)=34.12,故因素A ,B 作用高度显著,因素C 作用不显著,因素D 作用显著,这与前面极差分析的结果是一致的.F 检验法要求选取S e ,且希望f e 要大,故在安排试验时,适当留出些空列会有好处的.前面的方差分析中,讨论因素A 和B 的交互作用A ×B .这类交互作用在正交试验设计中同样有表现,即一个因素A 的水平对试验结果指标的影响同另一个因素B 的水平选取有关.当试验考虑交互作用时,也可用前面讲的基本方法来处理.本章就不再介绍了.小 结本章介绍了数理统计的基本方法之一:方差分析.在生产实践中,试验结果往往要受到一种或多种因素的影响.方差分析就是通过对试验数据进行分析,检验方差相同的多个正态总体的均值是否相等,用以判断各因素对试验结果的影响是否显著.方差分析按影响试验结果的因素的个数分为单因素方差分析、双因素方差分析和多因素方差分析.1. 单因素方差分析的情况.试验数据总是参差不齐,我们用总偏差平方和S T =211()jn sijj i xx ==-∑∑来度量数据间的离散程度.将S T 分解为试验随机误差的平方和(S E )与因素A 的偏差平方和(S A )之和.若S A 比S E 大得较多,则有理由认为因素的各个水平对应的试验结果有显著差异,从而拒绝因素各水平对应的正态总体的均值相等这一原假设.这就是单因素方差分析法的基本思想.2. 双因素方差分析的基本思想类似于单因素方差分析.但双因素试验的方差分析中,我们不仅要检验因素A 和B 各自的作用,还要检验它们之间的交互作用.3. 正交试验设计及其方差分析.根据因素的个数及各个因素的水平个数,选取适当的正交表并按表进行试验.我们通过对这少数的试验数据进行分析,推断出各因素对试验结果影响的大小.对正交试验结果的分析,通常采用两种方法,一种是直观分析法(极差分析法),它通过对各因素极差R j 的排序来确定各因素对试验结果影响的大小.一种是方差分析法,它的基本思想类似于双因素的方差分析. 重要术语及主题单因素试验方差分析的数学模型 S T =S E +S A单因素方差分析表 双因素方差分析表 正交试验表极 差分析表习题九1.灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡寿命是否因灯丝材料不同而有显著差异?2.一个年级有三个小班,他们进行了一次数学考试,现从各个班级随机地抽取了一些学生,试在显著性水平0.05下检验各班级的平均分数有无显著差异.设各个总体服从正态分布,且方差相等.4.为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A)、防老剂(B)、硫化系统(C)3个因素(各取3个水平),根据专业理论经验,交互4(2) 给定α=0.05,作方差分析与(1)比较.6.某农科站进行早稻品种试验(产量越高越好),需考察品种(A),施氮肥量(B),氮、磷、钾肥比例(C),插植规格(D)4个因素,根据专业理论和经验,交互作用全忽略,早(1) 试作出最优生产条件的直观分析,并对4因素排出主次关系.(2) 给定α=0.05,作方差分析,与(1)比较.。
概率论与数理统计-上海交通大学数学系
1. 二维随机变量及其概率分布 。 2. 二维离散型随机变量的联合概率分布、边缘分布和条件分布。 3. 二维连续型随机变量的联合概率密度、边缘密度和条件密度,常用二维随机变量的概
率分布。 4. 随机变量的独立性和相关性。 5. 两个随机变量函数的分布。 教学要求: 1. 理解二维随机变量的概念、理解二维随机变量的联合分布的概念、性质及两种基本形
Lindberg)定理。 教学要求:
1. 了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大 数定律)。
2. 了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定 理(独立同分布的中心极限定理)。
本章的重点是:会用契比雪夫不等式估计有关事件的概率。领会大数定律的实质。 掌握用中心极限定理计算概率的近似值的方法。
式: 2. 理解离散型联合概率分布,边缘分布和条件分布;连续型随机变量的联合概率密度、
边缘密度和条件密度。 3. 会利用二维概率分布求有关事件的概率。 4. 理解随机变量的独立性概念,掌握离散型和连续型随机变量独立的条件。 5. 掌握二维均匀分布,了解二维正态分布的联合概率密度,理解其中参数的意义。 6. 会求两个随机变量的简单函数的分布。
教学要求: 1. 理解随机变量及其概率分布的概念;理解分布函数的概念及性质;会计算与随机变量 相联系的事件的概率。 2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布、超几何分布、 泊松(Poisson)分布及其应用。 3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布 N(μ,σ 2 )、
概率论与数理统计第九章区间估计
1, n2
1)
S12
2 1
S
2 2
2 2
F (n1 1, n2 1)} 2
即
P{ S12
1
2 1
S12
1
} 1
S
2 2
F1 2 (n1 1, n2
1)
2 2
S
2 2
F
(n1 1, n2 1)
2
因此方差比
2 1
2 2
的置信水平为1-a置信区间为
二、.方差比
2 1
2 2
的置信区间
例5 研究由机器A和机器B生产的钢管的内径,随机抽取
机地取Ⅰ型子弹10发,得到枪口速度的平均值为
x1 =500(m/s),标准差 s1 =1.10(m/s), 随机地取Ⅱ型
子弹20发, 得到枪口速度的平均值为x 2 =496(m/s),标
准差 s2 =1.20(m/s),假设两总体都可认为近似地服从正
态分布。且由生产过程可认为方差相等。求两总体均值
差-
机器A生产的管子18只,测得样本方差 s12=0.34( ); 抽取机器B生产的管子13只,测得样本方差 s2 2 =0.29(mm2), 设两样本相互独立,且设由机器A和机器B生产的管子内
径分别服从正态分布
N(1,
2)和
1
N(2, 22),这里
i
,
2 i
(i
1,2)
均未知,试求两个总体样本方差比
2 1
1 均值差
的置信区间
2
方差比
2 1
2 2
的置信区间
一、均值差
的置信区间
1 因为
所以
均为已知
X
Y~N (1
上海大学2011级概率论与数理统计第9章
, Ar
在每个水平 Ai下做ni 次独立的试验,得到数据表
A 的水平 A1 A2 Ai
xi1 , xi 2 ,
试验序号及数据 1 2 j x11 x21 x12 x1 j x2 j xij
把Ai 水平下的指标X i 看作是一个总体, , xin是这个总体的样本, 总假定:X i ~ N ( i , 2 )
1
A 1
A2 A3
2 830 810 805
3 834 795 825
4 835 804 815
840 790 815
在显著性水平为 下,判断品种对亩产量的影响是否显著。 这就是方差分析的问题。这里指标是亩产量,因素是品种。 只考察一个因素的称为单因素方差分析; 如果要考察多个因素(如品种、施肥量等)称为多因素方 差分析。
如上例,品种是因素,该因素有三个水平 A1, A2 , A3 把三个品种的产量作为三个总体其均值分别为 1 , 2 , 3 目的是检验 H0 : 1 2 3 如果 经计算,结果是拒绝 H 0 则可认为品种对产量有 显著影响(即因素对指标有显著影响)。
A1 , A2 , 一般的单因素方差分析:设因素A有r个水平:
二、相关性检验 有两个总体 X , Y 及相应的样本,要检验这两个总体 是否相关,相关的强弱。
相关系数 反映X , Y 的相关关系, 越大线性关系越显著, 当 1 时P{Y aX b} 1,随 的减小线性关系减弱, 当 0 时,X , Y 不相关。
Cov( X , Y ) = D( X ) D(Y )
第九章 关于数理统计的进一步讨论
§1 关于假设检验中的两类错误
设总体
X ~ N ( , 2 )
H0 : 0 , H1 : 0
《概率论与数理统计》教案
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
概率论与数理统计第六章至第九章
═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第1页-概率论与数理统计(经管类)第六章至第九章试题课程代码:04183一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X ~ N(2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ2.设x 1, x 2, …, x 100为来自总体X ~ N(0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N(0,16) B .N(0,0.16) C .N(0,0.04)D .N(0,1.6)3.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( ) A .0∶,00100≠=ββH H ∶B .0∶,0∶1110≠=ββH HC .0ˆ∶,0ˆ∶0100≠=ββH HD .0ˆ∶,0ˆ∶1110≠=ββH H4.设x 1,x 2,…,x 100为来自总体X ~N (μ,42)的一个样本,而y 1,y 2,…,y 100为来自总体Y~N (μ,32)的一个样本,且两个样本独立,以y x ,分别表示这两个样本的样本均值,则y x -~( )A .N ⎪⎭⎫⎝⎛1007,0 B .N ⎪⎭⎫ ⎝⎛41,0C .N (0,7)D .N (0,25)5.设总体X ~N (μ2σ)其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个无偏估计:1ˆμ=),(414321x x x x +++4321252515151ˆx x x x +++=μ 4321361626261ˆx x x x +++=μ,4321471737271ˆx x x x +++=μ中,哪一个方差最小?( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第2页-A .1ˆμB .2ˆμC .3ˆμD .4ˆμ6.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~222-n S χσ7.设有一组观测数据(x i ,y i ),i =1,2,…,n ,其散点图呈线性趋势,若要拟合一元线性回归方程x y 10ˆˆˆββ+=,且n i x y i i ,,2,1,ˆˆˆ10 =+=ββ,则估计参数β0,β1时应使( ) A .∑=-ni i i yy 1)ˆ(最小 B .∑=-ni i i yy 1)ˆ(最大 C .∑=-ni i i yy 1)ˆ(2最小 D .∑=-ni i i yy 1)ˆ(2最大 8.设x 1,x 2,…,1n x 与y 1,y 2,…,2n y 分别是来自总体),(21σμN 与),(22σμN 的两个样本,它们相互独立,且x ,y 分别为两个样本的样本均值,则y x -所服从的分布为( )A .))11(,(22121σμμn n N +- B .))11(,(22121σμμn n N -- C .))11(,(2222121σμμn n N +-D .))11(,(2222121σμμn n N --9.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ10.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( )═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第3页-A.n/s x 0μ-B.)(0μ-x nC.10-μ-n /s xD.)(10μ--x n11.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X 为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .n X σμ0- B .10--n X σμ C .n SX 0μ-D .10--n SX μ12.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率 B .在H 0不成立的条件下,经检验H 0被接受的概率 C .在H 0成立的条件下,经检验H 0被拒绝的概率 D .在H 0成立的条件下,经检验H 0被接受的概率13.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) A .x 2 B .x C .2xD .x2114.设总体X~N (μ,σ2),σ2未知,X 为样本均值,S n 2=n1∑=-n1i i X X ()2,S 2=1n 1-∑=-n1i iX X()2,检验假设H o :μ=μ0时采用的统计量是( ) A .Z=n /X 0σμ- B .T=n /S X n 0μ-C .T=n/X 0σμ- D .T=n/S X 0μ-15.F 0.05(7,9)=( ) A .F 0. 95(9,7)B .)7,9(195.0F═══════════════════════════════════════════════════════════════本套试题共分15页,当前页是第4页-C .)9,7(105.0FD .)7,9(105.0F16.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X +B .213132X X +C .214143X X +D .215253X X +17.设总体X~N(0,0.25),从总体中取一个容量为6的样本X 1,…,X 6,设Y=26543221)X X X (X )X (X ++++,若CY 服从F(1,1)分布,则C 为( ) A.2 B.21 C.2D.2118.设α、β分别是假设检验中第一、二类错误的概率,且H 0、H 1分别为原假设和备择假设,则下列结论中正确的是( )A.在H 0成立的条件下,经检验H 1被接受的概率为βB.在H 1成立的条件下,经检验H 0被接受的概率为αC.α=βD.若要同时减少α、β,需要增加样本容量二、填空题请在每小题的空格中填上正确答案。
概率论与数理统计_浙大四版_习题解_第9章_方差分析
概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。
【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。
为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。
三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。
(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。
〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。
样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。
概率论与数理统计课件第9章
x为线性相关关系:y a bx
5 21.0 37.4 6 22.8 38.1 7 15.8 44.6 8 17.8 40.7 316. 84 1656 .49 724. 46 9 19.1 39.8 364. 81 1584 .04 760. 18 168. 3 364. 5 3192 .75 1481 3.2 6775 .02
回归方程有效性的F检验法
(2)当 F F 时,接受 H 0,即可认为变量 y 与 x 没有线性相关关系; 此时,可能有以下几种情况: (1 ) x 对
y 没有显著影响,应丢弃自变量 x ;
(2) x 对 y 有显著影响,但这种影响不能用线性关系 表示,应作非线性回归;
(3)除 x 之外,还有其它变量对 y 也有显著影响,从 而削弱了 x 对 y 的影响,应考虑多元回归。
H0 : 1 0, H1 : 1 0,
如果 H 成立,则不能认为 y 与 0
x 有线性相关关系。
三种检验方法:F检验法、t-检验法、r检验法。
回归方程有效性的F检验法
记
SST ( yi y ) Lyy
2 i 1
n
——总离差平方和,反映观测值与平均值的偏差程度。 经恒等变形,将
2
——回归平方和,反映回归值与平均值的偏差,揭示 变量 y 与 x 的线性关系所引起的数据波动。
SS E ( yi yi ) Lyy 1Lxy Q 0 , 1
2 i 1
n
——剩余平方和,反映观测值与回归值的偏差,揭示 试验误差和非线性关系对试验结果所引起的数据波动。
R 越大,变量 y 与 x 之间的线性相关程度越强。
回归方程有效性的r检验法
《概率论与数理统计》第三版课后习题答案第9章
n
xi yi
i 1 n
xi 2
i 1
n
i 1
xi
n
xi 2
i 1
yi
n
ci yi ,
i 1
你仅购买了个人使用权
这里 ci
xi
n
是常数。所以 ˆ 也服从正态分布。
xi2
i 1
注意到,误差服从高斯-马尔科夫假设,即 1, 2 ,, n 不相关(正态分布不相关等价于 独立),从而 y1, y2 ,, yn 也相互独立,所以
你仅购买了个人使用权
《概率论与数理统计》习题解答 王松桂、张忠占、程维虎等,第三版,科学出版社
第九章
9.1 对一元线性回归模型
yi xi i , i 1,2,3,, n
它不包含常数项,假设误差服从高斯-马尔科夫假设。
(1)求斜率 的最小二乘估计 ˆ ;
(2)若进一步假设误差 i ~ N (0, 2 ) ,试求 ˆ 的分布; (3)导出假设 H0 : 0 的检验统计量。 解:(1)本题也采用 9.1.1 小节的方法,求斜率 的最小二乘估计 ˆ 。
0.24 0.24 0.24 0.25 0.26 0.29 0.32
56 53 53 54.5 61.5 59.5 64
(1)求 0 和 1 的最小二乘估计,并写出经验回归方程; (2)作回归方程的显著性检验,并列出方差分析表(取 0.05 ); (3)求 0 和 1 各自的置信系数为 0.95 的置信区间。
假设这些数据服从一元线性回归模型
yi 0 1xi i , i ~ N (0, 2 ) , i 1,2,3,,92
序 X(%) 号
1 0.03 2 0.04 3 0.04 4 0.05 5 0.05 6 0.05 7 0.05 8 0.06 9 0.06 10 0.07 11 0.07 12 0.07 13 0.08 14 0.08 15 0.08 16 0.08 17 0.08 18 0.08 19 0.08 20 0.09 21 0.09 22 0.09 23 0.09 24 0.09 25 0.09
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一类错误是:原假设H。符合实际情况,而检验 结果把它否定了,这称为弃真错误。
记 α=p{拒绝H0/H0真} 第二类错误:原假设H。不符合实际情况,而检验 结果把它肯定下来了,这称为取伪错误。 =p {接受H0/H0假}
自然,人们希望犯这两类错误的概率越小越好。但对 于一定的样本容量n ,一般来说,不能同时做到犯这两类 错误的概率都很小,往往是先固定“犯第一类错误”的概 率,再考虑如何减小“犯第二类 错误”的概率。这类问 题超出本书的范围,因此不予介绍。
能否据此样本认为这批钢索的断裂强度为 800 ㎏/c㎡(α =0.05)? 解: (1)提出待检假设H。:μ =800 (2)根据H0选取统计量 在H0成立的条件下U~N(0,1)
U X μ0 σ0 n
(3)对于给定的检验水平α=0.05构造小概率事件 P{|U|>U }= 确定拒绝区域为|U|>U 2
“ ξ=0”分别表示“出现正面”和“出现反面”,上
述问题就是要检验ξ是否服从P=1/2的0-1分布?
例2 从1975年的新生儿中随机地抽取20个,测得 其平均体重为3160g,样本标准差为300g。而根据 过去统计资料,新生儿(女)平均体重为3140g。 问现在与过去的新生儿(女)体重有无显著差异 (假定新生儿体重服从正态 分布)? 若把所有1975年新生儿(女)体重视为一个总体, 用ξ描述,问题就是判断Eξ =3140是否成立?
2
(4)根据样本观察值计算统计量U的值
解:
(1)提出待检假设H。:μ =800
X μ0 (2)根据H0选取统计量 U σ0 n 在H0成立的条件下U~N(0,1) (3)对于给定的检验水平α=0.05构造小概率事件 P{|U|>U 2 }= 确定拒绝区域为|U|>U (4)根据样本观察值计算统计量U的值
(5) 下结论:
例3 从1975年的新生儿中随机地抽取20个,测得其平 均体重为3160g,样本标准差为300g。而根据过去统计资 料,新生儿(女)平均体重为3140g。问现在与过去的 新生儿(女)体重有无显著差异(假定新生儿体重服 从正态 分布)?(α=0.01) 解:方差σ2未知的正态总体,检验期望μ (1) 提出待检假设H。: μ=μ0 =3140 (2)因而选取统计量
例3 在10个相同的地块上对甲,乙两种玉米进行 品比试验,得如下资料(单位:kg) 甲 951 966 1008 1082 983
乙
730
864
742
774
990
假定农作物产量服从正态分布,问这两种玉米 有无显著差异? 从直观上看,二者差异显著。 但是一方面由于抽样的随机性,我们不能以个别值 进行比较就得出结论; 另一方面直观的标准可能因人而异。因此这实际 上需要比较两个正态总体的期望值是否相等?
2、非参数假设检验
X1, ,X n ~X, 总体分布未知, 由观测值x1, …, xn 检验假设H0:F(x)=F0(x;); H1: F(x)≠F0(x;)
iid
i.i.d
任何一个有关随机变量未知分布的假设称 为统计假设或简称假设。 一个仅牵涉到随机变量中几个未知参数的 假设称为参数假设。 这里所说的假设只是一个设想,至于它是否成 立,在建立假设时并不知道,还需要进行考察。
确定拒绝区域为|U|>U 2
若 |U|> μα/2 ,则否定H。; 若 |U|<μα/2 ,则不能否定H。一般情况就接受H。;
若 |U|= μα/2 ,或 |μ|与μα/2 很接近,为了慎重,
一般先不下结论,而要再进行一次抽样检验。
例 2 假定某厂生产一种钢索,它的断裂强度ξ ( kg/cm2)服从正态分布N( μ,402 ) 。从中选取 一个容量为9的样本,得 x =780 kg/cm2
H 0真
X μ σ n
~ N( 0, 1)
根据给定的检验水平α,查表确定分位数
U
2
2
使p{ U U } α, 确定拒绝域: U U
2
计算, 比较大小, 得出结论
例 1 根据长期经验和资料的分析,某砖瓦厂生产砖的 “抗断强度”ξ服从 正态分布,方差 σ2 =1.21。从该厂 产品中随机抽取6块,测得抗断强度如下(㎏/㎡) :
解:
(1)提出待检假设H。:μ =32.50
X μ0 (2)根据H0选取统计量 U σ0 n 在H0成立的条件下U~N(0,1) (3)对于给定的检验水平a=0.05构造小概率事件 P{|U|>U 2 }= 确定拒绝区域为|U|>U 2 (4)根据样本观察值计算统计量U的值
u x μ0 σ0 n = 31.13-32.50 1.1 6 3.05
选取统计量 T X 0 S n X 0
S n ~ t ( n 1)
2
2ቤተ መጻሕፍቲ ባይዱ
t 附表四: p{|t(n)|>t}=,
在H 0成立的条件下 : T
由p{|T|>t(n 1)} =, 得检验水平为的拒绝域为 |T|>t(n1),
关于方差未知的正态总体期望值 μ 的检验步骤 : (1) 提出待检假设H。: μ=μ0 (μ0已知) (2)选取样本(Χ1,…,Χn )的统计量
U X μ0 σ0 n
在H。成立的条件下所选统计量U~N(0,1)
(3)根据给定的检验水平 α 查表确定临界值 Uα/2, 使P(|U|> Uα/2)= α ; 确定拒绝区域为|U|>U 2
(4)根据样本观察值计算统计量U的值并与临界值Uα/2比较;
(5)下结论:
P{|U|>U 2 }=
这种作为检验对象的假设称为待检假设, 通常用 H0表示。比如, 例2中的待检假设为:H0:Eξ=3140
如何根据样本的信息来判断关于总体分布的 某个设想是否成立,也就是检验假设H0成立 与否的方法是本章要介绍的主要内容。
二、假设检验的基本思想: 用置信区间的方法进行检验,基本思想是这样的: 首先设想H0是真的成立:然后考虑在H0成立的条件 下,已经观测到的样本信息出现的概率。如果这个 概率很小,这就表明一个概率很小的事件在一次试 验中发生了。而小概率原理认为,概率很小的事件 在一次试验中是几乎不可能发生的,也就是说导出 了一个违背小概率原理的不合理现象。这表明事先 的设想H0是不正确的,因此拒绝原假设H0 。否则, 不能拒绝H0 。
第九章
假设检验
§9.1假设检验的基本概念 §9.2两类错误 §9.3 一个正态总体的假设检验 §9.4 两个正态总体的假设检验
§9.1假设检验的基本概念和思想 一、基本概念 (一) 两类问题
1、参数假设检验
X1, ,X n ~ f ( x; ), , 总体分布已知, 参 数未知, 由观测值x1, …, xn检验假设 H0:=0; H1:≠0
2 a
2 b
=
2 a
2 1
2
2 2 b=
2
2 由p{ 2 <χ 2 (n 1 ) 2 >χ (n 1 )} α 1 2 2
得水平为的拒绝域为
<
2
2 1 / 2
(n 1)或 > / 2 (n 1)。
2 2
2 2 0 2 2 0
对一个样本进行考察,从而决定它是否能合理 地被认为与假设相符,这一过程叫做假设检验。 判别参数假设的检验称为参数假设检验。检验是 一种决定规则,它具有一定的程序,通过它来对假 设成立与否作出判断。
例1 抛掷一枚硬币100次,“正面”出现了40次, 问这枚硬币是否匀称? 若用ξ描述抛掷一枚硬币的试验,“ξ=1”及
2 2 H 0: 2 0;H1: 2 0。 iid
假定未知, 双边检验:对于假设
H 0: ;H1:
2 2 0 2
2
2 0
(n - 1 )S 2 在H 0成立的条件下 ~ χ 2 (n 1 ) 2 σ0
2 2 a 2 2 b
由p{ <χ (n 1 ) >χ (n 1 )} α
下面将通过具体例子,给出检验规则
单正态总体的假设检验
iid
1、2已知的情形—U检验
值 x1, ,xn检验假设H 0: 0;H1: 0。
设X1, ,X n ~N ( , 2 ), 给定检验水平,由观测
根据假设H0:=0;H1:0, 构造统计量
U
X μ0 σ n
780-800 = 1.5 40 3 σ0 n 查表确定分位数 U 2 =U 0.05 2 =1.96 u = x μ0
2
∵|u|=1.5<1.96=U0.025
(5)结论:接受H0 即可以认为这批钢索的断裂强度为800 ㎏/c㎡。
2、2未知的情形— T检验 双边检验:对于假设 H0:=0;
对于单边问题H 0: ;H1: , 可解得拒绝域: > (n 1)。
2 2
例4 某炼铁厂的铁水含碳量ξ在正常情况下服从正态分布。 现对操作工艺进行了某些改进,从中抽取5炉铁水测得 含碳量数据如下: 4.421 4.052 4.357 4.287 4.683 据此是否可以认为新工艺炼出的铁水含碳量的方差仍为 0.1082( α=0.05)。
至于什么算是“概率很小”,在检验之 前都事先指定。比如概率为 5%,1%等,一 般记作α。 α是一个事先指定的小的正数,称为显著性 水平或检验水平。
§9.2 两类错误
由于人们作出判断的依据是一个样本,也就是由部 分来推断整体,因而假设检验不可能绝对准确,它也可 能犯错误。其可能性的大小,也 是以统计规律性为依据 的,所可能犯的错误有两类。
查表确定分位数 U 2 =U 0.05 2 =1.96
∵|u|=3.05>1.96=u0.025 (5)结论:拒绝H0 即不能认为这批产品的平均抗断强度是32.50 ㎏/㎡。