第九章多采样率数字信号处理

合集下载

多采样率系统

多采样率系统

第3页/共33页
Enjoy Science
数字信号处理
这么一来,x(n)、w(n)和y(m)三个序列的关系就是
y(m) w(Dm) x(Dm) (D是正整数 )
(9.7)
将这个关系应用到公式(9.5),得到
Y (z) w(Dm)z m (变量代换Dm n和m n / D)
m
w(n)(z1/ D )n (利用公式(9.6)))
D
e
j
2 D
k
)
D k0
(9.13)
第6页/共33页
Enjoy Science
数字信号处理
只要将z=ejω代入上式,就可以得到抽取的频谱关系
Y (e j )
1
D1
X
(e
j /
eD
j 2 D
k
)
1
D1
j 2k
X (e D )
D k0Βιβλιοθήκη D k0(9.14)
借鉴X(ejω)=X(ω)的关系,还能将抽取的频谱关系(9.14) 变为简单的形式
Y ()
1
D1 2k
X(
)
D k0
D
( y(m)的采样率 f y
fx ) D
(9.15)
该式 说明 :按 照时 序间 隔 D对x(n)抽 取后得 到 序列 y(m),它的频谱Y(ω)是D个X(ω)变形后相加的结果。
第7页/共33页
Enjoy Science
数字信号处理
(2)从模拟域的角度观看
X
s2
(
)
CTFT
[ xs2
(t)]
1 Ts2
X a (
j
s2 j)
(9.17)

实验七 多采样率数字信号处理

实验七  多采样率数字信号处理

实验七 多采样率数字信号处理一.实验目的1.掌握信号抽取和插值的基本原理和实现2.掌握信号的有理数倍速率转换 二.实验内容例7.1 对信号进行抽取,使采样率为原来的1/4倍。

MATLAB 程序: t=0:.00025:1;x=sin(2*pi*30*t)+sin(2*pi*60*t); y=decimate(x,4);figure,subplot(2,2,1),stem(x(1:120)); title('原始信号时域图'),xlabel('(a)');subplot(2,2,2),plot(abs(fft(x))),title('原始信号频域图'),xlabel('(b)'); subplot(2,2,3),stem(y(1:30))title('抽样后的信号时域图'),xlabel('(c)'); subplot(2,2,4),plot(abs(fft(y)));title('抽样后的信号频域图'),xlabel('(d)');050100150-2-1012原始信号时域图(a)2000400060000100020003000原始信号频域图(b)0102030-2-1012抽样后的信号时域图(c)050010001500200400600抽样后的信号频域图(d)例 7.2 信号()⎪⎪⎭⎫ ⎝⎛=s f f nn x π3cos ,采样频率16/1=sf f,现将采样率提高为原来的4倍。

MATLAB 程序: n=0:30;x=cos(3*pi*n/16); y=interp(x,4);figure,subplot(2,2,1),stem(x);title('原始信号时域图'),xlabel('(a)');subplot(2,2,2),plot(abs(fft(x))),title('原始信号频域图'),xlabel('(b)'); subplot(2,2,3),stem(y(1:30))title('抽样后的信号时域图'),xlabel('(c)');subplot(2,2,4),plot(abs(fft(y)));title('抽样后的信号频域图'),xlabel('(d)');10203040-1-0.500.51原始信号时域图(a)102030405101520原始信号频域图(b)0102030-1-0.500.51抽样后的信号时域图(c)05010015020406080抽样后的信号频域图(d)例7.3 序列()()()2.12.1cos 5.0sin ++=n n n x ππ,调用resample 函数对想按因子3/7进行采样率转换,并绘出图形。

数字信号处理 第九章多采样率数字信号处理

数字信号处理 第九章多采样率数字信号处理

y(0) 1
2
Y (e jy
)dy
1
2
I
I
CX
(e
jIy
)d
y
C
2 I
X
(e jx
)dx
C I
x(0)
C I
*
时域关系
x(n)
v(m)
y(m) xa (mTy )
I
hI (m)
y(m) v(m) hI (m) hI (m k)v(k) k v(kI ) x(k), v(k) 0, k 0, I , 2I ,
I
y
2
*
如何实现 加滤波器
y(m) xa (mTy ) Ty Tx I
H
I
(e
j y
)
C
,
0,
y I I y
y x I
镜像滤波器
Y
(e
j y
)
CV 0,
(e
j y
) I
CX (e jIy
y
),
y I
C=?
x(n)
v(m)
y(m) xa (mTy )
I
hI (m)
*
*
x(n) X (e jw )
hD (n)
v(n)
H D (e j ) V (e jw )
D
y(n) Y (e jw )
H
D
(e
j
)
1,
0,
D D
V (z) Hd (z)X (z)
Y (e jy )
1
D1
j (y 2 k )
V (e D D )
D k0
1 D1
j (y 2 k )

第9章多采样率信号管理方案计划

第9章多采样率信号管理方案计划

第9章 多采样率信号处理多采样率信号处理广泛应用于要求转换采样率,或要求系统工作在多采样率状态的信号处理系统中。

如多种媒体——语音、视频、数据的传输,它们的频率很不相同,采样率自然不同,必须实行采样率的转换;又如信号要在两个时钟频率的数字系统中传输时,为了便于信号的处理、编码、传输和存储,要求根据时钟频率对信号的采样率加以转换;再如一种信号处理算法在系统的不同部分采用不同的采样率(如子带编码等),使处理更加有效,等等。

本章首先介绍直接在数字域对离散时间信号进行采样率转换的抽取(Decimation )和内插(Interpolation )方法,然后讨论抽取滤波器与内插滤波器的设计与实现方法。

由不同采样率构成的系统称为多采样率系统,大部分多采样率系统使用了滤波器组,以正交镜像滤波器组(QMF )为基础的树状结构滤波器组是一典型的多采样率系统,它与离散小波(Wavelet )变换的关系密切。

本章最后由正交镜像滤波器组的概念引入小波变换的基本原理和多分辨率分析的概念,以利开拓思路,为进一步深入学习打下基础。

9.1 离散信号的抽取与内插9.1.1 抽取与内插的时域描述离散序列的抽取与内插是多采样率系统中的基本运算,抽取运算将降低信号的采样频率,内插运算将提高信号的采样频率。

离散序列()x k 的M 倍抽取定义为()(),D x k x Mk k =∈¢ (9-1-1)其中M 为一正整数。

抽取运算的框图如图9-1所示。

()x k ()D k图9-1 M倍抽取运算的框图图9-2画出了M =3时序列抽取的示意图。

由图可知,离散序列的抽取表示保留第M 个样本点,而去除两个样本之间的M-1个样本点,设原离散信号()x k 的采样周期为T ,经M 倍抽取后的信号()D x k 的采样周期为'T ,满足'T MT =。

为了强调此概念,在图9-2中,有意将抽取后的序列的间隔画为原序列的3倍。

这时新的采样频率's f 为Mf MT T f ss ===11'' (9-1-2) 式中,s f 为原有的采样频率。

DSP的多采样率数字信号处理及其应用

DSP的多采样率数字信号处理及其应用

目录1.背景 12.具体过程 22.1 整数因子抽取 22.2 整数因子内插 22.3 I/D的采样率转换 22.4多采样率数字信号处理的应用 23.实验过程 23.1整数倍抽取实验 23.2整数倍插值实验 23.3用有理因子I/D的采样率转换进行的实验 2 4.实验结果 24.1信号的整数倍抽取 24.2信号的整数倍插值 24.3用有理因子I/D的采样速率转换 25.结论 25.1整数因子抽取 25.2整数因子插值 25.3有理因子I/D的采样速率转换 26.心得体会与总结 21.背景现在实际系统中,经常要求一个数字系统能工作在多采样率状态,例如:在数字电视系统中,图像采集系统一般按4:4:4标准或4:2:2标准采集数字电视信号,再根据不同的电视质量要求将其转换成其它标准的数字电视信号(如4:2:2,4:1:1,2:1:1)进行处理。

在数字电话系统中,传输的信号既有语音信号又有传真信号,甚至有视频信号。

这些信号的频域成分相差甚远。

因此该系统应具有多种采样率,并能根据所传输的信号自动完成采样率转换。

对一个非平稳随机信号(如语音信号)做频谱分析或编码时,对不同的信号段可根据其频域成分的不同而采用不同的采样率,已到达既满足采样定理,又最大限度的减少数据量的目的。

如果以高采样率采集的数据存在冗余,这时就希望在该数字信号的基础上降低采样率。

多采样率数字信号处理是建立在单抽样率信号处理基础上的一类信号处理。

在传输信号时,由于语音﹑图像、视频信号的中心频率相差很大,所以需要以多种抽样频率来对信号采样来满足各种传输类型的需要。

2.具体过程2.1 整数因子抽取信号的抽取是实现频率降低的方法。

在第二章曾经讨论过,当采样频率大于信号最高频率的2倍时,不会产生混叠失真。

显然,当采样频率远高于信号最高频率时,采样后的信号就会有冗余数据。

此时,通过信号的抽取来降低采样频率,同样不会产生混叠失真。

Xd(n)整数因子抽取原理图:设x(n)=x(t)|t=nTs,欲使fs减少D倍,最简单的方法就是从x(n)中每D个点中抽取一个,依次组成一个新的序列xd(n),即xd(n)=x(Dn)因为是舍去部分点,故可引入冲激函数来进行抽样,得到xd(n)与x(n)之间的表达式:xd(n)=x(n) D(n)其中为周期单位脉冲序列,当且仅当n为D的整数倍时, D(n)的值为1,n为其他值时为零。

《数字信号处理》第8章 多采样率数字信号处理

《数字信号处理》第8章  多采样率数字信号处理

- Ωc 0 Ωc
Ωsa 1
Ω
(a)

Λ (k )
-3 -2 -1 0
1
2
3
4
5
k
(b)
X^(e jΩ T1)
0 Ωsa 1/D
Ωsa 1
Ω
(c)
Y(e jΩ T2)
0 Ωsa 2 =Ωsa 1/D
Ω
(d)
图 8.1.8 在Ωc<Ωsa2/2时, 抽取前后信号的时域和频域关系示意图
第8章 多采样率数字信号处理
T2 = DT1
第8章 多采样率数字信号处理
其中n1和n2分别表示x(n1T1)和x(n2T2)序列的序号, 于是有
y(n2T2) = x(n2DT1) 当n1=n2D时,
y(n2,T2) = x(n1,T1) 或
y(n) = x(Dn) D倍抽取就是每隔D-1个点抽取一个。
第8章 多采样率数字信号处理
建立在采样率转换基础上的“多采样率数字信号处理” 已成为数字信号处理学科的主要内容之一,在语音信 号处理、图像处理、通信系统等领域有着广泛的应用。
第8章 多采样率数字信号处理
采样率转换通常分为“抽取”和“内插”。 抽取:是降低采样率以去掉多余数据的过程。
内插:是提高采样率以增加数据的过程。 本章重点讨论抽取和内插的概念以及其基本实现方
法。
第8章 多采样率数字信号处理
8.1 信号的整数倍抽取
1. 信号的整数倍抽取的时域描述 设x(n1, T1)是连续信号xa(t)的采样序列,采样率
F1=1/T1(Hz),T1称为采样间隔,单位为秒,即 x(n1T1) = xa(n1T1)
若将采样率降低到原来的1/D(D为大于1的整数,称为 抽取因子),采样间隔为T2,采样率F2=1/T2(Hz),组 成的新序列为y(n2, T2),则有

多采样率信号处理

多采样率信号处理

多采样率信号处理1.绪论随着数字信号处理的发展,信号的处理、编码、传输和存储等工作量越来越大。

为了节省计算工作量及存储空间,在一个信号处理系统中常常需要不同的采样率及其相互转换,在这种需求下,多速率数字信号处理产生并发展起来。

它的应用带来许多好处,例如:可降低计算复杂度、降低传输速率、减少存储量等。

在信号处理领域,多速率信号处理最早于20世纪70年代提出,由其引出的多速率滤波在数学领域里基于多格算法解决了大量的微分等式。

在多速率数字信号处理发展中,一个突破点是70年代两通道正交镜像滤波器组应用于语音信号的压缩。

在该方法中,信号通过分析滤波器组被分成低通和高通两个子带,每个子带经过2倍抽取和量化后再进行压缩,之后可以通过综合滤波器组近似地重建出原始信号,重建的近似误差一部分源于子带信号的压缩编码,一部分是由分析和综合滤波器组产生的误差,其中最主要的误差是混叠误差,它是由分析滤波器组不是理想带限而引起的。

在很多应用系统中,混叠误差存在一定程度的影响,因此就需要对其进行改进。

多速率系统应用于通信、语音信号处理、谱分析、雷达系统和天线系统,以及在数字音频系统、子带编码技术( 用于声音和图像的压缩) 和模拟语音个人系统(如标准电话通信) 等方面的应用。

另外还应用于多相理论和多速率系统在一些非传统领域,包括:高效率信号压缩的多速率理论;高效窄带滤波器的脉冲响应序列的编码新技术的推导;可调整的多级响应FIR滤波器的设计等。

基于上述研究的发展,从20世纪80年代初开始,多速率数字信号处理技术在工程实践中得到广泛的应用,主要用于通信系统、语音、图像压缩、数字音频系统、统计和自适应信号处理、差分方程的数值解等。

多速率信号处理在基础理论和应用领域的蓬勃发展,也促进了整个数字信号处理界的发展。

2.采样率转换基础理论实现采样率转换的方法有三个:一是若原模拟信号x (t)可以再生,或是己记录下来了的话,那么可重新抽样;二是将x(n)通过D/A变成模拟信号x(t)后,对x (t)经A/D再抽样;三是发展一套算法,对抽样后的数字信号x(n)在“数字域”作采样率转换,以得到新的抽样。

数字信号处理课件(第9章MATELAB的实现)

数字信号处理课件(第9章MATELAB的实现)

MATLAB和MATLAB Simulink的概述
ቤተ መጻሕፍቲ ባይዱ
MATLAB和MATLAB Simulink的相似之处
MATLAB和MATLAB Simulink的不同之处
MATLAB和MATLAB Simulink的优缺点比较
MATLAB和MATLAB Simulink的适用场景比较
MATLAB的优点: (1) 强大的数值计算功能 (2) 丰富的图形绘制功能 (3) 易于学习和使用的编程语言 (4) 提供了大量的工具箱和函数库
编程语言类型:MATLAB是一种专门为数学和科学计算而设计的编程语言和环境,而Python是一种通用编程语言,广泛用于数据分析、机器学习等领域。库和工具包:MATLAB拥有大量的内置函数和工具包,适用于数字信号处理、图像处理、控制系统等领域。Python也有类似的库和工具包,如NumPy、SciPy、Pandas等,但需要额外安装。语法和可读性:Python的语法相对简单明了,易于学习,且代码可读性强。MATLAB的语法则较为复杂,但提供了更多的功能和灵活性。速度和性能:MATLAB在执行数学和科学计算方面通常比Python更快,尤其是在处理大型矩阵和数组时。然而,Python在处理字符串、文件I/O等操作时可能更高效。社区和支持:Python拥有庞大的开发者社区,有大量的教程、文档和开源项目可供参考。MATLAB则有官方的技术支持和文档。跨平台性:Python是跨平台的编程语言,可以在Windows、Linux和Mac OS等操作系统上运行。MATLAB则只能在Windows操作系统上运行。 综上所述,MATLAB和Python在数字信号处理方面都有各自的优势。选择使用哪种工具取决于具体需求、编程技能和可用资源。综上所述,MATLAB和Python在数字信号处理方面都有各自的优势。选择使用哪种工具取决于具体需求、编程技能和可用资源。

dsp第9章%20多采样率信号处理[1]

dsp第9章%20多采样率信号处理[1]

3、插值过程=抽取过程的逆过程
• 插值过程可以看成抽取过程的逆过程。
n x ( ) n = 0,± I ,± 2 I x p (n ) = I n 为其他值 0
• 由下图可知,通过插值和数字低通滤波器 后,这些插值的零点将不再是零,从而得到 插值后的输出x1(n)。
jw (a)原信号x(n)及其频谱X(e ) x(n)
p (n) =
1 p (n) = D P (k ) =
k = −∞ D −1
∑ δ ( n − kD )

(1)
∑ P (k )e
k =0 − j(
2π j( ) kn D
(2) (3)

D −1
p ( n )e
2π ) kn D
将(1)式代入(3)式
P (k ) = =
D −1 n=0
∑ ∑ δ ( n − kD )e
• 抽取和插值联合作用的结果是: • (1)x(n)以一个非整数的有理数7/2进行减 抽样。 • (2)如果x(n)代表一个连续时间信号xa(t)的 无混叠抽样序列,则这个经过插值(I=2)和抽 取(D=7)的序列x1d(n)就代表了xa(t)的最大可 能无混叠的减抽样序列。 • 我们知道抽取和插值的概念出现在很多重要 的信号处理的实际应用中,其中包括通信系 统、数字高频、高分辨率电视以及其他很多 应用领域。

D
• 若滤波器的长度为N,其系统函数为 N −1 H ( z ) = ∑ h(n) z −n • n=0 • 由上式易得系统的实现流图如图9.10(a) 所示。

x (n )

−1
h (0)
• •
z
z −1 h(2) • • −1 z z −1

多采样率信号处理

多采样率信号处理
即图(a)系统。
另一类似的恒等关系:
x[n] H ( z ) L y[n]
xa [ n ]
(a)
x[n] L H ( z L ) y[n]
xb [ n ]
(b)
根据图(a)有:
Y ( e j ) X a ( e j L )
X (e jL ) H (e jL )
hM 1[n]
z ( M 1)
利用 ek [n] 分量和延迟链的滤波器h[n]的多相分解
h[n]
h[n]
Hale Waihona Puke e [ n] 0 M e [ n] 1
M h [ n] 0 M

z 1
h[n]
z
h[n 1]
h1[n]

z 1
z
h[n 2]
M e [ n] M 2
M 1 k 0
, n M的整数倍 其他
h[n] hk [n k ]
hk 是插0值的序列,例如上图中:
序列 h0 ,即序列①为:0 0 0 3 0 0 6 0 0…… 序列 h1 ,即序列②为:0 1 0 0 4 0 0 7 0…… 序列 h2 ,即序列③为:0 0 2 0 0 5 0 0 8……
因此,对于某些L和N值来说,图(b)相当于图(a)可能在计算 量上有明显的节约。
谢谢观赏
多采样率信号处理
多采样率技术一般指的是利用增采样,减采样,压缩器和扩展器等各种方式 来提高信号处理系统的效率。
多采样率信号处理
多相分解
多采样率信号处理的应用
1、多采样率信号处理
对于系统
x ( n) 100 H (e j ) 101 y (n)

《数字信号处理》第9章 信号的抽取与插值—多抽样率数字信号处理基础

《数字信号处理》第9章  信号的抽取与插值—多抽样率数字信号处理基础

类 型 III 多 相 表 示
NCEPUBD
8.6 几个重要的恒等关系
两个信号分别定标以后再相加后的抽取 等于它们各自抽取后再定标和相加。
NCEPUBD
8.6 几个重要的恒等关系
信号延迟M个样本后作M倍抽取和先抽 取再延迟一个样本是等效的
NCEPUBD
8.6 几个重要的恒等关系
在M倍抽取器的前后,滤波器z的幂相差M 倍
n0
插值多相滤波器
g(m ,n)h(m LMn ) L
时变滤 波器
NCEPUBD
8.8 抽取与插值的编程实现
g(m ,n)h(m LMn ) L
g (m ,n k)L h (mL M knM ) L L h (mL M)n g (m ,n k)L L 所以g(n,m)是变量n的周期函数,周期为L。
M1
H(z) zl h(Mnl)zMn
l0 n0
记 El(z) h(M nl)zn
n0
M1
则 H(z) zlEl(zM)
l0
若再记 el(n)h(Mnl)

El(z) el(n)zn
n0
类 型 -I 多 相 表 示
NCEPUBD
8.5 信号的多相表示
用M-1-l代替类型I中的l,则有
式中










NCEPUBD
8.7.1 抽取的滤波器实现
可以用多相结构来实现信号的抽取:
H ( z ) E 0 ( z 3 ) z 1 E 1 ( z 3 ) z 2 E 2 ( z 3 )
NM1
Ei(z) h(Mni)zn
n0

程佩青《数字信号处理教程》(第4版)(名校考研真题详解 序列的抽取与插值——多抽样率数字信号处理基础

程佩青《数字信号处理教程》(第4版)(名校考研真题详解 序列的抽取与插值——多抽样率数字信号处理基础

9.3 名校考研真题详解1.以20kHz 的采样率对最高频率为l0kHz 的带限信号采样,然后计算x(n )的N =1000个采样点的DFT ,即:(1)求k =150对应的模拟频率是多少?k =800呢?(2)求频谱采样点之间的间隔为多少?[华南理工大学2007研]解:(1)根据数字频率与模拟频率的关系得:N 点的离散傅里叶变换DFT 是对离散信号的傅里叶变换DFT 在N 个频率点上的采样,即:所以,X (k )对应的模拟频率为:所以,当N =1000时,序号k =150对应的模拟频率是f =3kHz 。

当k =800时,当N =1000时,,此时对应的模拟频率为:(2)由N 可得频谱采样点之间的间隔为:2.用DFT 对模拟信号进行谱分析,设模拟信号的最高频率为200Hz ,其频谱如图所示。

现以奈奎斯特频率采样得到时域离散序列,要求频率分辨率为10Hz 。

(1)求离散序列x (n )的傅里叶变换,并画出其幅度频谱示意图;(2)求,并画出其谱线示意图;(3)求每个k值所对应的数字频率和模拟频率的取值,并在图中标出。

[中南大学2007研]解:(1)由题意知,最高频率,频率分辨率,所以采样频率为:所以:记录时间为:则采样点数为:对采样得:x (n)的傅里叶变换为:其幅度频谱示意图:(2)由(1)得:谱线示意图为:(3)的图示如下;由上分析可得:当时,对应的,由于得当时,对应的数字频率,与的对应关系为,其中。

3.已知连续时间信号为对该信号进行抽样,抽样频率为4kHz ,得到抽样序列x[n],求x[nJ 的表达式。

[北京大学2005研]解:已知连续时间信号为:抽样频率后,直接令t =n ,代入x a (t )得x (n ),即:s T4.利用数字系统处理模拟信号的框图如图所示,其中X (jw )为连续信号x (t )的频谱,是离散系统h[k]的频率响应。

当抽样间隔时,试画出信号x[k]、)(Ωj e H s T 401=y[k]、y (t )的频谱。

数字信号处理-多采样率数字信号处理在数字语音系统中的应用

数字信号处理-多采样率数字信号处理在数字语音系统中的应用

目录一、课程设计的性质与目的 (1)二、课程设计题目 (1)1. 设计目的 (1)2. 设计要求 (1)3. 设计步骤 (2)三、课程设计要求 (2)四、设计进度安排 (2)五、设计原理 (3)1. 巴特沃斯滤波器 (3)2. 采样定理............................................. 错误!未定义书签。

3. 椭圆滤波器........................................... 错误!未定义书签。

4. 抽取与内插 (5)六、实验步骤及效果图 (6)1. 信源的时域和频域分析 (6)2. 对原始信号进行滤波 (7)3. 对滤波后的信号采样 (8)4. 椭圆滤波器滤波 (9)5. 对语音信号进行抽取和内插处理 (10)6. 语音信号的恢复 (11)7. 信号波形图对比 (12)七、问题及解决办法 (14)1. 信源的时域和频域分析原代码 (14)2. 对原始信号进行滤波原代码 (15)3. 椭圆滤波器滤波原代码 (16)八、心得体会 (17)一、课程设计的性质与目的《数字信号处理》课程是通信专业的一门重要专业基础课,是信息的数字化处理、存储和应用的基础。

通过该课程的课程设计实践,使学生对信号与信息的采集、处理、传输、显示、存储、分析和应用等有一个系统的掌握和理解;巩固和运用在《数字信号处理》课程中所学的理论知识和实验技能,掌握数字信号处理的基础理论和处理方法,提高分析和解决信号与信息处理相关问题的能力,为以后的工作和学习打下基础。

数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。

根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应(IIR)滤波器和有限冲激响应(FIR)滤波器。

二、课程设计题目多采样率数字信号处理在数字语音系统中的应用1、设计目的学习多采样率数字信号处理原理,采用整数因子抽取与整数因子内插来解决数字语音系统中的信号采样过程中存在的问题,并用MATLAB编程实现,加深对多采样率数字信号处理的理解。

数字信号处理数字频率和采样频率关系

数字信号处理数字频率和采样频率关系

数字信号处理数字频率和采样频率关系下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!数字信号处理中数字频率和采样频率关系数字信号处理中,理解数字频率与采样频率之间的关系至关重要。

多采样率数字信号处理及其MATLAB仿真

多采样率数字信号处理及其MATLAB仿真

10 科技资讯 SCIENCE & TECHNOLOGY INFORMATION
自然采样信号是具有一定形状和宽度

∑ 的脉冲(方波信号)p(t), c(t) = p (t − nTs ) 。 n=−∞
将 c(t) 展 开 为 付 氏 级 数 得 到 :
∑ ∫ c(t)
=

cne
n=−∞
jnωst

c(n)
=
1 Ts
Ts / 2 −Ts / 2
p(t )e− jnωst dt

c(n)为付氏级数系数,则有:
∆f = f stop − f pass = (L −1) f s
显然L越大,过渡带越宽,抗混叠模拟 滤 波 器 的 复 杂 性 越 低 。相 反 ,若L=0,f=0,这 种苛刻要求是不可能实现的。
下面对信号的抽取进行举例说明,并 用Matlab进行仿真验证。
例:对信号x进行抽取,使采样频率为 原来的1/4倍。
的序列的采样率为
fs
=
f
' s
/L
,可得:
x(n) = x' (n' ) |n'=nL = x' (nL)
采样率降低等同于对数字信号 x'(n) 重
新采样,将原来的奈奎斯特间隔
(−
f
' s
/
2,
fs'
/
2)
变换到
(− fs
/ 2,
fs
/ 2)
,则得式
到:
∑ X ( f )
=
1 L
L−1
X '(f
m=0
其中, 1≤ m ≤ mmax,mmax = [ fh / B] [x]表示不 大于x的最大整数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hi(n )
图中, 是第i级整数因子Ii内插系统的 镜F 像iIiF i 1,i 1 ,2 ,L,L
返回
2020/6/20 样率仍满足抽样定理要求时,才不会
回到本节
整数因子抽取特点: (1)已抽样序列x(n)和抽取序列y(n)的频
谱差别在频 率尺度上不同。
(2)抽取的效果使原序列的频谱带宽扩展 。
(3)为避免在抽取过程中发生频率响应的 混叠失真,原序列x(n)的频谱就不能 占满频带(0-π).
2020/6/20
x (n )
h (0 )
y(m )
↓D
z 1
h (1 )
z 1
↓D
M
M
M
z 1
h(M 2)
↓D
z 1
h(M 1)
↓D
2020/6/20
返回
回到本节
x(n) h D ( n )
v (n )
D
X (e jw ) H D ( e j ) V ( e jw )
y (n ) Y ( e jw )
M 1
v(n)x(n)hD (n) hD (k)v(nk) k0
返回
9.3整数因子内插
整数因子I内插的目的将原信号采样频
率提高I倍
Fx
1 Tx
采样频率:
xa(t)x(n)
Fx
Fy IFx
整数因子内插:将x(n)的抽样频率
x(n增) 加 I
v(m )
y(m)xa(mTy)
倍,即为II倍插值结果 h I ( m )
y(m)xa(mTy) TyTxI
2020/6/20
I
hI (m )
整数因子I内插系统的直接型FIR滤波
器结x ( n构) 如图示
h (0)
I
z1
h (1 )
y(m )
z1Biblioteka h (2 )z1 h(MM2)
z1 h(M 1)
2020/6/20
返回
回到本节
该系统结构问题: (1)滤波器工作在高采样频率上; (2)滤波器输入的I 个样值中,仅一
个非零
解决方法:将直接型FIR滤波器结构 部分进行转置
式中,Cy(为m)定x(标m系I) 数,此时,输出频谱为
2020/6/20
返回
回到本节
到按整数因子I内插的y序(m)列xa(mTy) ,
v(m ) 0 x(,mI),
m0,I,2I,3I,L 其 他
v(m )
y(m )
V (z 的) 采 样v ( 率m )z 和 m 的v ( 采Im 样)z I率m 相 同x ( .m 由)z 于 Im X (zI)
返回
回到本节
QyTy xTx TyDTx yDx
Y(ejy)1D1V(ej(x2D k)) Dk0
x 2D y 2
2020/6/20
返回
回到本节
频域分析 D=2
Y(ejy)1D1V(ej(Dy2D k)) Dk0
0 Va ( j )
va(t)信号的频谱
h
1
T
h
V (e jw )
2
m
m
m
V (ejy)V (z)z ejy X (ejIy)
返回
2020/6/20
回到本节
y表示相应于新采样F频y 率 的数字频率,满
y足2 关f系Ty 式2f Fy
x
Fx
x同2样f, Fx表示原F y 采 I样Fx 频率 的
数字频率,且 y 由x 于I
,所以
x (n )
X (e j x ) v ( m )
2020/6/20
返回
回到本节
线性滤波器输出序列为
w (l) h(lk)v(k) h(lkI)x(k)
k
k
整y数(m 因) 子w D(抽Dm 取)器最后输h(出Dm 序 列k时I)x域(k表)达
式为:
k
返回
2020如/6/20果线性滤波器用FIR滤波器实现,则可
9.5 采样率转换滤波器的高 效实现
1
V 2 (e jw )
2
D
2
w s
0
ws
Y (e jw )
2
22020/6/20
wh
w h
2
wx
wx wx
w 返回 y
回到本节
结论:
(1)时域抽取得愈大,即D愈大,或 抽样率愈
低,则频域周期延拓的间隔愈近,有 可能产生频
率响应的混叠失真。
(2)对x(n)不能随意抽取,只有在抽 取之后的抽
2020/6/20
返回
9.6 采样率转换系统的多 级实现
在抽取因子和内插因子很大的情况下,实 现结构中将需
要的多相滤波器很多,而且其工作效率很 低。
下面分别介绍针对整数因子D或内插因子 I情况的多级
实现方法.
2020/6/2对0 内插因子I的情况,如果I可以分解为L 返回
回到本节
按整数因子I内插系统的多级实现结构图
x(n )
h (0)
I
h (1 )
I
h (2 )
h(M M2)
I M
I
h(M 1)
I
z 1 y ( m ) z 1
z 1 z 1
可见,加在延迟链上的信号完全一 样;乘法运算
在低采样率下实现高效结构
2020/6/20
返回
回到本节
线性相位FIR:h (n 2 T 2 ) h [N ( 1 n 2 )T 2 ]
第九章 多采样率数字信号处理
2020/6/20
2020/6/20
9.1 引言
前面讨论的信号处理的方法都是把采样 率Fs视为固定
值,即在一个数字系统中只有一种采样 频率。但在实
际系统中,要求一个数字系统能工作在 “多采样率”
状态。
例如,在数字电话系统中,传输的信号既 有语音信号,
返回
2020/又6/20 有传真信号,可能还有视频信号,这
采样率转换系统中滤波器的高效实现 指的是运算 量小,处理效率高.
高效实现结构的基本思想是:将FIR 滤波器的乘 法和加法运算移到系统中采样率最低 处。
返回
2020/6/20 FIR滤波器绝对稳定,容易实现线性相
本章主要讲述: ➢9.5.1 整数因子D抽取系统的直接型FIR结构 ➢9.5.2.整数因子I内插直接型FIR滤波器结构
返回
回到本节
在零值内插之后的滤h I 波( m ) 器 滤除
的作用就V ( e 是j y )
中的镜像谱,输出所期望的内插结果。 器称。为理HI镜想(ej像情y )滤况波下C0,,,0≤镜I≤像y 滤y≤波I器的频率响
应特性为
Y(ejy)CX(ejy), 0≤ y I
0,
I≤ y ≤
m 0,I, 2I, 3I,L
变换,得到如图所示的等效结构。然后 可以将零值
内插器移到FIR滤波器结构中的M个 返回
2020/6/20
回到本节
x (n )
I
FIR滤波器转置
h (0 )
h (1 )
z1 y ( m )
h (2 )
z1
h(MM2) z1 h(M 1) z1
2020/6/20
返回
回到本节 按整数因子I内插系统的高效FIR滤波器结构
抽样序列p(n) n
已抽样序列 x p (n )
n
抽取序列 xd (n)
n
返回
回到本节
时域分析
原始信号v(n)
脉冲串p(n)
p(n)(niD) i
D=3
2020/6/20
抽取后的序列y(n)
y ( m ) v ( D m )p ( D m ) v ( D m ) 返回
回到本节
频谱关系

s(n)v(n)p(n)
按整x (数n ) 因子I
返回
回到本节
序列y ( m ) 的采样频率,F则y (I D)Fx .图中镜像滤
波h I ( l )
hD (l)
器 和I F x 抗混叠滤波器 级联,工作h ( l 在) 相
同的采
样频率 ,二者可以合成为一个等效滤波 器 ,从
而得到按有理数因子I/D采样率转换的实用 原图理9.4方.2 框按h有I 图(理l ) 数, 因子h D I(/Dl )采样率转换的实用原理方框图
如下图9.4h .(2l )所示
hI (l) hD (l)
2020/6/20
返回
回到本节
h ( l ) 的频率响应为
H(ejy) I, 0,
0≤y minI,D minI,D≤y≤
y(m )
现在推导图9.4.2中输出序列 的时域
表达式.x 零(lI), l0,I,2I,3I,L 值v内(l插)器 0 的,输出序列为其 他
y(m )
x (n )
h(0) y(n)
D
y(m )
z 1
↓D
h (1 )
z1 h ( 1 )
z 1
↓D
z1 h ( 2 ) z1 h(MM2)
M
M
M
z 1
h(M 2)
↓D
z 1
h(M 1)
↓D
z1 h(M 1)
可以看出,两种结构的滤波器输出样值相同 ,功能完全等效
高效直接型FIR滤波器(右图)运算量为1/D
返回
2020/6/20
回到本节
中抽取器 D 在n=Dm时刻开通,选通 FIR滤波器的
M1
一个y输(m出)作为h抽(k)取x(系Dm统输k)出序列的一 个样值: k0
该系统结构的问题: (1)滤波器工作在高采样频率上; (2)D个滤波器输出的样值中,仅一个输出
相关文档
最新文档