《导数及其应用》文科测试题(详细答案)

合集下载

导数及其应用高二文科数学

导数及其应用高二文科数学

《导数及其应用》测试题(高二文科数学)一. 选择题(每小题5分, 共50分) 1.设函数()y f x =可导,则0(1)(1)lim3x f x f x∆→+∆-∆等于 ( )A .'(1)fB .3'(1)fC .1'(1)3f D .以上都不对2. 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( )A. 7米/秒B. 6米/秒C. 5米/秒D. 8米/秒3. 32()32f x ax x =++,若'(1)4f -=,则a 的值等于 ( )A.319 B.316 C. 313 D. 3104. 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) 5. 曲线21xy x =-在点(1,1)处的切线方程为 ( ) A.B.C.D.6.()f x '是)(x f 的导函数,()f x '的图象如右图所示,则)(x f 的图象只可能是( )(A ) (B ) (C ) (D )7.设R a ∈,若函数ax e y x+=,R x ∈有大于零的极值点,则 ( ) A .1-<a B. 1->a C. e a 1-> D. ea 1-< 8.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f(x)g(x)<0的解集是 ( )A . (-3,0)∪(3,+∞)B . (-3,0)∪(0, 3)C . (-∞,- 3)∪(3,+∞)D . (-∞,- 3)∪(0, 3)9. 已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是 ( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD.21≤≤-b10.设函数f(x)是R 上以5为周期的可导偶函数,则曲线y=f(x)在处的切线的斜率为( )A.15- B.0 C.15D.5 二. 填空题(每小题5分,共20分)11.已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则M m -= .12.函数f(x)= x 2-2lnx 的单调减区间是______________13.过点P(3,5)并与曲线2x y =相切的直线方程是_________14.曲线y=x 2上的点到直线2x+y+4=0的最短距离是________________三. 解答题(本大题共6小题,满分共80分) 15. (本题12分)求经过点(2,0)且与曲线1y x=相切的直线方程.17.(本小题14分)已知c bx ax x f ++=24)(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题04 导数及其应用(解答题)(文科专用) 1.【2022年全国甲卷】已知函数f(x)=x 3−x,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f (x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.2.【2022年全国乙卷】已知函数f(x)=ax −1x −(a +1)lnx . (1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.3.【2021年甲卷文科】设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 4.【2021年乙卷文科】已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 5.【2020年新课标1卷文科】已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.6.【2020年新课标2卷文科】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性. 7.【2020年新课标3卷文科】已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.8.【2019年新课标2卷文科】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.9.【2019年新课标3卷文科】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.10.【2018年新课标1卷文科】【2018年新课标I 卷文】已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥. 11.【2018年新课标2卷文科】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.12.【2018年新课标3卷文科】已知函数()21x ax x f x e +-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.。

2020衡水名师文科数学专题卷:专题5《导数及其应用》 Word版含答

2020衡水名师文科数学专题卷:专题5《导数及其应用》 Word版含答

2020衡水名师原创文科数学专题卷专题五 导数及其应用考点13:导数的概念及运算(1,2题)考点14:导数的应用(3-11题,13-15题,17-22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

)1.考点13 易函数2()(1)f x x =+的导函数为( )A .'()1f x x =+B .'()21f x x =+C .'()2f x x =+D .'()22f x x =+ 2.考点13 易设()f x 存在导函数,且满足(1)(12)lim 12x f f x x→∞--=-,则曲线()y f x =上点()(1)1f ,处的切线斜率为( )A .2B .1-C .1D .2-3.考点14 易已知22()2()ln 2f x x x x x x =--+,则函数()f x 的单调递减区间为( ) A.1(0,)2 B.1(,1)2C.(1,)+∞D.(0,)+∞4. 考点14 中难已知函数()f x 的导函数为()'f x ,且满足()()22ln f x x f x =+',则()2f '的值为( ) A . 6 B . 7 C . 8 D . 95.考点14 难函数ln y x x =在区间()0,1上的单调性为( )A.单调增函数B.单调减函数C.在10,e ⎛⎫ ⎪⎝⎭上是减函数,在1,1e ⎛⎫ ⎪⎝⎭上是增函数 D.在10,e ⎛⎫ ⎪⎝⎭上是增函数,在1,1e ⎛⎫ ⎪⎝⎭上是减函数6.考点14 易 对于函数()ln x f x x=,下列说法正确的是( ) A. 在(0,e)上单调递减 B. 有极小值e C. 有最小值e D. 有最大值e7. 考点14 易若函数2()ln f x kx x =-在区间(1,)+∞单调递增,则k 的取值范围是( )A. [4,)+∞B. [2,)+∞C. [1,)+∞D. 1[,)2+∞8. 考点14中难若函数()eln x f x t x -=+有两个极值点,则实数t 的取值范围是( ) A. 1(0,)e B. 1(,)e -∞ C. 1(,0)e - D. 1(,)e+∞ 9.考点14 难函数3212y x x =-在区间[]1,3-上的最大值和最小值分别为( )A.18,-B.54,12-C.-D.10,-10. 考点14 难 定义在R 上的连续函数()f x ,其导函数'()f x 为奇函数,且(2)1,()0f f x =≥;当0x >时,'()()0xf x f x +<恒成立,则满足不等式(2)1f x -≤的解集为( )A. [2,2]-B. [0,4]C. (,2][2,)-∞-⋃+∞D.(,0][4,)-∞⋃+∞11. 考点14 中难设'()f x 为函数()f x 的导函数,且满足321()3,'()'(6)3f x x ax bx f x f x =-++=-+,若()6l n 3f x x x ≥+恒成立,则实数b 的取值范围是( )A .[66ln 6,)++∞B .[4ln 2,)++∞C .[5ln5,)++∞D .[6)++∞第Ⅱ卷(非选择题)二.填空题(每题5分,共20分)12.考点14易若函数32()21(R)f x x ax a =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为________.13.考点14 中难函数()(R)g x x ∈的图像如图所示,关于x 的方程2[()]()230g x m g x m +⋅++=有三个不同的实数解,则m 的取值范围是 .14.考点14 中难若函数3()21(R)f x x ax a =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为__________.三.解答题(共70分)15.(本题满分10分)考点14 易设定义在R 上的函数f ()x 满足(2)2()1f x f x =+,且(1)2f =.1.求(0)f ,(2)f ,(4)f 的值2.若() f x 为一次函数,且()()()g x x m f x =-在()3,+∞上为增函数,求 m 的取值范围16.(本题满分12分)考点14 中难已知f ()x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.1.求(0)f ;2.求证: f ()x 在R 上为增函数;3.若(1)2f =且2(32)()3f a f a a -+-<,求实数a 的取值范围.17.(本题满分12分)考点14中难若f ()x 是定义在()0,?+∞上的函数,且满足()()x f f x f y y ⎛⎫=- ⎪⎝⎭,当1x >时, ()0f x >. 1.判断并证明函数的单调性;2.若(2)1f =,解不等式1(3)2f x f x ⎛⎫+-< ⎪⎝⎭.18.(本题满分12分)考点14中难、若在定义域内存在实数0x ,使得()()()0011f x f x f +=+成立,则称函数()f x 有“漂移点”.1.用零点存在定理证明:函数()22x f x x =+在[]0,1上有“漂移点”;2.若函数()2lg 1a g x x ⎛⎫= ⎪+⎝⎭在()0,+∞上有“漂移点”,求实数a 的取值范围.19.(本题满分12分)考点14中难已知函数 ()y f x =的定义域为D ,且()f x 同时满足以下条件:① ()f x 在D 上是单调递增或单调递减函数;② 存在闭区间[,]a b ⊆D (其中a b <),使得当[,]x a b ∈时, ()f x 的取值集合也是[,]a b .那么,我们称函数()y f x = (x D ∈)是闭函数.1.判断 3()=f x x -是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.2.若 ()=f x k +,求实数k 的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可20.(本题满分12分) 已知函数3213()2532f x x x x =-++. 1.求函数()f x 的图像在点(3,(3))f 处的切线方程;2.若曲线()y f x =与2y x m =-有三个不同的交点,求实数m 的取值范围。

《导数及其应用》文科测试题(详细答案)

《导数及其应用》文科测试题(详细答案)

《导数及其应用》单元测试题(文科)一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(='2.函数xe x xf -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )(A ) 10<<b (B ) 1<b (C ) 0>b (D ) 21<b5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )8.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .329.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件10. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0//f f f f -<<< y (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<<(D ))3()2()2()3(0//f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分)11.函数()ln (0)f x x x x =>的单调递增区间是____.12.已知函数3()128f x x x =-+在区间[3,3]-上最大值、最小值分别为,M m ,则M m -=_.13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 . (3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 . 三.解答题(本大题共4小题,共12+12+14+14+14+14=80分)15.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?16.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.17.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点,.求(Ⅰ)求点A B 、的坐标; (Ⅱ)求动点Q 的轨迹方程.18. 已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.19.已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。

专题03 导数及其应用(选择题、填空题)高考真题文科数学分项汇编(解析版)

专题03 导数及其应用(选择题、填空题)高考真题文科数学分项汇编(解析版)

A. y 2x
B. y x
1
C. y 2x
D. y x
【答案】D 【解析】因为函数 th 是奇函数,所以 െ ͳ ,解得 ͳ , 所以 th ͳ h h, 涶th ͳ h , 所以 涶t ͳ t ͳ , 所以曲线 ͳ th 在点t 处的切线方程为 െ t ͳ 涶t h,化简可得 ͳ h. 故选 D. 【名师点睛】该题考查的是有关曲线 ͳ th 在某个点th th 处的切线方程的问题,在求解的过程中, 首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项, 从而求得相应的参数值,之后利用求导公式求得 涶th ,借助于导数的几何意义,结合直线方程的点斜式 求得结果.
2
2
由 f (x) 0 得 2x(2x2 1) 0 ,得 x 2 或 2 x 0 ,此时函数单调递减,排除 C.
2
2
故选 D.
【名师点睛】本题主要考查函数的图象的识别和判断,利用函数图象过的定点及由导数判断函数的单
调性是解决本题的关键.
Байду номын сангаас
6.【2019 年高考浙江】已知 a, b R ,函数
专题 03 导数及其应用(选择题、填空题)
1.【2019 年高考全国Ⅱ卷文数】曲线 y=2sinx+cosx 在点(π,-1)处的切线方程为
A. x y 1 0
B. 2x y 2 1 0
C. 2x y 2 1 0
D. x y 1 0
【答案】C
【解析】 y 2 cos x sin x, y xπ 2 cos π sin π 2, 则 y 2 sin x cos x 在点 (, 1) 处的切线方程为 y (1) 2(x ) ,

高二文科导数及其应用测试题

高二文科导数及其应用测试题

导数章末检测题(文科)一、选择题(本大题共12小题,每小题5分,共60分)1.(海南、宁夏文,10)曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为 ( ) A.49e2B.2e2C.e2D.2e 22.(福建文,11)如果函数y=f(x)的图象如图所示,那么导函数y=)(x f 的图象可能是 ( )3.设f(x)=x 2(2-x),则f(x)的单调增区间是( )A.(0,)34B.(,34+∞)C.(-∞,0)D.(-∞,0)∪(34,+∞)4.(广东文,9)设a ∈R ,若函数y=e x+ax,x ∈R 有大于零的极值点,则 ( ) A.a<-1B.a>-1C.a<-e1 D.a>-e15.已知函数y=f(x)=x 3+px 2+qx 的图象与x 轴切于非原点的一点,且y 极小值=-4,那么p 、q 的值分别为 ( )A.6,9B.9,6C.4,2D.8,66.已知x ≥0,y ≥0,x+3y=9,则x 2y 的最大值为( ) A.36 B.18 C.25 D.427.下列关于函数f(x)=(2x-x 2)e x的判断正确的是( ) ①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值; ③f(x)没有最小值,也没有最大值.A.①③B.①②③C.②D.①②8.若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,则实数a 的取值范围为 ( )A.a ≥3B.a=3C.a ≤3D.0<a<39.函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为 ( ) A.a=3,b=-3,或a=-4,b=11 B.a=-4,b=11 C.a=3,b=-3 D.以上都不正确10.使函数f(x)=x+2cosx 在[0,2π]上取最大值的x 为 ( ) A.0 B.6π C.3πD.2π 11.若函数f(x)=x 3-3bx+3b 在(0,1)内有极小值,则 ( ) A.0<b<1B.b<1C.b>0D.b<21二、填空题 (本大题共4小题,每小题4分,共16分)12.若f(x)=x 3+3ax 2+3(a+2)x+1没有极值,则a 的取值范围为 . 13.如图是y=f(x)导数的图象,对于下列四个判断: ①f(x )在[-2,-1]上是增函数; ②x=-1是f(x)的极小值点;③f(x)在[-1,2]上是增函数,在[2,4]上是减函数; ④x=3是f(x)的极小值点. 其中判断正确的是 .14.函数f(x)的导函数y=)(x f '的图象如右图,则函数f(x)的单调递增区间为 .15.已知函数f(x)的导函数为)(x f ',且满足f(x)=3x 2+2x )2('f ,则)5('f = .三、解答题 (本大题共6小题,共74分)16.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x+y-1=0相切于点(1,-11). (1)求a ,b 的值;(2)讨论函数f (x )的单调性.17.(12分)已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x ∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围.18.(12分)设p:f(x)=(x 2-4)(x-a)在(-∞,-2)和(2,+∞)上是单调增函数;q:不等式x 2-2x >a 的解集为R .如果p 与q 有且只有一个正确,求a 的取值范围.19.(12分)已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.20.(12分)已知定义在R 上的函数f(x)=-2x 3+bx 2+cx(b,c ∈R ),函数F(x)=f(x)-3x 2是奇函数,函数f(x)在x=-1处取极值. (1)求f(x)的解析式;(2)讨论f(x)在区间[-3,3]上的单调性.21.(14分)已知某质点的运动方程为s(t)=t 3+bt 2+ct+d ,下图是其运动轨迹的一部分,若t ∈[21,4]时,s(t)<3d 2恒成立,求d 的取值范围.22. (安徽文,20)已知函数f(x)=23233x x a -+(a+1)x+1,其中a 为实数.(1)已知函数f(x)在x=1处取得极值,求a 的值;(2)已知不等式)(x f '>x 2-x-a+1对任意a ∈(0,+∞)都成立,求实数x 的取值范围.23.设a >0,函数f(x)=12++x b ax ,b 为常数.(1)证明:函数f(x)的极大值点和极小值点各有一个; (2)若函数f(x )的极大值为1,极小值为-1,试求a 的值.24.已知函数f(x)=x 3-ax 2-3x.(1)若f(x)在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x=-31是f(x)的极值点,求f (x )在[1,a ]上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,若存在,请求出实数b 的取值范围;若不存在,试说明理由.。

专题04 导数及其应用(解答题)

专题04  导数及其应用(解答题)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。

导数及其应用文科章末检测卷含答案

导数及其应用文科章末检测卷含答案

章末检测卷(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列导数运算正确的是( ) A .(x +1x )′=1+1x 2B .(2x )′=x 2x -1C .(cos x )′=sin xD .(x ln x )′=ln x +1 答案 D解析 根据导数的运算公式可得:(x +1x )′=1-1x 2,故A 错误.(2x )′=2x ln2,故B 错误.(cos x )′=-sin x ,故C 错误.(x ln x )′=ln x +1,故D 正确.2.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为( ) A .10 B .5 C .-1 D .-37答案 D解析 ∵f (x )=x 3+4x +5,∴f ′(x )=3x 2+4, ∴f ′(1)=7,即切线的斜率为7, 又f (1)=10,故切点坐标为(1,10), ∴切线的方程为y -10=7(x -1),当y =0时,x =-37,切线在x 轴上的截距为-37,故选D.3.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( ) A .3 B .0 C .-2 D .3-2t 答案 A解析 ∵位移s 与时间t 的关系是s =s (t )=3t -t 2, ∴s ′(t )=3-2t ,∴s ′(0)=3,故物体的初速度为3. 4.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( ) A .e 2 B .ln2 C.ln22D .e答案 D解析 ∵f ′(x )=ln x +1,∴f ′(x 0)=2可化为ln x 0+1=2,∴x 0=e ,故选D. 5.设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 答案 B解析 由于f (x )=x -sin x 的定义域为R ,且满足f (-x )=-x +sin x =-f (x ),可得f (x )为奇函数.再根据f ′(x )=1-cos x ≥0,可得f (x )为增函数,故选B.6.设三次函数f (x )的导函数为f ′(x ),函数y =x ·f ′(x )的图象的一部分如图所示,则有( )A .f (x )的极大值为f (3),极小值为f (-3)B .f (x )的极大值为f (-3),极小值为f (3)C .f (x )的极大值为f (-3),极小值为f (3)D .f (x )的极大值为f (3),极小值为f (-3) 答案 D解析 观察图象知,x <-3时,y =x ·f ′(x )>0, ∴f ′(x )<0.-3<x <0时,y =x ·f ′(x )<0,∴f ′(x )>0. 由此知极小值为f (-3).0<x <3时,y =x ·f ′(x )>0,∴f ′(x )>0. x >3时,y =x ·f ′(x )<0,∴f ′(x )<0. 由此知极大值为f (3),故选D.7.若函数f (x )=ax -ln x 在[12,+∞)内单调递增,则a 的取值范围为( )A .[2,+∞)B .(-∞,2]C .(-∞,0]D .(-∞,0]∪[2,+∞)答案 A解析 f ′(x )=(ax -ln x )′=a -1x (x >0),由已知,得f ′(x )≥0在[12,+∞)上恒成立,即a ≥1x在[12,+∞)上恒成立,又∵当x ∈[12,+∞)时,1x ≤2,∴a ≥2,即a 的取值范围为[2,+∞).故选A.8.把一个周长为24cm 的长方形围成一个圆柱(即作为圆柱的侧面),当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .π∶1 B .2∶1 C .1∶2 D .2∶π答案 B解析 设圆柱高h 为x ,即长方形的宽为x , 则圆柱底面周长即长方形的长为24-2x 2=12-x ,∴圆柱底面半径:R =12-x2π,∴圆柱的体积V =πR 2h =π(12-x 2π)2x=x 3-24x 2+144x ,∴V ′=3x 2-48x +1444π=3(x -4)(x -12)4π.当x <4或x >12时,V ′>0,函数单调递增; 当4<x <12时,V ′<0,函数单调递减; 又当x >12时,函数无实际意义.∴x =4时体积最大,此时底面周长为12-x =8, 该圆柱底面周长与高的比为8∶4=2∶1.9.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( ) A .25 B .18 C .20 D .0 答案 C解析 对于区间[-3,2]上的任意x 1,x 2都有|f (x 1)-f (x 2)|≤t ,等价于对于区间[-3,2]上的任意x ,都有f (x )max -f (x )min ≤t , ∵f (x )=x 3-3x -1,∴f ′(x )=3x 2-3=3(x -1)(x +1), ∵x ∈[-3,2],∴函数在[-3,-1],[1,2]上单调递增,在[-1,1]上单调递减.∴f (x )max =f (2)=f (-1)=1, f (x )min =f (-3)=-19, ∴f (x )max -f (x )min =20,∴t ≥20,∴实数t 的最小值是20.10.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集为( )A .{x |-1<x <1}B .{x |x <-1}C .{x |x <-1或x >1}D .{x |x >1}答案 D解析 设g (x )=f (x )-x 3-23,则函数g (x )的导数g ′(x )=f ′(x )-13,∵f (x )的导函数f ′(x )<13,∴g ′(x )=f ′(x )-13<0,则函数g (x )单调递减,∵f (1)=1,∴g (1)=f (1)-13-23=1-1=0,则不等式f (x )<x 3+23,等价为g (x )<0,即g (x )<g (1),则x >1,即f (x )<x 3+23的解集为{x |x >1}.故选D.二、填空题(本大题共5小题,每小题5分,共25分)11.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________. 答案 -5解析 f ′(x )=(x 2+c )+(x -2)×2x .∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(2)=0,∴(c +4)+(2-2)×2=0, ∴c =-4,∴f ′(x )=(x 2-4)+(x -2)×2x ,∴函数f (x )的图象在x =1处的切线的斜率为f ′(1)=(1-4)+(1-2)×2=-5. 12.函数y =12x -sin x ,x ∈[0,2π]的单调增区间为________________.答案 (π3,5π3)解析 ∵y ′=12-cos x ,令y ′>0,∴cos x <12,解得π3<x <5π3,故答案为(π3,5π3).13.如图,直线l 是曲线y =f (x )在x =5处的切线,则f (5)+f ′(5)=________.答案 7解析 由题意,f ′(5)=5-(-5)5=2,f (5)=5,所以f (5)+f ′(5)=7.14.已知函数f (x )=-x 3+ax -4(a ∈R ),若函数y =f (x )的图象在点P (1,f (1))处的切线垂直于y 轴,则f (x )在[-2,2]上的最大值与最小值之和为________. 答案 -8解析 ∵f (x )=-x 3+ax -4,∴f ′(x )=-3x 2+a ,∵函数y =f (x )的图象在点P (1,f (1))处的切线垂直于y 轴,∴-3+a =0, ∴a =3,∴f (x )在[-2,-1]单调递减,在[-1,1]单调递增,在[1,2]单凋递减. ∴最大值为f (-2)=f (1)=-2, 最小值为f (-1)=f (2)=-6. ∴最大值与最小值之和为-8.15.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且g (x )≠0,当x <0时,f ′(x )g (x )>f (x )g ′(x ),且f (-3)=0,则不等式f (x )g (x )<0的解集是________________________.答案 (-∞,-3)∪(0,3).解析 ∵f (x )和g (x )(g (x )≠0)分别是定义在R 上的奇函数和偶函数, ∴f (-x )=-f (x ),g (-x )=g (x ). ∵当x <0时,f ′(x )g (x )>f (x )g ′(x ), ∴f ′(x )g (x )-f (x )g ′(x )>0.当x <0时,[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x )>0,令h (x )=f (x )g (x ),则h (x )在(-∞,0)上单调递增,∵h (-x )=f (-x )g (-x )=-f (x )g (x )=-h (x ),∴h (x )为奇函数,根据奇函数的性质可得函数h (x )在(0,+∞)单调递增,∵f (-3)=-f (3)=0, ∴h (-3)=-h (3)=0, ∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3). 三、解答题(本大题共6小题,共75分)16.(12分)已知函数y =x 3-3x ,过点A (0,16)作曲线y =f (x )的切线,求此切线方程. 解 曲线方程为y =x 3-3x ,点A (0,16)不在曲线上. 设切点为M (x 0,y 0),则点M 的坐标满足y 0=x 30-3x 0.因为f ′(x 0)=3(x 20-1),故切线的方程为y -y 0=3(x 20-1)(x -x 0). 点A (0,16)在切线上,则有16-(x 30-3x 0)=3(x 20-1)(0-x 0).化简得x 30=-8,解得x 0=-2.所以,切点为M (-2,-2),切线方程为9x -y +16=0. 17.(12分)已知函数f (x )=12ax 2+2x -ln x .(1)当a =0时,求f (x )的极值;(2)若f (x )在区间[13,2]上是增函数,求实数a 的取值范围.解 (1)函数的定义域为(0,+∞). 因为f (x )=12ax 2+2x -ln x ,当a =0时,f (x )=2x -ln x ,则f ′(x )=2-1x ,令f ′(x )=0得x =12,所以x ,f ′(x ),f (x )的变化情况如表:所以当x =12时,f (x )的极小值为1+ln2,无极大值.(2)由已知,得f (x )=12ax 2+2x -ln x ,且x >0,则f ′(x )=ax +2-1x =ax 2+2x -1x.若a =0,由(1)知f ′(x )≥0得x ≥12,显然不符合题意;若a ≠0,因为函数f (x )在区间[13,2]上是增函数,所以f ′(x )≥0对x ∈[13,2]恒成立,即不等式ax 2+2x -1≥0对x ∈[13,2]恒成立,即a ≥1-2x x 2=1x 2-2x =(1x -1)2-1对x ∈[13,2]恒成立,故a ≥[(1x -1)2-1]max .而当x =13时,函数(1x -1)2-1的最大值为3,所以实数a 的取值范围为a ≥3.18.(12分)已知A ,B 两地相距100km.按交通法规规定:A 、B 两地之间的公路上车速要求不低于60km /h 且不高于100 km/h.假设汽车以x km/h 速度行驶时,每小时耗油量为(4+1128000x 3-180x )升,汽油的价格是6元/升,司机每小时的工资是24元.(1)若汽车从A 地以64km/h 的速度匀速行驶到B 地,需耗油多少升? (2)当汽车以多大的速度匀速行驶时,从A 地到B 地的总费用最低? 解 (1)当x =64时,总耗油量为:(4+643128000-6480)·10064=415=8.2.即当汽车从A 地以64km/h 的速度匀速行驶到B 地时,共耗油8.2升. (2)设总费用为y 元,则y =[24+(4+1128000x 3-180x )×6]×100x=4800x +3x 2640-152,60≤x ≤100,则y ′=-4800x 2+3x 320=3(x 3-803)320x 2,由y ′=0得x =80, 当x ∈(60,80)时,y ′<0, 当x ∈(80,100)时,y ′>0,所以当x =80时,y 取得极小值,且是最小值.即当汽车以80km/h 的速度匀速行驶时,从A 地到B 地的总费用最低. 19.(12分)已知函数f (x )=x 3+32(a -1)x 2-3ax +1,x ∈R .(1)讨论函数f (x )的单调区间;(2)当a =3时,若函数f (x )在区间[m,2]上的最大值为28,求m 的取值范围.解 (1)由f (x )=x 3+32(a -1)x 2-3ax +1,得f ′(x )=3x 2+3(a -1)x -3a =3(x -1)(x +a ). 令f ′(x )=0,得x 1=1,x 2=-a .①当-a =1,即a =-1时,f ′(x )=3(x -1)2≥0, f (x )在(-∞,+∞)内单调递增;②当-a <1,即a >-1时,当x <-a 或x >1时, f ′(x )>0,f (x )在(-∞,-a ),(1,+∞)内单调递增; 当-a <x <1时,f ′(x )<0,f (x )在(-a,1)内单调递减; ③当-a >1,即a <-1时, 当x <1或x >-a 时,f ′(x )>0,f (x )在(-∞,1),(-a ,+∞)内单调递增.当1<x <-a 时,f ′(x )<0,f (x )在(1,-a )内单调递减.综上,当a <-1时,f (x )在(-∞,1),(-a ,+∞)内单调递增,f (x )在(1,-a )内单调递减; 当a =-1时,f (x )在(-∞,+∞)内单调递增;当a >-1时,f (x )在(-∞,-a ),(1,+∞)内单调递增,f (x )在(-a,1)内单调递减. (2)当a =3时,f (x )=x 3+3x 2-9x +1,x ∈[m,2], f ′(x )=3x 2+6x -9=3(x +3)(x -1), 令f ′(x )=0,得x 1=1,x 2=-3. 将x ,f ′(x ),f (x )变化情况列表如下:极大值f (x )极小值=f (1)=-4.又f (2)=3<28,故区间[m,2]内必须含有-3, 即m 的取值范围是(-∞,-3]. 20.(13分)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. (1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0),得f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )单调递增区间是(k ,+∞). f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值. (2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减, 且f (e)=0,所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(0,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 21.(14分)已知函数f (x )=-13x 3+a2x 2-2x (a ∈R ).(1)若函数f (x )在点P (2,f (2))处的切线的斜率为-4,求a 的值;(2)若过点(0,-13)可作函数y =f (x )图象的三条不同切线,求实数a 的取值范围.解 (1)f (x )=-13x 3+a2x 2-2x 的导数为f ′(x )=-x 2+ax -2,因为函数f (x )在点P (2,f (2))处的切线的斜率为-4,所以-4+2a -2=-4,解得a =1.(2)设点A (t ,-13t 3+a2t 2-2t )是函数f (x )图象上的切点,则过点A 的切线斜率k =-t 2+at -2,所以过点A 的切线方程为y +13t 3-a 2t 2+2t =(-t 2+at -2)(x -t ),因为点(0,-13)在该切线上,所以-13+13t 3-a2t 2+2t =(-t 2+at -2)(0-t ),即23t 3-12at 2+13=0, 若过点(0,-13)可作函数y =f (x )图象的三条不同切线,则方程23t 3-12at 2+13=0有三个不同的实数根,令g (t )=23t 3-12at 2+13=0,则函数y =g (t )的图象与x 轴有三个不同的交点, 令g ′(t )=2t 2-at =0,解得t =0或t =a2,因为g (0)=13,g (a 2)=-124a 3+13,所以令g (a 2)=-124a 3+13<0,即a >2,所以实数a 的取值范围是(2,+∞).。

导数文科测试题及答案

导数文科测试题及答案

导数文科测试题及答案一、单项选择题(每题3分,共30分)1. 函数y=x^2的导数是()A. 2xB. x^2C. 2D. x答案:A2. 函数y=3x的导数是()A. 3B. 3xC. 1D. 0答案:A3. 函数y=x^3的导数是()A. 3x^2B. x^3C. 3D. x^2答案:A4. 函数y=sin(x)的导数是()A. cos(x)B. sin(x)C. -sin(x)D. -cos(x)答案:A5. 函数y=e^x的导数是()A. e^xB. e^(-x)C. 1D. 0答案:A6. 函数y=ln(x)的导数是()A. 1/xB. xC. ln(x)D. 1答案:A7. 函数y=1/x的导数是()A. -1/x^2B. 1/x^2C. -1/xD. 1/x答案:A8. 函数y=x^(1/2)的导数是()A. 1/2x^(-1/2)B. 1/2x^(1/2)C. 1/2D. 2x^(-1/2)答案:A9. 函数y=tan(x)的导数是()A. sec^2(x)B. tan(x)C. 1D. sec(x)答案:A10. 函数y=arcsin(x)的导数是()A. 1/sqrt(1-x^2)B. 1/xC. xD. sqrt(1-x^2)答案:A二、填空题(每题4分,共20分)11. 函数y=x^4的导数是________。

答案:4x^312. 函数y=cos(x)的导数是________。

答案:-sin(x)13. 函数y=ln(1+x)的导数是________。

答案:1/(1+x)14. 函数y=x^(-2)的导数是________。

答案:-2x^(-3)15. 函数y=arccos(x)的导数是________。

答案:-1/sqrt(1-x^2)三、解答题(每题10分,共50分)16. 求函数y=x^2-2x+1的导数。

答案:y'=2x-217. 求函数y=e^(2x)的导数。

专题04导数及其应用选择填空题(解析版)

专题04导数及其应用选择填空题(解析版)

大数据之十年高考真题(2013-2022)与优质模拟题(新课标文科卷)专题04导数及其应用选择填空题1.【2022年全国甲卷文科08】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f′(2)=()A.−1B.−12C.12D.1【答案】B【解析】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f′(1)=0,而f′(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f′(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f′(2)=−1+12=−12.故选:B.2.【2021年全国乙卷文科12】设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【答案】D若a=b,则f(x)=a(x−a)3为单调函数,无极值点,不符合题意,故a≠b.依题意,x=a为函数f(x)=a(x−a)2(x−b)的极大值点,当a<0时,由x>b,f(x)≤0,画出f(x)的图象如下图所示:由图可知b<a,a<0,故ab>a2.真题汇总当a>0时,由x>b时,f(x)>0,画出f(x)的图象如下图所示:由图可知b>a,a>0,故ab>a2.综上所述,ab>a2成立.故选:D3.【2019年新课标3文科07】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【答案】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.4.【2019年新课标2文科10】曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=0【答案】解:由y=2sin x+cos x,得y′=2cos x﹣sin x,∴y′|x=π=2cosπ﹣sinπ=﹣2,∴曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为y+1=﹣2(x﹣π),即2x+y﹣2π+1=0.故选:C.5.【2019年新课标1文科05】函数f(x)=sinx+x在[﹣π,π]的图象大致为()cosx+x2A.B.C.D.【答案】解:∵f(x)=sinx+xcosx+x2,x∈[﹣π,π],∴f(﹣x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C;故选:D.6.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【答案】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.7.【2018年新课标2文科03】函数f(x)=e x−e−xx2的图象大致为()A.B.C.D.【答案】解:函数f(﹣x)=e −x−e x(−x)2=−e x−e−xx2=−f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e−1e>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.8.【2018年新课标3文科09】函数y=﹣x4+x2+2的图象大致为()A.B.C .D .【答案】解:函数过定点(0,2),排除A ,B . 函数的导数f ′(x )=﹣4x 3+2x =﹣2x (2x 2﹣1), 由f ′(x )>0得2x (2x 2﹣1)<0, 得x <−√22或0<x <√22,此时函数单调递增, 由f ′(x )<0得2x (2x 2﹣1)>0, 得x >√22或−√22<x <0,此时函数单调递减,排除C ,也可以利用f (1)=﹣1+1+2=2>0,排除A ,B , 故选:D .9.【2017年新课标1文科08】函数y =sin2x1−cosx 的部分图象大致为( )A .B.C.D.【答案】解:函数y=sin2x1−cosx,可知函数是奇函数,排除选项B,当x=π3时,f(π3)=√321−12=√3,排除A,x=π时,f(π)=0,排除D.故选:C.10.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【答案】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.11.【2017年新课标2文科08】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【答案】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.12.【2017年新课标3文科07】函数y=1+x+sinx的部分图象大致为()x2A.B.C.D.【答案】解:函数y=1+x+sinxx2,可知:f(x)=x+sinxx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sinxx2的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,当x=π时,y=1+π,排除B.故选:D.13.【2017年新课标3文科12】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.−12B.13C.12D.1【答案】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+1e x−1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+1e x−1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1e x−1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+1e x−1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1e x−1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1)的图象有两个交点,矛盾;e x−1③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,)在(﹣∞,1)上递减、在(1,+∞)上递增,且y=a(e x﹣1+1e x−1所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1)的图象的最低点为B(1,2a),e x−1由题可知点A与点B重合时满足条件,即2a=1,即a=1,符合条件;2,综上所述,a=12故选:C.14.【2016年新课标1文科09】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【答案】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.15.【2016年新课标1文科12】若函数f(x)=x−1sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范3围是()A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]【答案】解:函数f (x )=x −13sin2x +a sin x 的导数为f ′(x )=1−23cos2x +a cos x ,由题意可得f ′(x )≥0恒成立, 即为1−23cos2x +a cos x ≥0, 即有53−43cos 2x +a cos x ≥0,设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 当t =0时,不等式显然成立; 当0<t ≤1时,3a ≥4t −5t ,由4t −5t 在(0,1]递增,可得t =1时,取得最大值﹣1, 可得3a ≥﹣1,即a ≥−13; 当﹣1≤t <0时,3a ≤4t −5t ,由4t −5t 在[﹣1,0)递增,可得t =﹣1时,取得最小值1, 可得3a ≤1,即a ≤13.综上可得a 的范围是[−13,13].另解:设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 由题意可得5﹣4+3a ≥0,且5﹣4﹣3a ≥0, 解得a 的范围是[−13,13]. 故选:C .16.【2014年新课标1文科12】已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)【答案】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x =3x (ax ﹣2),f (0)=1; ①当a =0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=2a时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f(2a )=8a2−3•4a2+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.17.【2014年新课标2文科03】函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【答案】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.18.【2014年新课标2文科11】若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【答案】解:f′(x)=k−1x,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥1x,而y=1x在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.19.【2013年新课标1文科09】函数f(x)=(1﹣cos x)sin x在[﹣π,π]的图象大致为()A.B.C.D.【答案】解:由题意可知:f(﹣x)=(1﹣cos x)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cos x>0,sin x>0,故f(x)>0,可排除A,又f′(x)=(1﹣cos x)′sin x+(1﹣cos x)(sin x)′=sin2x+cos x﹣cos2x=cos x﹣cos2x,故可得f′(0)=0,可排除D,故选:C.20.【2013年新课标2文科11】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】解:A 、对于三次函数f (x )=x 3+ax 2+bx +c ,A :由于当x →﹣∞时,y →﹣∞,当x →+∞时,y →+∞, 故∃x 0∈R ,f (x 0)=0,故A 正确;B 、∵f (−2a 3−x )+f (x )=(−2a 3−x )3+a (−2a3−x )2+b (−2a3−x )+c +x 3+ax 2+bx +c =4a 327−2ab 3+2c ,f (−a3)=(−a3)3+a (−a3)2+b (−a3)+c =2a 327−ab 3+c ,∵f (−2a 3−x )+f (x )=2f (−a3),∴点P (−a3,f (−a3))为对称中心,故B 正确. C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x , 对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,−13)∪(1,+∞) 由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(−13,1)∴函数f (x )的单调增区间为:(﹣∞,−13),(1,+∞),减区间为:(−13,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误; D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0 )=0,故D 正确. 由于该题选择错误的,故选:C .21.【2020年全国1卷文科15】曲线y =lnx +x +1的一条切线的斜率为2,则该切线的方程为______________. 【答案】y =2x【解析】设切线的切点坐标为(x0,y0),y=lnx+x+1,y′=1x+1,y′|x=x0=1x0+1=2,x0=1,y0=2,所以切点坐标为(1,2),所求的切线方程为y−2=2(x−1),即y=2x.故答案为:y=2x.22.【2020年全国3卷文科15】设函数f(x)=e xx+a .若f′(1)=e4,则a=_________.【答案】1【解析】由函数的解析式可得:f′(x)=e x(x+a)−e x(x+a)2=e x(x+a−1)(x+a)2,则:f′(1)=e1×(1+a−1)(1+a)2=ae(a+1)2,据此可得:ae(a+1)2=e4,整理可得:a2−2a+1=0,解得:a=1.故答案为:1.23.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【答案】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.24.【2018年新课标2文科13】曲线y=2lnx在点(1,0)处的切线方程为.【答案】解:∵y=2lnx,∴y′=2x,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.25.【2017年新课标1文科14】曲线y=x2+1x在点(1,2)处的切线方程为.【答案】解:曲线y=x2+1x ,可得y′=2x−1x2,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.26.【2016年新课标3文科16】已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.【答案】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.27.【2015年新课标1文科14】已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【答案】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.28.【2015年新课标2文科16】已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.,【答案】解:y=x+lnx的导数为y′=1+1x曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a 2﹣8a =0, 解得a =8. 故答案为:8.1.已知函数f (x )=a e x +b (a,b ∈R )在点(0,f (0))处的切线方程为y =3x +2,则2a +b =( )A .1B .2C .4D .5【答案】D 【解析】由f (x )=a e x +b ,则f ′(x )=a e x ,所以{f (0)=2=a +b,f ′(0)=3=a,解得:a =3,b =−1,所以2a +b =5 .故选:D.2.已知函数f (x )=−xln2−x 3,则不等式f (3−x 2)>f (2x −5)的解集为( ) A .(−4,2)B .(−2,2)C .(−∞,−2)∪(2,+∞)D .(−∞,−4)∪(2,+∞)【答案】D 【解析】f(x)的定义域为(−∞,+∞),因为f ′(x)=−ln2−3x 2 <0,所以f(x)在(−∞,+∞)上单调递减,所以不等式f (3−x 2)>f (2x −5)等价于3−x 2<2x −5,解得x <−4或x >2, 所以不等式f (3−x 2)>f (2x −5)的解集为(−∞,−4)∪(2,+∞). 故选:D3.已知x 0是函数f(x)=13x −2sin x cos x 的一个极值点,则tan 2x 0的值是( )A .1B .12C .37D .57【答案】D 【解析】f ′(x)=13−2cos 2x,∴cos 2x 0=16∴2cos 2x 0−1=16, ∴cos 2x 0=712,∴sin 2x 0=1−cos 2x 0=512,模拟好题∴tan2x0=sin2x0cos2x0=57故选:D4.已知函数f(x)=e x−e2lnx,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.e x+2y−e=0B.e x−2y+e=0C.e x−2y−e=0D.e x+2y+e=0【答案】B【解析】∵f′(x)=e x−e2x ,∴f′(1)=e−e2=e2.又f(1)=e1−e2×ln1=e,切点为(1,e)所以曲线y=f(x)在点(1,f(1))处的切线的斜率为k=f′(1)=e2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−e=e2(x−1),即e x−2y+e=0.故选:B.5.已知函数g(x)=lnx+34x −14x−1,f(x)=x2−2tx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2),则实数t的取值范围是()A.[2,178]B.[178,+∞)C.[114,+∞)D.[3√22,+∞)【答案】B【解析】因为对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2)成立,即g(x)min≥f(x)min,由函数g(x)=lnx+34x −14x−1,可得g′(x)=1x−34x2−14=−(x−1)(x−3)4x2,0<x<2,当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,2)时,g′(x)>0,g(x)单调递增,所以当x=1时,函数g(x)取得最小值,最小值为g(1)=−12,又由函数f(x)=x2−2tx+4=(x−t)2+4−t2,x∈[1,2],当t<1时,函数f(x)在[1,2]上单调递增,f(x)min=f(1)=5−2t,即5−2t≤−12,解得t≥114,不成立,舍去;当1≤t ≤2时,函数f (x )在[1,t]上单调递减,[t,2]上单调递增,f (x )min =f (t )=4−t 2,即4−t 2≤−12,解得t ≥3√22或t ≤−3√22,不成立,舍去;当t >2时,函数f (x )在[1,2]上单调递减,f (x )min =f (2)=8−4t , 即8−4t ≤−12,解得t ≥178,综上可得,实数t 的取值范围是[178,+∞). 故选:B.6.设直线x =t 与函数f(x)=2x 2,g(x)=lnx 的图像分别交于点M,N ,则|MN |的最小值为( ) A .12+ln2B .3ln2−1C .e2−1D .12【答案】A 【解析】由题意M(t,2t 2),N(t,lnt),所以|MN |=|2t 2−lnt |,令ℎ(t)=2t 2−lnt ,则ℎ′(t)=4t −1t=4t 2−1t ,当0<t <12时,ℎ′(t)<0,当t >12时,ℎ′(t)>0,所以ℎ(t)min =ℎ(12)=12+ln2, 即|MN|的最小值为12+ln2, 故选:A.7.已知函数f (x )=e x +ax 2+2ax 在x ∈(0,+∞)上有最小值,则实数a 的取值范围为( ) A .(12,+∞)B .(−e 2,−12)C .(−1,0)D .(−∞,−12)【答案】D 【解析】解:∵f(x)=e x +ax 2+2ax , ∴f ′(x)=e x +2ax +2a ,若函数f(x)在x ∈(0,+∞)上有最小值, 即f(x)在(0,+∞)先递减再递增, 即f ′(x)在(0,+∞)先小于0,再大于0, 令f ′(x)<0,得e x <−2a(x +1), 令g(x)=e x ,ℎ(x)=−2a(x +1),只需ℎ(x)的斜率−2a 大于过(−1,0)的g(x)的切线的斜率即可,设切点是(x 0,e x 0),则切线方程是:y −e x 0=e x 0(x −a), 将(−1,0)代入切线方程得:x 0=0, 故切点是(0,1),切线的斜率是1,只需−2a >1即可,解得a <−12,即a ∈(−∞,−12), 故选:D .8.已知函数f(x)为定义在R 上的增函数,且对∀x ∈R,f(x)+f(−x)=1,若不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(0,e ] B .(−∞,e ]C .(0,1e]D .[1e,+∞)【答案】D 【解析】∵∀x ∈R ,f(x)+f(−x)=1,∴f(−lnx)=1−f(lnx), ∵不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立, ∴f(ax)≥f(lnx)对∀x ∈(0,+∞)恒成立,∵函数f(x)为定义在R 上的增函数,∴ax ≥lnx ,化为:a ≥lnx x,令g(x)=lnx x,x ∈(0,+∞),则g ′(x)=1−lnx x 2,x ∈(0,e)时,g ′(x)>0,此时函数g(x)单调递增;x ∈(e,+∞)时,g ′(x)<0,此时函数g(x)单调递减. ∴x =e 时,函数g(x)取得极大值. g(x)max =g(e )=1e .∴a ≥1e.则实数a 的取值范围是[1e,+∞).故选:D.9.已知函数f (x )=−e x +ax −e 2有两个零点,则实数a 的取值范围为( ) A .(0,e 2) B .(0,e ) C .(e ,+∞) D .(e 2,+∞)【答案】D 【解析】f′(x)=−e x+a,当a≤0时,f′(x)<0,则f(x)单调递减,此时f(x)至多一个零点,不符合题意;当a>0时,令f′(x)=0,则x=lna,当x∈(−∞,lna)时,f′(x)>0,f(x)单调递增,当x∈(lna,+∞)时,f′(x)<0,f(x)单调递减,因为f(x)有两个零点,所以f(lna)=alna−a−e2>0,令g(a)=alna−a−e2,a>0,则g′(a)=lna,令g′(a)<0解得0<a<1,令g′(a)>0,解得a>1,所以g(a)在(0,1)单调递减,在(1,+∞)单调递增,且当0<a<1时,g(a)<0,g(1)=−1−e2<0,g(e2)=0,所以a>e2.故选:D.10.已知x∈(0,π2),且ax<sinx<bx恒成立,则b−a的最小值为()A.1B.π2C.π2−1D.1−2π【答案】D 【解析】由ax<sinx,x∈(0,π2)得:a<sinxx;令f(x)=sinxx (0<x<π2),∴f′(x)=xcosx−sinxx2,令g(x)=xcosx−sinx(0<x<π2),则g′(x)=−xsinx<0,∴g(x)在(0,π2)上单调递减,∴g(x)<g(0)=0,则f′(x)<0,∴f(x)在(0,π2)上单调递减,∴f(x)>f(π2)=2π,∴a≤2π;令ℎ(x)=sinx−bx(0<x<π2),则ℎ′(x)=cosx−b,∵0<x<π2,∴0<cosx<1;当b≤0时,ℎ′(x)>0,∴ℎ(x)在(0,π2)上单调递增,∴ℎ(x)>ℎ(0)=0,不合题意;当b≥1时,ℎ′(x)<0,∴ℎ(x)在(0,π2)上单调递减,∴ℎ(x)<ℎ(0)=0,满足题意;当0<b<1时,∃x0∈(0,π2),使得ℎ′(x0)=0,又ℎ′(x)在(0,π2)上单调递减,∴当x∈(0,x0)时,ℎ′(x)>0,∴ℎ(x )在(0,x 0)上单调递增,则ℎ(x )>ℎ(0)=0,不合题意; 综上所述:b ≥1;∴(b −a )min =b min −a max =1−2π.故选:D.11.若曲线y =−√x +1在点(0,−1)处的切线与曲线y =lnx 在点 P 处的切线垂直,则点 P 的坐标为( ) A .(e ,1) B .(1,0) C .(2,ln2)D .(12,−ln2)【答案】D 【解析】y =−√x +1的导数为y ′=2√x+1,所以曲线y =−√x +1在点(0,−1)处的切线的斜率为k 1=−12. 因为曲线y =−√x +1在点(0,−1)处的切线与曲线y=ln x 在点P 处的切线垂直, 所以曲线y=ln x 在点P 处的切线的斜率k 2=2.而y=ln x 的导数y ′=1x ,所以切点的横坐标为12,所以切点P(12,−ln2). 故选:D12.定义:设函数f (x )的定义域为D ,如果[m,n ]⊆D ,使得f (x )在[m,n ]上的值域为[m,n ],则称函数f (x )在[m,n ]上为“等域函数”,若定义域为[1e ,e 2]的函数g (x )=a x (a >0,a ≠1)在定义域的某个闭区间上为“等域函数”,则a 的取值范围为( ) A .[2e2,1e )B .[2e2,1e]C .[e 2e 2,e 1e )D .[e 2e 2,e 1e ]【答案】C 【解析】当0<a <1时,函数g(x)=a x 在[1e ,e 2]上为减函数,若在其定义域的某个闭区间上为“等域函数”,则存在m ,n ∈[1e,e 2](m <n )使得{a m =n a n =m ,所以{m ln a =ln nn ln a =ln m ,消去lna ,得mlnm =nlnn ,令k(x)=xlnx ,则k ′(x)=lnx +1,当x ∈[1e ,e 2]时,k ′(x)≥0,所以k(x)在[1e ,e 2]上是单调增函数,所以符合条件的m ,n 不存在.当a>1时,函数g(x)=a x在[1e,e2]上为增函数,若在其定义域的某个闭区间上为“等域函数”,则存在m,n∈[1e ,e2](m<n)使得a m=m,a n=n,即方程a x=x在[1e,e2]上有两个不等实根,即lna=lnxx 在[1e,e2]上有两个不等实根,设函数ℎ(x)=lnxx (1e≤x≤e2),则ℎ′(x)=1−lnxx2,当1e≤x<e时,ℎ′(x)>0;当e<x≤e2时,ℎ′(x)<0,所以ℎ(x)在[1e,e)上单调递增,在(e,e2]上单调递减,所以ℎ(x)在x=e处取得极大值,也是最大值,所以ℎ(x)max=ℎ(e)=1e ,又ℎ(1e)=−e,ℎ(e2)=2e2,故2e2≤lna<1e,即e2e2≤a<e1e.故选:C.【点睛】解题的关键是讨论g(x)的单调性,根据题意,整理化简得到新的函数,利用导数求得新函数的单调性和最值,分析即可得答案,考查分析理解,计算求值的能力,属中档题.13.已知x1>x2>0,若不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,则m的取值范围为()A.(−∞,2)B.(−∞,2]C.(−∞,0)D.(−∞,0]【答案】B【解析】解:因为x1>x2>0,不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,等价于e x1−x2−e x2−x1−m(x1−x2)>0恒成立,令t=x1−x2>0,则不等式转化为e t−e−t−mt>0恒成立,令f(t)=e t−e−t−mt(t>0),则f′(t)=e t+e−t−m,显然e t+e−t≥2√e t⋅e−t=2,当且仅当e t=e−t,即t=0时取等号,所以当m≤2时f′(t)>0,即f(t)在(0,+∞)上单调递增,所以f(t)>f(0)=0,符合题意;当m>2时,令g(t)=f′(t)=e t+e−t−m,则g′(t)=e t−e−t>0,故f′(t)在(0,+∞)上单调递增,所以存在t0∈(0,+∞)满足f′(t0)=0,且当0<t<t0时f′(t)<0,当t>t0时f′(t)>0,所以f (t )在(0,t 0)上单调递减,此时f (t )<f (0)=0,与题意矛盾,综上可得m ∈(−∞,2]; 故选:B14.已知奇函数f (x )的导函数为f ′(x ),且f (x )在(0,π2)上恒有f (x )sinx<f ′(x )cosx成立,则下列不等式成立的( )A .√2f (π6)>f (π4)B .f (−π3)<√3f (−π6)C .√3f (−π4)<√2f (−π3)D .√22f (π3)<√3f (π4)【答案】B 【解析】 构造函数F (x )=f (x )sin x,由f (x )在(0,π2)上恒有f(x )sinx<f ′(x )cosx成立,即f ′(x )sin x −f (x )cos x >0,∴F ′(x )=f ′(x )sin x−f (x )cos x(sinx)2>0,∴F (x )在(0,π2)上为增函数,又由F (−x )=f (−x )sin (−x )=−f (x )−sin x=F (x ),∴F (x )为偶函数,∵π6<π4,∴F (π6)<F (π4),∴f(π6)sin π6<f(π4)sin π4,∴√2f (π6)<f (π4),故A 错误.∵偶函数F (x )在(0,π2)上为增函数,∴F (x )在(−π2,0)上为减函数,∵−π3<−π6,∴F (−π3)>F (−π6),∴f (−π3)sin (−π3)>f (−π6)sin (−π6),∴−f (−π3)>−√3f (−π6), ∴f (−π3)<√3f (−π6),故B 正确;F (−π4)<F (−π3),∴f(−π4)sin (−π4)<f(π3)sin (−π),∴−√3f (−π4)<−√2f (−π3),∴√3f (−π4)>√2f (−π3),故C 错误;∵π3>π4,∴F (π3)>F (π4),∴f(π3)sin π3>f(π4)sin π4,∴√2f (π3)>√3f (π4),故D 错误.故选:B15.已知f ′(x )是定义在R 上的函数f (x )的导数,且f (x )−f ′(x )<0,则下列不等式一定成立的是( ) A .e 3f (−2)>f (1) B .f (−2)<e 3f (1) C .e f (1)<f (2) D .f (1)<e f (2)【答案】C 【解析】 设g (x )=f (x )ex,则g ′(x )=f ′(x )−f (x )ex.因为f (x )−f ′(x )<0,所以g ′(x )>0,则g (x )在R 上单调递增. 因为−2<1,所以g (−2)<g (1),即f (−2)e−2<f (1)e,所以3f (−2)<f (1),则A 错误;因为f (−2),f (1)的大小不能确定,所以f (−2),e 3f (1)的大小不能确定,则B 错误; 因为1<2,所以g (1)<g (2),则f (1)e<f (2)e2,所以e f (1)<f (2),则C 正确;因为f (1),f (2)的大小不能确定,所以f (1),e f (2)不能确定,则D 错误. 故选:C16.曲线y =x 3+lnx 在x =1处的切线方程为 _____________ . 【答案】4x −y −3=0 【解析】解:y ′=3x 2+1x , 当x =1时,y ′=4,y =1,所以曲线y =x 3+lnx 在x =1处的切线方程为y −1=4(x −1), 即4x −y −3=0. 故答案为:4x −y −3=0.17.已知函数f (x )=2e −x ,则曲线y =f (x )在点(−2,f (−2))(e ≈2.71828⋅⋅⋅)处的切线方程为______. 【答案】2e 2x +y +2e 2=0 【解析】f ′(x)=−2e −x ,f ′(−2)=−2e 2,f(−2)=2e 2,所以所求切线方程为y −2e 2=−2e 2(x +2),即2e 2x +y +2e 2=0. 故答案为:2e 2x +y +2e 2=0.18.若直线l 与曲线y =x 2和x 2+y 2=49都相切,则l 的斜率为______.【答案】±2√2 【解析】设y =x 2的切点为(m,m 2),f ′(x )=2x ,故f ′(m )=2m , 则切线方程为:y −m 2=2m (x −m ),即2mx −y −m 2=0 圆心到圆的距离为23,即2√1+4m 2=23,解得:m 2=2或−29(舍去)所以m =±√2,则l 的斜率为2m =±2√2 故答案为:±2√2 19.已知函数f (x )=e x +e xe a,g (x )=x −e ae x ,若存在实数x 0,使f (x 0)−g (x 0)=3成立,则实数a =______.【答案】0 【解析】令f(x)−g(x)=e x +e xe a −x +e ae x =e x−a +e a−x +e x −x ,令ℎ(x)=e x −x ,则ℎ′(x)=e x −1, 由ℎ′(x)>0⇒x >0,ℎ′(x)<0⇒x <0,所以函数ℎ(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增, 所以ℎ(x)min =ℎ(0)=1,所以e x−a +e a−x ≥2, 当且仅当e x−a =e a−x 即x =a 时等号成立,即f(x)−g(x)≥3,当且仅当等号同时成立时,等号成立, 故x =a =0,即a =0. 故答案为:0.20.已知函数f(x)=x 2+2x e x −1,则函数f(x)在点(0,f(0))处的切线方程为_____________. 【答案】2x −y −1=0 【解析】由已知f ′(x)=2x +2e x +2x e x ,f ′(0)=2,又f(0)=−1, 所以切线方程为y +1=2x ,即2x −y −1=0. 故答案为:2x −y −1=0.21.已知定义在(0,+∞)上的函数f (x )满足:f(x)={xlnx,0<x ≤12f(x −1),x >1 ,若方程f (x )=kx −12在(0,2]上恰有三个根,则实数k 的取值范围是___________. 【答案】(1−ln2,12) 【解析】方程f (x )=kx −12在(0,2]上恰有三个根,即直线y =kx −12与函数y =f (x )的图像有三个交点, 当0<x ≤1时,f (x )=xlnx ,则f ′(x)=lnx +1, 当0<x <1e时,f ′(x)<0;当1e<x ≤1时,f ′(x )>0,所以f (x )在(0,1e)上单调递减,f (x )在(1e,1]上单调递增.结合函数的“周期现象”得f (x )在(0,2]上的图像如下:由于直线l ;y =kx −12过定点A (0,−12).如图连接A ,B (1,0)两点作直线l 1:y =12x −12,过点A 作f (x )=xlnx (0<x ≤1)的切线l 2,设切点P (x 0,y 0),其中y 0=x 0lnx 0,f ′(x)=lnx +1,则斜率k l 2=lnx 0+1 切线l 2:y −x 0lnx 0=(lnx 0+1)(x −x 0)过点A (0,−12).则−12−x 0lnx 0=(lnx 0+1)(0−x 0),即x 0=12,则k l 2=ln 12+1=1−ln2, 当直线l:y =kx −12绕点A (0,−12)在l 1与l 2之间旋转时.直线l:y =kx −12与函数y =f (x )在[-1,2]上的图像有三个交点,故k ∈(1−ln2,12) 故答案为:(1−ln2,12)22.若曲线y =e x 过点(−2,0)的切线恒在函数f(x)=a e x −x 2+(1e−3)x +2e −1的图象的上方,则实数a的取值范围是__________. 【答案】(−∞,−e 2) 【解析】设曲线y =e x 过点(−2,0)的切线的切点为(x 0,y 0),则切线的斜率k =e x 0=y 0−0x 0−(−2)=e x 0x 0+2, 所以x 0=−1,k =1e,切线方程为y =1e(x +2),所以1e(x +2)>a e x −x 2+(1e−3)x +2e−1恒成立,所以a <x 2+3x+1ex恒成立, 令g(x)=x 2+3x+1ex,则g ′(x)=−(x−1)(x+2)ex因为当x <−2,g ′(x)<0,x >−2,g ′(x)>0,所以x=−2为g(x)的极小值点,又因为x→+∞时,g(x)→0+,g(−2)=−e2<0所以gmin(x)=g(−2)=−e2,所以a<−e2.故答案为:(−∞,−e2).23.若直线y=kx+m是曲线y=ln(x−1)的切线,也是曲线y=e x−3的切线,则k=__________.【答案】1或1e【解析】设y=kx+m与y=e x−3和y=ln(x−1)的切点分别为(x1,e x1−3)、(x2,ln(x2−1));由导数的几何意义可得k=e x1−3=1x2−1,即y=e x1−3⋅x+(1−x1)e x1−3,y=1x2−1x+ln(x2−1)−x2x2−1,∴{e x1−3=1x2−1(1−x1)e x1−3=ln(x2−1)−x2x2−1,∴{x1−3=−ln(x2−1)(1−x1)⋅1x2−1=ln(x2−1)−x2x2−1=3−x1−x2x2−1=2−x1−1x2−1∴2−x1x2−1=2−x1当x2=2时,k=1,当x1=2时,k=1e∴k=1或1e.故答案为:1或1e.24.若存在实数a>0,使得函数f(x)=alnx+x与g(x)=2x2−2x−b的图象有相同的切线,且相同切线的斜率为2,则实数b的最大值为_________.【答案】−1.【解析】设函数f(x)=alnx+x的切点为(x1,y1),函数g(x)=2x2−2x−b的切点为(x2,y2)分别对函数进行求导,f′(x)=ax+1,g′(x)=4x−2由相同切线的斜率为2,得g′(x2)=4x2−2=2⇒x2=1,g(1)=−b故切线方程为y=2x−2−bf′(x1)=ax1+1=2⇒a=x1,f(x1)=x1lnx1+x1故函数f(x)=alnx+x的切点为(x1,x1lnx1+x1).把切点(x 1,x 1lnx 1+x 1)代入y =2x −2−b 中得x 1lnx 1+x 1=2x 1−2−b ⇒b =−x 1lnx 1+x 1−2令ℎ(x)=−xlnx +x −2,ℎ′(x)=−lnx −1+1=−lnx 当x ∈(0,1)时,ℎ′(x)>0,函数ℎ(x)单调递增 当x ∈(1,+∞)时,ℎ′(x)<0,函数ℎ(x)单调递减 故ℎ(x)≤ℎ(1)=−1 故实数b 的最大值为−1 故答案为:−1.25.已知函数f (x )={xe x +1e ,x ≤0,x 2−2x,x >0,则方程f (x )=0的根___________. 【答案】−1或2##2或-1 【解析】当x ≤0时,f (x )=xe x +1e ,所以f ′(x )=e x +xe x =(x +1)e x , 令f ′(x )=0,得x =−1, 当x <−1时,f ′(x )<0, 当−1<x ≤0时,f ′(x )>0,所以函数f (x )在(−∞,−1)上单调递减,在(−1,0)上单调递增, 所以f(x)min =f (−1)=0,故当x ≤0时,f (x )=0有唯一根−1, 当x >0时,f (x )=x 2−2x , 令f (x )=0,解得x =0(舍去)或2, 故当x >0时,f (x )=0的根为2, 综上,f (x )=0根为−1或2. 故答案为:−1或2.。

高考文科数学2010—2018真题分类 专题三 导数及其应用第八讲 导数的综合应用(带答案)

高考文科数学2010—2018真题分类 专题三  导数及其应用第八讲 导数的综合应用(带答案)

专题三 导数及其应用 第八讲 导数的综合应用一、选择题1.(2017新课标Ⅰ)已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称 2.(2017浙江)函数()y f x =的导函数()y f x '=的图像如图所示,则函数()y f x =的图像可能是xxA .B .xxC .D .3.(2016年全国I 卷)若函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,则a 的取值范围是A .[1,1]-B .1[1,]3-C .11[,]33- D .1[1,]3--4.(2016年四川)已知a 为函数3()12f x x x =-的极小值点,则a =A .-4B .-2C .4D .25.(2014新课标2)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞6.(2014新课标2)设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是A .()(),66,-∞-⋃+∞B .()(),44,-∞-⋃+∞C .()(),22,-∞-⋃+∞D .()(),11,-∞-⋃+∞7.(2014辽宁)当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]-- 8.(2014湖南)若1201x x <<<,则A .2121ln ln x x e e x x ->-B .2121ln ln x xe e x x -<- C .1221x x x e x e > D .1221x xx e x e < 9.(2014江西)在同一直角坐标系中,函数22a y ax x =-+与2322y a x ax x a =-++ ()a R ∈的图像不可能...的是B10.(2013新课标2)已知函数()32f x x ax bx c =+++,下列结论中错误的是A .∃()00,0x R f x ∈=B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间()0,x -∞单调递减D .若0x 是()f x 的极值点,则()0'0f x =11.(2013四川)设函数()f x =a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]12.(2013福建)设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点 13.(2012辽宁)函数x x y ln 212-=的单调递减区间为 A .(-1,1] B .(0,1]C . [1,+∞)D .(0,+∞)14.(2012陕西)设函数()x f x xe =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点15.(2011福建)若0a >,0b >,且函数32()422f x x ax bx =--+在1x =处有极值,则ab 的最大值等于A .2B .3C .6D .916.(2011浙江)设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()xf x e 的一个极值点,则下列图象不可能为()y f x =的图象是A B C D17.(2011湖南)设直线x t = 与函数2()f x x =,()ln g x x = 的图像分别交于点,M N ,则当MN 达到最小时t 的值为A .1B .12 CD二、填空题18.(2016年天津)已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为____. 19.(2015四川)已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数12,x x ,设m =1212()()f x f x x x --,n =1212()()g x g x x x --.现有如下命题:①对于任意不相等的实数12,x x ,都有0m >;②对于任意的a 及任意不相等的实数12,x x ,都有0n >; ③对于任意的a ,存在不相等的实数12,x x ,使得m n =; ④对于任意的a ,存在不相等的实数12,x x ,使得m n =-. 其中真命题有___________(写出所有真命题的序号).20.(2011广东)函数32()31f x x x =-+在x =______处取得极小值. 三、解答题21.(2018全国卷Ⅰ)已知函数()ln 1=--x f x ae x .(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0≥f x .22.(2018浙江)已知函数()ln f x x .(1)若()f x 在1x x =,2x (12x x ≠)处导数相等,证明:12()()88ln 2f x f x +>-; (2)若34ln 2a -≤,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.23.(2018全国卷Ⅱ)已知函数321()(1)3=-++f x x a x x .(1)若3=a ,求()f x 的单调区间; (2)证明:()f x 只有一个零点.24.(2018北京)设函数2()[(31)32]e x f x ax a x a =-+++.(1)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (2)若()f x 在1x =处取得极小值,求a 的取值范围.25.(2018全国卷Ⅲ)已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥.26.(2018江苏)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.27.(2018天津)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(1)若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若3d =,求()f x 的极值;(3)若曲线()y f x =与直线2()y x t =---求d 的取值范围. 28.(2017新课标Ⅰ)已知函数2()()xxf x e e a a x =--.(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.29.(2017新课标Ⅱ)设函数2()(1)x f x x e =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax +≤,求a 的取值范围. 30.(2017新课标Ⅲ)已知函数2()ln (21)f x x ax a x =+++.(1)讨论()f x 的单调性; (2)当0a <时,证明3()24f x a--≤. 31.(2017天津)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.32.(2017浙江)已知函数()(x f x x e -=1()2x ≥.(Ⅰ)求()f x 的导函数;(Ⅱ)求()f x 在区间1[,)2+∞上的取值范围.33.(2017江苏)已知函数32()1f x x ax bx =+++(0,)a b >∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;34.(2016年全国I 卷)已知函数22()(2)(1)f x x e a x =-+-.(I)讨论()f x 的单调性;(II)若()f x 有两个零点,求a 的取值范围.35.(2016年全国II 卷)已知函数()(1)ln (1)f x x x a x =+--.(Ⅰ)当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 36.(2016年全国III 卷)设函数()ln 1f x x x =-+.(Ⅰ)讨论()f x 的单调性;(Ⅱ)证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->. 37.(2015新课标2)已知函数()ln (1)f x x a x =+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围. 38.(2015新课标1)设函数()2e ln xf x a x =-.(Ⅰ)讨论()f x 的导函数()f x '零点的个数; (Ⅱ)证明:当0a >时()22lnf x a a a+≥. 39.(2014新课标2)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.40.(2014山东)设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数)(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围. 41.(2014新课标1)设函数()()21ln 12a f x a x x bx a -=+-≠, 曲线()()()11y f x f =在点,处的切线斜率为0(Ⅰ)求b ;(Ⅱ)若存在01,x ≥使得()01af x a <-,求a 的取值范围. 42.(2014山东)设函数1()ln 1x f x a x x -=++ ,其中a 为常数.(Ⅰ)若0a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论函数()f x 的单调性. 43.(2014广东) 已知函数321()1()3f x x x ax a R =+++∈ (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当0a <时,试讨论是否存在011(0,)(,1)22x ∈,使得01()()2f x f =. 44.(2014江苏)已知函数x x x f -+=e e )(,其中e 是自然对数的底数.(Ⅰ)证明:)(x f 是R 上的偶函数;(Ⅱ)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(Ⅲ)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.45.(2013新课标1)已知函数2()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为44y x =+. (Ⅰ)求,a b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值. 46.(2013新课标2)已知函数2()xf x x e -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 47.(2013福建)已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (Ⅱ)求函数()f x 的极值;(Ⅲ)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.48.(2013天津)已知函数2l ()n f x x x =.(Ⅰ)求函数()f x 的单调区间;(Ⅱ) 证明:对任意的0t >,存在唯一的s ,使()t f s =. (Ⅲ)设(Ⅱ)中所确定的s 关于t 的函数为()s g t =,证明:当2t e >时,有2ln ()15ln 2g t t <<. 49.(2013江苏)设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数.(Ⅰ)若()f x 在()1,+∞上是单调减函数,且()g x 在()1,+∞上有最小值,求a 的取值范围;(Ⅱ)若()g x 在()1,-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 50.(2012新课标)设函数f (x )=xe -ax -2(Ⅰ)求()f x 的单调区间(Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值 51.(2012安徽)设函数1()(0)xxf x ae b a ae =++> (Ⅰ)求()f x 在[0,)+∞内的最小值;(Ⅱ)设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值。

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析

2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。

导数测试试卷

导数测试试卷

《导数及其应用》测试题(文科)(满分:150分 时间:120分钟)1.函数()22)(x x f π=的导数是( )A .x x f π4)(='B .x x f 24)(π='C .x x f 28)(π='D .x x f π16)(=' 2. 曲线2xy x =+在点(-1,-1)处的切线方程为( ) A .y=2x+1 B .y=2x-1 C .y=-2x-3 D .y=-2x-23.若42()f x ax bx c =++满足(1)2f '=,则(1)f '-=( )A .4-B .2-C .2D .44.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=- 5.函数x e x x f -⋅=)(的一个单调递增区间是( )A.[]0,1-B. []8,2C. []2,1D. []2,06.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,7..观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A .()f xB .()f x -C .()g xD .()g x - 8.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A .294eB .22eC .22eD .22e9.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )A. 10<<bB. 1<bC. 0>bD. 21<b10 函数)(x f 的图像如图所示,下列数值排序正确的是( ) A.)2()3()3()2(0//f f f f -<<<B. )2()2()3()3(0//f f f f <-<<C.)2()3()2()3(0//f f f f -<<<D.)3()2()2()3(0//f f f f <<-<11.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )12.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题:本大题共4小题,每小题5分,共20分。

数学(文)知识清单-专题04 导数及其应用(原卷+解析版)

数学(文)知识清单-专题04 导数及其应用(原卷+解析版)

ex-1 x>0 , 20.已知奇函数 f(x)= x
h x x<0 ,
则函数 h(x)的最大值为________.
3
高考押题专练 1.曲线 f(x)=xlnx 在点(e,f(e))(e 为自然对数的底数)处的切线方程为( ) A.y=ex-2 B.y=2x+e C.y=ex+2 D.y=2x-e 【解析】本题考查导数的几何意义以及直线的方程.因为 f(x)=xlnx,故 f′(x)=lnx+1,故切线的斜率 k =f′(e)=2,因为 f(e)=e,故切线方程为 y-e=2(x-e),即 y=2x-e,故选 D. 【答案】D
D.
【答案】D
8.已知曲线 C1:y2=tx(y>0,t>0)在点 M
4,2 t
处的切线与曲线
C2:y=ex+1+1
也相切,则
t
的值为
()
A.4e2 B.4e
C.e2 D.e
4
4
【解析】由 y=
tx,得
y′= 2
t ,则切线斜率为 tx
k=4t ,所以切线方程为
y-2=4t
x-4 t
,即
y=4t x+1.
-∞,-4 3
,(0,+∞),故选
C.
【答案】C
7.函数 f(x)=ex-3x-1(e 为自然对数的底数)的图象大致是( )
5
【解析】由题意,知 f(0)=0,且 f′(x)=ex-3,当 x∈(-∞,ln3)时,f′(x)<0,当 x∈(ln3,+∞)时,f′(x)>0,
所以函数 f(x)在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,结合图象知只有选项 D 符合题意,故选
3.曲线 y=x3+11 在点 P(1,12)处的切线与两坐标轴围成三角形的面积是( ) A.75 B.75

导数及其应用测试题(有详细标准答案)(文科、整理)

导数及其应用测试题(有详细标准答案)(文科、整理)

高二数学(文) 期末复习题《导数及其应用》2一、选择题 1. f (x 0) 0是函数f x 在点x 0处取极值的:( A.充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2 2、设曲线y x 1在点(x, f (x))处的切线的斜率为g(x),则函数y g(x)cosx 的部分图象可以为( )3•在曲线y = x 2上切线的倾斜角为 n的点是(A. (0,0) B . (2,4) C. 1 D. 2, 4.若曲线y = x 2 + ax + b 在点(0 , b)处的切线方程是 5. 6. A. 7. 8. A. a = 1, b = 1 B . a=— 1 , b= 1 a = — 1, b = — 1 函数f(x) = x 3 + ax 2+ 3x — 9,已知f(x)在x = — 3时取得极值,则 a 等于( A. 2 B . 3 C . 4 D . 5 1 已知三次函数 f(x) = 3X 3 — (4m — 1)x 2 + (15m 2 — 2m- 7)x + 2 在 xe( —^, m<2或 m>4 B . — 4<m<- 2 C . 2<m<4 直线y x 是曲线y a In x 的一条切线, A. 1 B . e C . ln2 D . 十^ )是增函数,则 m 的取值范围是( )D .以上皆不正确 则实数 a 的值为(若函数f (x) x 3 12x 在区间(k 1,k 1)上不是单调函数, 则实数k 的取值范围(A. k 3或 1 k 1 或 k 3 C. 2 k 2 B .3.不存在这样的实数 k9. 10 .函数f x 的定义域为 a,b ,导函数 在a,b 内的图像如图所示,则函数f x 在a, b 内有极小值点( A. 1个 10.已知二次函数f (x) ax 2bx c 的导数为 f '(x) , f '(0)0 ,对于任意实数x 都有 f(x) 0 ,则丄d 的最f'(0)小值为(二、填空题 2(本大题共 4个小题,每小题5分,共 20 分)11.函数ySin^的导数为x3 2 2f (x) X ax bx a 在x=1处有极值为10,则f(2)等于3f (X) X ax 在R 上有两个极值点,则实数 a 的取值范围是 f (x)是定义在R 上的奇函数,f(1)0,xf(X), f (x) 0( X0),则不等式2X f(X) 0的解集是三、解答题(本大题共 6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 16.设函数f(x) = sinx — cosx + x + 1,0<x<2 n ,求函数 f(x)的单调区间与极值.317.已知函数f(x) X 3x . (I)求f (2)的值;(n)求函数f (x)的单调区间.18.设函数f(x)X 3 6X 5,X R . (1 )求f(X)的单调区间和极值;12、已知函数13 .函数y X 2cos X 在区间[0,—]上的最大值是14 .已知函数15.已知函数(2)若关于X的方程f(x) a有3个不同实根,求实数a的取值范围.(3)已知当X (1,)时,f(x) k(x 1)恒成立,求实数k的取值范围.19.已知x 1是函数f(x) 3mx 23(m 1)X nx 1的一个极值点,其中m,n R,m 0( 1 )求m与n的关系式;(2) 求f(x)的单调区间; (3) [1,1],函数y f (X)的图象上任意一点的切线斜率恒大于3m,求m的取值范围。

文科数学高考真题分类训练专题三 导数及其应用第八讲 导数的综合应用答案

文科数学高考真题分类训练专题三  导数及其应用第八讲 导数的综合应用答案

高中复习系列资料专题三 导数及其应用 第八讲 导数的综合应用答案部分1.解析(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减; 若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减. (2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩ 所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递减,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 2.解析(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+. 令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)要证()6x f x x -剟,即证()60f x x--剟,令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 在区间[]2,4-上的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -剟,即6()x f x x -剟.(Ⅲ)()()()[],2,4F x f x x a g x a x =--=-∈-,由(Ⅱ)知,()[]6,0g x ∈-, 当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =.综上,当()M a 最小时,3a =-.3.解析(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-,从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==.列表如下:所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤.4.解析 (1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.5.解析 (1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x ….又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.6.解析(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=. 由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数. 7.解析(Ⅰ)由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xax f x a a x x x'-⎡⎤=-+-=⎣⎦, 因此当0a ≤时,21e 0x ax -> ,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)(i )由(Ⅰ)知21()x ax e f x x '-=.令2()1xg x ax e =-,由10a e<<,可知()g x 在(0,)+∞内单调递减,又(1)10g ae =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011lnx a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当0(),x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在0(),x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h x x'=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()()10h x h <= ,所以ln 1x x <-.从而1ln 111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在(1,)+∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(1,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '⎧=⎪⎨=⎪⎩即()120111ln 1x x ax e x a x e ⎧=⎪⎨=-⎪⎩,从而1011201ln x x x x e x --=,即102011ln 1x x x x ex -=-.因为当1x >时,ln 1x x <- ,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得120ln ln x x e x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->. 8.解析(Ⅰ)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-=, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(Ⅱ)由1(1)2f a≤,得04a <≤.当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x ==. 故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此()0g t g =>…. 由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x „. 综上所述,所求a的取值范围是⎛ ⎝⎦.2010-2018年1.C 【解析】由2(1)()(2)x f x x x -'=-,02x <<知,()f x 在(0,1)上单调递增,在(1,2)上单调递减,排除A 、B ;又(2)ln(2)ln ()f x x x f x -=-+=, 所以()f x 的图象关于1x =对称,C 正确.2.D 【解析】由导函数的图象可知,()y f x =的单调性是减→增→减→增,排除 A 、C ;由导函数的图象可知,()y f x =的极值点一负两正,所以D 符合,选D . 3.C 【解析】函数1()sin 2sin 3f x x x a x =-+在(,)-∞+∞单调递增,等价于2245()1cos2cos cos cos 0333f x x a x x a x '=-+=-++… 在(,)-∞+∞恒成立. 设cos x t =,则245()033g t t at =-++…在[1,1]-恒成立, 所以45(1)03345(1)033g a g a ⎧=-++⎪⎪⎨⎪-=--+⎪⎩……,解得1133a-剟.故选C . 4.D 【解析】因为2()3123(2)(2)f x x x x '=-=+-,令()0f x '=,2x =±,当(,2)x ∈-∞-时()0f x '>,()f x 单调递增;当(2,2)x ∈-时()0f x '<,()f x 单调递减;当(2,)x ∈-+∞时()0f x '>,()f x 单调递增.所以2a =.故选D . 5.D 【解析】∵()ln f x kx x =-,∴1()f x k x'=-,∵()f x 在(1,+∞)单调递增, 所以当1x > 时,1()0f x k x '=-≥恒成立,即1k x≥在(1,+∞)上恒成立,∵1x >,∴101x<<,所以k ≥1,故选D .6.C 【解析】由正弦型函数的图象可知:()f x 的极值点0x 满足0()f x =,则22x k m πππ=+()k Z ∈,从而得01()()2x k m k Z =+∈.所以不等式()22200[]x f x m +<,即为2221()32k m m ++<,变形得21[1()]32m k -+>,其中k Z ∈.由题意,存在整数k 使得不等式21[1()]32m k -+>成立.当1k ≠-且0k ≠时,必有21()12k +>,此时不等式显然不能成立,故1k =-或0k =,此时,不等式即为2334m >,解得2m <-或2m >. 7.C 【解析】当(0,1]x ∈时,得321113()4()a x x x --+≥,令1t x=,则[1,)t ∈+∞,3234a t t t --+≥,令()g t =3234t t t --+,[1,)t ∈+∞,则()2981(1)(91)g x t t t t '=--+=-+-,显然在[1,)+∞上,()0g t '<,()g t 单调递减,所以max ()(1)6g t g ==-,因此6a -≥;同理,当[2,0)x ∈-时,得2a -≤.由以上两种情况得62a --≤≤.显然当0x =时也成立,故实数a 的取值范围为[6,2]--.8.C 【解析】设()ln xf x e x =-,则1()xf x e x'=-,故()f x 在(0,1)上有一个极值点,即()f x 在(0,1)上不是单调函数,无法判断1()f x 与2()f x 的大小,故A 、B 错;构造函数()x e g x x =,2(1)()x e x g x x -'=,故()g x 在(0,1)上单调递减,所以()()12g x g x >,选C .9.B 【解析】当0a =,可得图象D ;记2()2af x ax x =-+, 232()2()g x a x ax x a a R =-++∈,取12a =,211()(1)24f x x =--,令()0g x '=,得2,23x =,易知()g x 的极小值为1(2)2g =,又1(2)4f =,所以(2)(2)g f >,所以图象A 有可能;同理取2a =,可得图象C 有可能;利用排除法可知选B .10.C 【解析】若0c =则有(0)0f =,所以A 正确。

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

x1

x0
1,故 ex1x0

x02 x1 1 x1 1
x02 ,两边取对数,得 ln ex1x0 ln x02 ,
于是
x1 x0 2 ln x0 2 x0 1 ,
整理得 3x0 x1 2 .
【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法. 考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.
f
(2)

ln
2

1 2

ln
4 1 2

0
,故存在唯一
x0
(1, 2)
,使得
f
x0


0.
又当 x x0 时, f (x) 0 , f (x) 单调递减;当 x x0 时, f (x) 0 , f (x) 单调递增.
因此, f (x) 存在唯一的极值点.
(2)由(1)知 f x0 f (1) 2 ,又 f e2 e2 3 0 ,所以 f (x) 0 在 x0, 内存在唯一根
6.【2019 年高考浙江】已知实数 a 0 ,设函数 f (x)=a ln x x 1, x 0.
(1)当 a 3 时,求函数 f (x) 的单调区间; 4
(2)对任意
x

[
1 e2
, ) 均有
f
(x)
x 2a
,
求 a 的取值范围.
注:e=2.71828…为自然对数的底数.
【解析】(Ⅰ)解:由已知, f (x) 的定义域为 (0, ) ,且
f (x)

1 x

高中导数及其应用(文科专用)

高中导数及其应用(文科专用)

专题三:导数及其应用(文科专用)考点11. 导数的概念及运算基础闯关1.(2014•郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.【点评】考查导数的几何意义,属于基础题,对于一个给定的函数来说,要考虑它的定义域.比如,该题的定义域为{x>0}.2.(2014•广西)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.3.(2016春•滕州市期中)下列求导结果正确的是()A.(1﹣x2)′=1﹣2x B.(cos30°)′=﹣sin30°C.[ln(2x)]′=D.()′=【解答】解:对于A,(1﹣x2)′=﹣2x,∴A式错误;对于B,(cos30°)′=0,∴B式错误;对于C,[ln(2x)]′=×(2x)′=,∴C式错误;对于D,===,∴D式正确.故选:D.【点评】本题考查了基本初等函数求导问题,解题时应按照基本初等函数的求导法则进行计算,求出正确的导数即可.4.(2013春•达州期末)已知f(x)=e x+x﹣2(e是自然对数的底数),则函数f(x)的导数f′(x)=()A.xe x﹣1﹣2x﹣3B.e x﹣x2C.e x﹣2x﹣3D.e x﹣x﹣2ln2【解答】解:由于f(x)=e x+x﹣2(e是自然对数的底数),则函数f(x)的导数f′(x)=e x﹣2x﹣3故答案为C.【点评】求函数的导数关键是判断出函数的形式,然后选择合适的求导法则.5.(2015春•兰山区期中)函数y=xcosx﹣sinx的导数为()A.xsinx B.﹣xsinx C.xcosx D.﹣xcosx【解答】解:y′=(xcosx)′﹣(sinx)'=(x)′cosx+x(cosx)′﹣cosx=cosx﹣xsinx﹣cosx=﹣xsinx.故选B.【点评】计算时对基本函数的求导公式和法则的掌握是做题的关键.6.(2011春•龙港区校级月考)已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是()A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)【解答】解:∵对任意实数x,f′(x)>f(x),令f(x)=﹣1,则f′(x)=0,满足题意显然选项A成立故选A.【点评】此题考查常数函数的导数,以及特殊值法是求解选择题的一种常用的方法,属基础题.7.(2016春•临渭区期末)已知函数f(x)=xsinx+cosx,则的值为()A.B.0 C.﹣1 D.1【解答】解:∵f(x)=xsinx+cosx,∴f′(x)=sinx+xcosx﹣sinx=xcosx,∴f′()=×cos=0;故选:B.【点评】本题考查了导数的简单运算以及应用问题,是基础题.8.(2014•榆林模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()A.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的2倍(横坐标不变)C.向右平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)【解答】解:∵的导函数f'(x)=2cos(2x+)==2sin[2(x+)+]而由y=sin(2x+)y=2sin[2(x+)+]=f′(x)故选D【点评】本题主要考查三角函数的平移.复合函数的求导的应用,三角函数的平移原则为左加右减上加下减.9.曲线y=在点P(1,1)处的切线的倾斜角为.【解答】解:y'=﹣∴当x=1时,y'=﹣1,得切线的斜率为﹣1,所以k=﹣1;∴﹣1=tanα,∴α=1350,故答案为:135°.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.10.(2011秋•内蒙古校级期末)函数y=e x•sin3x的导数为.【解答】解:y′=(e x)′•sin3x+e x•(sin3x)′=e x sin3x+3e x cos3x,故答案为:e x sin3x+3e x cos3x.【点评】本题考查了导数积的运算性质,记住常见函数的导数是解题的基础,本题属于基础题.11.(2013秋•东湖区校级月考)函数的导函数是f′(x),则f′(1)=.【解答】解:∵函数的导函数是f′(x)=+=,∴f′(1)=.故答案为:.【点评】此题考查了复合函数的商的求导法则及函数的值.解题的关键是要准确记忆商的求导法则及常用函数的导数.12.(2014春•道里区校级期中)函数f(x)=,则f′()=.【解答】解:f′(x)==,∴f'()=故答案为:.【点评】本题考查基本函数的导数公式和两项商的导数公式,公式要记准记牢,训练运算能力,属基础题.13.(2013春•延边州校级月考)求下列函数的导数:(1)(2)y=(2x+1)(3x+2)(3)y=3x2+xcosx(4).【解答】解:(1)由于,则y′=cosx+6x﹣;(2)由于y=(2x+1)(3x+2),则y′=2×(3x+2)+(2x+1)×3=12x+7;(3)由于y=3x2+xcosx,则y′=6x+cosx+x×(﹣sinx)=6x+cosx﹣xsinx;(4)由于=1+,则y′=.【点评】计算时对基本函数的求导公式和法则的掌握是做题的关键.14.用复合函数求导法则求下列函数在x=0处的导数:(1)f(x)=(2x﹣1)3;(2)g(x)=sin(5x+);(3)m(x)=e6x﹣4;(4)n(x)=.【解答】解:(1)f(x)=(2x﹣1)3;则f'(x)=3(2x﹣1)2(2x﹣1)'=6(2x﹣1)2;所以f'(0)=6;(2)g(x)=sin(5x+);则g'(x)=cos(5x+)(5x+)'=5cos(5x+);所以g'(0)=;(3)m(x)=e6x﹣4;则m'(x)=e6x﹣4(6x﹣4)'=6e6x﹣4;所以m'(0)=6e﹣4;(4)n(x)=.则n'(x)==,所以n'(0)=2.【点评】本题考查了基本初等函数求得公式以及复合函数求导法则,熟记公式以及法则是解答的关键.属于基础题.拓展提升1.(2016•榆林二模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.【点评】函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)2.(2013•广东模拟)曲线在点处切线的倾斜角为()A.B.C. D.【解答】解:,则y′=x2,则k=1,从而tanα=1则α=故倾斜角为,故选B【点评】本题主要考查了导数的几何意义,以及斜率与倾斜角之间的关系,属于基础题.3.(2016春•晋中校级期中)在下面的四个图象中,其中一个图象是函f(x)=x3+ax2+(a2﹣1)x+1(a ∈R)的导函数y=f′(x)的图象,则f(﹣1)等于()A.B.﹣ C.D.﹣或【解答】解:∵f′(x)=x2+2ax+(a2﹣1),∴导函数f′(x)的图象开口向上.又∵a≠0,∴f(x)不是偶函数,其图象不关于y轴对称其图象必为第三张图.由图象特征知f′(0)=0,且对称轴﹣a>0,∴a=﹣1.则f(﹣1)=﹣﹣1+1=﹣,故选:B.【点评】本题考查导函数的运算法则、二次函数的图象与二次函数系数的关系:开口方向与二次项系数的符号有关、对称轴公式.4.(2013春•嘉兴期末)设函数f(x)的导数f′(x),且f(x)=f′()cosx+sinx,则f′()=()A.1 B.0 C.D.【解答】解:由f(x)=f′()cosx+sinx,得f′(x)=﹣f′()sinx+cosx,则f′()=﹣f′()•sin+cos,解得f′()=,所以f′()=﹣f′()sin+cos=﹣+=0,故选B.【点评】本题考查导数的运算、三角函数值,考查学生对问题的分析解决能力.5.(2013春•红桥区期末)函数的导数值为0时,x等于()A.a B.±a C.﹣a D.a2【解答】解:∵=,∴令y′=0,即,解得x=±a.故选:B.【点评】本题考查的是导数的求导法则,属于基础题,要求考生熟练掌握导数的求导法则.6.(2014春•黄山期末)f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【解答】解:设h(x)=f(x)g(x),因为当x<0时,f'(x)g(x)+f(x)g'(x)<0,所以当x<0时,h′(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A.【点评】本题考查导数的乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于基础题.7.(2016春•南昌校级期中)设函数f(x)=cos(+φ)(﹣π<φ<0).若f(x)+f′(x)是偶函数,则φ=()A.B.C.D.【解答】解:f(x)+f′(x)=cos(x+φ)﹣sin(x+φ)=2sin(x+φ+),因为f(x)+f′(x)为偶函数,所以当x=0时2sin(x+φ+)=±2,则φ+=kπ+,k∈Z,所以φ=kπ﹣,k∈Z,又﹣π<φ<0,所以φ=﹣.故选B.【点评】本题考查导数的运算、函数的奇偶性及三角恒等变换,考查学生对问题的理解解决能力,属中档题.8.函数的导数为()A.B.C. D.【解答】解:原函数看作y=u5,u=复合而成.根据复合函数求导运算,y′=y′(u)•u′(x)=5u4•(1﹣x﹣2)=故选C【点评】本题考查函数求导运算,属于基础题.9.(2015春•天津校级期中)函数f(x)=xsin(2x+5)的导数为.【解答】解:f′(x)=x′sin(2x+5)+x(sin(2x+5))′=sin(2x+5)+2xcos(2x+5),故答案为:sin(2x+5)+2xcos(2x+5),【点评】本题考查了导数的运算法则和复合函数的求导法则,属于基础题.10.(2014•开福区校级模拟)已知函数=.【解答】解:由导数的求导法则结合题意可得:f′(x)=﹣sinx+cosx所以=﹣sin+cos==0故答案为:0【点评】本题为导数值的求解,正确运用求导公式是解决问题的关键,属基础题.11.(2016春•扬州校级期末)定义在R上的函数f(x)满足:f′(x)>1﹣f(x),f(0)=6,f′(x)是f (x)的导函数,则不等式e x f(x)>e x+5(其中e为自然对数的底数)的解集为.【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f'(x)>1﹣f(x),∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+5,∴g(x)>5,又∵g(0)=e0f(0)﹣e0=6﹣1=5,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞)故答案为:(0,+∞).【点评】本题考查函数的导数与单调性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.12.(2014•佛山校级模拟)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e2x,f′(x)的最小值为.【解答】解:∵f(e x)=x+e2x,∴f(e x)=lne x+(e x)2,∴f(x)=lnx+x2,x∈(0,+∞)∴f′(x)=≥2=2,当且仅当x=时取等号.故答案为:【点评】本题主要考查了函数解析式的求法,求导的运算法则,以及基本不等式,知识点比较多,属于中档题.13.(2016春•西宁校级期末)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.【点评】本题主要考查了导数的应用,函数的导数与函数的单调性的关系的应用,导数的几何意义,考查参数范围的求解,考查学生分析解决问题的能力,有难度.14.(2016秋•长沙校级月考)已知数列{a n}的首项a1=4,前n项和为S n,且S n+1﹣3S n﹣2n﹣4=0(n∈N+)(1)求数列{a n}的通项公式;(2)设函数f(x)=a nx+a n﹣1x2+…+a1x n,f′(x)是函数f(x)的导函数,令b n=f′(1),求数列{b n}的通项公式,并研究其单调性.【解答】解:(1)∵S n+1﹣3S n﹣2n﹣4=0(n∈N+)①∴S n﹣3S n﹣1﹣2(n﹣1)﹣4=0(n∈N+)②①﹣②得a n+1﹣3a n﹣2=0,即a n+1+1=3(a n+1)∴{a n+1}是首项为5,公比为3的等比数列.∴a n+1=5•3n﹣1,即a n═5•3n﹣1﹣1.(2)∵f(x)=a nx+a n﹣1x2+…+a1x n,∴f′(x)=a n+2a n﹣1x+…+na1x n﹣1∴b n=f′(1)=a n+2a n﹣1+…+na1 =(5×3n﹣2﹣1)+…+n(5×30﹣1)=5[3n﹣1+2×3n﹣2+…+n×30]﹣,令S=3n﹣1+2×3n﹣2+…+n×30,则3S=3n+2×3n﹣1+…+n×31.作差得S=.于是,b n=f′(1)=,而,作差得∴{b n}是递增数列.【点评】本题考查等比数列的定义,借助数列的递推式把数列转化成等差或等比数列来解决问题的方法.考查错位相减法求和,数列与函数的关系,导数法判断单调性等知识的综合应用.属于难题.考点12. 导数的应用(切线与单调性)基础闯关1.(2016•浙江)函数y=sinx2的图象是()A.B.C.D.【解答】解:∵sin(﹣x)2=sinx2,∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;由y=sinx2=0,则x2=kπ,k≥0,则x=±,k≥0,故函数有无穷多个零点,排除B,故选:D【点评】本题主要考查函数图象的识别和判断,根据函数奇偶性和函数零点的性质是解决本题的关键.比较基础.2.(2011•枣庄二模)已知图1是函数y=f(x)的图象,则图2中的图象对应的函数可能是()A.y=f(|x|)B.y=|f(x)| C.y=f(﹣|x|)D.y=﹣f(﹣|x|)【解答】解:由图2知,图象对应的函数是偶函数,故B错误,且当x>0时,对应的函数是y=f(﹣x),显然A、D不正确.故选C【点评】本题考查函数的图象,考查学生视图能力,分析问题解决问题的能力,是基础题.3.(2015春•沈阳校级期中)已知函数f(x)=在[1,+∞)上为减函数,则a的取值范围是()A.0<a B.a≥e C.a≥D.a≥4【解答】解:f′(x)=∵函数f(x)=在[1,+∞)上为减函数∴f′(x)=≤0在[1,+∞)上恒成立即:1﹣lna≤lnx在[1,+∞)上恒成立∴1﹣lna≤0∴a≥e故选:B【点评】本题主要考查用导数法研究函数单调性问题,基本思路是,当函数是增函数时,则f′(x)≥0在D上恒成立;当函数是减函数时,则f′(x)≤0在D上恒成立.4.(2011•合肥二模)下列各坐标系中是一个函数与其导函数的图象,其中一定错误的是()A.B.C.D.【解答】解;对于A,由图得,开口向下,且对称轴大于0,故对应的一次函数为减函数,且与轴的交点在轴的上方,即A符合;对于B,原函数的图象是先增,后减再增,对应的导函数的函数值应先正后负再正,故B符合.对于C,不论把哪条曲线对应的函数当成是原函数,均于函数的单调性与其导函数的正负之间的关系相矛盾,故C不符合;对于D,因为原函数的图象是先减后增,故其导函数的图象是先负后正,即D符合要求.故选C.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系.属于基础题但只要有一个地方不注意,就会出错,所以也是易错题.5.(2016•益阳校级模拟)函数f(x)=x2﹣2lnx的单调减区间是()A.(0,1] B.[1,+∞) C.(﹣∞,﹣1]∪(0,1] D.[﹣1,0)∪(0,1]【解答】解:f′(x)=2x﹣=,(x>0),令f′(x)≤0,解得:0<x≤1,故选:A.【点评】本题考查了函数的单调性,考查导数的应用,是一道基础题.6.(2016•河南模拟)已知函数f(x)=x3﹣bx2﹣4,x∈R,则下列命题正确的是()A.当b>0时,∃x0<0,使得f(x0)=0B.当b<0时,∀x<0,都有f(x)<0C.f(x)有三个零点的充要条件是b<﹣3D.f(x)在区间(0.+∞)上有最小值的充要条件是b<0【解答】解:对于A:令f(x)=0,得:x3﹣bx2﹣4=0,∴x2(x﹣b)=4,∴x2=①,若b>0,x0<0,则x0﹣b<0,方程①无解,故选项A错误;对于B:若b<0,∀x<0,不妨令b=﹣6,x=﹣1,则f(﹣1)=﹣1﹣(﹣6)×1﹣4=1>0,故选项B错误;对于C:f′(x)=3x2﹣2bx=x(3x﹣2b),b>0时,令f′(x)>0,解得:x>或x<0,∴f(x)在(﹣∞,0)递增,在(0,)递减,在(,+∞)递增,∴x=0是极大值点,此时f(0)=﹣4,函数f(x)只有1个零点,故b>0不合题意,b<0时:令f′(x)>0,解得:x<或x>0,∴f(x)在(﹣∞,)递增,在(,0)递减,在(0,+∞)递增,∴x=是极大值点,若f(x)有三个零点,只需f()>0,解得:b<﹣3,故选项C正确;对于D:由选项C得:若b<0,则f(x)在(0,+∞)递增,而函数f(x)无最小值,故D错误,故选:C.【点评】本题考察了函数的单调性问题,考察导数的应用,函数的零点问题,是一道中档题.7.(2016春•张家口校级期中)已知函数f(x)=2x﹣lnx的单调递减区间为()A. B.(0,+∞)C.D.【解答】解:函数f(x)=2x﹣lnx的导数为f′(x)=2﹣,令f′(x)=2﹣<0,得x<∴结合函数的定义域,得当x∈(0,)时,函数为单调减函数.因此,函数f(x)=2x﹣lnx的单调递减区间是(0,)故选:A.【点评】本题给出含有对数的函数,求函数的减区间,着重考查了利用导数研究函数的单调性和函数的定义域等知识,属于基础题.8.(2016春•咸阳校级期中)函数f(x)=x﹣lnx的单调递减区间为()A.(﹣∞,1)B.(1,+∞)C.(0,1)D.(0,+∞)【解答】解:∵f′(x)=1﹣=,(x>0),令f′(x)<0,解得:0<x<1,∴f(x)在(0,1)递减,故选:C.【点评】本题考查了函数的单调性,考查导数的应用,是一道基础题.9.(2016•湖南校级模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数为f″(x).若在区间(a,b)上f″(x)恒成立,则称函数f(x)在区间(a,b)上为“凸函数”.已知f (x)=x4﹣x3﹣x2.若函数f(x)在区间(a,b)上为“凸函数”,则b﹣a的最大值为.【解答】解:∵函数f(x)=,∴,∴f″(x)=x2﹣2x﹣3,∵函数f(x)在区间(a,b)上为“凸函数”,∴在区间(a,b)上f″(x)<0恒成立,由x2﹣2x﹣3<0,解得﹣1<x<3.∴a=﹣1,b=3,∴b﹣a=3﹣(﹣1)=4.故答案为:4.【点评】本题考查了导数的运算法则、“凸函数”的定义,利用函数单调性和导数之间的关系是解决本题的关键,属于基础题.10.(2016春•邻水县期末)如果函数y=f(x)的导函数的图象如图所示,给出下列判断:(1)函数y=f(x)在区间(3,5)内单调递增;(2)函数y=f(x)在区间(﹣,3)内单调递减;(3)函数y=f(x)在区间(﹣3,2)内单调递增;(4)当x=﹣时,函数y=f(x)有极大值;(5)当x=2时,函数y=f(x)有极小值.则上述判断中正确的序号是.【解答】解:(1)由导数图象知,当3<x<4,f′(x)<0,此时函数单调递减,当4<x<5,f′(x)>0,函数单调递增,函数y=f(x)在区间(3,5)内不单调,故(1)错误;(2)当﹣<x<2,f′(x)>0,此时函数单调递增,当2<x<3,f′(x)<0,函数单调递减,函数y=f(x)在区间(﹣,3))内不单调,故(2)错误;(3)当﹣3<x<2,f′(x)>0,此时函数单调递增,即函数y=f(x)在区间(﹣3,2)内单调递增,故(3)正确;(4)当﹣3<x<2,f′(x)>0,此时函数单调递增,∴当x=﹣时,函数y=f(x)有极大值错误,故(4)错误;(5)当﹣3<x<2,f′(x)>0,此时函数单调递增,当2<x<3,f′(x)<0,函数单调递减,∴当x=2时,函数y=f(x)有极大值,故(5)错误;综上,正确的命题是(3).故答案为:(3).【点评】本题主要考查了函数单调性和极值的判断问题,利用函数单调性和极值和导数之间的关系是解题的关键.11.(2016•沈阳校级模拟)过原点作曲线y=e x的切线,则切线方程为.【解答】解:y′=e x设切点的坐标为(x0,e x0),切线的斜率为k,则k=e x0,故切线方程为y﹣e x0=e x0(x﹣x0)又切线过原点,∴﹣e x0=e x0(﹣x0),∴x0=1,y0=e,k=e.则切线方程为y=ex故答案为y=ex.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.12.(2016春•乐都区校级期末)函数f(x)=2x2﹣1nx的递增区间是.【解答】解:由题,函数的定义域是(0,+∞)∵f(x)=2x2﹣1nx∴f′(x)=4x﹣令f′(x)>0,即4x﹣>0解得x>或x<﹣又函数的定义域是(0,+∞)∴函数f(x)=2x2﹣1nx的递增区间是故答案为【点评】本题利用导数研究函数的单调性,解题的关键是理解并掌握函数的导数的符号与函数的单调性的关系,此类题一般有两类题型,一类是利用导数符号得出单调性,一类是由单调性得出导数的符号,本题属于第一种类型根据导数求单调区间.13.(2016春•包头校级期末)已知函数为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间.【解答】解:(1)因为函数,所以=,因为曲线y=f(x)在点(1,f(1))处的切线与x轴平行,所以f′(1)=0,即,解得k=1;(2)函数f(x)的定义域为(0,+∞),由,令g(x)=,此函数只有一个零点1,且当x>1时,g(x)<0,当0<x<1时,g(x)>0,所以当x>1时,f′(x)<0,所以原函数在(1,+∞)上为减函数;当0<x<1时,f′(x)>0,所以原函数在(0,1)上为增函数.故函数f(x)的增区间为(0,1),减区间为(1,+∞).【点评】本题考查利用导数研究函数的单调性,考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值.掌握不等式恒成立时所取的条件.14.(2016•邵阳三模)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.【解答】解:(1)函数f(x)=4x2+﹣a,则y=xf(x)=4x3+1﹣ax的导数为y′=12x2﹣a,由题意可得12﹣a=0,解得a=12,即有f(x)=4x2+﹣12,f′(x)=8x﹣,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,﹣7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x﹣1),即为y=7x﹣14;(2)由f(x)=4x2+﹣a,导数f′(x)=8x﹣,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3﹣a,由f(x)有两个零点,可得3﹣a=0,即a=3,零点分别为﹣1,.令t=g(x),即有f(t)=0,可得t=﹣1或,则f(x)=﹣1﹣b或f(x)=﹣b,由题意可得f(x)=﹣1﹣b或f(x)=﹣b都有3个实数解,则﹣1﹣b>0,且﹣b>0,即b<﹣1且b<,可得b<﹣1,即有a+b<2.则a+b的范围是(﹣∞,2).【点评】本题考查导数的运用:求切线方程和单调区间、极值,考查函数零点问题的解法,注意运用换元法和数形结合的思想方法,考查运算能力,属于中档题.拓展提升1.(2015•安徽)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<0【解答】解:f(0)=d>0,排除D,当x→+∞时,y→+∞,∴a>0,排除C,函数的导数f′(x)=3ax2+2bx+c,则f′(x)=0有两个不同的正实根,则x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,方法2:f′(x)=3ax2+2bx+c,由图象知当当x<x1时函数递增,当x1<x<x2时函数递减,则f′(x)对应的图象开口向上,则a>0,且x1+x2=﹣>0且x1x2=>0,(a>0),∴b<0,c>0,故选:A【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及f(0)的符号是解决本题的关键.2.(2016•岳阳二模)定义域为R的函数f(x)对任意x都有f(2+x)=f(2﹣x),且其导函数f′(x)满足>0,则当2<a<4,有()A.f(2a)<f(log2a)<f(2)B.f(log2a)<f(2)<f(2a)C.f(2a)<f(2)<f(log2a)D.f(log2a)<f(2a)<f(2)【解答】解:∵函数f(x)对任意x都有f(2+x)=f(2﹣x),∴函数f(x)的对称轴为x=2∵导函数f′(x)满足,∴函数f(x)在(2,+∞)上单调递减,(﹣∞,2)上单调递增,∵2<a<4∴1<log2a<2<4<2a又函数f(x)的对称轴为x=2∴f(2)>f(log2a)>f(2a),故选A.【点评】本题主要考查了导数的运算,以及奇偶函数图象的对称性和比较大小,根据函数导函数的符号确定函数的单调区间是解决此题的关键,根据函数的单调性比较函数值的大小,属于基础题.3.(2016•天门模拟)已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,,若a=f(),,c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b【解答】解:令g(x)=xf(x),则g(﹣x)=﹣xf(﹣x)=xf(x)∴g(x)是偶函数.g′(x)=f(x)+xf′(x)∵∴当x>0时,xf′(x)+f(x)<0,当x<0时,xf′(x)+f(x)>0.∴g(x)在(0,+∞)上是减函数.∵<ln2<1<∴g()<g(ln2)<g()∵g(x)是偶函数.∴g(﹣)=g(),g(ln)=g(ln2)∴g(﹣)<g(ln)<g()故选:B.【点评】本题考查了导数与函数单调性的关系,函数单调性的应用,属于中档题.4.(2016秋•湖北校级月考)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1] B.[﹣1,] C.[﹣,] D.[﹣1,﹣]【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.5.(2016•兴安盟一模)定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)【解答】解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.【点评】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.6.(2016•河南模拟)已知函数y=f(x)对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.f(﹣)<f(﹣)B.f()<f()C.f(0)>2f()D.f(0)>f()【解答】解:构造函数g(x)=,则g′(x)==(f′(x)cosx+f(x)sinx),∵对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0,∴g′(x)>0,即函数g(x)在x∈(﹣,)单调递增,则g(﹣)<g(﹣),即,∴,即f(﹣)<f(﹣),故A正确.g(0)<g(),即,∴f(0)<2f(),故选:A.【点评】本题主要考查函数单调性的应用,利用条件构造函数是解决本题的关键,综合性较强,有一点的难度.7.(2016•陕西模拟)曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积为()A.B.4e2C.2e2D.e2【解答】解:∵曲线y=,∴y′=×,切线过点(4,e2)∴f(x)|x=4=e2,∴切线方程为:y﹣e2=e2(x﹣4),令y=0,得x=2,与x轴的交点为:(2,0),令x=0,y=﹣e2,与y轴的交点为:(0,﹣e2),∴曲线y=在点(4,e2)处的切线与坐标轴所围三角形的面积s=×2×|﹣e2|=e2,故选D.【点评】此题主要考查利用导数求曲线上点切线方程,解此题的关键是对曲线y=能够正确求导,此题是一道基础题.8.(2016•张掖模拟)函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2] B.(﹣∞,2)C.[0,+∞) D.(2,+∞)【解答】解:函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,即f′(x)=2在(0,+∞)上有解,而f′(x)=+a,即+a=2在(0,+∞)上有解,a=2﹣,因为x>0,所以2﹣<2,所以a的取值范围是(﹣∞,2).故选B.【点评】本题考查利用导数研究曲线上某点切线方程问题,注意体会转化思想在本题中的应用.9.(2016•茂名二模)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).故答案为:(﹣∞,﹣1)∪(0,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.10.(2016•淮南二模)函数y=x+2cosx﹣在区间[0,]上的最大值是.【解答】解:y′=1﹣2sinx=0,在区间[0,]上得x=故y=x+2cosx﹣在区间[0,]上是增函数,在区间[,]上是减函数,∴x=时,函数y=x+2cosx﹣在区间[0,]上的最大值是,故答案为:.【点评】本题考查利用函数的单调性求最值、导数的应用、三角函数求值等,难度一般.11.(2016•江西模拟)已知函数在[1,+∞)上单调递增,则a的取值范围是.【解答】解:求导函数可得(x>0)∵函数在[1,+∞)上单调递增,∴≥0在[1,+∞)上恒成立∴a≥﹣2x2+令g(x)=﹣2x2+,则g′(x)=﹣4x﹣≤0在[1,+∞)上恒成立∴函数g(x)=﹣2x2+在[1,+∞)上单调减∴x=1时,函数g(x)=﹣2x2+取得最大值0∴a≥0故答案为:a≥0【点评】本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,求函数的最值是关键.12.(2016•衡水校级模拟)已知函数f(x)=2x2﹣xf′(2),则函数f(x)的图象在点(2,f(2))处的切线方程是.【解答】解:∵函数f(x)=2x2﹣xf′(2),∴f′(x)=4x﹣f′(2),∴f′(2)=8﹣f′(2),∴f′(2)=4∴f(2)=8﹣2×4=0∴函数f(x)的图象在点(2,f(2))处的切线方程是y﹣0=4(x﹣2)即4x﹣y﹣8=0故答案为:4x﹣y﹣8=0【点评】本题考查导数知识的运用,考查导数的几何意义,确定切点处的斜率与切点的坐标是关键.13.(2016•北京)设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,(Ⅰ)求a,b的值;(Ⅱ)求f(x)的单调区间.【解答】解:(Ⅰ)∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,同时f′(2)=e﹣1,∵f(x)=xe a﹣x+bx,∴f′(x)=e a﹣x﹣xe a﹣x+b,则,即a=2,b=e;(Ⅱ)∵a=2,b=e;∴f(x)=xe2﹣x+ex,∴f′(x)=e2﹣x﹣xe2﹣x+e=(1﹣x)e2﹣x+e,f″(x)=﹣e2﹣x﹣(1﹣x)e2﹣x=(x﹣2)e2﹣x,由f″(x)>0得x>2,由f″(x)<0得x<2,即当x=2时,f′(x)取得极小值f′(2)=(1﹣2)e2﹣2+e=e﹣1>0,∴f′(x)>0恒成立,即函数f(x)是增函数,即f(x)的单调区间是(﹣∞,+∞).【点评】本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键.综合性较强.14.(2016•衡阳校级模拟)已知函数f (x)=ax﹣e x(a∈R),g(x)=.(I)求函数f (x)的单调区间;(Ⅱ)∃x0∈(0,+∞),使不等式f (x)≤g(x)﹣e x成立,求a的取值范围.【解答】解:(Ⅰ)∵f′(x)=a﹣e x,x∈R.当a≤0时,f′(x)<0,f(x)在R上单调递减;当a>0时,令f′(x)=0得x=lna.由f′(x)>0得f(x)的单调递增区间为(﹣∞,lna);由f′(x)<0得f(x)的单调递减区间为(lna,+∞).(Ⅱ)∵∃x0∈(0,+∞),使不等式f(x)≤g(x)﹣e x,则,即a≤.设h(x)=,则问题转化为a,由h′(x)=,令h′(x)=0,则x=.当x在区间(0,+∞)内变化时,h′(x)、h(x)变化情况如下表:极大值由上表可知,当x=时,函数h(x)有极大值,即最大值为.∴.【点评】本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力与计算能力,属于难题.考点13. 导数的应用(极值与最值)基础闯关1.(2015春•重庆期末)下列结论中正确的是()A.导数为零的点一定是极值点B.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值C.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极小值D.如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极大值【解答】解:导数为零的点且左右两边的符号不同才是极值点故A错如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,则函数先增后减,则f(x0)是极大值如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,则函数先减后增,则f(x0)是极小值故选B【点评】本题考查函数极值点处的导数为0,且极值点左右两边的导函数符号相反.2.(2013春•泗县校级期末)函数y=x3﹣3x2﹣9x(﹣2<x<2)有()A.极大值5,极小值27 B.极大值5,极小值11C.极大值5,无极小值D.极小值27,无极大值【解答】解:y′=3x2﹣6x﹣9=0,得x=﹣1,x=3,由于﹣2<x<2,则当﹣2<x<﹣1时,y′>0;当﹣1<x<2时,y′<0,当x=﹣1时,y极大值=5;x取不到3,无极小值.故选:C【点评】本题考查学生利用导数研究函数极值的能力,属于基础题.3.(2016春•楚雄州期末)函数f(x)=lnx﹣x+2的零点所在的区间为()A.(4,5)B.(1,2)C.(2,3)D.(3,4)【解答】解:∵f(1)=ln1+1>0,f(2)=ln2>0,f(3)=ln3﹣1>0,f(4)=ln4﹣2<0,f(5)=ln5﹣3<0,∴函数f(x)=lnx﹣x+2的零点所在的区间为(3,4);故选:D.【点评】本题考察了函数的零点问题,可采用特殊值法逐个代入,本题是一道基础题.4.(2015春•枣阳市校级期末)y=x﹣e x的极大值为()A.1 B.﹣1 C.0 D.不存在【解答】解:y′=1﹣e x,令y′>0,解得:x<0,令y′<0,解得:x>0,∴函数y=x﹣e x在(﹣∞,0)递增,在(0,+∞)递减,∴y极大值=y|x=0=﹣1,故选:B.【点评】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.5.(2015秋•白山校级期中)已知三次函数f(x)=ax3﹣x2+x在(0,+∞)存在极大值点,则a的范围是()A.(0,1)B.(0,1] C.(﹣∞,0)D.(﹣∞,0)∪(0,1)【解答】解:f(x)=ax3﹣x2+x的导数f′(x)=ax2﹣2x+1,由于三次函数f(x)在(0,+∞)存在极大值点,则f′(x)=0有两个不同的正实数根或一正一负根,①当a>0时,此时ax2﹣2x+1=0有两个不同的正实数根,∴,即0<a<1,②当a<0时,此时3ax2﹣2x+1=0有一正一负根,只须△>0,即4﹣4a>0,⇒a<1,∴a<0;综上,则a的范围是(﹣∞,0)∪(0,1).故选D.【点评】本题考查了导数与函数的单调性的关系,以及极值的判断,本题的易错点是容易忽略二次项的系数不为零.6.(2016春•湖北校级期末)函数f(x)=3x﹣4x3(x∈[﹣1,0])的最小值是()A.﹣ B.﹣1 C.0 D.1【解答】解:∵f(x)=3x﹣4x3,∴f′(x)=3﹣12x2,令f′(x)=3﹣12x2=0,得x=±.∵x=∉[﹣1,0],∴x=(舍).∵f(0)=0,f(﹣)=﹣﹣4×(﹣)3=﹣1,f(﹣1)=﹣3+4=1.∴函数f(x)=3x﹣4x3,x∈[﹣1,0]的最小值是﹣1.故选:B.【点评】本题考查函数的最小值的求法,是基础题,解题时要认真审题,仔细解答.如本题解答中没有研究单调性,于课本例题解答步骤不同,但在最值一定是在极值与端点值取到这一规律下,这一解答方式就规避了单调性的讨论,使得运算量降低,解题时可参考技巧降低解题难度.7.(2016春•大庆校级月考)函数y=xe﹣x,x∈[0,4]的最小值为()A.0 B.C.D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数及其应用》单元测试题(文科)一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()22)(x x f π=的导数是( )(A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(='2.函数xe x xf -⋅=)(的一个单调递增区间是( )(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,03.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )(A ) 10<<b (B ) 1<b (C ) 0>b (D ) 21<b5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )8.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .329.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件10. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0//f f f f -<<< y (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<<(D ))3()2()2()3(0//f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分)11.函数()ln (0)f x x x x =>的单调递增区间是____.12.已知函数3()128f x x x =-+在区间[3,3]-上最大值、最小值分别为,M m ,则M m -=_.13.点P 在曲线323+-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53123-++=ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 . (3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 . 三.解答题(本大题共4小题,共12+12+14+14+14+14=80分)15.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?16.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.17.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,),该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =-的对称点,.求(Ⅰ)求点A B 、的坐标; (Ⅱ)求动点Q 的轨迹方程.18. 已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.19.已知()R a x x a ax x f ∈+++-=14)1(3)(23(1)当1-=a 时,求函数的单调区间。

(2)当R a ∈时,讨论函数的单调增区间。

(3)是否存在负实数a ,使[]0,1-∈x ,函数有最小值-3?20.已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.【文科测试解答】 一、选择题1.()∴==,42)(222x x x f ππ=⋅='x x f 242)(πx x f 28)(π=';2.∴=⋅=-.)(x xe x e x xf []=⋅-⋅='21)(x x x e e x e x f , ()[]1,012<∴>⋅-x e e x x x选(A) 3.(B)数形结合4.A 由()b x b x x f -=-='22333)(,依题意,首先要求b>0, 所以()()b x b x x f -+='3)(由单调性分析,b x =有极小值,由()1,0∈=b x 得.5.解:与直线480x y +-=垂直的直线l 为40x y m -+=,即4y x =在某一点的导数为4,而34y x '=,所以4y x =在(1,1)处导数为4,此点的切线为430x y --=,故选A 6.(D ) 7.(D ) 8.(C ) 9.(B )10.B 设x=2,x=3时曲线上的点为AB,点A 处的切线为AT 点B 处的切线为BQ ,T=-)2()3(f f AB k f f =--23)2()3(,)3(BQ k f =' ,)2(AT k f =' 如图所示,切线BQ 的倾斜角小于直线AB 的倾斜角小于 切线AT 的倾斜角 <∴BQ k <AB k AT k 所以选B11.1,e ⎡⎫+∞⎪⎢⎣⎭ 12.32 13.⎪⎭⎫⎢⎣⎡⋃⎪⎭⎫⎢⎣⎡πππ,432,0 14. (1).3)3(;3)2(;1-≤-≥≥a a a 三、解答题15. 解:设长方体的宽为x (m ),则长为2x (m),高为⎪⎭⎫ ⎝⎛-=-=230(m)35.441218<<x x xh .故长方体的体积为).230()(m 69)35.4(2)(3322<<x x x x x x V -=-=从而).1(18)35.4(1818)(2x x x x x x V -=--='令V ′(x )=0,解得x =0(舍去)或x =1,因此x =1.当0<x <1时,V ′(x )>0;当1<x <32时,V ′(x )<0, 故在x =1处V (x )取得极大值,并且这个极大值就是V (x )的最大值。

从而最大体积V =V ′(x )=9×12-6×13(m 3),此时长方体的长为2 m ,高为1.5 m. 答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3 m 3。

16.解:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+.则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.17.解: (1)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f 所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(2) 设),(n m p ,),(y x Q ,()()4414,1,122=-+-=--•---=•n n m n m n m PB PA21-=PQ k ,所以21-=--m x n y ,又PQ 的中点在)4(2-=x y 上,所以⎪⎭⎫⎝⎛-+=+4222m x n y 消去n m ,得()()92822=++-y x .另法:点P 的轨迹方程为(),9222=-+n m 其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q 的轨迹为以(a,b),为圆心,半径为3的圆,由2102-=--a b ,⎪⎭⎫⎝⎛-+=+420222a b 得a=8,b=-2 18.解(1)2()66,(2)12,(2)7,f x x x f f ''=-== ………………………2分∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;……4分 (2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. …………………………………………………………6分 则,(),()x g x g x '的变化情况如下表………………………10分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,过点A 可作三条不同切线.所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.…………14分19.(1)(),2,-∞-∈x 或(),,2+∞∈x )(x f 递减; (),2,2-∈x )(x f 递增; (2)1、当,0=a(),2,-∞-∈x )(x f 递增;2、当,0<a ,2,2⎪⎭⎫ ⎝⎛∈ax )(x f 递增;3、当,10<<a (),2,∞-∈x 或,,2⎪⎭⎫⎝⎛+∞∈a x )(x f 递增; 当,1=a (),,+∞∞-∈x )(x f 递增;当,1>a ,2,⎪⎭⎫ ⎝⎛∞-∈a x 或(),,2+∞∈x )(x f 递增;(3)因,0<a 由②分两类(依据:单调性,极小值点是否在区间[-1,0]上是分类“契机”:1、当,2,12-≥⇔-≤a a [],2,20,1⎪⎭⎫ ⎝⎛⊆-∈a x )(x f 递增,3)1()(min -=-=f x f ,解得,243->-=a2、当,2,12-≤⇔->a a由单调性知:3)2()(min -==a f x f ,化简得:01332=-+a a ,解得,26213->±-=a 不合要求;综上,43-=a 为所求。

相关文档
最新文档