收敛例1判断下列级数的敛散性P

合集下载

第三节绝对收敛与条件收敛

第三节绝对收敛与条件收敛
第三节 绝对收敛与条件收敛
一、交错级数及其审敛法 二、级数的绝对收敛与条件收敛
一、交错级数及其审敛法
1、定义: 正、负项相间的级数称为交错级数.
(1)n1an 或 (1)nan (其中an 0)
n1
n1
2、莱布尼茨定理 如果交错级数满足条件:
(i) an an1 (n 1,2,3, );
n an
n 2
(3)
lim
n
n
|
an
|
lim
n
1 (1 2
1 )n n
e 2
1,
故原级数发散.
例2
判别级数 (1)n
n1
1 np
的收敛性.
(1) 当 p 0 时,级数发散 ; (2) 当 0<p 1 时,
级数条件收敛 ; (3) 当 p >1 时,级数绝对收敛 .
例3
判别级数 (1)n
n1
xn n
.
发散
收敛
收敛
例2
判别级数
n2
( 1)n n
1
n
的收敛性
.

(
x
x 1
)
2
(1 x ) x ( x1)2
0,
( x 2)
故函数
f (x)
x x1
单调递减,
an
an1 ,

lim
n
an
lim n n n 1
0.
故原级数收敛.
判断 an an1 常用方法有:
(1)
证明 an
an1
0

an an1
1
.
(2) 令 an f (n) , 对 f ( x)( x 1) 求导 ,由 f ( x) 的

证明数项级数发散以及函数项级数非一致收敛的方法 终

证明数项级数发散以及函数项级数非一致收敛的方法 终
1 1 1 1 5 I=1+ 例 级数 32 - + 2 -……是否收敛?为什么? 2 4 5
1 1 1 1 = 原级数 I= , 前者是收敛的, 后者是发散的, 2 2 2n n 1 (2n 1) n 1 2n n 1 ( 2n 1)
n n n 1 2n 1

(2) (n 2 2) ln(
n 1

n2 1 ) n2
第一个级数的通项 an =
1 n n .由极限的知识,我们很容易知道 lim an = 0. n 2 2n 1
故(1)中的级数是发散的.而(2)中的通项可先进行化简,使之成为我们熟知

1 n n
n
在(1)中我们注意通项中有 n 次幂的存在,首先就会想到用根值判别法,而通 项的分母又有阶乘,我们又会联想到用比值判别法.其实,这个题目用这两种方 法 都 可以 求解 . 在这 里, 我用比 值判 别法来 解一下 :记 通项 an =
nn ,则 有 n!
an 1 (n 1) n 1 (n 1) n 1 n! = lim =e>1.由柯西判别法可知,该级 an 1 = ,故 lim n n n an (n 1)! n (n 1)!
0 就行.
三、对正项级数,利用判别法. 这里的判别法主要指的是根值判别法(柯西判别法) 、比值判别法(达朗贝尔判 别法)以及比较判别法.其中都有对级数发散情况的讨论.因此,在解决正项级数 的敛散性方面,这种方法也比较常见. 例3 判断下列级数的敛散性.
nn n 1 n!

(1)
(2)
n 1
n2 2 1 2 的可求极限的形式. bn = 2 ln(1 2 ) n 1(n ).故此级数是发散的. n n

7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))

7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))


使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,



上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有

而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】


点的邻域
存在任意阶导数,则称幂级数


点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.

内存在任意阶导数,则其泰勒级数收

其中

【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于

又级数

均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)

,则下列命题正确的是 .
(A)若
条件收敛,则

都收敛.
【解析】因

时,因级数

,所以收敛半径


发散,故收敛域为

高数-任意项级数敛散性判别法

高数-任意项级数敛散性判别法

x)
.
所以当x ≥ 1时 , f ( x) ≤ 0 .
即函数
f
(x)
2x 1 x2
单调减小.
即 un un+1 (n = 1 , 2 , 3 , ) .
(
n1
1 )n1
2n 1 n2

lim
n
un
lim
n
2n 1 n2
0
.
因此交错级数 (1)n1
n1
2n 1 n2
收敛
.
二、绝对收敛与条件收敛
高等数学第十二章 第三节
任意项级数敛散性判别法
第三节 任意项级数敛散性判别法
一、交错级数及其审敛法 二、绝对收敛与条件收敛 三、小结 提高题
一、交错级数收敛性判别法
在级数 un 中,总含有无穷多个正项和负项 n1
叫任意项级数.
1.定义: 如果级数的各项是正、负交错的,即
(-1)n-1 un = u1 - u2 + u3 - u4 +
如下:
u1v1, u1v2, u1v3, u2v1, u2v2, u2v3,
u3v1, u3v2, u3v3,
,
u1v

n
,
u2v

n
,
u3v

n
unv1, unv2, unv3,
,
un
v

n
将它们排成下面形状的数列.
对角线法
u1v1
u2v1
u3v1
u4v1
u1v 2 u2v 2 u3v2 u4v2
定义2 如果级数 un 收敛,则称级数 un 绝对收敛;
n=1
n=1

(优选)级数的敛散性判别习题课.

(优选)级数的敛散性判别习题课.

性质4:收敛级数加括弧后所成的级数仍然收敛于 原来的和.
级数收敛的必要条件:
lim
n
un
0.
第3页,共33页。
常数项级数审敛法
一般项级数 正 项 级 数
任意项级数
1. 若 Sn S ,则级数收敛; 2. 当 n , un 0, 则级数发散; 3.按基本性质;
4.绝对收敛
4.充要条件 5.比较法 6.比值法 7.根值法
x0
x2
2
lim n2[ 1 ln(1 1 )] 1
x0
n
n2
第24页,共33页。
例6 判别级数 (cos 1 )n3 的收敛性
n1
n

lim n
n
un
lim(cos 1 )n2
n
n
lim
n
n2
ln
cos
1 n
lim
ln(1
cos
1 n
1)
e lim n
n2
ln
cos
1 n
n
1
n2
lim
则称 x0为级数 un ( x)的收敛点,否则称为发散点.
n1
函数项级数 un( x)的所有收敛点的全体称为收敛域, n1
所有发散点的全体称为发散域.
(3) 和函数
在收敛域上,函数项级数的和是x 的函数s( x) ,
称s( x)为函数项级数的和函数.
第12页,共33页。
二、典型例题
例1 判断级数敛散性 :
cos
1 n
1
1
e
1 2
1
n
1
n2
2
所以级数 (cos 1 )n3 收敛

收敛函数

收敛函数

(1)
n
的敛散性
2n
解: lim n n
un
lim n n
2 (1)n 2n
lim 1 n 2 (1)n n 2
1 2
所给级数收敛
例6. 证明级数
收敛于S , 并估计以部分和 Sn 近
似代替和 S 时所产生的误差 .
解:
n un
n
1 nn
由定理5可知该级数收敛 令. rn S Sn , 则所求误差为
(2) 当 1 或 时, 级数发散 .
(2) 当 1 时, 级数可能收敛 可能发散; 证明 当为有限数时, 对 0,
N , 当n N时, 有 un1 ,
un
即 un1 (n N )
un
(1) 当 1时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
n un
n 1 np
但 p 1, 级数收敛 ; p 1, 级数发散 .
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1,或不存在,且不是无穷大 时不能用
比值审敛法;

级数
1 发散,
n1 n
级数
n1
1 n2
收敛,
(
1)
2.条件是充分的,而非必要.

un
2
(1)n 2n
3 2n
即 un (n )
n1
定理2 (比较审敛法) 设
是两个正项级数,
且存在
对一切

(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
证:因在级数前加、减有限项不改变其敛散性, 故不妨

2 线性代数 级数的比值和根值判别法

2 线性代数 级数的比值和根值判别法

设 un 0 (n 1, 2, ) ,则称
(1)
n1

n1
un u1 u2 u3 u4 (1) un
n1
为交错级数.
定理6(莱布尼兹判别法) 如果交错级数
n1 ( 1 ) un (un 0) n 1
满足条件:
(1) un1 un (n 1,2,);
n 1

n cos
2n
3 收敛.
2n (1) 3 n 1 n

nn (2) n n 1 3 n !

n2 ( 3) 1 n 1 (2 ) n n

例2 判断下列级数的敛散性.
n n (1) ( ) n 1 2n 1

(1)因为 lim n un lim n ( 解:
1 p 0 条件收敛. p n
例4 判断下列级数的敛散性.
sin n (1) 2 n 1 n
1 sin n 解:因为 n2 n 2

1 而级数 2 是收敛的p 级数, n 1 n sin n 由比较判别法知,正项级数 2 收敛. n 1 n 所以原级数 sin n 绝对收敛. 2 n 1 n
如果级数 un u1 u2 u3 un
n 1

的项 un 或正或负或为零,则称该级数为任意项级数. 定理7 定义2
n 1
若级数 | un |收敛,则级数 u n 一定收敛. 设 u n 为任意项级数,若
n 1 n 1
n 1

所以原级数 n tan
n 1


2
n
收敛.
an (5) a 0 k n 1 n

习题参考解答(第四部分) 收敛判定

习题参考解答(第四部分) 收敛判定

无穷级数部分练习题参考解答1、 判断级数()()31ln ln ln pqn n n n ∞=∑的敛散性.解:考察反常积分()()3ln ln ln p q dx x x x +∞⎰()ln3ln tx eq pdt t t =+∞=⎰当1p >时,取充分小的0ε>,使1p ε->,则有()1lim 0ln p q p t tt t ε-→+∞=,从而()ln3ln q p dt t t +∞⎰收敛. 当1p <时,取充分小的0δ>,使1p δ+<,则有()1lim ln p q p t tt t δ+→+∞=+∞,从而()ln3ln q p dt t t +∞⎰发散.当1p =时,()ln3ln ln3ln ut eq qdt dt u t t =+∞+∞=⎰⎰,知1q >时,()ln3ln q dt t t +∞⎰ 收敛,1q ≤时()ln3ln q dt t t +∞⎰发散.又显然函数()()()1ln ln ln pqf x x x x =在()3,+∞上非负递减,于是由积分判别法知:当1p >或1p =且1q >时级数收敛,其余情况级数发散. 2、讨论级数111(1)n p n n-∞+=-∑的敛散性,如果收敛,讨论是绝对收敛还是条件收敛.解:当0p ≤时,通项不趋于零,发散;当1p >时,111p p n n n+<,原级数绝对收敛;当01p <≤时,11(1)n p n n -∞=-∑收敛,11nn 单调有界,由Abel 判别法知原级数收敛. 又 11(1)lim11n p nn pnn -+→∞-=,知111(1)n p n nn-∞+=-∑发散. 故原级数条件收敛.3、已知1221(1)12n n n π-∞=-=∑,计算10ln(1)x dx +⎰. 解:函数ln(1)x +在0x =点的Taylor 级数为123(1)ln(1)23n n x x x x x n--+=-+-++ ,(1,1)x ∈- 112ln(1)(1)123n n x x x x x n --+-=-+-++ ,1232220ln(1)(1)23n n x t x x x dt x t n -+-=-+-++⎰ 10ln(1)x dx x +⎰1232222011ln(1)(1)lim lim 1223n n x x x t x x x dt x t n π-→→+-⎛⎫==-+-++= ⎪⎝⎭⎰ . 4、证明(1)方程10nx nx +-=(n 为正整数)存在唯一正实根n x ;(2)级数1n n x α∞=∑当1α>时收敛.证:(1)令()1nn f x x nx =+-,[]0,1x ∈ 则()01n f =-,()10n f n =>,∴()0n f x =在()0,1内有根n x .由()10n n f x nx n -'=+>知()1n n f x x nx =+-在()0,+∞ .∴ ()0n f x =即10nx nx +-=存在唯一正实根n x .(2)由10nnn x nx +-=, 110nn n x x n n -<=<,当1α>时,10n x nαα<<, 而11n n α∞=∑是1p α=>的p 级数,收敛. ∴ 级数1nn x α∞=∑收敛.5、用多种方法求级数1212nn n∞=-∑的和S.解法1: 2n n n S S S =-=121111212121112122212n n n n n n -----++++-=+-- ,∴ lim 3n n S S →∞==. 解法2: ()112121222n n n n n n n ∞∞==-=-∑∑,而111211212n ∞===-∑;对12n n n ∞=∑:1211(1)n n nx x ∞-==-∑. 21,1(1)nn x n x x x ∞==<-∑.12x =时,12n n n ∞=∑=2 . ∴ 1214132n n n ∞=-=-=∑.解法3:考虑级数()()2021nn n xs x ∞=+=∑,从0到x 逐项积分,得()2121xn n x s t dt x x ∞+===-∑⎰,1x <.再求导,得()()22211x s x x +=-,1x <.令()1,1x =- 得()201121262112n n n s ∞=++===-∑ ∴ 1212nn n ∞=-∑= 100211213222n n n n n n ∞∞+==++==∑∑.6、证明函数项级数1(1)cos n n n x∞=-+∑在,22ππ⎡⎤-⎢⎥⎣⎦上一致收敛.证法1:记1()(1),()c o s nn n a x b x n x =-=+.显然1()n n a x ∞=∑的部分和函数列在[,22ππ-]上一致有界,{}()n b x 关于n 单调递减趋于零,且[,]22lim sup()00n n x b x ππ→∞∈--=.即,22()0n b x ππ⎡⎤-⎢⎥⎣⎦−−−−→−−−−→.由Dirichlet 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.证法2:记(1)(),()cos n n n n a x b x n n x -==+.1()n n a x ∞=∑是收敛的数项级数,当然在[,22ππ-]上一致收敛;{}()n b x 关于n 单调,且在[,22ππ-]上一致有界.由Abel 判别法知()()1n n n a x b x ∞=∑在[,22ππ-]上一致收敛.7、证明:① 1ln nn x x ∞=∑在(]0,1不一致收敛;② 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰.证:① 级数1ln nn x x ∞=∑的每一项在(]0,1都连续,容易求出其和函数()()ln ,0,110,1x x x x S x x ⎧∈⎪-=⎨⎪=⎩由()10lim 1x S x →-=,知()S x 在(]0,1不是处处连续,所以1ln nn xx ∞=∑在(]0,1不一致收敛.② 对01x δ∀<<<,易知ln ln 1nn t tt t∞==-∑在[],x δ上一致收敛,有()110000ln ln ln 1x x nnxn n t dt t tdt t tdtt δδδ∞∞====---∑∑⎰⎰⎰⎰⎰ (*)∵ ()1201ln 1nt tdt n =-+⎰, ∴ 2100ln 6n n t tdt π∞==-∑⎰.又∵ ()21ln 1nt tdt n δ≤+⎰,()121ln 1n xt tdt n ≤+⎰∴ln nn t tdt δ∞=∑⎰和1ln n xn t tdt ∞=∑⎰分别在01δ≤≤和01x ≤≤上一致收敛.在(*)式两端令0,1x δ→→,得 210ln t dt π=-⎰,或 2101ln 16n n x x dx π∞=⎛⎫=- ⎪⎝⎭∑⎰. 8、给出1sinpn nx n∞=∑(0)p >一致收敛的区间,并证明之.证:当1p >时,sin 1p p nx n n ≤,(,),1,2,x n ∈-∞+∞= ,且11p n n∞=∑收敛. 由Weierstarss 判别法,知1sinpn nx n∞=∑在(,)-∞+∞上一致收敛.当01p <≤时,因对n N ∀∈,有 1212sin sin cos cos 222nk x n x kx x =+-=-∑.对(0,)επ∀∈,[,2]x επε∈-,有 121cos cos 2211sin 2sin 2sin sin 222nk n xx kx x x ε=++≤≤≤∑ 由Dirichlet 判别法知:1sinpn nx n∞=∑在[,2]επε-上一致收敛,即在(0,2)π上内闭一致收敛.同理可证:1sinpn nx n∞=∑在任意不包含2,0,1,2,k k π=±± 的闭区间上一致收敛.。

数项级数的收敛判别法

数项级数的收敛判别法

1 (n n
1, 2,),
则级数发散.
例4 判断下列级数的敛散性
1
(1)
n1 (2n 1) 2n
n 1
(2)
n 1
n2
1
(3)
1
n2 (ln n)
第12页/共62页
1
(4)
n2
(ln
n)n
(1)
因为2n
1
n,所以un
(2n
1 1) 2n
1 n 2n
1 2n2
由于
1 ,根据比较判别法可知
n1
1 n2
收敛,
n2
由定理(2)知级数
n1
ln(1
1 n2
)收敛.
第21页/共62页
练习1 判别级数
1 的敛散性 (a>0为常数)
n1 n2 a 2
1
解:因为 lim n
n2 a2 1
1
(即=1为常数)
n
1

是调和级数,它是发散的
n1 n
1
故原级数 n1 n2 a 2
发散.
第22页/共62页
解 : 级数的通项为
由于
nn un n! (n 1)n1
lim un1 lim
u n0 n
n0
(n 1)! nn
lim(1 1 )n e 1,
n0
n
n!
由比值判别法可知所给级数发散.
第27页/共62页
例9 判别级数 1 xn 的敛散性,其中x>0为常数 n1 n!
解:记
un
xn ,则 n!
1 收敛;
n1 2n2
n1 2n2
(2)

第十一章-无穷级数(习题及解答)

第十一章-无穷级数(习题及解答)
若 收敛,则 发散; 若 发散,则 发散.答 .
2.若 ,则下列级数中肯定收敛的是( ).
; ;
; .答 .
3.设级数(1) 与(2) ,则( ).
级数(1)、(2)都收敛; 级数(1)、(2)都发散;
级数(1)收敛,级数(2)发散; 级数(1)发散,级数(2)收敛.答 .
4.设级数(1) 与(2) ,则( ).
; ;
; .答 .
二、填空题
1. 是以 为周期的函数, 傅里叶级数为 .
答: 其中
2. 是以 为周期的偶函数, 傅里叶级数为 .
答:
3. 是以 为周期的奇函数, 傅里叶级数为 .
答:
4.在 的傅里叶级数中, 的系数为.答:
5.在 的傅里叶级数中, 的系数为.答:
6.在 的傅里叶级数中, 的系数为.答:
在区间 上正交; 以上结论都不对.答 .
2.函数系
在区间 上正交; 在区间 上不正交;
不是周期函数; 以上结论都不对.答 .
3.下列结论不正确的是( ).
; ;
; .答 .
4. 是以 为周期的函数,当 是奇函数时,其傅里叶系数为( ).
; ;
; .答 .
5. 是以 为周期的函数,当 是偶函数时,其傅里叶系数为( ).
一、单项选择题
1.级数 与 满足 ,则( ).
若 收敛,则 发散; 若 发散,则 发散;
若 收敛,则 发散; 若 收敛,则 未必收敛.答 .
2.下列结论正确的是( ).
收敛,必条件收敛; 收敛,必绝对收敛;
发散,则 必条件收敛;
收敛,则 收敛.答 .
2.下列级数中,绝对收敛的是( ).
; ;
; .答 .

《数学分析选讲》考研很有用的参考资料(共15章)第9章

《数学分析选讲》考研很有用的参考资料(共15章)第9章

第六章 级数理论§1 数项级数I 基本概念一 数项级数及其敛散性定义1 给定一个数列{,对它的各项依次用“+”号连结起来的表达式}n u ""++++n u u u 21 (1)称为数项级数或无穷级数,简称级数,记为,其中称为数项(1)的通项. ∑∞=1n nun u 数项级数(1)的前项之和,记为,称之为(1)的前项部分和,简称为部分和.n ∑==nk kn uS 1n 定义2 若级数(1)的部分和数列{}n S 收敛于(即S S S n n =∞→lim ),则称级数(1)收敛,并称为(1)的和,记为.若S ∑∞==1n nuS {}n S 是发散数列,则称级数(1)发散.二 收敛级数的基本性质1 收敛级数的柯西收敛准则级数(1)收敛的充要条件是:0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<++++++p n n n u u u "21.2 级数收敛的必要条件:若级数∑收敛,则∞=1n na0lim =∞→n n a .3 去掉、增加或改变级数的有限项并不改变级数的敛散性.4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数亦如此),即收敛级数满足结合律.5 若级数适当加括号后发散,则原级数发散.6 在级数中,若不改变级数中各项的位置,只把符号相同的项加括号组成一新级数,则两级数具有相同的敛散性.7 线性运算性质若级数与都收敛,是常数,则收敛,且∑∞=1n nu∑∞=1n nvd c ,(∑∞=+1n n ndv cu)()∑∑∑∞=∞=∞=±=±111n n n n n n nv d u c dv cu.三 正项级数收敛性判别法1 正项级数收敛的充要条件是部分和数列∑∞=1n nu{}n S 有界.2 比较判别法 设与是两个正项级数,若存在正整数,当时,都有,则∑∞=1n nu∑∞=1n nvN N n >n n v u ≤(1)若收敛,则∑收敛;∑∞=1n nv∞=1n nu(2)若发散,则∑发散.∑∞=1n nu∞=1n nv3 比较原则的极限形式 设和是两个正项级数,且∑∞=1n n u ∑∞=1n n v l v u nnn =∞→lim,则(1)当+∞<<l 0时,和∑具有相同的敛散性;∑∞=1n nu∞=1n nv(2)当时,若∑收敛,则收敛;0=l ∞=1n nv∑∞=1n nu(3)当时,若发散,则发散.+∞=l ∑∞=1n nv∑∞=1n nu4 设∑和是两个正项级数,且∞=1n n a ∑∞=1n n b 0>∃N ,N n >∀,有nn n n b b a a 11++≤,则 (1)若收敛,则∑收敛;∑∞=1n nb∞=1n na(2)若发散,则发散.∑∞=1n na∑∞=1n nb5 比式判别法(达朗贝尔判别法) 设是正项级数,若及常数,有∑∞=1n nu00>∃N 0>q(1)当时,0N n >11<≤+q a a n n ,则级数收敛;∑∞=1n n u (2)当时,0N n >11≥+n n a a ,则发散.∑∞=1n n u 6 比式判别法极限形式 设为正项级数,且∑∞=1n n u q u u nn n =+∞→1lim,则(1)当时,收敛;1<q ∑∞=1n nu(2)当若时,∑发散;1>q +∞=q ∞=1n nu(3)当时失效.1=q 当比式极限不存在时,我们有 设为正项级数.∑∞=1n nu(1)若1lim1<=+∞→q u u n n n ,则级数收敛;(2)若1lim1>=+∞→q u u nn n ,则级数发散.7 根式判别法(柯西判别法) 设为正项级数,且存在某正整数及正常数l ,∑∞=1n nu0N (1)若对一切,成立不等式0N n >1<≤l u nn ,则级数收敛;∑∞=1n n u (2)若对一切,成立不等式0N n >1≥n n u ,则级数∑发散.∞=1n nu8 根式判别法极限形式 设为正项级数,且∑∞=1n nul u n n n =∞→lim ,则(1)当时级数收敛; 1<l (2)当时级数发散. 1>l 9 柯西积分判别法设为[上非负递减函数,那么正项级数与反常积分同时收f )∞+,1()∑∞=1n n f ()∫∞+1dx x f敛或同时发散.10 拉贝判别法 设为正项级数,且存在某正整数及常数∑∞=1n nu0N r ,(1)若对一切,成立不等式0N n >111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n ,则级数∑收敛;∞=1n n u (2)若对一切,成立不等式0N n >111≤⎟⎟⎠⎞⎜⎜⎝⎛−+n n u u n ,则级数发散.∑∞=1n n u 注 拉贝判别法中(1)111>≥⎟⎟⎠⎞⎜⎜⎝⎛−+r u u n n n 可转化为nru u n n −≤+11,1>r 收敛; (2)r u u n n n ≤⎟⎟⎠⎞⎜⎜⎝⎛−+11可转化为nru u n n −≥+11,1≤r 发散. 11 拉贝判别法极限形式若r u u n n n n =⎟⎟⎠⎞⎜⎜⎝⎛−+∞→11lim ,则有 (1)当1>r 时,收敛;∑∞=1n nu(2)当1<r 时,发散.∑∞=1n nu四 一般项级数1 莱布尼兹判别法 若交错级数,,满足下列两个条件:()∑∞=−−111n n n u 0>n u (1)数列{单减; }n u (2),0lim =∞→n n u 则收敛.∑∞=1n nu注 若交错级数满足莱布尼兹判别法,则其余项满足()∑∞=−−111n n n u ()x R n ()1+≤n n u x R .2 绝对收敛级数及其性质 定义 对于级数,若∑∞=1n nu∑∞=1n nu收敛,则称绝对收敛;若收敛,而∑∞=1n nu∑∞=1n nu∑∞=1n nu发散,则称是条件收敛的.∑∞=1n nu显然,若绝对收敛,则一定收敛,反之不真.∑∞=1n nu∑∞=1n nu绝对收敛级数的性质: (1)重排性:若∑绝对收敛,其和为,则任意重排后所得级数亦绝对收敛,且有相同的和数.∞=1n nuS 此说明:绝对收敛级数满足交换律.对于条件收敛级数适当重排后,可得到发散级数,或收敛于任何事先指定的数(Riemann ).(2)级数的乘积 若和都绝对收敛,其和分别为∑∞=1n nu∑∞=1n nvA 和B ,则其乘积按任意方式排列所得的级数也绝对收敛,且其和为∑∞=1n n u ∑∞=⋅1n nvAB (柯西定理).乘积的排列方式通常有两种:正方形和对角线法.3 一般级数收敛判别法一般级数除应用前面正项级数方法判定其绝对收敛以外,莱布尼兹判别法和下面的狄利克雷判别法和阿贝尔判别法则是判定其可能条件收敛的主要方法.(1)狄利克雷判别法 若数列{单减收敛于零,的部分和数列有界,则级数收敛.}n a ∑∞=1n nbnn n ba ∑∞=1注 莱布尼兹判别法是狄利克雷判别法的特例,Abel 判别法亦可由狄利克雷判别法推证.(2)阿贝尔判别法:若数列{单调有界,∑收敛,则级数收敛.}n a ∞=1n nbnn n ba ∑∞=1五、常用于比较判别法的已知级数(1)几何级数∑,∞=1n nq1<q 收敛,1≥q 发散;(2)级数−p ∑∞=11n p n ,时收敛,1>p 1≤p 发散; (3)()∑∞=2ln 1n pn n ,时收敛,1>p 1≤p 发散.II 例题选解一 级数敛散性判别例1 讨论下列级数的敛散性. (1)∑∞=+111n nx,; 0>x (2)∑∞=1sinn nx,. R x ∈解(1)10<<x ,,0→n x 0111≠→+nx,发散; 1=x 时,02111≠→+nx,发散; 1>x 时,nn x x ⎟⎠⎞⎜⎝⎛<+111,∑∞=11n n x 收敛,故∑∞=+111n nx 收敛. (2)当时收敛,当时,发散. 0=x 0≠x 例2 已知∑收敛.∞=12n na(1)判定()∑∞=+−1211n n n n a 的敛散性;(2)证明:∑∞=2ln n n nn a 收敛.(武汉大学)解(1)()222221112111n a n a n a n nn+≤⎟⎠⎞⎜⎝⎛++≤+⋅−,与∑∞=12n n a ∑∞=121n n 均收敛,从而原级数收敛(绝对收敛).(2)仿(1),由五(3)知其收敛. 例3 判断下列级数的敛散性. (1)∑∞=+−1)]11ln(1[n n n ;(东北师大)(2)∑++++−)]!1!21!111([n e ";(东北师大) (3)∑∞=142sin3n n n ; (4)∑∞=⎟⎠⎞⎜⎝⎛−1cos 1n pn π,() 0>p (5)∑∞=1!n n n nn a ();e a a ≠>,0(6)()∑∞=−−+11312n n n ;(7)∑∞=−>−+111)0()2(n nna aa;(8)∑∫∞=+104411n n dxx ;(9)∑∞=⎟⎠⎞⎜⎝⎛−−−21111n n n n ; (10)()()∑∞=+2ln ln 1n n nn n ;(11)∑∞=3ln n pnn(); 0>p (12)()()∑∞=++11ln 11n pn n ();(0>p 1=p 为大连理工) (13)()∑∞=+++1!2!!2!1n n n "; (14)()∑∞=⎦⎤⎢⎣⎡−+111ln n p n n (); 0>p (15)()()∑∞=⋅−11!!2!!12n n n n ;(16)()∑∞=1ln ln 1n nn ; (17)∑∞=⎟⎠⎞⎜⎝⎛−2ln 1n nn n p (); 0>p(18)()()()∑∞=+++12111n nnx x x x "0≥x (); (19)()∑∞=+−⋅−+211ln1n pn n nn (); 0>p (20)()∑∞=⎟⎠⎞⎜⎝⎛++−110310021n nnn n ;(21)()()∑∞=−+−211n n n n ; (22)∑∞=1cos n pn nx(π<<x 0); (23)"+−−−+−−+−+2222222222; (24)()[]∑∞=−11n n n;(25)()()∑∞=2ln ln ln 1n qp n n n ;(大连理工1998) (26)∑∞=+−11n nn n;(中科院2002)(27)∑−nnnarctan )1((北京大学1999).解(1)由于)(1ln ln 1)1ln(1)]11ln(1[111∞→→++−=+−=+−=∑∑∑===n c n n n k n k k k S nk n k nk n ,其中c 为欧拉常数,所以级数收敛.(2)由于""++++=++++−<)!2(1)!1(1)!1!21!111(e 0n n n ))3)(2)(1(1)2)(1(111(!1"+++++++++=n n n n n n n 22)!1(2))3)(2(1)2)(1(111(!1nn n n n n n n <+=++++++++<", 由比较原则知其收敛.(3)24342sin 3→⎟⎠⎞⎜⎝⎛nnn⇒ 收敛;(4)21021~cos 12≤<⇒⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛−p n n pp ππ发散,21>p 收敛; (5)()()e a n n a n n a n n a nn n n n →⎟⎠⎞⎜⎝⎛+⋅=⋅++⋅++1!1!111e a <<⇒0收敛,发散; e a >(6)()131312<→−+n n n⇒收敛;或()()∑∑∑∞=−∞=∞=−−+=−+111113131232n n n n n n n n ,收敛;或()1131312−−≤−+n nn ,收敛;(此乃正项级数)(7)220222121211)ln 2((lim )21()(lim )21()2(lim a x a a na a n a a x x x nnn nnn =−=−=−+−+→−∞→−∞→⇒收敛; 注:利用的Maclaurin 展开式估计分子的阶. x a (8)204421110nxdxdxx a n n n =≤+=<∫∫⇒ 收敛; (9)()nn n nn n n n n n −=−−=−−−111111=n n −231⇒收敛; 或⎟⎟⎠⎞⎜⎜⎝⎛⎟⎠⎞⎜⎝⎛+++=⎟⎠⎞⎜⎝⎛−=−−n o n n n n n n 11111111111⎟⎠⎞⎜⎝⎛+++=23231111n o n n n ⇒⎟⎠⎞⎜⎝⎛+=−−−=2323111111n o n n n n a n (∞→n )收敛;∑∞=⇒1n n a (10)()()()()nenn n n nn n nn nnnln ln 1ln 11ln ln ln ln +⋅=+=+,而()01ln ln →+⋅nn n ,从而上式极限为零,⇒收敛;(11)当10≤<p 时,nn n p 1ln ≥()发散; 3>n ⇒ 当时,1>p ()()21211ln 1ln −−+⋅=p p p nnn n n ,当充分大时, n ()1ln 21<−p n n ⇒ ()2111ln −+≤p p nn n ⇒收敛.或当时,1>p 0ln 1ln 1ln 121<−=⋅−⋅=′⎟⎠⎞⎜⎝⎛+−p p p pp x x p x xpx x x x x (),即单减.由柯西积分判别法知原级数收敛.3>x (12)()()()pn n n u 1ln 11++=单减,故可用柯西积分判别法,令()()()1ln 11++=x x x f p ,,易知当1≥x 1=p 时,发散,时亦发散,而时收敛.()∫∞+1dx x f 10<<p 1>p (13)()()()2121!2!!2!!2!1+≤⋅≤+++n n n n n n "()收敛; 3≥n ⇒(14)由泰勒公式(皮亚诺余项形式)得:()()()⎟⎠⎞⎜⎝⎛+⎥⎦⎤⎢⎣⎡−−−=⎥⎦⎤⎢⎣⎡−+p p n p n p n n o n n n 221121111ln ()⎟⎠⎞⎜⎝⎛+⋅−−=p p p nn o n n 2211211,当绝对收敛,1>p 121≤<p 条件收敛,210≤<p 发散. 注 能否利用()()p np n n n 1~11ln −⎟⎟⎠⎞⎜⎜⎝⎛−+⇒()∑∞=⎟⎟⎠⎞⎜⎜⎝⎛−+111ln n p n n 收敛?(此法仅用于正项级数).(15)()()()()⎟⎠⎞⎜⎝⎛+−⎟⎠⎞⎜⎝⎛+−=+⋅++=⋅−+⋅++=+1112211122121!!2!!1211!!22!!121n n n n n n nn n n n n a a n n()⎟⎠⎞⎜⎝⎛+++−=+++−=11123112112312n o n n n 由拉贝判别法知其收敛.(16)+∞→n ln ,则当较大时,,n 2ln e n >()()2ln 2ln 11ln 1n en n n =<⇒收敛; (17)根式判别法失效.先估计它的阶,⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−=n n p n nn e n n p u ln 1ln ln 1,n npn n p ln ~ln 1ln −⎟⎠⎞⎜⎝⎛−(), ∞→n 从而可以估计,于是可讨论pn nu −~n p p nu n nu =的极限,为此()⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−+=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛−=∞→∞→∞→n n p n n p n n p n u n n np n n pn ln 1ln ln lim ln 1ln lim ln lim ⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛++−=−∞→n n p n p n n n 1ln 1ln 1ln 11lim1()[]x px x px xx ln ln 1ln 1lim0−+=→ ()0ln 1ln ln lim 220=++−=→xpx x x x x p x 故,,所以当时收敛,当1lim =∞→n pn u n p n n u −~1>p 1≤p 时发散.(18)当时级数显然收敛; 0=x 当时,,故收敛;10<<x n n x u <当时,1=x nn u ⎟⎠⎞⎜⎝⎛=21,收敛;当时,1>x ()()()112111111−−<+<+++=n n n nn x x x x x x u ",收敛.(19)()()())(12121~1112∞→⋅=++=−+n nn nn nn p p ppp, )(2~12~121ln 11ln∞→−+−⎟⎠⎞⎜⎝⎛+−+=+−n n n n n n , 所以,211121~p p n n a +−⋅−)(∞→n ,由此易得:时收敛,0>p 0≤p 时发散. 注 等价无穷小替换法仅适用于同号级数.(20)()132103100210310021<→++=⎟⎠⎞⎜⎝⎛++−n n n n n nn,绝对收敛. (21)()()()()()111111111−+−−=−−−−=−+−=n n n n n n u nnnnn n , ()()()0121112112221<−−−=−−−⋅=′⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−x x x x x x xx x () 1>x 由莱布尼兹判别法,()∑∞=−−211n nn n 收敛,而∑∞=−111n n 发散,故原级数发散. (22)当,发散,,绝对收敛,当0≤p 1>p 10≤<p 时,由狄利克雷判别法知其收敛.事实上,212sin 21sin cos 3cos 2cos cos −⎟⎠⎞⎜⎝⎛+=++++x xn nx x x x ",()π,0∈x ,有界.(23)法一:212sin24sin24cos22πππ====a ,322sin 24cos 1222ππ=⎟⎠⎞⎜⎝⎛−=−=a ,4332sin 22cos 224cos 122222πππ=−=⎟⎠⎞⎜⎝⎛+−=−−=a ,……12sin2+=n n a π,……于是原级数可表为∑∞=+=⎟⎠⎞⎜⎝⎛++++21322sin 22sin 2sin 2sin 2n n n ππππ"",收敛.法二:记21=A ,222+=A ,2223++=A ,……则,于是2→n A 121222lim 222lim 222lim lim 22111<=−+−=−+−=−+−=→→−−∞→+∞→x x x x A A a a x x n n n nn n ,收敛.(24)将级数中相邻且符号相同的项合并为一项,得一新级数()()∑∞=⎭⎬⎫⎩⎨⎧−++++−12221111111n nn n n " 注意到通项中共有项,其中前项之和和后12+n n 1+n 项之和分别夹在11+n 与n1之间, n n n n n n n n n n n n n 11111122222=<−+++<−+<+=" ()nn n n n n n n n n n n n n 11211211122222=++<++++<+<+=+" 因此()nn n n n 211111112222<−+++++<+" 由此得其单减,从而为收敛级数,而原级数的部分和总是夹在新级数某相邻的二部分和之间,所以原级数也收敛.(25)当时,则当时收敛,1=p 1>q 1≤q 时发散,此时级数的敛散性等同于无穷积分()∫∞+2ln ln ln qx x x dx的敛散性.由无穷积分立得 ()∫∞+2ln ln ln q x x x dx ()∫+∞→=A q A x x x dx2ln ln ln lim ()⎪⎪⎩⎪⎪⎨⎧<∞+>−=+∞==−+∞→+∞→1,1,ln ln 11lim 1,ln ln ln lim 212q q x q q x A qAA A 收敛, 当时发散,时收敛,事实上,1<p 1>p 当时,1<p ()()()()n n n n n n n n n q pqp ln 1ln ln ln ln 1ln ln ln ln 11>⋅=−(n 充分大) 当时,1>p ()()()()()()()2121211ln 1ln ln ln 1ln 1ln ln ln ln 1+−−+<⋅=p q p p q p n n n n n n n n n . (26)由 及发散知级数发散.∑−1n(27)由于{单调有界,}n arctan ∑−nn)1(收敛,由阿贝尔判别法知其收敛.思考题1 判别下列级数的敛散性: (1)∑∞=+−−++122)11(1n n n n n n ;(复旦大学1997) (2)∑∞=123ln n nn;(复旦大学1998) (3)∑∞=122sinn nn π;(复旦大学1999)(4)∑∞=−122sin)53(n n n n π;(复旦大学1999)(5))0()1()2ln(1>++∑∞=a n a n n n;武汉理工大学2004) (6)∑∞=−11sin 1(n n n α.(南京理工2004) 提示:(1)分子有理化,发散; (2)收敛;(3)仿上例(3),收敛;(4)当为偶数时,通项为0,去掉这些为0的项以后所得级数为交错级数,收敛,n从而原级数收敛(考察它们部分和数列之间的关系).(5)由级数收敛的必要条件知当1≤a 时发散;当由比式判别法知其收敛; 1>a (6)利用的Taylor 公式讨论. x sin 例4 讨论级数∑∞=11n pn的敛散性.分析:,柯西准则,发散;1=p 1>p ,柯西积分判别法,收敛; 1<p ,比较判别法,发散.例5 证明 (1)若级数收敛,则∑∞=12n n a ∑∞=1n nn a 收敛;(淮北煤师院2004) (2)若,则发散,而∑收敛;(南开大学2001)0lim ≠=a na n n∑∞=1n na∞=12n na(3)若是收敛的正项级数,则当∑∞=1n n a 21>p 时,级数∑∞=1n p n na 收敛(中科院2002). 分析:(1)⎟⎠⎞⎜⎝⎛+≤22121n a n a n n ; (2)01≠→=a na na n n ,发散,而∑收敛; ∑∞=1n n a ∞=12n na (3)同(1).或:由Cauchy 不等式211221111⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛≤∑∑∑===nk p nk k nk pk k a k a ; 知其部分和有界,从而收敛.例6(兰州大学2000)设是单调递减数列,试证明: 0>n u (1)若0lim ≠=∞→c u n n ,则∑∞=+−11)1(n nn u u 收敛; (2)若0lim =∞→n n u ,则∑∞=+−11)1(n nn u u 发散. 证(1)由单调有界定理知,再由极限的柯西收敛准则知:0>≥c u n 0,0>∃>∀N ε,当,有+∈∀>Z p N n ,εc u u p n n <−+,又单调递减,所以,当时,有n u +∈∀>Z p N n ,ε<−≤−++−+−+−+++++np n n p n p n n n n n u u u u u u u u u )1()1()1(1121",由级数的柯西收敛准则知其收敛.(2)由于1)1()1()1(1121−=−≥−++−+−+++−+++++pn n p n p n n p n p n n n n n u uu u u u u u u u u ",令得上式右端的极限为,由柯西准则知∞→p ∞+∑∞=+−11)1(n nn u u 发散. 例7(华东师大1997)设级数∑∞=1n nn a收敛.试就∑n a 为正项级数和一般项级数两种情形分别证明:级数n n an n+∑∞=1也收敛.证 当为正项级数时,∑na1lim=+∞→nn a n a n n n ,由比较判别法知n n an n+∑∞=1收敛.当∑∞=1n n n a 为一般项级数时,nn a n n a n n n n 1111+=+∑∑∞=∞=,由阿贝尔判别法知它是收敛的.思考题2(华东师大1998)已知为发散的一般项级数,试证明∑∞=1n n a ∑∞=+1)11(n n n a 也是发散级数.提示:用反证法.假设∑∞=+1)11(n n n a 收敛,则∑∑∞=∞=++=11)1)(11(n n n n n n n a a ,由阿贝尔判别法知收敛,矛盾.∑∞=1n na例8(北京工业大学2000)设和正项数列{}n a 单调减少,且级数发散.令n n na ∑∞=−1)1(nn a a a u ++⋅+=11111121",.,2,1"=n试问级数∑是否收敛,并说明理由.∞=1n nu证 级数收敛.这是因为:由级数发散和正项数列单调减少知,且由单调有界定理知,于是∑∞=1n nun n na ∑∞=−1)1({}n a 0lim >=∞→a a n n a a n ≥nn n n aa a a a u )11()1(111111121+=+≤++⋅+=", 由比较原则知收敛.∑∞=1n nu例9(北方交通大学1999)已知.,2,1,,01"=≤>+n a a a n n n 讨论级数"""++++na a a a a a 21211111 的敛散性.解 由单调性假设知存在极限0lim ≥=∞→a a n n ,则a a a a n n n =∞→"21lim ,由柯西根式判别法知,当时收敛,当时发散,当1>a 1<a 1=a 时,例10(中国矿大北研部)设,0>n a n n a a a S +++="21,级数.试证:∞=∑∞=1n na(1)∑∞=1n nnS a 发散;(武汉大学) (2)∑∞=12n nnS a 收敛.(东北师大) 证 (1),,于是0>n a ↑n S pn n p n pn n k kpn n k k k S S S a S a ++++=++=−=≥∑∑111. 而,故,从而当充分大时,∞=∑∞=1n n a +∞=++∞→p n p S lim p 21<+pn n S S , 211≥∑++=pn n k kk S a .由柯西收敛准则知其发散.(2)11211211122121111a S S S S a S S a a S a n nk k k n k k k k nk kk ≤−=⎟⎟⎠⎞⎜⎜⎝⎛−+=+≤∑∑∑=−=−=,部分和有界,故收敛.例11(华中科技大学) 若0lim 1=+∞→n n a ,()0lim 21=+++∞→n n n a a ,…,()0lim 21=++++++∞→p n n n n a a a ",…,试问是否一定收敛?为什么?∑∞=1n n a 解 不一定.如级数∑∞=11n n,有 )(01121110∞→→+<++++++<n n p p n n n "; 但∑∞=11n n 发散.例12(上海交大) 若 1lim 1sin 2=⎟⎟⎠⎞⎜⎜⎝⎛⋅∞→n nn n a n ,则级数是否收敛?试证之.∑∞=1n n a 解 由于11sin2→−nn n na (∞→n ),而()432sin 21sin2110−⋅−−≤=<−−nnn n n nn (n 充分大),由比较判别法知∑∞=−11sin2n nn n收敛,再由比较判别法知收敛.∑∞=1n na例13 设且单减,试证与同时敛散.0>n a ∑∞=1n na∑∞=122n nn a 证 因为对正项级数任意加括号不改变敛散性,因此由∑∞=1n na()()()""++++++++++=1587654321a a a a a a a a a∑∞==++++≤02232221222232n n n a a a a a "和∑∞=1n na()()()"""++++++++++=169854321a a a a a a a a∑∞=+=+++++≥02116842122121842n nn a a a a a a a "知两级数具有相同的敛散性.例14 若正项级数收敛,且(∑∞=1n nan n nb a n a e a e++=",2,1=n ).证明 (1)∑收敛;(华东师大)∞=1n nb(2)∑∞=1n nna b 收敛.(北京理工大学2003)证 解出得:n b ()0ln lim >−=∞→n a n n a eb n,而收敛,故当n 充分大时,∑∞=1n n a nnn a b b <,从而(2)收敛立得(1)收敛.由收敛的必要条件得)(0∞→→n a n .又因为()⎟⎟⎠⎞⎜⎜⎝⎛−++++=−n nn n n a a a a a a e n"!3!21ln ln 32()n n n a o a a =++"32!3121~, 即 0lim=∞→nn n a b ,由级数收敛得∑∞=1n n a ∑∞=1n nn a b收敛. 例15 研究级数∑∞=121n nx 的敛散性,这里是方程n x x x tan =的正根,并且按递增的顺序编号.解 解方程得:()⎟⎠⎞⎜⎝⎛+−+∈ππππn n x n 2,12,()22111−<n x n ,,收敛. 1>n 例16 设,,11=u 22=u 21−−+=n n n u u u ().问收敛吗?3≥n ∑∞=−11n nu解 由于03323233211211111<−=−=−=−+−−+−+++n n n n n n n n n n n u u u u u u u u u u u (); 3>n 所以 321111≤=+−−+n n n n u u u u (由的前若干项预测);由比式判别法知其收敛. n u 例17 设,证明级数 0>n a ()()()∑∞=+++121111n nna a a a " 收敛. 解 由于()()()()()()()()n n n a a a a a a a a a a a a a S +++++++++++++=<111111111021321321211""()()()()()()()"""++++++++−=+++++=321321212121111111111a a a a a a a a a a a a()()()()()()n n a a a a a a a ++++++++−=1111111121321"" ()()()1111121<+++−=n na a a a "即部分和有界,所以收敛.例18(上海师大)证明:级数:"+⎟⎠⎞⎜⎝⎛+++−⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛+−4131211713121151211311是收敛的.解 这是交错级数,且()()⎟⎠⎞⎜⎝⎛++++−+=⎟⎠⎞⎜⎝⎛+++−=n n n n n n a n 12111212121211121""111121112112111221121+=⎟⎠⎞⎜⎝⎛++++++>⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛+++⎟⎠⎞⎜⎝⎛−++=n a n n n n n n "", ()()0ln 1211211121→++−=⎟⎠⎞⎜⎝⎛+++−=n n n c n n n a ε". 由莱布尼兹判别法知收敛.∑∞=1n na例19(合肥工大2001)已知正项级数∑na 和∑nb 都发散,问下列级数收敛性如何?(1)∑; (2)),min(nnb a ∑),max(nnb a .解(1)可能收敛,也可能发散,例如,取,则1−==n b a n n ∑),min(nn b a 发散;若取,,则n n a )1(1−+=1)1(1+−+=n n b 0),min(≡n n b a ,∑),min(nn b a 收敛.(2)一定发散,这是因为. n n n a b a ≥),max(思考题3(复旦大学1997)证明:如果任意项级数∑nu和∑nv都收敛,且成立.1,≥≤≤n v w u n n n则收敛.∑nw提示:利用柯西收敛准则.思考题4(上海交大2004)设.,2,1,1,11212"+==∫+−n dx x x n x n nn n 证明收敛.∑∞=−−11)1(n nn x 提示:12212111−+=<<+=n n n x n x n x ,应用Leibniz 判别法即可.例20(华东师大2000)设收敛,∑∞=1n na0lim =∞→n n na .证明:.∑∑∞=∞=+=−111)(n n n n na a an 证 记级数的前n 项和为,则∑∞=−−11)(n n na an n S 12113221)()(2)(++−+++=−++−+−=n n n n n na a a a a a n a a a a S "",而0])1(1[lim lim 11=+⋅+=+∞→+∞→n n n n a n n nna ,所以∑∑∞=∞=+=−111)(n n n n na a an .思考题5(合肥工大2000)设数列{}n a 单调,且级数收敛于A .证明:级数收敛,并求其和.∑∞=1n na∑∞=+−11)(n n na an 思考题6(北京工业大学2001)设数列{}n na 收敛,00=a ,级数收敛,证明:级数收敛.∑∞=−−11)(n n na an ∑∞=1n na思考题7(安徽大学2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−+1212)(n n n a a证明:收敛.∑∞=1n na思考题8(华东师大2003)若级数满足:∑∞=1n na(1);0lim =∞→n n a (2)∑收敛,∞=−−1212)(n n n a a证明:收敛.∑∞=1n na例21(吉林大学)证明级数"+−++−++−+611119141715121311发散到正无穷.证 记.,2,1,141241341"=−−−+−=n n n n a n 则nnna n 1)331(3142−=−>,而∑n1发散到正无穷,所以,+∞=∞→n n S 3lim .又因为,故.n n n S S S 31323>>+++∞=∞→n n S lim 注(1)若要证明级数发散,则只需证明+∞=∞→n n S 3lim 即可.(2)在证明{收敛或发散时,有时通过求其子列的敛散性而使问题变得简单. }n S 思考题9(武汉大学1999)级数""+−−+++−+−nn 21)12(1514131211222 是否收敛?为什么?提示:考察. n S 2例22 证明:级数收敛的充分必要条件是:对于任意的正整数序列{和正整数数任意子序列{,都有∑∞=1n na}k p }k n .0)(lim 11=++++++∞→k k k k p n n n k a a a "证 必要性.设级数收敛,则由柯西收敛准则得:∑∞=1n na,0,0>∃>∀N ε当时,,都有N n >+∈∀Z p ε<++++++p n n n a a a "21,从而当时,,于是对于任意的正整数序列N k >N n k >{}k p ,有ε<++++++k k k k p n n n a a a "11,即 .0)(lim 11=++++++∞→k k k k p n n n k a a a "充分性.反证法.若发散,则,使得∑∞=1n na+∈∃>∃>∀>∃Z p N n N ,,0,00ε021ε≥++++++p n n n a a a ",特别地,分别取,,1,1111+∈∃>∃=Z p n N 使得 0211111ε≥++++++p n n n a a a ",{}+∈∃>∃>Z p N n n N 22212,,,2max ,使得 0212222ε≥++++++p n n n a a a ",如此下去,得一正整数子序列{和正整数序列}k n {}k p ,恒有011ε≥++++++k k k k p n n n a a a ",这与已知条件矛盾.二 绝对收敛与条件收敛例23 判别下列级数是条件收敛,还是绝对收敛: (1)()∑∞=+−−1111n np n n(南京师大2002,1=p 为武汉大学1995);(2)∑∞=−1sin)1(n nnx(内蒙古大学); (3))0()23()1(12>−+−∑∞=x n n n xn(复旦大学1997). 解(1)当时,不趋于0,发散; 0≤p n u 当时,原级数绝对收敛; 1>p 当时,10≤<p ()∑∞=−−1111n p n n收敛,nn 11单调有界,由阿贝尔判别发知其收敛,但 ()1111→−−+−p np n n n(∞→n );故原级数条件收敛.(2)当时绝对收敛,当0=x 0≠x 时,不妨设,则0>x 0>∃N ,当时,有N n >20π<<x ,且nxsin关于单减趋于0,由莱布尼兹判别法知其收敛. n 又因为)(1sin)1(∞→→−n nx n xn ,而∑∞=1n n x发散,故原级数条件收敛.(3)当时,数列0>x ⎭⎬⎫⎩⎨⎧−+x n n )23(12单减趋于0,由莱布尼兹判别法知其收敛.又因为 ,所以222423n n n n <−+<xx n x x nn n n 2221)23()1(41≤−+−<,从而,当21>x 时,绝对收敛,当21≤x 时,条件收敛. 思考题10(武汉大学2005)判别级数∑∞=2sin ln ln ln n n nn是否绝对收敛或条件收敛. 思考题11(南京大学2001)设1,0,1,111≥>>++=+n x k x x k x nnn .(1)证明:级数绝对收敛;∑∞=+−01)(n n n x x(2)求级数之和.∑∞=+−11)(n n n x x例24(北京大学1999,中国矿大1999,安徽大学2000,2001)设()x f 在的某邻域内有二阶连续导数,且0=x ()0lim 0=→x x f x .证明:级数∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛.证 由()0lim=→xx f x 得,()00=f ()00=′f ,()x f 在0=x 某邻域内的二阶泰勒展式为()()()()()22212100x x f x x f x f f x f θθ′′=′′+′+=,10<<θ 由连续知,,有()x f ′′0>∃M ()M x f ≤′′,从而有2121nM n f ⋅≤⎟⎠⎞⎜⎝⎛ 故∑∞=⎟⎠⎞⎜⎝⎛11n n f 绝对收敛. 思考题12 证明:(1)(华南理工大学2005)设是偶函数,在)(x f 0=x 的某个领域中有连续的二阶导数, 则级数.2)0(,1)0(=′′=f f ∑∞=−1)11((n n f 绝对收敛.(2)(浙江大学2004)设函数在区间)(x f )1,1(−内具有直到三阶的连续导数,且,0)0(=f .0)(lim 0=′→x x f x 则∑∞=2)1(n n nf 绝对收敛.例25 设()单调,且级数0>n a ",2,1=n ∑∞=11n n a 收敛,讨论级数()∑∞=++−111n nn a a n"是条件收敛还是绝对收敛.解 由于且单调,故0>n a 01→na ↑⇒n a ()()()()⎪⎪⎩⎪⎪⎨⎧<++<++++⋅−=<+++⋅−++,2112121,22211221122212n n n n nn n n a a n n a a a n a na n a a a n "" 由已知条件,∑∞=12n na 收敛,故原级数绝对收敛. 例26 (哈尔滨工大2000)证明:若级数∑收敛,且级数绝对收敛,则级数收敛.∞=1n nb(∑∞=−−11n n na a)∑∞=1n nn ba 证 设n nb b b S +++="21,则1−−=n n n S S b ,于是由收敛知:,∑∞=1n nb0>∃M M S n ≤,.由收敛知:",2,1=n (∑∞=−−11n n n a a )0>∀ε,01>∃N ,1,N m n >∀,有ε<−++−+−−+−111m m n n n n a a a a a a ",又收敛,对上述{}n S 0>ε,,02>∃N 2N n >∀,,有2N m >ε<−m n S S ,取{}1,max 21+=N N N ,于是,当时,N m n >,m m n n n n b a b a b a +++++"11()()()1111−++−−++−+−=m m m n n n n n n S S a S S a S S a "[]()11121−−+++−+−+−++−+−≤n m n n m m m n n n n S S a a a M a a a a a a M "εM 3<.由柯西收敛准则知级数∑收敛.∞=1n nn ba 另证收敛⇒∑∞=1n nb0>∀ε,0>∃N ,N n >∀,,有+∈∀Z p ε<∑++=pn n k kb1.记,,则∑++==in n k ki bS 1p i ,,2,1"=ε<i S ,p i ,,2,1"=.由绝对收敛得其部分和有界,即,有(∑∞=−−11n n na a)0>∃MM a aS mn n nm ≤−=′∑=−11,",2,1=m .由阿贝尔定理得p n p p n p n p n n n n pn n k kk a S a a S a a S a a S ba ++−+−++++++=+−++−+−≤∑113222111"p n p a S M ++≤ε又M a a a a a a a p n p n p n +<−++−+=−+++01010",从而()012a M ba pn n k kk +≤∑++=ε.由柯西收敛准则知其收敛.例27(华东师大2001)证明:若级数绝对收敛,则级数也绝对收敛.∑∞=1n na∑∞=+++121)(n n na a a a"证 记,则由绝对收敛知收敛,所以{有界,即,有n n a a S ++="1∑∞=1n na∑∞=1n na}n S 0>∃M .,2,1,"=≤n M S n 于是有n n n a M a a a a ≤+++)(21",由绝对收敛知级数∑也绝对收敛.∑∞=1n na∞=+++121)(n n na a a a"思考题14(华中科技2004)设,求级数之和.)(),1(,010∞→→≥==∑=n b x n ax x n nk kn ∑−+)(1n n nx x a提示:1−−=n n n x x a .例28 证明:若对任意收敛于0的数列{}n x ,级数∑都收敛,则级数绝对收敛.∞=1n n nx a∑∞=1n n a 分析 问题等价于:若级数∑na发散,则至少存在一个收敛于0的数列{,使得级数发散,于是问题转化为:从}n x ∑n nx a∑+∞=n a 出发,构造出满足条件的数列{.联想例10中(1)的结论立明.}n x证 假设∑∞=1n n a 发散,记其前项和为,则n n S +∞=∞→n n S lim .取210=ε,,,由0>∀N N n >∃+∞=∞→n n S lim 得 210lim<=∞→mn m S S ,从而当充分大()时,有m n m >21<m n S S ,于是0221121ε=>−≥+++++=++m n m m m n n n n S S S S a S a S a ", 由柯西收敛准则知级数 ∑∞=1n n n S a 发散,取1,1≥=n S x nn ,则0lim =∞→n n x ,且发散,这与题目的条件矛盾,故命题成立.∑∞=1n n n x a 思考题15(中国人民大学2000)若正项级数发散,则存在收敛于0的正数序列,使得级数发散.∑∞=1n na{}n b ∑∞=1n n n b a 例29 研究级数∑∞=1sin n n n的收敛性.记其前n 项和为,将其分成两项 n S −++=nn n S S S , 其中分别表示前n 项和中所有正项之和与负项之和.证明:极限−+nnS S ,−+∞→nnn S S lim 存在,并求其值.证 由Dirichlet 判别法知其收敛.又因为∑∑∑∑∞=∞=∞=∞=−=≥111212cos 21121sin sin n n n n n n n n n n ,右端第一个级数发散,第二个级数收敛(利用Dirichlet 判别法),从而∑∞=1sin n n n非绝对收敛. 由于)(sin 2122)(1∞→−∞→−=−−+=∑=−+−+−n k k S S S S S S n k n n n n n n,所以,1)1(lim lim lim −=−=−+=−∞→−−−+∞→−+∞→nnn n n n n n n n n S S S S S S S S . 注 此例给出了条件收敛与绝对收敛的一个本质区别,且这个结论对一切条件收敛级数都成立.三 构造级数例30 试构造一级数,使它满足:∑∞=1n na(1)∑收敛; (2)∞=1n na ⎟⎠⎞⎜⎝⎛≠n o a n 1. 解 ∑∞=121n n ,∑∞=11n n 满足(2),将两者结合起来,构造级数如下: "+++++=∑∞=22221514131211n n a 即当n 是整数平方时,n a n 1=,否则21n a n =,显然⎟⎠⎞⎜⎝⎛≠n o a n 1,同时 +∞<≤+≤=∑∑∑∑=≤==nk n k nk nk k n k kk a S 12212112112故此级数收敛.例31 举出一个发散的交错级数,使其通项趋于零. 分析 交错级数""+−++−+−−n n a a a a a a 2124321 ()0>n a 部分和为,可见只要构造一个级数,使得,同时使和一个收敛,另一个发散即可.为此可构造级数如下:∑∑==−−=n k k nk k n a aS 121122∑∞=1n n a 0→n a ∑∞=−112k k a∑∞=12k ka()""+−−+−+−+−nn 21121514131211222. 例32(南开大学1999)已知级数收敛,问级数和是否必收敛?说明理由.∑∞=1n na∑∞=12n na∑∞=13n na解 未必收敛.如级数∑∞=−1)1(n nn收敛,但发散.令∑∞=12n na"+−−−+−−+−=∑∞=33333331331331331312212212111n n a""+−−−−+项k k k k k k k k k k k11113。

级数敛散性判别方法的归纳-级数的敛散性

级数敛散性判别方法的归纳-级数的敛散性

级数敛散性判别方法的归纳(西北师大)摘要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{n u },形如n u u u +++21①称为无穷级数(常简称级数),用∑∞=1n n u 表示。

无穷级数①的前n 项之和,记为∑==nn n n u s 1=n u u u +++ 21②称它为无穷级数的第n 个部分和,也简称部分和。

若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞=1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。

研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。

2014李复习全书例题第十一章

2014李复习全书例题第十一章

例11.1 判定下列级数的敛散性:(Ⅰ)n ∞; (Ⅱ)=1+1ln n n n ∞∑; (Ⅲ)=12-12n n n ∞∑.例11.2 判定下列级数的敛散性(是条件收敛还是绝对收敛):(Ⅰ)2=1sin3n n n π∞∑; (Ⅱ)()()-1=1-1sin >0n n x x n ∞∑; (Ⅲ)()-111sin 1-1n n n n ∞=+∑. 例11.3 求下列函数项级数的收敛域:(Ⅰ)()-1=1-11-2-11n nn x n x ∞⎛⎫⎪+⎝⎭∑; (Ⅱ)=111+nn x∞∑. 例11.4 求下列幂级数的收敛域: (Ⅰ)()-11-1n n n n ∞=∑; (Ⅱ)()-11-1n n nn xn ∞=∑. 例11.5 求幂级数1nn x n ∞=∑的收敛域及其和函数.例11.6 设()=sin ,-,>0f x ax x a ππ≤≤,将其展开为以2π为周期的傅里叶级数. 例11.7 判定下列级数的敛散性:(Ⅰ)()=1!>0n nn p n p n ∞∑为常数;(Ⅱ)()ln =1ln n n n n n ∞∑. 例11.8 判别下列级数的敛散性:(Ⅰ)1n ∞=∑;(Ⅱ)111-ln n n n n ∞=+⎛⎫ ⎪⎝⎭∑;(Ⅲ)1/011+n n dx x ∞=∑⎰;(Ⅳ)+11n n n e ∞=∑⎰. 例11.9 考察级数1p n n a ∞=∑,其中()()1352-1=2462n n a n ⋅⋅⋅⋅⋅⋅ ,p 为常数.(Ⅰ)证明:()11<<=2,3,4,42+1p n a n n n ⋅⋅⋅; (Ⅱ)证明:级数1pnn a∞=∑当>2p 时收敛,当2p ≤时发散.例11.10 判别级数2112+1p n n ∞=⎛⎫ ⎪⎝⎭∑的收敛性,其中{}n x 是单调递增而且有界的正数数列.例11.11判别下列级数的敛散性(包括绝对收敛或条件收敛); (Ⅰ)()-111+11-1n n nn∞=∑;(Ⅱ)21sin +ln n n n π∞=⎛⎫ ⎪⎝⎭∑.例11.12 判别级数()()()1-1>0+-1npn n p n ∞=⎡⎤⎣⎦∑的敛散性(包括绝对收敛或条件收敛).例11.13 设常数>2a ,则级数()1ln !-1n n n α∞=∑ (A)发散. (B )条件收敛. (C )绝对收敛. (D )敛散性与α有关 例11.14 设>0a 为常数,则级数()-111-1n n n n n n n a n-∞=+∑(A)发散. (B )条件收敛. (C )绝对收敛. (D )敛散性与a 有关. 例11.15 判断如下命题是否正确:设无穷小()n n u v n →∞ ,若级数1nn u∞=∑收敛,则1nn v∞=∑也收敛,证明你的判断.例11.16 确定下列函数项级数的收敛域: (Ⅰ)()1ln 1+xn n n∞=∑; (Ⅱ)()()-121-1+2+3n xn n n ∞=∑例11.17 求下列幂级数的收敛域或收敛区间:(Ⅰ)()-11ln 1+n n n x n∞=∑;(Ⅱ)22111+n nn x n ∞=⎛⎫ ⎪⎝⎭∑.(Ⅲ)()+1=1-1n nn na x ∞∑,其中=0nn n a x∞∑的收敛半径=3R ;(只求收敛区间).(Ⅳ)()0-3nn n a x ∞=∑,其中=0x 时收敛,=6x 时发散.例11.18 求下列幂级数的和函数并指出收敛域. (Ⅰ)()2-1+1nn n x n ∞=∑;(Ⅱ)()=1+1nn n n x ∞∑.例11.19 将下列函数展开成麦克劳林级数并指出展开式成立的区间. (Ⅰ)()21++n x x ∞=∑;(Ⅱ)1+arctan1-xx例11.20 将下列函数在指定点处展开为泰勒级数: (Ⅰ)21+3+2x x ,在=1x 处; (Ⅱ)()2ln 2+-3x x ,在=3x 处. 例11.21 将下列函数()f x 展开成的幂级数并求()()0n f:(Ⅰ)()()=d f x g x dx ,其中()-10,,=0;1,x e x g x x x ⎧≠⎪⎨=⎪⎩(Ⅱ)()0sin =x t f x dt t ⎰.例11.22 设有两条抛物线21=+y nx n 和()21=+1++1y n x n ,记它们交点的横坐标的绝对值为n a .(Ⅰ)求这两条抛物线所围成的平面图形的面积n S ; (Ⅱ)求级数=1nn nS a ∞∑的和.例11.23 求级数=0+1!n n n ∞∑的和. 例11.24 求下列级数的和:(Ⅰ)()2=0-1-12nn n n n ∞+∑; (Ⅱ)()2=21-12nn n ∞∑. 例11.25 (Ⅰ)设()f x 是周期为2的周期函数,它在区间(]-1,1上定义为()32,-10,=,01,x f x x x <≤⎧⎨<≤⎩, 则()f x 的傅里叶级数在=1x 处收敛于 ;(Ⅱ)设函数()2=,0<1f x x x ≤,而()()=1=sin ,-n n S x b n x x π∞∞<<+∞∑,其中()()1=2sin ,=1,2,3,,n b f x n x dx n π⋅⋅⋅⎰则1-=2S ⎛⎫⎪⎝⎭.例11.26 设周期为2π的函数(),0=+2,-0x x f x x x πππ<<⎧⎨<<⎩的傅里叶级数为()0=1+cos +sin 2n n n a a nx b nx ∞∑, (Ⅰ)求系数0a ,并证明()=0,1n a n ≥;(Ⅱ)求傅里叶级数的和函数()()-g x x ππ≤≤,及()2g π的值. 例11.27 设函数()[]2=,0,fx xx π∈,将()f x 展开为以2π为周期的傅里叶级数,并证明22=11=6n nπ∞∑. 例11.28 设数列{}n na 收敛,级数()-1=1-nn n n a a ∞∑收敛,证明:=1nn a∞∑收敛.例11.29 设()>0,>0,=1,2,n n a b n ⋅⋅⋅,且满足+1+1,=1,2,,n n n na b n a b ≤⋅⋅⋅试证: (Ⅰ)若级数=1nn b∞∑收敛,则=1nn a∞∑发散; (Ⅱ)若级数=1nn a∞∑发散,则=1nn b∞∑发散.例11.30 设函数()f x 在1x ≤上有定义,在=0x 的某个领域内具有二阶连续导数,且()0li m=0x f x x→,试证:级数=11n f n ∞⎛⎫⎪⎝⎭∑绝对收敛. 例11.31 求级数()=111352-1n n ∞⋅⋅⋅∑ 的和.。

7.2 正项级数及其审法敛

7.2 正项级数及其审法敛

收敛。
2)
n.
n1 2 n5
因为
0
n
2 n5
n n5
1 n2
n 1,2,,
1
而级数
n2
n 1
是收敛的 p 级数 p 2 1,
由比较审敛法知级数
n
收敛。
n1 2 n5
例2 判断下列级数的敛散性:
1) sin 1;
n 1
n
2)
2n 1 .
n1 n5 2
解: 1) sin 1;
所以由比较审敛法知正项级数
n n
n1 2n 1
也收敛。
课堂练习:
判断级数 n! 的敛散性,并说明理由。 nn n 1
小结: 1.正项级数的比较审敛法; 2.正项级数的比值审敛法;
作业: P150. 1(2);2(2);3(2).
因为单调有界数列必有极限所以收敛二正项级数的比较审敛法定理比较审敛法一是两个正项级数且若级数收敛则级数若级数发散则级数上述定理可以简单地这样记忆
§7.2 正项级数及其审敛法
对于一个无穷级数,通常需要考虑解决两个问题: 1. 如何判别级数是否收敛? 2. 如果收敛,怎样求和?
第二个问题通常比第一个问题要难得多,本节将介绍 如何判别正项级数是否收敛的方法,即审敛法。
大收小收,小发大发
定义. 形如
1 1 1 1 1
np
n 1
2p 3p
np
1
的级数称为 p 级数. p=1 时 n1 n 称为调和级数。
p 级数的敛散性有如下定理:
定理 当
p
1时,p
级数
n 1
1 np
收敛;

p 1

(完整版)级数敛散性判别方法的归纳,推荐文档

(完整版)级数敛散性判别方法的归纳,推荐文档

级数敛散性判别方法的归纳(西北师大)摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。

关键词:级数 ;收敛;判别 ;发散一. 级数收敛的概念和基本性质给定一个数列{},形如n u ①n u u u +++21称为无穷级数(常简称级数),用表示。

无穷级数①的前n 项之和,记为∑∞=1n n u = ②∑==nn n n u s 1n u u u +++ 21称它为无穷级数的第n 个部分和,也简称部分和。

若无穷级数②的部分和数列{}收敛于s.则称无穷级数收敛,若级数的部分和发散则称级数n s ∑∞=1n n u 发散。

∑n v 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理:定理1若级数和都收敛,则对任意的常数c 和d ,级数∑n u ∑n v 亦收敛,且=c +d )(n n dv cu ∑+)(n n du cu ∑+∑n u ∑nv 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。

定理4 级数①收敛的充要条件是:任给>0,总存在自然数N ,使得当εm >N 和任意的自然数,都有<εp p m m m u u u ++++++ 21以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。

由于级数的复杂性,以下只研究正项级数的收敛判别。

二 正项级数的收敛判别各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{}有界,即存在某正整数M ,对一切正整数 n 有<M 。

考研级数典型例题完美版讲析

考研级数典型例题完美版讲析

常数项级数内容要点一,概念与性质(一)概念 由数列 ,,,,21n u u u 构成的式子=∑∞=1n nu++++n u u u 21称为无穷级数,简称为级数.n u 称为级数的一般项,∑==ni in us 1称为级数的部分和.如果s s n n =∞→lim ,则称级数∑∞=1n nu收敛,s 称为该级数的和.此时记=∑∞=1n nus .否则称级数发散.(二)性质 1, 若∑∞=1n nu收敛,则.11∑∑∞=∞==n n n nu k ku2, 若∑∞=1n n u ,∑∞=1n nv收敛,则().111∑∑∑∞=∞=∞=±=±n n n n n n nv u v u3, 级数增减或改变有限项,不改变其敛散性.4, 若级数收敛,则任意加括号后所成的级数仍收敛. 5(收敛的必要条件), 若∑∞=1n nu收敛,则.0lim =∞→n n u注意:若.0lim ≠∞→n n u 则∑∞=1n nu必发散.而若∑∞=1n nu发散,则不一定.0lim ≠∞→n n u(三) 两个常用级数 1, 等比级数⎪⎩⎪⎨⎧≥<-=∑∞=1,1,10q q qaaq n n2, -p 级数⎩⎨⎧≤>=∑∞=1,1,11p p n n p 二,正项级数敛散性判别法 (一) 比较判别法设∑∑ℜ=∞=11,n nn n vu 均为正项级数,且),2,1( =≤n v u n n ,则∑∞=1n nv收敛⇒∑∞=1n nu收敛;∑∞=1n nu发散⇒∑∞=1n nv发散(二) 极限判别法如果)0(lim +∞≤<=∞→l l nu n n ,则∑∞=1n nu发散;如果对,1>p )0(lim +∞<≤=∞→l l u n n pn ,则∑∞=1n nu则收敛.(三) 比值判别法 设∑∞=1n nu为正项级数,若⎪⎩⎪⎨⎧⇒>⇒=⇒<==+∞→fb cu u n n n 111lim1ρ 二,交错级数收敛性判别法 莱布尼兹判别法:设())0(111>-∑∞=-n n n n u u 为交错级数,如果满足:1, ),2,1(1 =≥+n u u n n 2, 0lim =∞→n n u则此交错级数收敛.三,任意项级数与绝对收敛 (一) 绝对收敛 如果∑∞=1n nu收敛,则称∑∞=1n nu绝对收敛.(二) 条件收敛 如果∑∞=1n nu收敛,但∑∞=1n nu发散,则称∑∞=1n nu条件收敛.(三) 定理 若级数绝对收敛,则该级数必收敛.函数项级数一、 主要内容 1、基本概念函数列(函数项级数)的点收敛、一致收敛、内闭一致收敛、绝对收敛、和函数幂级数的收敛半径、收敛区间、收敛域 2、一致收敛性 A 、 函数列{()}n f x一致收敛性的判断:(1)定义:用于处理已知极限函数的简单函数列的一致收敛性(2)Cauchy 收敛准则:用于抽象、半抽象的函数列的一致收敛性的判断 (3)确界(最大值方法):||()()||0n f x f x -→(4)估计方法:|()()|0n n f x f x a -≤→(5)Dini-定理:条件1)闭区间[,]a b ;2)连续性;3)关于n 的单调性注、除Cauchy 收敛准则外,都需要知道极限函数,因此,在判断一致收敛性时,一般应先利用点收敛性计算出极限函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、正项级数及其审敛法
定义 若级数
u
n 1

n
满足 un 0,(n 1, 2, 3,)
则称该级数为正项级数.
定理1 正项级数
u
n 1
n
收敛的充分必要条件是:
部分和数列 { Sn } 有上界.
1 例如 讨论级数 2 的敛散性. n 1 n

定理2(比较审敛法) 设 un和 vn均为正项级数,
则 (1) 当 0 l 时 , 二级数有相同的敛散性 ; (2) 当 l 0 时,若


比较审敛法的极限形式

v n 收敛 , 则 un 收敛 ; n 1
n 1
(3) 当 l 时 , 若
v n 发散 ,则 un 发散 .
n 1 n 1


备注:一般情况下,vn 取P-级数或几何级数 。
3. ( arctan n)cos n. n 1 2
思考题
( 1) n 1. n1 n 2 x (1 x ) 0 ( x 2) ) 解 ( 2 x 1 2 x ( x 1)
n
x 故函数 单调递减, un un1 , x 1 n 又 lim un lim 0. n n n 1


1 4. p n 1 n

( p 0)
P -级数
y
1 p x
0
1
2
3
4
n-1
n
n+1
x
5.

n 2

1
3
n2 1
练一练
1.
2. 3.

n 1

1 n 3 100
1 n4

n 1

n 1
1 2 (3n 1)
定理3
un l, 设 u n 与 v n 都是正项级数 , 如果 lim n v n n 1 n 1
故原级数收敛.
三、绝对收敛与条件收敛
定义1
对于级数 un ,若 un 收敛, 则称 un 为
n 1


n 1
n 1
绝对收敛;
若 un 发散,而 un 收敛, 则称 un 为条件收敛.
n 1 n 1 n 1



1 1 (( 1) 1) 2 例如 讨论级数 n n n 1 n 1
n
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例3 判断下列级数的敛散性:
1 1. n 1 n!

n! 2. n n 1 10

1 3. n 1 (2n 1) 2n
un1 ( 2n 1) 2n lim 1, 解 lim n u n ( 2n 1) ( 2n 2) n
(1) 0 (2)
1 时级数收敛;
1 时级数发散; (3) 1 时级数可能收敛 , 也可
能发散.
比值审敛法的优点: 不必找参考级数. 两点注意: (1) 当 1时比值审敛法失效;
1 例 级数 发散, n 1 n

1 级数 2 收敛, n 1 n

( 1)
定理5(莱布尼兹判别法)
如果交错级数满足条件: (ⅰ) un un 1 ( n 1,2,3,) ; (ⅱ) lim un 0,
n
则级数收敛,且其和 s u1 .
例4 判断下列级数的敛散性:
( 1)n 1. n n 2

2.
(1)
n 1

n 1
n 3 n 1
(2)条件是充分的,而非必要.
2 ( 1) 3 例 un n vn , n 2 2
n
2 ( 1)n 级数 un 收敛, n 2 n 1 n 1


un1 2 ( 1)n1 但 an , n un 2( 2 ( 1) )
lim a2 n
(比值审敛法失效, 改用比较审敛法)

1 1 又 2 , 而级数 (2n 1) 2n n 1 级数 收敛. n 1 2n ( 2n 1)
1 收敛, 2 n 1 n

例3 判断下列级数的敛散性:
n 4. 2 n 1 ( n! )


n
( n 1) n 1 un 1 [(n 1)!]2 lim lim n n u n n n ( n! ) 2 1 1 n lim (1 ) 0 n n 1 n
使用比较审敛法常用的三个结论:
(1) 等比级数 aq n ,当 | q | 1时收敛; 当 | q | 1时发散.
n 0
1 ( 2) 调和级数 发散. n 0 n 1 (3) 2 ( p 0) 收敛 n 1 n

例1 判断下列级数的敛散性:
1 1. n 1 3n 2 n n 2. ( ) n 1 2n 3 1 3. n 1 (2n 1)(2n 3)
例2 判断下列级数的敛散性:
1 1. sin n n 1

1 2. n n 1 3 n

n 3. n1 ( n 1)(2n 5)

定理4
比值审敛法(达朗贝尔D’Alembert判别法)

un 1 设 un 是正项级数,如果 lim n u n 1 n ( 为常数或 ) ,则有
n 1


且 un v n ( n 1, 2,) ,若 vn 收敛,则 un 收敛;
反之,若 un 发散,则 vn 发散.
n 1 n 1

n 1

n 1
n 1
备注:1)若判断级数收敛,则需找比该级数大的级 数收敛,可通过适当放大方法解决。 2)若判断级数发散,则需找比该级数小的 级数发散,可通过适当缩小方法解决。
nn 级数 收敛. 2 n 1 ( n! )

练一练
ห้องสมุดไป่ตู้判断下列级数的敛散性:
n! 1. 2 ; n 1 n

二、交错级数及其审敛法
定义

正、负项相间的级数,即形如

n 1 n ( 1) u 或 ( 1) un n n 1 n 1
(其中un 0)
则称为交错级数.
相关文档
最新文档