信号与系统1-2冲激函数课件

合集下载

西安电子科技大学 郭宝龙《信 与系统》课件 完整版

西安电子科技大学 郭宝龙《信 与系统》课件 完整版

信号与系统 电电子子教教案案
1.1 绪论
本课程重点讨论通信、信号处理和控制等领域中的 电子信息系统。举例说明:
*. 通信系统 *. 控制系统
第第11--55页页

©西安电子科技大学电路与系统教研中心
信号与系统 电电子子教教案案
第一章 信号与系统
1.2 信号的描述和分类
一、信号的描述
信号是信息的一种物理体现。它一般是随时间 或位置变化的物理量。

©西安电子科技大学电路与系统教研中心
信号与系统 电电子子教教案案
1.1 绪论
3. 信号(signal):
信号是信息的载体。通过信号传递信息。
为了有效地传播和利用信息,常常需要将信息转 换成便于传输和处理的信号。
信号我们并不陌生,如刚才铃 声— 声信号,表示该上课了;
十字路口的红绿灯— 光信号,指 挥交通;
一、系统的定义 二、系统的分类及性质
1.6 系统的描述
一、连续系统 二、离散系统
1.7 LTI系统分析方法概 述
点击目录
第第11--11页页
,进入相关章节

©西安电子科技大学电路与系统教研中心
信号与系统 电电子子教教案案
第一章 信号与系统
1.1 绪言
思考问题:什么是信号?什么是系统?为什么把这两 个概念联系在一起?
研究确定信号是研究随机信号的基础。本课程只 讨论确定信号。
第第11--77页页

©西安电子科技大学电路与系统教研中心
信号与系统 电电子子教教案案
1.2 信号的描述和分类
2. 连续信号和离散信号
演示
根据信号自变量为连续/离散的特点进行区分。
(1)连续时间信号:

《信号与系统》课程讲义1-2

《信号与系统》课程讲义1-2

ii)抽样特性: (t ) f (t )dt f (0)
证明: (t ) f (t )dt ( ) f ( )d ( ) ( ) f 0 d f 0


iv)延时抽样: v)关系:
t t f t dt f (t )
1 t
-1 0 f(-t-2) 1 -3 -2 0 t 2 t
0 1
1 -1
2 3
f(-3t-2)
0
t
§1.3信号的运算
②已知f(t)定义域为[-1,4],求f(-2t+5)的定义域 解:
i)方法一:f(t)→f(-t) [-4,1];f(-t)→f(-t+5) [1,6];
ii)方法二: 1 2t 5 4 6 2t 1
f (t ) f 1 ( t ) f 2 ( t )
§1.3信号的运算
7.信号相乘 ① f (t ) f1 (t ) f 2 (t )
②常用在调制解调中 8.卷积
f (t ) f1 (t ) f 2 (t )


f1 ( ) f 2 (t )d
9.相关
a
Ke at (a 0)
③特性:微积分后仍为指数信号
§1.2 信号描述分类和典型示例
2.正弦信号 ①表达式:
f (t ) K sin(t )
②参数:K振幅, 角频率, 初相位 f(t) ③特性 i)周期信号, 0 2 1 T f ii)微积分后仍为正弦信号
3 8
t
t
f(t)
t
0 ln 2 2 ln 2 3 ln 2
3
练习

信号与系统第二讲

信号与系统第二讲

若 H[C1 f1(t ) + C2 f2 (t )] = C1H[ f1(t )] + C2H[ f2 (t )] 是线性系统,否则是非线性系统 否则是非线性系统。 则系统 H[•]是线性系统 否则是非线性系统。 注意:外加激励与系统非零状态单独处理。 注意:外加激励与系统非零状态单独处理。
25
二.时变系统与时不变系统

r (t ) r (t ) r (t )
r(t ) = ∫ e(t )dt
−∞
t
τ
T
r ( t ) = e( t −τ ) r ( t ) = e( t −T )
18
二.系统的定义和表示
系统:具有特定功能的总体, 系统:具有特定功能的总体,可以看作信号的变换 处理器。 器、处理器。 系统模型:系统物理特性的数学抽象。 系统模型:系统物理特性的数学抽象。 系统的表示: 系统的表示: 数学表达式:系统物理特性的数学抽象。 数学表达式:系统物理特性的数学抽象。 系统图:形象地表示其功能。 系统图:形象地表示其功能。
5
1.3 信号的运算与变换
信号的代数运算 信号的微分与积分 信号的反褶 信号的时移 信号的尺度变换 信号的分解
6
1.3.1 信号的代数运算
信号的加减运算: f ( t ) = f 1 ( t ) ± f 2 ( t ) 注意要在对应的时间上进行加减运算。
1 t1 1 0 -1
7
0
t2 相加
t1
2 1 0 -1 t2
绪论
第一章 信号与系统概论
1.1 信号的描述与分类 1.2 基本典型信号 1.3 信号的运算与变换 1.4 系统
1
冲激函数的性质
延迟的冲激函数

信号与系统阶跃信号和冲激信号

信号与系统阶跃信号和冲激信号
1 sgn( t) 1 t 0 t 0

O
2

2
sgn t
1
O
t
-1
1 sgn( t ) u ( t ) u ( t ) 2 u ( t ) 1 u ( t) [sgn( t) 1 ] 2
三.单位冲激δ(t)(难点)
概念引出 定义1 定义2 冲激函数的性质
冲激导数的抽样情况:利用分部积分运算

(t)f(t) d t


f ( t ) ( t ) ( t ) ( t ) d t f
f(0 )
3.冲激偶(冲激的导数)
s( t )
1
(t )

1
成为
(1)
O
o
求导
s( t )
集美大学信息工程学院201041414阶跃信号和冲激信号阶跃信号和冲激信号信号函数本身有不连续点跳变点或其导数与积分有不连续点的一类信号函数统称为奇异信号或奇异函数
§1.4 阶跃信号和冲激信号
集美大学信息工程学院 2010.4
本节介绍
信号(函数)本身有不连续点(跳变点)或其导 数与积分有不连续点的一类信号(函数)统称为 奇异信号或奇异函数。 主要内容: •单位斜变信号 •单位阶跃信号 •单位冲激信号 •冲激偶信号
0 u ( t t ) 0 1
t
u( t t 0 )
1
O
1
t t 0 , t 0 0 t t 0
0
t0 u(t t0 )
t
由宗量 t O t t 0 可 t 知 t , 即 时 0 0 ,函数有断点,跳变点 间为 t0 时 宗量>0 函数值为1 宗量<0 函数值为0

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统 冲激函数

信号与系统 冲激函数

4
4
4
2
1
f (t) (t 2 4)dt 0
1
第1章 信号与系统的基本概念
1.6 基本离散时间信号
单位阶跃序列 单位抽样序列 复指数序列
第1章 信号与系统的基本概念
单位阶跃序列
0 n 1,2,...... u[n] 1 n 0,1,2,......
f '(ti )
第1章 信号与系统的基本概念
例6 计算下列函数的值

f (t ) (t 2 4)dt
1
f (t ) (t 2 4)dt 1
解: (t 2 4) 0 t 2
f
' (t1 )

d dt
(t 2
4)
t 2

2t

4
f
' (t2 )

d dt
(t 2
4)
t 2

2t

4
(t第21章信4号)与系统的1基本概念(t 2) 1 (t 2)
4
4
1 [ (t 2) (t 2)]
4

(t 2 4)dt

[ 1 (t 2) 1 (t 2)]dt 1 2 1

f (t) ' (t)dt f ' (0)

t
'( )d (t)

第1章 信号与系统的基本概念


x(t )
(t

t0 )dt


x(t0 )
x(t) (t
例5:计算下列积-分(性质的应用)

信号与系统§1-2 常用信号介绍ppt课件

信号与系统§1-2 常用信号介绍ppt课件



0
2
25
二、离散时间信号:
1、单位样值序列: (n)
函数式:(n)

1 0
n0 n0
波形图:
(n)
1
0
n
位移:
1 (n n0 ) 0
n n0 n n0
(n n0)
1
0 n0
n
26
• 抽样性:
设有序列x(n) ,则有
x(n)
1 2 0
12 3 4 5
0
t0
t
x(t)(t t0 ) x(t0 )(t t0 )
(x(t0 )) (x(0))


0
t0
t
x(t)(t)dt x(0) (t)dt x(0)




x(t)(t t0)dt x(t0 ) (t t0 )dt x(t0 )

t
Au(t t0 ) A
0
t0
t
函数式:x(t)

A t0
[R(t)

R(t

t0
)]

Au(t

t0
)

A t0
tu(t)

A t0
(t

t0
)u(t

t0
)

Au(t

t0
)
6
? 试用单位斜变信号表示以下三角波形:
x(t)
A
0
2 t
A R(t)
A
0

A R(t )
A
1

0R
不管电阻值的大小,始终为1。

信号与系统全套课件

信号与系统全套课件

解答
f (t)
f (t 5)
1
时移
1
1 O 1 t 尺度 变换
f (3t)
6 5 4
t 尺度 O 变换
f (3t 5)
1 t
1O 1
33
时移
1 t
2 4 3
1.4.2 信号的变换
平移、展缩、反折相结合举例
例 已知f (t)如图所示,画出 f(-2t-4)。 解答
右移4,得f (t–4)
反转,得f (-2t–4)
1.4.2 信号的变换
2.信号的平移
将 f (t) → f (t–t0) ,称为对信号f (t)的右移
f (t) → f
其中,t0 >0

(t +t0), 称为对信号f t → t–1右移
(t)的左移
f (t-1)
1
f (t) 1
o1 2 t
o1 t
t → t+1左移
雷达接收到的目标回波信号就是平移信号。
1.2.2 信号的分类
1. 确定信号和随机信号
•确定性信号 可用确定的时间函数表示的信号。
对于指定的某一时刻t,有确定的函数值f(t)。
•随机信号
取值具有不确定性的信号。 如:电子系统中的起伏热噪声、雷电干扰信号。
•伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
1.2.2 信号的分类
f (t)
2
1
4
- 4 - 3 - 2- 1 0 1 2 3
t
-1
-2
f (t) 2 1 - 4 - 3 - 2- 1 0 1 2 3 4 t
(a)
(b)
图5 确定性信号与随机信号

信号与系统PPT全套课件

信号与系统PPT全套课件

T T

T
f (t ) dt
f (t ) dt
2
2
(1.1-1)
1 P lim T 2T

T
T
( 1.1-2 )
上两式中,被积函数都是f ( t )的绝对值平方,所以信号能量 E 和信号功率P 都是非负实数。 若信号f ( t )的能量0 < E < , 此时P = 0,则称此信号 为能量有限信号,简称能量信号(energy signal)。 若信号f ( t )的功率0 < P < , 此时E = ,则称此信 号为功率有限信号,简称功率信号(power signal)。 信号f ( t )可以是一个既非功率信号,又非能量信号, 如单位斜坡信号就是一个例子。但一个信号不可能同时既是 功率信号,又是能量信号。
1.3 系统的数学模型及其分类
1.3.1 系统的概念 什么是系统( system )?广义地说,系统是由若干相互作用 和相互依赖的事物组合而成的具有特定功能的整体。例如, 通信系统、自动控制系统、计算机网络系统、电力系统、水 利灌溉系统等。通常将施加于系统的作用称为系统的输入激 励;而将要求系统完成的功能称为系统的输出响应。 1.3.2 系统的数学模型 分析一个实际系统,首先要对实际系统建立数学模型,在数 学模型的基础上,再根据系统的初始状态和输入激励,运用 数学方法求其解答,最后又回到实际系统,对结果作出物理 解释,并赋予物理意义。所谓系统的模型是指系统物理特性 的抽象,以数学表达式或具有理想特性的符号图形来表征系 统特性。
2.连续信号和离散信号 按照函数时间取值的连续性划分,确定信号可分为连续时 间信号和离散时间信号,简称连续信号和离散信号。 连续信号( continuous signal)是指在所讨论的时间内,对 任意时刻值除若干个不连续点外都有定义的信号,通常用f ( t ) 表示。 离散信号(discrete signal)是指只在某些不连续规定的时刻 有定义,而在其它时刻没有定义的信号。通常用 f(tk) 或 f(kT) [简写 f(k )] 表示,如图1.1-2所示。图中信号 f (tk) 只在t k = -2, -1, 0, 1, 2, 3,…等离散时刻才给出函数值。

冲激函数 ppt课件

冲激函数 ppt课件

冲激函数
5
其他形状脉冲的极限情况
❖ 冲激函数一般看成是矩形脉冲函数的极限情况,其他 形状脉冲的极限情况也可作为单位冲激的近似。
❖ 具有单位面积的三角形脉冲,当趋近于零时,可作 为单位冲激的近似。
冲激函数
6
负指数函数
ftA0et/
t 0 t 0
| Aet /dt Aet /
A
0
0
令 A 1,
图(b)。
冲激函数
23
解答
N0为ab左边部分各独立源及初始条件置零后的网络, 即R1与C1的并联组合。
由图(b)求短路电流时,电流
可看成是电阻支路电流和电容支
路电流之和。
电阻支路的电流为(t)/Rl。阶 跃电压(t)作用于电容,意味着电
容电压发生跃变,因而电容支路
的电流为C1(t)。
is
t
t
R1
C1
x
ht
d
xt
h
d
❖ 对于物理上可实现的网络,响应(输出)不能先于激励
(输入)。冲激响应h(t)是对冲激激励(t)的响应,当t<0 时,(t)=0,因而冲激响应h(t)=0。
ytxtht
txhtd t ht0
0xthd冲激函数 0 ht0
29
卷积性质
❖ 如果只限于讨论输入在t=0时作用到网络的情况,亦 即
励之和作为N的输入,则根据叠加定理,输出就应该 是上述响应之和。
❖把激励的积分作 为输入,则响应 的积分便是输出, 即
xt dxht d xt dxtdxt ytxht dxt冲激h函数t
响应是激励与
冲激响应的卷

28
卷积性质
❖ 在卷积积分中冲激响应h(t)和输入x(t)可以交换。

1-2冲击信号

1-2冲击信号

3 系统框图 连续基本单元:积分器、加法器、数乘器、延时器等。 连续基本单元:积分器、加法器、数乘器、延时器等。 离散基本单元:加法器、数乘器、延迟器等。 离散基本单元:加法器、数乘器、延迟器等。
连续系统基本单元 积分器
f (t )
f1 (t )
离散系统基本单元

y (t ) =

t
−ω
f ( x)dx
Aε (t )
u = Aε (t )
2. 定义
1 ε (t ) = 0
ε (t )
t >0 t<0
延时阶跃函数: 延时阶跃函数:
1 ε (t − t 0 ) = 0
(t )
t > t0 t < t0
O
t0
3. 阶跃函数是可积函数
r (t ) = tε (t ) = ε (τ )dτ
三. 冲激函数
1.工程背景 工程背景 力学中瞬间作用的作用力;电学中的雷击电闪等。 力学中瞬间作用的作用力;电学中的雷击电闪等。 2.定义 2.定义 狄拉克(Dirac) 狄拉克(Dirac)定义 极限方式定义 严格数学定义:分配函数(广义函数) 严格数学定义:分配函数(广义函数)定义
δ (t )
与任意函数相乘

f (t )δ ' (t ) = f (0)δ ' (t ) − f ' (0)δ (t )
f (t )δ ' (t − t 0 ) = f (t 0 )δ ' (t − t 0 ) − f ' (t 0 )δ (t − t 0 )
抽样性

−ω
f (t )δ ' (t ) dt = − f ' (0)

信号与系统课件2.2冲激响应和阶跃响应

信号与系统课件2.2冲激响应和阶跃响应

二.阶跃响应
g(t)= T [ε(t) ,{0}] 线性时不变系统满足微、积分特性
t
(t) (t)dt
g(t) th()d
,h(t)dg(t) dt
阶跃响应是冲激响积应分的,注意积分限:
t ,对因果系统t:

0
第5页
第2页
• h(t)解答的形式
由于(t)及其导数在 t≥0+ 时都为零,因而方程式右端
的自由项恒等于零,这样原系统的冲激响应形式与齐次解 的形式相同。 ①与特征根有关
例:当特征根均为单根时
h(t)
n
Cieit
(t)
i1
举例
②与n, m相对大小有关
•当nm时 , ht不 含 t及 其 各 阶 导 数 ; •当nm时 , ht中 应 包 t含 ; •当nm时 , ht应 包含 t及 其 各 阶 导 数 。
一、冲激响应
1.定义
由单位冲激函数δ(t)所引起的零状态响应称为单位冲 激响应,简称冲激响应,记为h(t)。
h(t)=T[{0},δ(t)]
t
ht
T{0}
第1页
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程表示
dndtyn(t)an1dndt1ny1(t)a1ddy(tt)a0y(t) bmdm dtfm(t)bm1dm dt1mf1(t)b1ddft(t)b0f(t)
响应及其各 阶导数(最 高阶为n次)
令 f(t)=(t)
则 y(t)=h(t)
激励及其各 阶导数(最 高阶为m次)
h n (t) a n 1 h n 1 (t) a 1 h 1 (t) a 0 h (t)

信号与线性系统第二章ppt课件

信号与线性系统第二章ppt课件
2.6 卷积的数值计算 卷积积分除通过直接积分或查表的方法进行求解外,还可以
利用计算机求解,这就是卷积积分的数值计算。
.
单位冲激函数的工程定义:
(t) 0
t 0 t 0

(t)dt1
单位冲激函数的工程定义直观地反映了它出现时间极短和面
积为1两个特点。从它t=0时函数值趋于无穷大,可以看出,
不是通常意义下的函数。人们将这类非常规函数称为广义函
数(generalized function),或称分配函数(distribution
function)。这类函数的数学定义不是象普通函数那样,由对
应于自变量的变化值所取的函数值来定义,而是由它对另一
个函数(常称为测试函数)的作用效果来定义的,也就是说,
不是用它“是”什么来定义,而. 是用它能“做”什么来定义 的。
单位冲激函数的严格的数学定义。
(t)(t)d t (0)
(2.1-4)
y(t) x()h(t)d
t1
(2.3-14)
更一般的确定卷积积分的积分限的方法将在下一节中进一步
进行分析讨论。 .
2.4 卷积的图解和卷积积分限的确定 上一节讨论了一般形式的卷积积分,以及x(t)和h(t)均为有始
函数时积分上下限的表示方法,但实际上卷积积分限还要根 据具体情况来确定,特别是当x(t)和h(t)两者或两者之一是分段 定义的函数时,图解能帮助正确地确定卷积积分的上下限。
2.4.2 卷积的另一种计算方法 如果x(t)和h(t)两者或两者之一是分段连续的函数时,采用式 (2.3-14)进行卷积计算也是一种较为简便的方法。 2.5 卷积积分的性质 作为一种数学运算方法,卷积积分具有某些特殊的性质。利 用这些性质可使卷积运算大为简化。

信号与系统 冲激响应和阶跃响应

信号与系统 冲激响应和阶跃响应

信号与系统
t t t t g ( t ) Ae u ( t ) e u ( t ) Ae e u(t ) 将
代入
d g (t ) g (t ) (t ) 2e t u (t ) dt

( A 1) (t ) ( Aet et )u(t ) ( Aet et )u(t ) (t ) 2et u(t )
A1 2, A2
1 3 , A3 2 2
故:
1 3 g(t ) (2e t e 2t )u(t ) u(t ) 2 2
信号与系统
二.阶跃响应
h(t ) (2e t e 2t )u(t )
ii)先求h(t)再积分法
g (t ) h( )d (2e e2 )d
信号与系统

冲激响应的定义 •零状态;

•单位冲激信号作用下,系统的响应为冲激响应
冲激响应说明:在时域,对于不同系统,零状态情况下加同样的激励 ( t ),看 响应 h( t ),h( t )不同,说明其系统特性不同,冲激响应可以衡量系统的特性。 (1)系统的在 x(t ) 激励下的零状态响应为 yzs (t ) x(t )* h(t ) (2)LTI系统因果性的充要条件可表示为 当
信号与系统
二.阶跃响应
2.阶跃响应与冲激响应的关系 线性时不变系统满足微、积分特性
u (t ) ( ) d

t
t
d (t ) u (t ) dt
dg (t ) h(t ) = dt
g (t ) h( ) d

阶跃响应是冲激响应的积分,注意积分限

t

信号与系统分析PPT全套课件可修改全文

信号与系统分析PPT全套课件可修改全文

1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (t) (t) dt f (0)
f (t) (t t0 ) dt f (t0 )
是冲激函数的 严格的数学定义。
2
冲激函数的性质
单位冲激函数为偶函数 (t) (t)
缩放性质
(at) 1 (t)
a
(at t0 )
1 a
(t t0 )
a
这里 a 和 t0为常数,且a0。
冲激偶的采样性质
f (t) (t)dt f (0)
f (t) (t t0 )dt f (t0 )
冲激偶’(t)是 t 的奇函数
(t) (t)
任何偶函数的导数为奇函数。
5
例1.8 阶跃函数和冲激函数的关系
(t) d (t)
dt
t
(t) ( )d
f1(t)
2 1
折叠信号的平移
已知 f (t)f求(-ft)f(的-(t--波1t-)1=形)f向[-(左t+移1)动]将1。
f (t)
反折 1
f (t)
平移
f (t 1)
0
1t
平移
1 0
f (t 1)
1
t
2 1 0 t
反折
0
12 t
12
信号的平移与折叠
折叠信号的平移
已知 f (t)f求(-ft)(f的-(t+-波t1+)形=1)向f [-右(t-移1)动]将1。
1.3 冲激函数
冲激函数的定义
(t)
0, ,
t0 t 0
( )d 1
1 p(t)
1
1
2
2
2
0
2
2
2
t
(t) (1)
0
t
1
冲激函数的性质
延迟的冲激函数
(t)
(1)
(t t0 ) (1)
(t t0 ) (1)
0

f (t) (t) f (0) (t); f (t) (t t0) f (t0) (t t0) 采样性质
f (t)
f (t)
1
方法五:1
f (2t)
平移 f (t+2)反折 f (-t+2)压缩 f (-2t+2)
2 1 0 t
0
1 2t
1 0.5 0 t
平移
平移
方法六:
反折 ff((-tt)2)
2反折平压f1移(-缩t)f0f[-(1压(-t2-t2缩t方+)]2f法)(-四2t):1 平f (移t f
f1(t) f2(t)
1
2
0
t
2
1
1
2 1 0
12t
1
f2 (t)
1
2
0
t
2
1
9
例1.12 信号的运算
信号的导数与积分
f (t)
f (t)
f (1) (t)
(1)
1
1
1
0
t
0
1t
(1)
0
1t
问题 1: 能否画出二阶导数和二重积分的波形?
问题 2: 能否写出它们的表达式?
10
信号的平移与折叠
信号的平移
2)
[-2(t-1)]
平移
f (2t 2)
1
0 0.5 1 t
0
1 2t
16
1.5 信号的时域分解
任意信号的冲激函数表示
任意时间信号可分解为在不同时刻出现的具有不同强度 的无穷多个冲激函数的连续和。
信号分解为直流分量与交流分量之和
一连续信号可以分解为直流分量与交流分量之和。
信号分解为偶分量与奇分量之和
f (t)
1
f
(
1 2
t
)
扩展 1
0
1 2t
0
2
4t
14
信号变换综合应用 由 f (t)绘出 f (-2t+2)
f (2t)
f (t)
1
f (2t)
1
0
另外应该方还0 法有0.5二三1:种方法t , 1 平移2 请f (同tt+2学)们压自缩己思f (2考t+绘2)出图反形折。f (-2t1+20).]5 0
任意时间信号可分解为偶分量与奇分量之和.
17
任意信号的冲激函数表示
先定义窄脉冲信号: p(t)
1
lim
0
p此(t)式 表(t)明:
任意时面间积信为号1 可分解2 0为2 在t 第不0同个时脉刻冲出函数现:的f 具(0)有 不p(t同) 面积
f (t)
反折 1
f (t)
平移
f (t 1)
0
1t
平移
1 0
t
f (t 1)
1
0
1
t
反折
1 0
t
13
信号的尺度变换
a > 1 则 f (at)将 f (t)的波形沿时间轴压缩至原来的1/a
f (t)
1
f (2t)
压缩
1
0
1 2t
0 0.5 1 2 t
0<a <1 则 f (at)将 f (t)的波形沿时间轴扩展至原来的1/a
t
平移
平移
平移
方法三:f (t 方2) 法一:
压平压缩移缩ff ([22f t(()t2+1t)1反)]折 f (-2t)平移 ff [(-22t (t-21))]
2
反折
1
f
(0-2t+t2)
f (2t 2)
1
0 0.5 1 t
1 0.5 0 t
15
信号变换综合应用 由 f (t)绘出 f (-2t+2)
f (t)
1
f (t 1)
1
f (t 1)
1
0
1t
1 0
t0
12 t
信号的折叠(反折)
f (t+t0)f将(t)f (t) 超前 f (t-t0)将f (ft()t) 延迟
时的间波1形t0 向;左即移将动f
(t) t0 。
时间 t0 ;即将 f (t) 的波形向右移动 t0 。
0
1t
1 0
t
11
信号的平移与折叠
1 0 1 2 t
1
f1(t)
1(1)
(1)
1
0 12
t
(3)
6
例 1.9
计算下列各式。
f (t) e2 t (2t 4)
解: f (t) e2 t (2t 4) e2 t (2t 4)
0.5 e2 t (t 2) 0.5 e4 (t 2)
2
I1
cos(2 t) (2t 1)dt
x(t)
12
0 t
1 2
面积 0
x(t)
12
0 t
1 2 面积 0
(t)
(1)
面积 1
t
0
(t)
(1)
0
t
面积 0
4
冲激偶的性质
冲激偶的乘积性质
f (t) (t) f (0) (t) f (0) (t)
f (t) (t t0 ) f (t0 ) (t t0 ) f (t0 ) (t t0 )
(t)的导数及其性质
定义: (t) d (t)
dt
(t)
0,
未定义,
t t
0 0
称单位二次冲激函数或冲激偶。
(t)dt 0
3
(t)和(t)的波形演变
x(t
)
1
Q
(t
)
1
面积 1
0 t
x(t)
1
面积 1
0 t
x(t)
1
面积 1
0 t
x(t)
12
0
1 2
t
面积 0
4
解:
2
I1
cos(2 t)[0.5 (t 0.5)]dt
4
0.5cos(2 t) 0.5
t 0.5
7
1.4 信号的运算
信号的相加与相乘
f1 (t )
1
0
1t
f1(t) f2 (t)
2
1
0 1t
f2 (t)
1
0
1t
f1(t) f2 (t)
1
0
1t
8
例1.11 信号的运算
信号相加
f1(t)
相关文档
最新文档