多元统计分析期末考试考点整理
最新应用多元统计分析考试要点
1 简述欧氏距离与马氏距离的区别和联系。
答: 设p 维空间中的两点X =和Y =。
则欧氏距离为。
欧氏距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y 是来自均值向量为,协方差为的总体G 中的p 维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧氏距离。
因此,在一定程度上,欧氏距离是马氏距离的特殊情况,马氏距离是欧氏距离的推广。
2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D 2(X ,G 1)D 2(X ,G 2) X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ记()()W '=-X αX μ 则判别规则为 X ,W(X) X ,W(X)<0②多个总体的判别问题。
多元统计分析期末复习
多元统计分析期末复习1.多元统计分析的基本概念a.自变量和因变量的定义:自变量是研究者设定的对因变量可能产生影响的变量;因变量是研究者感兴趣的变量,其取值由自变量决定。
b.共变量和嵌套变量的定义:共变量是对因变量可能产生影响的其他变量,但研究者不感兴趣;嵌套变量是自变量之间可能存在的相互作用变量。
c.直接效应和间接效应:直接效应是自变量对因变量的直接作用效应;间接效应是自变量通过其他中介变量对因变量的间接作用效应。
2.回归分析a.简单线性回归:描述一个自变量对一个因变量的线性关系。
b.多元线性回归:描述多个自变量对一个因变量的线性关系。
包括常规多元线性回归和层次线性回归。
c.逻辑回归:描述二元分类因变量和多元分类因变量的概率关系。
d.变量选择方法:前向选择、后向选择和逐步回归等方法,用于确定最佳的自变量组合。
3.方差分析a.单因素方差分析:描述一个自变量对一个因变量的组间差异。
b.多因素方差分析:描述多个自变量对一个因变量的组间差异,包括两因素方差分析和多因素方差分析。
c.方差分析的假设检验:主要检验组间差异和组内差异的显著性。
d.配对样本方差分析:描述一个自变量对一个因变量的前后差异。
4.判别分析a.二元判别分析:描述一个自变量对二元分类因变量的影响。
b.多元判别分析:描述多个自变量对多元分类因变量的影响。
c.判别分析的假设检验:主要检验自变量对分类因变量的区分度。
5.聚类分析a.基于距离的聚类方法:将样本根据相似度进行分组。
b.基于密度的聚类方法:将样本根据密度进行分组,适用于发现复杂的聚类结构。
c.聚类分析的评估:包括SSE评估、轮廓系数等方法,用于评价聚类质量。
综上所述,多元统计分析涵盖了回归分析、方差分析、判别分析和聚类分析等多种方法,可用于描述多个自变量对一个或多个因变量的影响以及自变量之间的关系。
掌握这些概念和方法,能够帮助研究者进行更深入的数据分析和解释。
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析期末复习
第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。
(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。
(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。
(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。
()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。
(√)μX 10.是的无偏估计。
( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。
(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。
(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。
( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。
( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。
多元统计分析期末试题及答案
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪ ⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计分析期末考试考点
多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。
多元统计分析期末复习
多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d?即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S?,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
多元统计期末考试试题
多元统计期末考试试题一、选择题(每题2分,共20分)1. 以下哪项不是多元统计分析中常用的数据预处理方法?- A. 标准化- B. 归一化- C. 特征选择- D. 数据清洗2. 多元回归分析中,当自变量之间存在高度相关性时,我们通常称之为:- A. 多重共线性- B. 正态性- C. 同方差性- D. 独立性3. 以下哪项不是主成分分析(PCA)的目的?- A. 降维- B. 特征选择- C. 变量解释- D. 增加数据的维度4. 聚类分析中,若要衡量聚类效果,常用的指标不包括:- A. 轮廓系数- B. 熵- C. 戴维斯-库尔丁指数- D. 距离方差5. 因子分析中,因子载荷矩阵的元素表示:- A. 观测变量的均值- B. 因子的方差- C. 观测变量与因子之间的关系- D. 因子之间的相关性二、简答题(每题10分,共30分)1. 请简述多元线性回归分析的基本假设,并说明违反这些假设可能带来的问题。
2. 描述主成分分析(PCA)的基本步骤,并说明其在数据降维中的应用。
3. 聚类分析与分类分析有何不同?请举例说明。
三、计算题(每题25分,共50分)1. 假设有一组数据,包含三个变量X1、X2和Y,数据如下:| X1 | X2 | Y ||-|-|-|| 1 | 2 | 3 || 2 | 4 | 6 || 3 | 6 | 9 || 4 | 8 | 12 |请计算多元线性回归模型的参数,并检验模型的显著性。
2. 给定以下数据集,进行K-means聚类分析,选择K=3,并计算聚类中心。
| 变量1 | 变量2 | 变量3 ||--|-|-|| 1.2 | 2.3 | 3.4 || 1.5 | 2.5 | 3.6 || 4.1 | 5.2 | 6.3 || 4.4 | 5.6 | 6.8 || 7.1 | 8.2 | 9.3 || 7.4 | 8.6 | 9.9 |四、论述题(每题30分,共30分)1. 论述因子分析与主成分分析的异同,并讨论它们在实际应用中可能遇到的问题及解决方案。
多元统计分析期末考试考点完整版
多元统计分析期末考试考点标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]多元统计分析题型一定义、名词解释题型二计算(协方差阵、模糊矩阵)题型三解答题一、定义二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。
它是由于随机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向量。
类似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
多元统计期末试题及答案
多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。
答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。
答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。
1. 计算变量X1和X2之间的协方差。
答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。
2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。
答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。
假设前两个特征值为λ1和λ2,总特征值和为Σλi。
则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。
(完整)多元统计分析期末试题及答案,推荐文档.docx
1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计分析考试-(2)
判断:1对2对3对4对5错6对应分析是否可降维(对)7 数据的计量尺度:定类尺度,定序尺度,定距尺度,定比尺度1.应用统计学中的数据可以不是数值。
(×)2.相关系数等于零,表明变量之间不存在任何关系。
(√ )3.双因素方差分析主要用于检验两个总体方差是否相等。
(√ )4.环比增长速度的连乘积等于相应时期的定基增长速度。
(×)5.线性回归分析中,可决系数R2是对回归模型拟合程度的评价。
(√ )6.加权平均数指数是加权综合指数的一种变形,它们具有相同的权数。
(√ )7.在假设检验中,给定的显著性水平α是在原假设为真的条件下,拒绝原假设的概率。
(×)8.在抽样调查中,允许误差也称极限误差,是抽样误差的最大值。
(×)9.若样本容量确定,则假设检验中的两类错误不能同时减少。
(√ )10.如果一组数据的众数大于中位数,且中位数又大于算术平均数,则这组数据的偏态系数小于0。
(√ )简答:一、数据的清洗技术:答案一:(1)解决缺失值:均值替换法、个案剔除法、多重替换法、热卡填充法、回归替换法。
(2)错误值:偏差分析,识别不遵守分布或回归方程的值。
(3)重复记录:合半、清除(4)不一致:可定义完整性约束用于检测不一致性,也可通过分析数据发现联系,使数据保持一致。
答案二:主要为下一步数据分析做进一步的准备,最终将数据清洗为满足分析需求的具体数据集。
期间主要内容包括:(1)数据集的预先分析:对数据进行必要的分析,如数据分组、排序、分布图、平均数、标准差描述等,以掌握数据的基本特点和基本情况,保证后续工作的有效性,也为确定应采用的统计检验方法提供依据(2)相关变量缺失值的查补检查(3)分析前相关的校正和转换工作.(4)观测值的抽样筛选.(5)其他数据清洗工作二、如何处理数据缺失值:答案一:1剔除数据,即删除数据。
2替换方法,一般有三种:均值替换法,即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。
多元统计分析期末试题(卷)与答案解析
22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
(完整word版)应用多元统计分析考试要点
4.1 简述欧氏距离与马氏距离的区别和联系。
答:设p维空间中的两点X=和Y=。
则欧氏距离为。
欧氏距离的局限有①在多元数据分析中,其度量不合理。
②会受到实际问题中量纲的影响。
设X,Y是来自均值向量为,协方差为的总体G中的p维样本。
则马氏距离为D(X,Y)=。
当即单位阵时,D(X,Y)==即欧氏距离。
因此,在一定程度上,欧氏距离是马氏距离的特殊情况,马氏距离是欧氏距离的推广。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为,则称为的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是m1和m2,对于一个新的样品X,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X,D2(X,G1)D2(X,G2)X,D2(X,G1)> D2(X,G2,具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ,W(X)X ,W(X)<0②多个总体的判别问题。
多元统计分析期末复习
第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。
随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。
例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。
(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d〜即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S〜,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。
应用多元分析期末复习练习题讲解
多元复习1、多元统计分析是运用数理统计方法来解决多指标问题的理论和方法。
2、多元分析研究的是多个随机变量及相关关系的统计总体。
3、如果A与B是两个P×P维的方阵,则AB与BA有完全相同的特征值。
4、随机向量X的协方差矩阵一定是非负定矩阵。
5、若A为P阶对称矩阵,则存在正交矩阵T与对角矩阵∧,则三者的关系有A=T∧T’。
6、设x是多元向量,服从正太分布即X~,a为P维常熟向量,则其线性型a’x服从一元正态分布,即a’x~。
7、方差相同的两个随机变量的差与和是不相关关系。
8、协方差和相关系数是变量间离散程度的一种变量,并不能刻画变量间可能存在的关联程度的关系。
9、变量的类型按尺度划分为间隔变量、有序变量、名义变量类型。
10、公共因子方差与特殊因子方差之和为1。
11、聚类分析是建立一种分析方法,它将一批样品或变量按照它们在性质上的亲疏关系进行科学的分类。
12、聚类分析是分析如何对样品或变量进行量化分析,通常分为Q型聚类和R型聚类。
13、聚类分析中Q型聚类是对样品进行聚类,R型聚类是对变量进行聚类。
14、进行判别分析时,通常指定一种判别规则用来判定新样品的归属,常见的判别准则有:费希尔判别准则、贝叶斯判别准则。
15、费希尔判别法就是要找P个变量组成的线性判别函数使得各组内点的离差尽可能接近,而不同组间的点尽可能疏远。
16、当X~,则-)服从卡方分布,即-) ~。
17、威尔克斯统计量表达式:∧=。
18、霍特林统计量表达式:。
19、两个变量间的平方马氏距离:;总体的马氏距离:。
20、方差相等的两个随机变量的关系:。
21、几个变量间服从正态分布,各自独立,样品的均值向量服从正态分布。
22、从代数观点看主成分是P个原始相关变量的线性组合。
23、变量共同度是指因子载荷矩阵中的第i行元素的平方和。
24、因子分析是指把每个原始变量分为两部分因素,一部分是公共因子,另一部分是特殊因子。
1、判别分析的目标。
答:判别分析的目标有两个:一是根据已知所属组的样本给出判别函数,并制定判别规则,再依此判断(或预测)每一新样品应归属的组别。
多元统计分析期末试题与答案
多元统计分析期末试题与答案22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ∑==∑=+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -?? ?'==-- ?-?=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-??'=∑=-∑=-- ? ?-??-??+、设其中试判断与是否独立?(),123设X=x x x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.4 4730.8350.4470.1032013R ?--?? ? ?=-=-+ ? ? ? ??? ? ? ????? ?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-?? ?==-- ? 0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二名词解释
1、 多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理 论和方法,是一元统计学的推广
2、 聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方 法。
将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。
使类内对象的同质性最大化和类间对象的异质性最大化
3、 随机变量:是指变量的值无法预先确定仅以一定的可能性 (概率)取值的量。
它是由于随
机而获得的非确定值,是概率中的一个基本概念。
即每个分量都是随机变量的向量为随机向 量。
类
似地,所有元素都是随机变量的矩阵称为随机矩阵。
4、统计量:多元统计研究的是多指标问题 ,为了了解总体的特征,通过对总体抽样得到代表 总体的样本,但因为信息是分散在每个样本上的 ,就需要对样本进行加工,把样本的信息浓缩 到不包含未知量的样本函数中,这个函数称为统计量
二、计算题
^16 -4
2
k 设H =
其中启= (1Q —纣眉=-4 4-1
[― 试判断叼+ 2吟与
「花一® [是否独立?
解:
"10
-6 -15
-6 1 a 2U
-16
20 40
故不独立口
-r o 2丿
按用片的联合分帚再I -6 lti 20
-1G 20 ) -1V16 -4 0 -4 A 2 丿"-1
2.对某地区农村的百名2周宙男翌的身高、胸圉、上半骨圉进行测虽,得相关数据如下』根据汶往资料,该地区城市2周岁男婴的遠三个指标的均值血二(90Q乩16庆现欲在多元正态性的假定下检验该地区农村男娶是否与城市男婴有相同的均值・伽厂43107-14.62108.946^1 ]丼中乂=60.2x^)-1=(115.6924)-1-14.6210
3.172-37 3760
、8.9464-37 376035.S936」= 0.01, (3,2) = 99.2, 03) =293 隔亠4) =16.7)
答:
2、假设检验问题:比、# =险用‘//H地
r-8.o>
经计算可得:X-^A 22
厂
「3107 -14.6210 ST1=(23J3848)-1 -14.6210 3.172
8 9464 -37 3760
E9464 -37.3760 35.5936
构造检验统计量:尸=旳(丟-間)〃丿(巫-角)
= 6x70.0741=420.445
由题目已知热“(3,)= 295由是
^I =^W3,3)^147.5
所以在显著性水平ff=0.01下,拒绝原设尽即认
为农村和城市的2周岁男婴上述三个指标的均
值有显著性差异
(]
4、设盂=(耳兀.昂工/ ~M((XE),协方差阵龙=P
P (1)试从匸出发求X的第一总体主成分;
答:
(2)试|可当卩取多大时才链主成分册贡蕭率达阳滋以上.
対二為=
人
=1—
p
得人所对应的单位特征向量为匸1
* 2 2
故得第-主成分―詁+討冷禺+*血
(2)第一个主成分的责献率为
------- --------- =1^>95%
雄+2“入+川4
0.95x4-1
-- --------------- - 禹
3
题型三解答题
1、简述多元统计分析中协差阵检验的步骤
答:
第一,提出待检验的假设和H1;
第二,给出检验的统计量及其服从的分布;
第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;
第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。
2、简述一下聚类分析的思想
答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品
或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。
把相似的样品或指标归为一类,把不相似的归为其他类。
直到把所有的样品(或指标)聚合完毕
3、多元统计分析的内容和方法
答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,
使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析
等
2、分类与判别,对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
4、系统聚类法基本原理和步骤答:
1)先计算n个样本两两间的距离
A—1-P
-P A —1
-P-P
-P-P-P
一。
~P
-P
Z-l
=0得特征根*^=l + 3p,
0 933
2)构造n个类,每个类只包含一个样本
3)合并距离最近的两类为一新类
4)计算新类与当前各类的距离
5)类的个数是否等于1,如果不等于回到3在做
6)画出聚类图
7)决定分类个数和类
5、聚类分析的类型有:
答:
(1)对样本分类,称为Q型聚类分析
(2)对变量分类,称为R型聚类分析# Q 型聚类是对样本进行聚类,它使具有相似性特征
的样本聚集在一起,使差异性大的样本分离开来。
#R型聚类是对变量进行聚类,它使具有
相似性的变量聚集在一起,差异性大的变量分离开来,可在相似变量中选择少数具有代表性的变量参与其他分析,实现减少变量个数,达到变量降维的目的。
6、简述欧氏距离与马氏距离的区别和联系。
4a简述欧氏距离与马氏距离的区别和联系.
答I设P錐空闾RP中的两点X=(XpX2" Xp);和Y= YpY r- Yp ;D则欧氏距藹次欧氏距离的局限肓①在多元数据分忻中,其度重不合理-②会受到粥间题中曇冈的毙响°
设是来自均值向壘为(J,协方差为£的总体G中的p维样本.则马氏K巨离为
■ 1 ■ 1
DaT)= X-Y L X-Y n当迟 =【即单位阵时小輒Y)=x —Y' X—丫=二(& —丫= Yj)W欧氏距离.
因此,在一定程度上,欧氏E巨离是马氏距离的特殊情况.马氏距离是欧氏距离的推广.
7、试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
8对样品和变量进行聚类分析时所构造的统计量分别是什么?简要说明为什么这样构造?
答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n个样本看作
p维空间的n个点。
点之间的距离即可代表样品间的相似度。
常用的距离为
(-)明氏距离;= d血—心「严
—1
q取不同值,分次] 护
(1)绝对距离(*-]>巧〔工)=X 口迄-産/
Jt-1 4
(2) 欧氏距离—%。
)=(£贋祇一兀』严 (3) 切比雪夫距禽£彳g ) %(Q =出警慣駄- X 金
1 »
■ 一才
j r 工、 、/ * - (-)马氏距禽
八 p r X*十広“
* K " ■**■
Jfr
fK
(二)兰氏距离 売 QM\ =(卷-X J )^_1(X 1 -xp
对变壘的拒似性,我们更多地要了解变堡的变化趋势或变化方向,因此用相关性
进行衛璽°
舟变量看作P 维空间的向量,一般用
(-)相关系数
9、在进行系统聚类时,选择距离公式应遵循哪些原则?
答:(1)要考虑所选择的距离公式在实际应用中有明确的意义。
如欧氏距离就有非常明确的
空间距离概念。
马氏距离有消除量纲影响的作用。
(2 )要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。
如在进行聚类分析 之前已经对变量作了标准化处理,则通常就可采用欧氏距离。
(3)要考虑研究对象的特点和计算量的大小。
样品间距离公式的选择是一个比较复杂且带 有一定主观性的问题, 我们应根据研究对象的特点不同做出具体分折。
实际中,聚类分析前
不妨试探性地多选择几个距离公式分别进行聚类, 然后对聚类分析的结果进行对比分析, 以
确定最合适的距离测度方法。
10、欧式距离的优点缺点
⑴欧式距离(Euclid 距离)
m
优点:几何意义明确,简单,容易掌握,由于中学数学就已初步接触,数学知识不多的人也 可以把握它的基本含义。
缺点:从统计学的角度看,使用欧式距离要求一个向量的 n 个分量不相关,且具有相当的方 差,或者说各个坐标对欧式距离的贡献同等且变差大小相同, 此时使用欧式距离才合适,且 效果良好,否则就不能如实反映情况且容易导致错误的结论。
因此需要对坐标加权,化为统
计距离
11、 模糊聚类分析的实质和基本原理
GOM
比
P
答:模糊聚类分析的实质就是根据研究对象本身的属性而构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系
基本原理:如果水平满足,则按水平分出的每一类必是按水平分出的每一类的子类。
(p62页)
12、模糊聚类分析计算步骤:
答:
(1)对原始数据进行变换。
变换方法通常有标准化变换、极差变换、对数变换等。
(2)计算模糊相似矩阵
(3)建立模糊等价矩阵
(4)进行聚类。