重庆市涪陵实验中学2020届高三数学上学期第一次月考试题理
重庆市2024-2025学年高三上学期第一次质量检测数学试题含答案
重庆市高2025届高三第一次质量检测数学试题(答案在最后)2024.9一、单项选择题:本大题共8小题,每小题5分,共计40分.1.不等式()()2110x x +-≥的解集为()A.1{|2x x ≤-或1}x ≥ B.1{|2x x ≤-或1}x >C.1|12x x ⎧⎫-≤≤⎨⎬⎩⎭D.1|12x x ⎧⎫-<<⎨⎬⎩⎭【答案】A 【解析】【分析】结合一元二次不等式的解法可求不等式的解集.【详解】()()2110x x +-≥的解为12x ≤-或1x ≥,故解集为:1{|2x x ≤-或1}x ≥,故选:A.2.集合{}1,1A a =+,{}0,,5B a a =-+,若A B A ⋂=,则a 为()A.1B.1-C.4- D.1-或4-【答案】B 【解析】【分析】根据A B A = 可得A B ⊆,故求a 的值.【详解】因为A B A = ,故A B ⊆,故10a +=或1a a +=-,若1a =-,此时{}{}0,1,0,1,4A B ==,满足A B ⊆,若1a a +=-即12a =-,此时1191,,0,,222A B ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭,不满足A B ⊆,故选:B.3.命题“()0,,e 20xx ax ∃∈+∞-<”的否定为()A.(),0,e 20xx ax ∃∈-∞-≥ B.()0,,e 20xx ax ∀∈+∞-≥C.()0,,e 20x x ax ∃∈+∞-> D.()0,,e 20xx ax ∀∈+∞-<【答案】B【解析】【分析】由存在量词命题的否定形式可直接得出结论.【详解】易知命题“()0,,e 20xx ax ∃∈+∞-<”的否定为()0,,e 20xx ax ∀∈+∞-≥.故选:B4.随机变量()2,4N ξ ,13,2B η⎛⎫⎪⎝⎭,则()A.()()D D ξη=B.()()E E ξη=C.()122P ξ≤=D.()112P η==【答案】C 【解析】【分析】根据二项分布和正态分布的期望和方差公式可判断AB 的正误,根据正态分布的对称性可判断C 的正误,根据二项分布的概率的公式可判断D 的正误.【详解】对于AB ,()()132,322E E ξη==⨯=,故()()E E ξη≠,()()1134,3224D D ξη==⨯⨯=,故()()D D ξη≠,故AB 错误;对于C ,根据正态分布的对称性可得()122P ξ≤=,故C 正确;对于D ,()131131C 248P η==⨯⨯=,故D 错误;故选:C.5.我们可以把365(11%)+看作每天的“进步”率都是1%,一年后是3651.01;而把365(11%)-看作每天的“落后”率都是1%,一年后是3650.99,则一年后“进步”的是“落后”的约()(参考数据:lg0.990.004,lg1.010.004,lg832 2.92≈-≈≈)A.99倍B.101倍C.292倍D.832倍【答案】D 【解析】【分析】直接计算36536521.010.99lg 2.9≈,根据所给数值求解.【详解】()365365365365l 91.01 1.010.99 1.010.90.99g lg lg 365lg lg =-=-().101365lg lg 29929=-≈,故936536252.108321.010.99=≈.故选:D6.如图,无人机光影秀中,有8架无人机排列成如图所示,每架无人机均可以发出4种不同颜色的光,1至5号的无人机颜色必须相同,6、7号无人机颜色必须相同,8号无人机与其他无人机颜色均不相同,则这8架无人机同时发光时,一共可以有()种灯光组合.A.48B.12C.18D.36【答案】D 【解析】【分析】对6、7号无人机颜色与1至5号的无人机颜色是否相同进行分类讨论,再由分类加法和分步乘法计数原理计算可得结果.【详解】根据题意可知,1至5号的无人机颜色有4种选择;当6、7号无人机颜色与1至5号的无人机颜色相同时,8号无人机颜色有3种选择;当6、7号无人机颜色与1至5号的无人机颜色不同时,6、7号无人机颜色有3种选择,8号无人机颜色有2种选择;再由分类加法和分步乘法计数原理计算可得共有()4133236⨯⨯+⨯=种.故选:D7.定义在R 上的偶函数()f x 满足()()11f x f x +=-,且当[]0,1x ∈时,()1e xf x =-,若关于x 的方程()()()10f x m x m =+<恰有5个实数解,则实数m 的取值范围为()A.()0,e 1- B.1e 1e ,56--⎛⎫⎪⎝⎭C.e 1e 1,86--⎛⎫⎪⎝⎭ D.1e 1e ,46--⎛⎫⎪⎝⎭【答案】D 【解析】【分析】根据题意,推得函数()f x 图象关于直线1x =对称,且函数的周期为2,再由题设函数解析式作出函数的图象,再将方程的解的个数转化为两函数的图象交点问题即可解得.【详解】由1+=1−可知函数()f x 的图象关于直线1x =对称,且o2+p =o −p ,因()f x 是偶函数,则()()f x f x -=,故有(2)()f x f x +=,即函数()f x 的周期为2.又当[]0,1x ∈时,()1e xf x =-,故可作出函数()f x 的图象如图.由关于x 的方程()()()10f x m x m =+<恰有5个实数解,可理解为()y f x =与(1)y m x =+恰有5个交点.而这些直线恒过定点(1,0)P -,考虑直线与()f x 相交的两个临界位置(3,1e),(5,1e)A B --,由图知,需使PA PB k m k <<,即1e 1e46m --<<.故选:D .【点睛】思路点睛:本题主要考查函数对称性和周期性的应用以及函数与方程的转化思想,属于难题.解题思路在于通过对抽象等式和奇偶性的理解,推理得到函数对称性和周期性,从而作出函数的简图,接着利用方程的解的个数与两函数的交点个数的对应关系解题.8.已知定义在R 上的函数()()2e x axf x x a -+=∈R ,设()f x 的极大值和极小值分别为,m n ,则mn 的取值范围是()A.e ,2⎛⎤-∞- ⎥⎝⎦ B.1,2e ⎛⎤-∞-⎥⎝⎦C.e ,02⎡⎫-⎪⎢⎣⎭D.1,02e ⎡⎫-⎪⎢⎣⎭【答案】B 【解析】【分析】求出函数的导数,利用导数求出,m n ,结合韦达定理用a 表示mn ,再求出指数函数的值域得解.【详解】()()()22222e e 21e -+-+-+''=+-++=-+xaxx ax x ax f x x ax x x ax ,令()221g x x ax =-++,显然函数()g x 的图象开口向下,且()01g =,则函数()g x 有两个异号零点12,x x ,不妨设120x x <<,有12121,22+==-a x x x x ,而2e 0xax-+>恒成立,则当1x x <或2x x >时,()0f x '<,当12x x x <<时,()0f x '>,因此函数()f x 在()1,x -∞,()2,x +∞上单调递减,在()12,x x 上单调递增,又当0x <时,()0f x <恒成立,当0x >时,()0f x >恒成立,且()00f =,于是()f x 的最大值()22222e -+==x ax m f x x ,最小值()21111e -+==x ax n f x x ,于是()()()222221212121121241212e12e e--+++-++++===-a x x ax axx x a x x x x mn x x x x ,由a ∈R ,得[)211,4a-∈-+∞,2141e ,e -⎡⎫∈+∞⎪⎢⎣⎭a ,则2141e,212e -⎛⎤∈-∞- ⎥⎝-⎦a ,所以mn 的取值范围是1,2e ⎛⎤-∞- ⎥⎝⎦.故选:B.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多项选择题:本大题共3小题,每小题6分,共计18分.9.若2024220240122024(23)x a a x a x a x -=++++ ,则下列选项正确的有()A.202402a =B.01220241a a a a +++= C.2024202432024122320241222222a a a a ⎛⎫++++=- ⎪⎝⎭D.1232023202423202320246072a a a a a +++++= 【答案】ACD 【解析】【分析】利用赋值判断AC ,去绝对值后,赋值判断B ,两边求导后,再赋值,判断D.【详解】A.令0x =,得202402a =,故A 正确;B.01220240122024......a a a a a a a a ++++=-+-+,令令展开式中的1x =-,得20240122024 (5)a a a a -+-+=,故B 错误;C.令展开式中的12x =,得2024320241202320241...22222a a a aa ⎛⎫+++++= ⎪⎝⎭,所以2024202432024122320241...222222a a a a⎛⎫++++=- ⎪⎝⎭,故C 正确;D.展开式的两边求导,得()20232202220231232023202432024232320232024x a a x a x a x a x -⨯-=++++,令1x =,得1232023202423...202320246072a a a a a +++++=,故D 正确.故选:ACD10.下列选项正确的有()A.当()02x ∈,时,函数222y x x -=+的最小值为1B.()1x ∈-∞,,函数31y x x =+-的最大值为-C.函数2y =的最小值为2D.当0a >,0b >时,若2a b ab +=,则2+a b 的最小值为32+【答案】AD 【解析】【分析】利用二次函数的定义域,求函数的最小值,判断A ,根据基本不等式判断BC ,根据“1”的妙用与变形,结合基本不等式,即可判断D.【详解】A.()222211y x x x =-+=-+,()02x ∈,,当1x =时,函数去掉最小值1,故A 正确;B.33111111y x x x x =+=-++≤-=---,当311x x -=-,1x <,得1x =31y x x =+-的最大值为1-,故B 错误;C .22y ==2t =≥,则1y t t =+在区间[)2,+∞单调递增,当2t =时,1y t t =+取得最小值52,所以函数2y =的最小值为52,故C 错误;D.若2a b ab +=,则112a b+=,则()11131231322222222b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥⨯+ ⎪ ⎪⎝⎭⎝⎭当2b aa b=时,即12a +=,24b =时,等号成立,所以2+a b 的最小值为32+,故D 正确.故选:AD11.已知函数()f x 及其导函数()f x '的定义域均为,且满足()()60f x f x +-=,2222233f x f x ''⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,()31f '=-,()()231g x f x =--,则下列说法中正确的有()A.函数()f x '的周期为4B.函数()g x '的图象关于点()1,1-对称C.()y f x x =-的图象关于直线=2对称D.数列(){}g n '的前2024项之和为4048-【答案】ACD 【解析】【分析】根据题设条件可得()()60f x f x ''--=、()()42f x f x ''+-=,故可求函数′的周期为4,故可判断A 的正误,利用反证法可判断B 的正误,根据()()42f x f x ''+-=可得()()424f x f x x --=-,故可判断C 的正误,计算出()()()()12348g g g g ''''+++=-后可判断D 的正误.【详解】因为()()60f x f x +-=,所以()()60f x f x ''--=,而2222233f x f x ''⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,故()()42f x f x ''+-=,故()()462f x f x ''-+-=即()()22f x f x '+'+=,故()()242f x f x ''+++=,故()()4f x f x +'=',故函数′的周期为4,故A 正确;又()()23g x f x ''=--,而()()122g f =-'',而()()222f f ''+=即()21f '=,故()12g '=-,若()g x '关于()1,1-对称,则()11g '=-,矛盾,故B 错误.因为()()42f x f x ''+-=,故()()42f x f x x c --=+,故()()224f f c ''-=+即4c =-,故()()4(4)f x x f x x -=---故()y f x x =-的图象关于直线=2对称,故C 正确.因为′的周期为4,故()g x '的周期也是4,而()()22f x f x '+'+=,故()()022f f ''+=,故()()()()1322204g g f f '''-'+=-=-,因为()31f '=-,故()()0232g f ''=-=,故()42g '=,又()()132f f ''+=,故()13f '=,故()()2216g f ''=-=-,故()()()()12348g g g g ''''+++=-,故数列(){}g n '的前2024项和为()2024840484⨯-=-,故D 正确;故选:ACD.【点睛】思路点睛:根据抽象函数的单调性我们可得到该函数的周期性及导函数的周期性、对称性等,性质讨论的方法是变换的思想.三、填空题:本大题共3小题,每小题5分,共15分.12.已知π1sin 33α⎛⎫+= ⎪⎝⎭,则2πsin 3α⎛⎫-= ⎪⎝⎭_____【答案】13【解析】【分析】根据已知结合诱导公式计算求解即可.【详解】2πππ1sin sin παsin 3333αα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:13.13.若221919C C mm -=,则33345C C C m +++ 的值为______【答案】69【解析】【分析】根据组合数的性质及参数范围得出参数m ,再计算组合数即可.【详解】因为221919C C mm -=,所以22m m =-或2219m m +-=,解得2m =或7m =,因为33345C C C m +++ ,所以3m ≥,可得7m =,所以3333333454567C C C =C C C C 410203569m ++++++=+++= .故答案为:69.14.函数2e 12()e 21x x xh x -=++,不等式()22(2)2h ax h ax -+≤对R x ∀∈恒成立,则实数a 的取值范围是_____【答案】[]2,0-【解析】【分析】由解析式得出()()2h x h x +-=,令()()1f x h x =-,得()f x 为奇函数,再利用导数得出()f x 的单调性,根据奇偶性与单调性求解不等式即可.【详解】因为2e 122()e e e 2121x x xx x xh x --=+=-+++,所以22222()()e e e e 221212121x x x x xx x x x h x h x ---⋅+-=+-++-==++++,令()()1f x h x =-,则()()0f x f x +-=,可得()f x 为奇函数,又因为()()222ln 41ln 4()e e e e e 121e 21222x x x x x xx x x x xf x --'⎛⎫''=+-=+-=+ ⎪+⎝⎭+++,1e 2e x x +≥,当且仅当1e e xx =,即0x =时等号成立;ln 4ln 4ln 2142222xx ≤=++,当且仅当122xx =,即0x =时等号成立;所以()0f x '>,可得()f x 在R 上为增函数,因为()2222(2)2(2)(2)0(2)(2)h ax h ax f ax f ax f ax f ax -+≤⇔-+≤⇔-≤-,所以2220ax ax +-≤在R 上恒成立,当0a =时,显然成立;当0a ≠,需满足2Δ480a a a <⎧⎨=+≤⎩,解得20a -≤<,综上,[]2,0a ∈-,故答案为:[]2,0-.【点睛】关键点点睛:由函数解析式得出()()2h x h x +-=,构造()()1f x h x =-是解题关键.四、解答题:本大题共5小题,共77分.15.已知函数()eln f x x x=+(1)求=op 在()()1,1f 处的切线方程;(2)求=在1,3e⎛⎫ ⎪⎝⎭的最小值.【答案】(1)()1e 2e 1y x =-+-(2)2【解析】【分析】(1)根据导数的几何意义求切线方程;(2)根据导数与函数单调性的关系,判断函数的单调性,再求函数的最小值.【小问1详解】()eln f x x x=+,()1e f ∴=,且()21ef x x x'=-,()11e f '∴=-,切线方程为:()()e 1e 1y x -=--,即()1e 2e 1y x =-+-;【小问2详解】()221e e x f x x x x-'=-=,当1,e e x ⎛⎫∈⎪⎝⎭,()0f x '<,()y f x =在1,e e ⎛⎫⎪⎝⎭上单调递减,当()e,3x ∈,()0f x '>,()y f x =在()e,3上单调递增,()f x \在区间1,3e⎛⎫ ⎪⎝⎭的最小值为()2f =e .16.我国承诺2030年前“碳达峰”,2060年“碳中和”,“碳达峰”是指二氧化碳的排放不再增长,达到峰值之后再慢慢减下去;“碳中和”是指针对排放的二氧化碳要采取植树、节能减排等各种方式全部抵消掉.做好垃圾分类和回收工作可以有效地减少处理废物造成的二氧化碳的排放,助力“碳中和”.重庆十一中某班利用班会课时间组织了垃圾分类知识竞赛活动,竞赛分为初赛、复赛和决赛,只有通过初赛和复赛,才能进入决赛.首先出战的是第一组、第二组、第三组,已知第一组、第二组通过初赛和复赛获胜的概率均为23,第三组通过初赛和复赛的概率分别为p 和43p -,其中304p <≤,三组是否通过初赛和复赛互不影响.(1)求p 取何值时,第三组进入决赛的概率最大;(2)在(1)的条件下,求进入决赛的队伍数X 的分布列和数学期望.【答案】(1)49(2)分布列见解析,43【解析】【分析】(1)根据二次函数的性质可求当23p =时,第三组进入决赛概率最大为49.(2)根据二项分布可求X 的分布列和数学期望.【小问1详解】由题知:第三组通过初赛和复赛的概率2204424()3339p p p p p p ⎛⎫=-=-+=--+ ⎪⎝⎭,又因为3044013p p ⎧<≤⎪⎪⎨⎪≤-≤⎪⎩,所以1334p ≤≤所以,当23p =时,第三组进入决赛概率最大为49.【小问2详解】由(1)知:第一组、第二组、第三组进入决赛的概率均为224339⨯=.因为进入决赛的队伍数43,9X B ⎛⎫~ ⎪⎝⎭,所以()03341250C (19729P X ==⨯-=;()123443001001C (199729243P X ==⨯⨯-==;()22344240802C ()199729243P X ⎛⎫==⨯⨯-== ⎪⎝⎭;()3334643C (9729P X ==⨯=.所以随机变量X 的分布列为:X123P1257291002438024364729()1251008064401237292432437293E X =⨯+⨯+⨯+⨯=.17.四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是正方形,2PA AB ==,点E 是棱PC 上一点.(1)求证:平面PAC ⊥平面BDE ;(2)当E 为PC 中点时,求平面ABE 与平面DBE 所成锐二面角的大小.【答案】(1)证明见解析(2)π3【解析】【分析】(1)根据线面垂直性质以及正方形性质,利用面面垂直判定定理即可得出证明;(2)建立空间直角坐标系,分别求得两平面法向量即可求得结果.【小问1详解】底面ABCD 是正方形,BD AC ∴⊥,PA ⊥ 平面ABCD ,BD ⊂平面ABCD ,PA BD ∴⊥,又BD AC ⊥,PA AC A = ,PA ,AC ⊂平面PAC ,BD ∴⊥平面PAC ,又BD ⊂平面BDE ,∴平面PAC ⊥平面BDE .【小问2详解】PA ⊥ 平面ABCD ,A ,AD ⊂平面ABCD ,所以PA AB ⊥,PA AD ⊥,以A 为坐标原点,A ,A ,AP 所在直线分别为x ,y ,z建立空间直角坐标系,如下图所示:则0,0,0,()2,0,0B ,()0,2,0D ,()2,2,0C ,()0,0,2P ,()1,1,1E ,()()()2,0,0,1,1,1,2,2,0AB BE BD ==-=-,设平面ABE 的法向量为()111,,n x y z =,则1111200n AB x n BE x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩ ,解得10x =,令11y =,得11z =-,故平面ABE 的一个法向量为 =0,1,−1,设平面DBE 的法向量为()222,,m x y z =,则222222200m BD x y m BE x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩ ,解得20z =,令21x =,得21y =,故平面DBE 的一个法向量为()1,1,0m =,设平面ABE 与平面DBE 所成锐二面角为θ,则1cos 2m nm nθ⋅=== ,所以平面ABE 与平面DBE 所成锐二面角的大小为π3.18.椭圆2222:1(0)x y C a b a b +=>>过点23,22⎫-⎪⎝⎭且()0b c c =>.(1)求椭圆C 的标准方程;(2)设C 的左、右焦点分别为1F ,2F ,过点2F 作直线l 与椭圆C 交于,A B 两点,1112AF BF ⋅= ,求1ABF 的面积.【答案】(1)2212x y +=(2)3.【解析】【分析】(1)代入点23,22⎛- ⎝⎭坐标并于b c =联立计算可得222,1a b ==,求出椭圆C 的标准方程;(2)联立直线和椭圆方程并利用向量数量积的坐标表示以及韦达定理即可得出2m =±,再由弦长公式计算可得结果.【小问1详解】将,22⎛- ⎝⎭代入椭圆方程可得2213241a b +=,即2213124a b +=,又因为b c =,所以222a b =,代入上式可得222,1a b ==,故椭圆C 的标准方程为2212x y +=;【小问2详解】由(1)可得()()12121,0,1,0,2F F F F -=,设直线l 的方程为()()11221,,,,x my A x y B x y =+,如下图所示:联立22112x my x y =+⎧⎪⎨+=⎪⎩,得()222210m y my ++-=,所以12122221,22m y y y y m m +=-=-++,则()()1111221,,1,AF x y BF x y =---=---,所以()()1111221212121,1,1AF BF x y x y x x x x y y ⋅=------=++++()()()2221212122222221211142222m m m m y y my my y y m m m m =+++++++=----++++227122m m -==+,解得24m =,即2m =±,所以121221,36y y y y +=±=-,则1ABF 的面积()212121212110423S F F y y y y y y =-=+-=.19.给定两个正整数m ,n ,函数()f x 在=0处的[],m n 阶帕德近似定义为:()0111mm n n a a x a x R x b x b x+++=+++ ,且满足:()()00f R =,()()00f R '=',()()()()()()0000m n m n f R f R ++'='''= .已知()()ln 1f x x =+在=0处的[]1,1阶帕德近似()1a bx R x cx+=+注:()()'''[]f x f x =',()()'''[]f x f x ''=',()()()4'[]f x f x '''=,()()()()54'[]f x f x =,…(1)求a ,b ,c 的值;(2)比较()11x c f x ⎛⎫+⎪⎝⎭与的大小,并说明理由;(3)求不等式1211(1)e (1)x x x x++<<+的解集,其中e 2.71828=【答案】(1)102a b a c ===,,;(2)()11x c f x ⎛⎫+> ⎪⎝⎭,理由见解析;(3)()0,∞+.【解析】【分析】(1)根据新定义先求导函数,再代入求参即可;(2)先化简换元令11t x+=,再求导函数根据正负得出函数单调性即可证明;(3)结合(2)结论应用单调性解不等式【小问1详解】因为()()()ln 11a bxf x x R x cx+=+=+,,()()()()()''''2232111(1)(1)(1)b ac c b ac f x R x f x R x x cx x cx ---==='-++'=++,,,()()00f R =,则()()000a f R '==',,则1b ac =-,则1b =,()()()''''100122f R b ac c c =-=--=,,,所以1012a b c ===,,.【小问2详解】()111ln 12x c f x x x ⎛⎫⎛⎫⎛⎫+=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令11t x+=,则()()()()11ln 0,11,21t x c f t t x t ∞+⎛⎫+=∈⋃+⎪-⎝⎭,,令()()()()21ln 0,11,1t h t t t t ∞-=-∈⋃++,,ℎ'(p =1−4(r1)2=(K1)2or1)2>0,所以()h t 在()0,1单调递增,在()1,∞+单调递增,()()()0,1,10t h t h ∈<=,即()21ln 1t t t -<+,所以r12(K1)ln >1,∈(1,+∞),ℎ(p >ℎ(1)=0,ln >2(K1)r1,所以r12(K1)ln >1,综上,()11x c f x ⎛⎫+>⎪⎝⎭.【小问3详解】若要使12111e 1xx x x +⎛⎫⎛⎫+<<+ ⎪ ⎪⎝⎭⎝⎭成立,则110x+>,即1x <-或>0,当121e 1xx +⎛⎫<+ ⎪⎝⎭时,即ln 1+r 12>1,ln 1+>1,由(2)知上式成立,所以()(),10,x ∞∞∈--⋃+,当11e xx ⎛⎫+< ⎪⎝⎭等价于1ln 11x x ⎛⎫+< ⎪⎝⎭,当>0时,1ln 11x x ⎛⎫+< ⎪⎝⎭等价于11ln 111x x⎛⎫+<+- ⎪⎝⎭,成立;当1x <-时,1ln 11x x ⎛⎫+< ⎪⎝⎭等价于ln 1>1+1−1,不成立,所以解集为()0,∞+.。
重庆市涪陵实验中学校2020届高三数学考试试卷(理科)
重庆市涪陵实验中学校2020届高三数学考试试卷(理科)(总分:150分,考试时间:120分钟)一、选择题(每小题5分,共50分)1、若直线L 的方程为x=2,则该直线的倾斜角是: (A )600(B )450(C )900(D )1802、若点A (3,3),B (2,4),C (a ,10)三点共线,则a 的值为: (A)4- (B)3- (C)2- (D)43、下列函数中,最小值是4的是: (A )y=x+x4(B )y=222222+++x x(C )y=sinx+4cscx, x ∈(0,⎥⎦⎤ ⎝⎛2,0π (D )2(77)x xy -=+ 4、.椭圆19422=+y x 的焦点坐标是 :(A).(5±,0) (B).(0, 5±) (C).(65±,0) (D).(0, 65±) 5、已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a =(A ) 2 (B ) 22- (C ) 12- (D ) 12+ 6、不等式x -1<x+1的解集是M ,│x+5│>1的解集为N ,则M 与N 的关系是: (A )M ØN (B )N ØM (C )M=N (D )M ∩N=φ7、若直线(3)(21)70m x m y -+-+=与直线(12)(5)60m x m y -++-=互相垂直,则m 的值为(A)-1 (B) 1或 12- (C) -1或12(D)1 8、如果实数x ,y 满足等式22(2)3x y -+=,那么xy的最大值是:(A )21(B )33 (C )23 (D )39、已知P 1(x 1,y 1),P 2(x 2,y 2)是直线L :Ax+By+C=0外的两点且直线P 1P 2与直线交L 于点P ,设P 分→21P P 的比为λ,则λ (A )C By Ax CBy Ax ++++-2211 (B )CBy Ax C By Ax ++++-1122(C )CBy Ax CBy Ax ++++2211 (D )C y y B x x A +-+-)()(121210、定义在R 上的偶函数f (x ),满足f (x +1)=-f (x ),且在[-3,-2]上是增函数,α、β是锐角三角形的两个锐角,则 (A )f(sin α)>f(cos β)(B )f(sin α)<f(cos β)(C )f(sin α)>f(sin β)(D )f(cos α)>f(cos β)二、填空题:(本大题共4小题,每小题4分,共24分.答案填在答题卡上.) 11、点(-2,3)关于直线1y x =+对称的点的坐标是 . 12、不等式ax 2+bx+10>0的解集为{x|-3<x<4},则b= . 13、直线x – 2y +2 = 0到直线3x – y + 7 = 0的角等于 .14、已知圆的方程为(x-1)2+(y-1)2=8,直线为x+y=0,则圆上到直线的距离等于2 的点有 个.15、关于x 的不等式(m 2-4m+3)x 2+2(m+1)x+1>0对任意x ∈R 都成立,则实数m 的范围是 .16、已知F 1、F 2是椭圆的焦点,P 是椭圆上一点,且∠F 1PF 2=90°,则椭圆的离心率e 的取值范围是 .三、解答题:(本大题共6个小题,共76分.解答应写出文字说明,证明过程或演算步骤.) 17、(本小题12分)如图,ΔABC 中,已知A (-1,0), B (1,2),点B 关于y=0的对称点在AC 边上,且BC 边上的高所在的直线方程为x-2y+1=0. (Ⅰ)求AC 边所在直线的方程; (Ⅱ)求点C 的坐标.)1)(1(,11218≤-+-±≠x x ax x a 的不等式解关于分)若、(本小题19、(本小题12分)设P是椭圆1222=+y x 上一个动点,F为其右焦点,求PF中点M的轨迹方程.20、(本小题12分)建一栋新房,门窗需要两种不同尺寸的玻璃,其中大号玻璃40块,小号玻璃100块。
重庆涪陵中学2020-2021学年高三数学理测试试卷含解析
重庆涪陵中学2020-2021学年高三数学理测试试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 执行如图的程序框图,则输出的S值为()A. 1B.C.D. 0参考答案:D2. 若变量x,y满足约束条件,则目标函数的最小值为()A.4 B.-1 C. -2 D.-3参考答案:C不等式组表示的平面区域如图所示,由上图,目标函数在点处取得最小值,最小值为,故选择C.3. 下列说法正确的是()A.“p∨q为真”是“p∧q为真”的充分不必要条件B.若数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为2C.在区间[0,π]上随机取一个数x,则事件“sinx+cosx≥”发生的概率为D.已知随机变量X服从正态分布N(2,σ2),且P(X≤4)=0.84,则P(X≤0)=0.16参考答案:D考点:命题的真假判断与应用.专题:简易逻辑.分析: A.“p∧q为真”可知p,q为真命题,可得“p∨q为真”,反之不成立,即可判断出正误;B.利用方差的性质即可判断出正误;C.由sinx+cosx=≥化为,解得x∈,利用几何概率计算公式即可得出,进而判断出正误;D.利用正态分布的对称性可得P(X≤0)=P(X≥4)=1﹣P(X≤4),即可判断出正误.解答:解:A.“p∧q为真”可知p,q为真命题,可得“p∨q为真”,反之不成立,因此“p∨q为真”是“p∧q为真”必要不充分条件,因此不正确;B.数据x1,x2,x3,…,x n的方差为1,则2x1,2x2,2x3,…,2x n的方差为4,因此不正确;C.在区间[0,π]上随机取一个数x,由sinx+cosx=≥化为,解得x∈,∴事件“sinx+cosx≥”发生的概率==,因此不正确;D.随机变量X服从正态分布N(2,σ2),且P(X≤4)=0.84,则P(X≤0)=P(X≥4)=1﹣P(X≤4)=0.16,因此正确.故选:D.点评:本题考查了简易逻辑的判定方法、方差的性质、几何概率计算公式、正态分布的性质,考查了推理能力与计算能力,属于中档题.4. 函数的最小正周期为π,则该函数图象(A)关于直线对称(B)关于直线对称(C)关于点对称(D)关于点对称参考答案:D略5. 表示不超过的最大整数,例如[2.9]=2,[-4.1]=-5,已知,,则函数的零点个数是( )A.2 B.3 C.4 D.5参考答案:A6. 如图,在正六边形ABCDEF内随机取一点,则此点取自阴影部分的概率是()A.B. C. D.参考答案:D本题考查几何概型,考查运算求解能力和应用意识.设正六边形的边长为2,与的交点为,易知,,所以,所求的概率为.7. (多选题)如图直角梯形ABCD,,,,E为AB中点,以DE为折痕把折起,使点A到达点P的位置,且.则()A. 平面PED⊥平面EBCDB.C. 二面角的大小为D. PC与平面PED所成角的正切值为参考答案:AC【分析】A中利用折前折后不变可知,根据可证,可得线面垂直,进而证明面面垂直;B选项中不是直角可知不垂直,故错误;C中二面角的平面角为,故正确;D中与平面所成角为,计算其正切值即可.【详解】A中, ,在三角形中,,所以,又,可得平面,平面,所以平面平面,A选项正确;B中,若,又,可得平面,则,而,显然矛盾,故B选项错误;C中,二面角的平面角为,根据折前着后不变知,故C选项正确;D中,由上面分析可知,为直线与平面所成角,在中,,故D选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.8. 已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=lnc,则M、N、P的大小关系为()A.P<N<M B.P<M<N C.M<P<N D.N<P<M参考答案:A【考点】对数值大小的比较.【专题】计算题;函数的性质及应用.【分析】由对数函数与指数函数的单调性,利用特值法比较大小.【解答】解:∵0<a<b<c<1,∴M=2a>20=1,N=5﹣b<50=1,且N>0;P=lnc<ln1=0,故P<N<M;故选:A.【点评】本题考查了对数函数与指数函数的单调性及特值法的应用,属于基础题.9. 函数y=sin(2x+)在区间[0,π]上的一个单调递减区间是()A.[0,] B.[,] C.[,]D.[,]参考答案:B【考点】正弦函数的单调性.【分析】利用正弦函数的单调性及可求得答案.【解答】解:由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),令k=0得≤x≤,∴函数y=sin(2x+)在区间[0,π]上的一个单调递减区间为[,].故选B.10.已知展开式的第7项为,则实数x的值是()A.B.-3C. D.4参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数,则不等式的解集为________.参考答案:(1,100)【分析】根据的定义域以及的解集,即可得到的等价条件,从而求出其解集.【详解】因为,则,解得,所以定义域为,因为等价于,解得,因为,所以,解得,所以解集为.【点睛】本题主要考查了不等式的求解,涉及到对数运算以及函数定义域的求解,属于中档题.12. 二项式的展开式中常数项为参考答案:答案:13. 函数的定义域为.参考答案:14. 在中,则角C= 。
2020届重庆市涪陵实验中学高三上学期第一次月考英语试题及答案
绝密★启用前重庆市涪陵实验中学2020届高三年级上学期第一次月考检测英语试题第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When did the woman learn to draw?A. In university.B. In high school.C. In the childhood.2. What did the woman tell the man?A. The pencil wasn’t sharp.B. He could use her extra pen.C. She didn’t bring the pencil sharpener.3. Why might the man be surprised?A. The woman was late.B. The woman arrived early.C. The woman worked overtime tonight.4. What does the man think of Bill?A. He’s thoughtful.B. He’s humorous.C. He’s careless.5. What does the boy probably want from the woman?A. Thirty more dollars.B. Twenty more dollars.C. Ten more dollars.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
重庆市2023-2024学年高三上学期10月月考数学试题含答案
重庆高2024届高三上10月质量监测数学试题(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共计40分.1.定义集合,A B 的一种运算:2{|,,}A B x x b a a A b B ⊗==-∈∈,若{1,4},{1,2}A B ==-,则A B ⊗中的元素个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】计算可求得{}0,3,3A B ⊗=-,可得结论.【详解】因为{1,4},{1,2}A B ==-,当1,1a b ==-时,20x b a =-=,当1,2a b ==时,23x b a =-=,当4,1a b ==-时,23x b a =-=-,当4,2a b ==时,20x b a =-=,所以{}0,3,3A B ⊗=-,故A B ⊗中的元素个数为3.故选:C.2.直线10ax y +-=被圆22(1)(4)4x y -+-=所截得的弦长为a =()A.43-B.34-C.3D.2【答案】A 【解析】【分析】先求出圆心到直线10ax y +-=的距离,结合点到直线的距离公式,即可得出a 的值.【详解】圆22(1)(4)4x y -+-=的圆心为(1,4),半径为2r =,1=,根据点到直线距离公式,知圆心(1,4)到直线10ax y +-=的距离1d ==,化简可得22(3)1a a +=+,解得43a =-.故选:A.3.已知:p x a ≥,:||6q x a +<,且p 是q 的必要不充分条件,则a 的取值范围为()A.(−∞,−3]B.(−∞,−3)C.[3,+∞)D.(3,+∞)【答案】A 【解析】【分析】由题意可得6a a ≤--,求解即可.【详解】由||6x a +<,解得66a x a --<<-,由p 是q 的必要不充分条件,所以6a a ≤--,解得3a ≤-,所以a 的取值范围为(,3]-∞-.故选:A.4.下列说法中,正确的是()A.设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为1B.已知数据2,3,5,7,8,9,10,11,则该组数据的上四分位数为9C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等D.频率分布直方图中各小长方形的面积等于相应各组的频数【答案】C 【解析】【分析】依据方差的性质计算可判断选项A ;求得四分位数可判断选项B ;依据中位数定义和平均数定义去判断选项C ;由频率直方图的意义可判断D.【详解】对于A ,设一组样本数据12,,,n x x x 的方差为0.1,则数据1210,10,,10n x x x 的方差为2100.110⨯=,故A 错误;对于B ,因为80.756⨯=,所以该组数据的上四分位数为9109.52+=,故B 错误;对于C ,一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数近似相等,故C 正确;对于D ,频率分布直方图中各小长方形的面积等于相应各组的频率,故D 错误.故选:C.5.已知3a log 6=,5log 10b =,7log 14c =,则()A.b a c << B.c b a<< C.a b c<< D.a c b<<【答案】B 【解析】【分析】根据对数的运算和对数函数的性质即可求解.【详解】因为3321log 61log 21,log 3a ==+=+5521log 101log 21log 5b ==+=+,7721log 141log 21log 7c ==+=+且222log 7>log 5log 3>0>;所以a b c >>.故选:B.6.已知2F 是椭圆()222210+=>>x y a b a b的右焦点,点P 在椭圆上,()220OP OF PF +⋅= ,且22OP OF b +=,则椭圆的离心率为()A.3B.5C.4D.5【答案】A 【解析】【分析】设2PF 的中点为Q ,根据向量的线性运算法则及数量积的定义可得2OQ PF ⊥,从而得到12PF PF ⊥,根据22OP OF b +=得到1||2PF b =,再根据椭圆的定义得到2||PF ,在直角三角形中利用勾股定理得到23b a =,最后根据离心率公式计算可得;【详解】解:设2PF 的中点为Q ,则22OP OF OQ += 由22()0OP OF PF +⋅= ,即220OQ PF ⋅=所以2OQ PF ⊥,连接1PF 可得1//OQ PF ,所以12PF PF ⊥,因为22OP OF b += ,即22OQ b =,即1||2PF b=所以21||2||22PF a PF a b =-=-,在12R t PF F 中,2221212||||||PF PF F F +=,即()()2222224c b a b -+=,又222c a b =-,所以222222b a b ab a b +=+--,所以232b ab =,即23b a =解得22222513c a b b e a a a -===-,故选:A7.设函数f(x)是定义在R 上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=212x⎛⎫- ⎪ ⎪⎝⎭,则在区间(-2,6)上关于x 的方程f(x)-log 8(x+2)=0的解的个数为A.4 B.3C.2D.1【答案】B 【解析】【分析】把原方程转化为()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,再在同一坐标系下,画出两函数的图象,结合图象,即可求解.【详解】由题意,原方程等价于()y f x =与8log (2)y x =+的图象的交点个数问题,由(2)(2)f x f x +=-,可知()f x 的图象关于2x =对称,作出()f x 在(0,2)上的图象,再根据()f x 是偶函数,图象关于y 轴对称,结合对称性,可得作出()f x 在()2,6-上的图象,如图所示.再在同一坐标系下,画出8log (2)y x =+的图象,同时注意其图象过点(6,1),由图可知,两图象在区间()2,6-内有三个交点,从而原方程有三个根,故选B.【点睛】本题主要考查了对数函数的图象,以及函数的奇偶性的应用,其中解答中熟记对数函数的性质,合理应用函数的奇偶性,在同一坐标系内作出两函数的图象,结合图象求解是解答的关键,着重考查了数形结合思想,以及转化思想的应用,属于中档试题.8.已知函数() )2023f x x =-+,,a b 满足 (2)(4)4046(,f a f b a b +-=为正实数),则242b a a ab b ++的最小值为()A.1B.2C.4D.658【答案】B 【解析】【分析】由已知构造函数()()2023g x f x =-,探讨函数()g x 的单调性、奇偶性,进而求得24a b +=,再利用基本不等式求解即得.【详解】令()()2023)g x f x x =-=-||x x >≥,得()g x 定义域为R ,()()))ln10g x g x x x -+=+==,即函数()g x 是奇函数,而())g x x -=-,当0x ≥时,函数u x =+是增函数,又ln y u =是增函数,于是函数()g x 在[0,)+∞上单调递减,由奇函数的性质知,函数()g x 在(,0]-∞上单调递减,因此函数()g x 在R 上单调递减,由(2)(4)4046f a f b +-=,得(2)2023(4)20230f a f b -+--=,即(2)(4)0g a g b +-=,所以(2)(4)(4)g a g b g b =--=-,则24a b =-,即24a b +=,又0,0a b >>,所以244422(2)4b b b a ab b a b a a a a a b b +=+=+≥++,当且仅当164,99a b ==时取等号,所以242b a a ab b ++的最小值为2.故选:B.二、多项选择题:本大题共4小题,每小题5分,共计20分.9.已知1,0a b c >><,则()A.c a <cbB.()ac ->()bc -C.a cb a +⎛⎫< ⎪⎝⎭b cb a +⎛⎫ ⎪⎝⎭D.()log b a c ->()log a b c -【答案】CD 【解析】【分析】对于A,B ,取特殊值判断即可;对于C,利用指数函数的单调性判断即可;对于D,利用对数函数的单调性判断即可.【详解】对于A,不妨取4,2,c 1a b ===-,则c 1c 1,42a b =-=-,此时c ca b>,故A 错误;对于B,不妨取4,2,c 1a b ===-,则42()11,()11a b c c -==-==,此时()()a b c c -=-,故B 错误;对于C,因为1a b >>,所以01b a <<,所以指数函数xb y a ⎛⎫= ⎪⎝⎭在R 上单调递减,因为0c <,所以a c b c +>+,所以a cb cb b a a ++⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 正确;对于D,因为1a b >>,所以对数函数log b y x =和log a y x =在()0,∞+上单调递增,因为0c <,所以1a c b c ->->,所以()()log log 0b b ac b c ->->又()()log log 0b a b c b c ->->,所以()()log log b a a c b c ->-,故D 正确.故选:CD.10.第19届亚运会于2023年9月23日至10月8日在杭州举行.现安排小明、小红、小兵3名志愿者到甲、乙、丙、丁四个场馆进行服务.每名志愿者只能选择一个场馆,且允许多人选择同一个场馆,下列说法中正确的有()A.所有可能的方法有43种B.若场馆甲必须有志愿者去,则不同的安排方法有37种C.若志愿者小明必须去场馆甲,则不同的安排方法有16种D.若三名志愿者所选场馆各不相同,则不同的安排方法有24种【答案】BCD 【解析】【分析】利用分步乘法计数原理判断AC 选项的正确性,利用分类加法计数原理以及组合数计算判断B 选项的正确性,利用排列数计算判断D 选项的正确性.【详解】对于A ,所有可能的方法有34种,故A 错误.对于B ,分三种情况:第一种:若有1名志愿者去场馆甲,则去场馆甲的志愿者情况为13C ,另外两名同学的安排方法有339⨯=种,此种情况共有13C 927⨯=种,第二种:若有两名志愿者去场馆甲,则志愿者选派情况有23C ,另外一名志愿者的排法有3种,此种情况共有23C 39⨯=种,第三种情况,若三名志愿者都去场馆甲,此种情况唯一,则共有279137++=种安排方法,B 正确.对于C ,若小明必去甲场馆,则小红,小兵两名志愿者各有4种安排,共有4416⨯=种安排,C 正确.对于D ,若三名志愿者所选场馆各不同,则共有34A 24=种安排,D 正确.故选:BCD.11.已知双曲线22:1(01)91x y C k k k +=<<--,则()A.双曲线C 的焦点在x 轴上B.双曲线C 的焦距等于C.双曲线CD.双曲线C的离心率的取值范围为1,3⎛⎫⎪ ⎪⎝⎭【答案】ACD 【解析】【分析】根据双曲线的简单几何性质,对各选项逐一分析即可得答案.【详解】解:对A :因为01k <<,所以90k ->,10k -<,所以双曲线22:1(01)91x y C k k k-=<<--表示焦点在x 轴上的双曲线,故选项A 正确;对B :由A 知229,1a k b k =-=-,所以222102c a b k =+=-,所以c =所以双曲线C的焦距等于)21c k <<=,故选项B 错误;对C :设焦点在x 轴上的双曲线C 的方程为()222210,0x ya b a b-=>>,焦点坐标为(),0c ±,则渐近线方程为by x a=±,即0bx ay ±=,所以焦点到渐近线的距离d b ==,所以双曲线22:1(01)91x y C k k k -=<<--C 正确;对D :双曲线C的离心率e ===,因为01k <<,所以8101299k <-<-,所以13,e ⎛⎫ ⎪ ⎪⎝=⎭,故选项D 正确.故选:ACD.12.信息熵常被用来作为一个系统的信息含量的量化指标,从而可以进一步用来作为系统方程优化的目标或者参数选择的判据.在决策树的生成过程中,就使用了熵来作为样本最优属性划分的判据.信息论之父克劳德·香农给出的信息熵的三个性质:①单调性,发生概率越高的事件,其携带的信息量越低;②非负性,信息熵可以看作为一种广度量,非负性是一种合理的必然;③累加性,即多随机事件同时发生存在的总不确定性的量度是可以表示为各事件不确定性的量度的和.克劳德⋅香农从数学上严格证明了满足上述三个条件的随机变量不确定性度量函数具有唯一形式21()log1nii i H X CP P ==-=∑,令1=C ,设随机变量X 所有取值为1,2,3,⋯,n ,且()()01,2,3,,i P X i P i n ==>= ,11nii P ==∑,则下列说法正确的有()A.1n =时,()0H X =B.n =2时,若1P ∈10,2⎛⎫⎪⎝⎭,则()H X 的值随着1P的增大而增大C.若1P =2P =112n -,1k P +=2kP (2,N k k ≥∈),则()2122n H X -=-D.若2n m =,随机变量Y 的所有可能取值为12m ,,,,且()()()()2112P Y j P X j P X m j j m ===+=+-= ,,,,,则()()H X H Y ≤【答案】ABC 【解析】【分析】A 直接利用公式求解;B 先求出()2log H X n =,再判断单调性即可求解;CD 分别求出()H X 和()H Y ,结合对数函数单调性放缩即可求解.【详解】对于A :若1n =,则11,1i P ==,因此()()21log 10,A H x =-⨯=正确;对于B :当2n =时,()()()112112110,,log 1l 12P H x PP P og P ⎛⎫∈=---- ⎪⎝⎭,令()()()221log 1log 1,0,2f t t t t t t ⎛⎫=----∈ ⎪⎝⎭,则()()2221log log 1log 10f t t t t ⎛⎫=-+-=-> ⎪⎝⎭',即函数()f t 在10,2⎛⎫⎪⎝⎭上单调递增,所以()H x 的值随着1P的增大而增大,B 正确;对于C :()12111,22,N 2k k n P P P P k k +-===≥∈,则22211212,222k k k n n k P P k ----+=⨯==≥,22111111log log 222k k n k n k n k n k P P -+-+-+-+==-,,而1212111111log log 222n n n n P P ----==-,于是()2111222111221log ...222222n k k n n n n k n n n n H x P P ----=----=+=+++++∑1122112212222222n n n n n n n n n n ------=-++++++ 令231123122222n n n n nS --=+++++ ,则234112312221222n n n S n n +-=+++++ ,两式相减得2311111111111222112222222212n n n n n n n n n S +++⎛⎫- ⎪+⎝⎭=++++-=-=-- ,因此222n n n S +=-,()112112122222222nn n n n n n n n n n n H x S -----+=-+=-+-=-,C 正确;对于D ,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()()()()21,1,2,,P Y j P X j P X m j j m ===+=+-=⋯,222211()l 1og log m mi i i i i iH x P P P P ===-=∑∑122221222122121111log log log log m m m m P P P P P P P P --=++++ ()()()()122221212122211111log log log m m m m mm m m H Y P P P P P P P P P P P P -+-+=+++++++++ 12222122212221221121111log log log log m m m m m mP P P P P P P P P P P P ---=++++++++ 由于()01,2,,2i P i m >= ,即有2111i i m i P P P +->+,则222111log log i i m iP P P +->+,因此222111log log i i i i m iP P P P P +->+,所以()()H X H Y >,D 错误.故选:ABC .三、填空题:本大题共4小题,每小题5分,共20分.13.已知P 为椭圆221123x y +=上一点,1F ,2F 分别是椭圆的左、右焦点,1260F PF ∠︒=,则12F PF 的面积为_______.【解析】【分析】结合椭圆定义与余弦定理、面积公式计算即可得.【详解】由已知得a =,b =,所以3c ===,从而1226F F c ==,在12F PF 中,2221212122cos 60F F PF PF PF PF ⋅︒=+-,即22121236PF PF PF PF ⋅=+-①,由椭圆的定义得12PF PF +=,即221212482PF PF PF PF ⋅=++②,由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ⋅⋅=︒= .14.若a ,0b >,且3ab a b =++,则ab 的最小值是____________.【答案】9【解析】【分析】利用基本不等式得3a b ab +=-≥,再解不等式可得结果.【详解】因为3a b ab +=-≥(当且仅当a b =时,等号成立),所以230--≥,所以1)0-+≥3≥,所以9ab ≥,所以ab 的最小值为9.故答案为:915.设关于x 的不等式220(0)x ax a a -+<<的解集为A ,若集合A 中恰有两个整数解,则实数a 的取值范围为___________.【答案】1[1,3--【解析】【分析】令2()2f x x ax a =-+,根据不等式220(0)x ax a a -+<<解集A 中恰有两个整数解,结合二次函数性质判断整数解为0,1-,从而列出不等式,求得答案.【详解】由题意可得当a<0时,280a a ∆=->,令2()2f x x ax a =-+,则其图象对称轴为02ax =<,且(0)20f a =<,故关于x 的不等式220(0)x ax a a -+<<解集A 中恰有两个的整数解为0,1-,则(1)130f a -=+<且(2)440f a -=+≥,解得113a -≤<-,故答案为:1[1,3--.16.已知函数()12e 0ƒ210x x x x x x -⎧>⎪=⎨--+≤⎪⎩,,,若方程()2f x ⎡⎤⎣⎦−()bf x +4=0有6个相异的实数根,则实数b 的取值范围是__________.【答案】44e eb <<+【解析】【分析】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,进而数形结合,将问题转化为方程240t bt -+=有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可.【详解】根据题意,作出函数()1|2e ,021,0x x f x x x x -⎧>=⎨--+≤⎩∣的图象,如图:令()t f x =,因为方程()()240fx bf x -+=有6个相异的实数根,所以方程240t bt -+=有两个不等的实根,所以2160b ∆=->,解得4b <-或4b >,不妨设这两根12t t <,则1212t t =⎧⎨=⎩或12122e t t <<⎧⎨<<⎩,当1212t t =⎧⎨=⎩时,123t t b +==,且1224t t ==,所以无解;当12122e t t <<⎧⎨<<⎩时,令()24g t t bt =-+,只需()()()1020e 0g g g ⎧>⎪<⎨⎪>⎩,即21404240e e 40b b b -+>⎧⎪-+<⎨⎪-+>⎩,解得44e e b <<+,终上所述:44e eb <<+.故答案为:44e eb <<+.四、解答题:本大题共6小题,共70分.17.已知函数() 938xf x a x =-⋅+.(1)当2a =时,求不等式() 16f x ≥的解集;(2)若函数() f x 在()0,∞+有零点,求实数a .【答案】(1)[)3log 4,+∞(2))⎡+∞⎣【解析】【分析】(1)令()30xt t =>,则()()280g t t at t =-+>,再由()16f x ≥,解不等式即可;(2)函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,即8a t t=+在1,+∞上有解,由基本不等式求出a 的取值范围.【小问1详解】因为()938xf x a x =-⋅+,令()30xt t =>,则()()280g t t at t =-+>,当2a =时,()()2280g t t t t =-+>,()16f x ≥即()16g t ≥,即2280t t --≥,由0t >,解得4t ≥,即34x ≥,解得3log 4x ≥,所以原不等式的解集为[)3log 4,∞+.【小问2详解】因为函数3x t =在R 上单调递增,所以函数()f x 在0,+∞有零点等价于函数()g t 在1,+∞上有零点,280t at -+=由大于1的解,即8a t t=+在1,+∞上有解,因为8t t +≥=8t t =,即t =时等号成立,得a ≥所以实数a 的取值范围为)∞⎡+⎣.18.已知双曲线的中心在原点,焦点在x 轴上,离心率为2,且过点(4,P .(1)求双曲线的方程;(2)直线l y kx =+:C 的左支交于A ,B 两点,求k 的取值范围.【答案】(1)22166x y -=(2)13k <<【解析】【分析】(1)根据题意求解双曲线方程即可;(2)联立直线和双曲线方程,通过判别式大于0,及12120,0x x x x +求解即可.【小问1详解】双曲线的中心在原点,焦点在x 轴上,设双曲线的方程为22221(0,0)x ya b a b-=>>由c e a ===,可得a b =,由双曲线过点(4,,可得2216101a b-=,解得6a b ==,则双曲线的标准方程为22166x y -=;【小问2详解】联立直线与双曲线方程22166x y y kx ⎧-=⎪⎨⎪=⎩,化简得()22180kx---=,则210k -≠,假设1122()A x y B x y ,,(,),则()222122122Δ)3213224001801k k x x k x x k ⎧=+-=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎩,解得13k <<.19.已知()x f x e ex =-+(e 为自然对数的底数)(Ⅰ)求函数()f x 的最大值;(Ⅱ)设21()ln 2g x x x ax =++,若对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <,求实数a 的取值范围.【答案】(Ⅰ)0;(Ⅱ)1,ln 212⎛⎫-∞-- ⎪⎝⎭【解析】【分析】(Ⅰ)求出函数导数,判断出单调性,即可求出最值;(Ⅱ)问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立,分离参数可得ln 12x a x x ->+,构造函数()(]ln 1,0,22x h x x x x =+∈,利用导数求出函数的最大值即可.【详解】(Ⅰ) ()x f x e ex =-+,()xf x e e '∴=-+,令()0f x '>,解得1x <;令()0f x '<,解得1x >,()f x \在−∞,0单调递增,在()1,+∞单调递减,()()max 10f x f ∴==;(Ⅱ)对任意1(0,2]x ∈,总存在2(0,2]x ∈.使得()()12g x f x <等价于()()12max g x f x <,由(Ⅰ)()()2max 10f x f ==,则问题转化为()0g x <在(]0,2恒成立,化得21ln ln 122x xx a x x x +->=+,令()(]ln 1,0,22x h x x x x =+∈,则()21ln 12x h x x -'=+,当(]0,2x ∈时,1ln 0x ->,得()0h x '>,()h x ∴在(]0,2单调递增,()()max 12ln 212h x h ∴==+,则1ln 212a ->+,即1ln 212a <--,故a 的取值范围为1,ln 212⎛⎫-∞-- ⎪⎝⎭【点睛】关键点睛:本题考查不等式的恒成立问题,解题的关键是将问题转化为()()12max g x f x <,即()0g x <在(]0,2恒成立.20.图,在直三棱柱111ABC A B C -中,,,O M N 分别为线段11,,BC AA BB 的中点,P 为线段1AC 上的动点,11,3,4,82AO BC AB AC AA ====.(1)求三棱锥1C C MN -的体积;(2)试确定动点P 的位置,使直线MP 与平面11BB C C 所成角的正弦值最大.【答案】(1)16(2)P 为1AC 的中点【解析】【分析】(1)由题意可得BA ⊥平面11AA C C ,进而可证MN ⊥平面11AA C C ,利用等体积法可求三棱锥1C C MN -的体积;(2)以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,发现为的中点时所成角的正弦值最大.【小问1详解】在直三棱柱111ABC A B C -中,1CC ⊥平面ABC ,因为AB ⊂平面ABC ,所以1CC AB ⊥,由12AO BC =,O 是BC 的中点,则BA AC ⊥,因为1AC CC C = ,1,AC CC ⊂平面11AA C C ,所以BA ⊥平面11AA C C ,因为,M N 分别为线段11,AA BB 的中点,所以//MN AB ,所以MN ⊥平面11AA C C ,因为13,4,8AB AC AA ===,所以N 平面1CC M 的距离为3,因为四边形11AA C C 为矩形,M 为线段1AA 的中点,所以116CC M S = ,所以111163163C C MN N CC M V V --==⨯⨯=.【小问2详解】在ABC V 中,因为O 是BC 的中点,12AO BC =,所以BA AC ⊥,因为1AA ⊥平面ABC ,,AB AC ⊂平面ABC ,所以11,,AA AB AA AC ⊥⊥以A 为原点,以1,,AB AC AA 为,,x y z 轴建立空间直角坐标系,由题设可得11(0,0,0),(3,0,0),(0,4,0),(0,4,8),(0,0,4),(3,0,8),(3,0,4)A B C C M B N ,1(3,4,0),(0,0,8)BC BB =-=,设平面11BB C C 的法向量为(,,)n x y z =,则1·340·80BC n x y BB n z ⎧=-+=⎪⎨==⎪⎩ ,令4x =,得3,0y z ==,所以平面11BB C C 的法向量为(4,3,0)n =,设(,,)P a b c ,1(01)AP mAC m =≤≤,则(,,)(0,4,8)a b c m =,所以(0,4,8)P m m ,(0,4,84)MP m m =-,设直线MP 与平面11BB C C 所成的角为θ,则222||sin ||||516(84)5541n MP n MP m m m m θ===+--+,若0m =,sin 0θ=此时,点P 与A 重合;若0m ≠,令11t m=≥,则2233355545(2)1sin t t t θ=≤-+-+=,当2t =,即12m =,P 为1AC 的中点时,sin θ取得最大值35.21.树德中学为了调查中学生周末回家使用智能手机玩耍网络游戏情况,学校德育处随机选取高一年级中的100名男同学和100名女同学进行无记名问卷调查.问卷调查中设置了两个问题:①你是否为男生?②你是否使用智能手机玩耍网络游戏?调查分两个环节:第一个环节:先确定回答哪一个问题,让被调查的200名同学从装有3个白球,3个黑球(除颜色外完全相同)的袋子中随机摸取两个球,摸到同色两球的学生如实回答第一个问题,摸到异色两球的学生如实回答第二个问题;第二个环节:再填写问卷(只填“是”与“否”).回收全部问卷,经统计问卷中共有70张答案为“是”.(1)根据以上的调查结果,利用你所学的知识,估计该校中学生使用智能手机玩耍网络游戏的概率;(2)据核查以上的200名学生中有30名男学生使用智能手机玩耍网络游戏,按照(1)中的概率计算,依据小概率值α=0.15的独立性检验,能否认为中学生使用智能手机玩耍网络游戏与性别有关联;若有关联,请解释所得结论的实际含义.参考公式和数据如下:()()()()()22n ad bcn a b c da b c d a c b dχ-==+++ ++++,.α0.150.100.050.0250.005 xα 2.072 2.706 3.841 5.0247.879【答案】(1)1 4(2)有关联,答案见解析【解析】【分析】(1)由题可得摸到同色两球的概率,进而可得回答第一个问题的人数及选择“是”的人数,再利用古典概型概率公式即得;(2)通过计算2χ,进而即得.【小问1详解】因为摸到同色两球的概率223326C+C2C5 p==,所以回答第一个问题的人数为2 200805⨯=人,回答第二个问题的人数为20080120-=人,因为男女人数相等,是等可能的,所以回答第一个问题,选择“是”的同学人数为180402⨯=人,则回答第二个问题,选择“是”的同学人数为704030-=人,所以估计中学生在考试中有作弊现象的概率为301 1204=.【小问2详解】由(1)可知200名学生使用智能手机玩网络游戏估计有50人,则有20名女生使用智能手机玩网络游戏男女合计使用智能手机玩游戏302050不用智能手机玩游戏7080150100100200零假设为:0H 使用智能手机玩耍游戏与性别无关,()222003080207082.67 2.072501501001003χ⨯⨯-⨯==≈>⨯⨯⨯根据小概率值0.15α=的独立性检验,推断0H 不成立,因此认为使用智能手机玩耍网络游戏与性别有关,此推断犯错误的概率不大于0.15.在男生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.3,0.7,在女生中使用智能手机玩耍游戏和不使用智能手机玩耍游戏的概率分别为0.2,0.8,在被调查者中男生使用智能手机玩耍游戏是女生的1.5倍,于是根据概率稳定概率的原理,我们可以认为男士使用智能手机玩耍网络游戏的概率大于女生使用智能手机玩耍网络游戏的概率.22.在平面直角坐标系中,动点M 到()10,的距离等于到直线=−1的距离.(1)求M 的轨迹方程;(2)P 为不在x 轴上的动点,过点P 作(1)中M 的轨迹的两条切线,切点为A ,B ;直线AB 与PO 垂直(O 为坐标原点),与x 轴的交点为R ,与PO 的交点为Q ;(ⅰ)求证:R 是一个定点;(ⅱ)求PQ QR的最小值.【答案】(1)24y x=(2)(ⅰ)证明见解析;(ⅱ)【解析】【分析】(1)利用抛物线的定义求M 的轨迹方程;(2)(ⅰ)设点()()()001122,,,,,P x y A x y B x y ,由切线AP 和BP 的方程,得到直线AB 的方程为()002yy x x =+,又直线AB 与PO 垂直得02x =-,则直线AB 的方程()022yy x =-,可得所过定点.(ⅱ)联立直线AB 与直线OP 的方程得交点Q 的坐标,表示出PQ QR,结合基本不等式求最小值.【小问1详解】因为动点M 到()1,0的距离等于到直线=−1的距离,所以M 的轨迹为开口向右的抛物线,又因为焦点为()1,0,所以轨迹方程为24y x =.【小问2详解】(ⅰ)证明:设点()()()001122,,,,,P x y A x y B x y ,设以1,1为切点的切线方程为()11y y k x x -=-,联立抛物线方程,可得2114440ky y y kx -+-=,由()21Δ420ky =-=,得12k y =,所以切线AP :()112yy x x =+,同理切线BP :()222yy x x =+点P 在两条切线上,则010102022()2()y y x x y y x x =+⎧⎨=+⎩,由于()()1122,,,A x y B x y 均满足方程()002yy x x =+,故此为直线AB 的方程,由于垂直1AB OP k k ⋅=-即0021y y x ⋅=-,则02x =-,所以直线AB 的方程()022yy x =-,恒过()2,0R ;(ⅱ)解:由(ⅰ)知02x =-,则()()02,,2,0P y R -,直线()0:22AB yy x =-联立直线AB 与直线OP 的方程()00222y y x yy x ⎧=-⎪⎨⎪=-⎩得0220048,44y Q y y ⎛⎫- ⎪++⎝⎭,()()()()()()2223220000222202220000224220022222200021684824444||=416||4824444y y y y y y y y y PQ y y RQ y yyy y ++⎛⎫⎛⎫-+--+- ⎪ ++++⎝⎭⎝⎭⎛⎫⎛⎫-+-+- ⎪ ++++⎝⎭⎝⎭()()()()()22222222000004222004888441644y y y y y y y y y +++++==++422000220016641164.16844y y y y y ⎛⎫++=⋅=++≥ ⎪⎝⎭因此||||PQ QR ≥0y =±时取等号.即PQ QR的最小值是.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题,求最值经常与基本不等式相联系.。
重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题(含解析)
注意事项:1.答题前、考生先将自己的姓名、班级、考场/座位号、准考证号填写在答题卡上.2、答选择题时、必须使用2B 铅笔填涂:答非选择题时,必须使用0.5毫米的黑色签字笔书写;必须在题号对应的答题区域内作答,超出答题区域书写无效;保持答卷清洁、完整.3.考试结束后,将答题卡交回(试题卷学生保存,以备评讲).一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是重庆市2024-2025学年高三上学期11月月考数学阶段性检测试题符合题目要求的.1. 已知集合{}2128,5016x A x B x x x ⎧⎫=<<=+>⎨⎬⎩⎭则A B = ( )A. ()4,3-B. ()0,3C. ()3,0-D. ()4,0-【答案】B 【解析】【分析】先分别求出集合A B ,,再进行集合的交集运算【详解】由12816x <<解得43x -<<,∴{}43A x x =-<<,由250x x +>解得0x >或5x <-,所以{0B x =>或5}x <-,所以A B = (0,3)故选:B.2. 已知点()()()1,2,1,4,,1A B C x -,若A ,B ,C 三点共线,则x 的值是( )A. 1 B. 2C. 3D. 4【答案】B 【解析】【分析】利用向量共线的坐标表示即可得解.【详解】因为()()()1,2,1,4,,1A B C x -,所以()()2,2,1,1AB AC x =-=--,因为A ,B ,C 三点共线,则,AB AC共线,则()212(1)x -⨯-=⨯-,解得2x =.故选:B.3. “1x >”是“11x-<”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】将11x -<化简,再根据充分必要条件关系判断.【详解】()1110101x x x x x x+-<⇔>⇔+>⇔<-或0x >,由1x >成立可以推出1x <-或0x >,但1x <-或0x >成立不能推出1x >,所以1x >是11x-<的充分不必要条件.故选:A.4. 若0.10.13125,,log 352a b c --⎫⎫⎛⎛=== ⎪⎪⎝⎝⎭⎭,则a ,b ,c 的大小关系为( )A. a c b << B. c a b<< C. b c a<< D. c b a<<【答案】D 【解析】【分析】首先化解,a b ,再根据中间值1,以及幂函数的单调性比较大小,即可判断.【详解】00.1.11331a -⎛⎫= ⎪=⎭>⎝,01.10.51225b -⎛⎫=> ⎪⎝⎭⎛⎫= ⎪⎝⎭,()35log 0,12c =∈,0.1y x =在()0,∞+上单调递增,532>,所以a b >,所以a b c >>.故选:D5. 设m ,n 是不同的直线,,αβ为不同的平面,下列命题正确的是( )A. 若,,n m n αβαβ⊥⋂=⊥,则m α⊥.B. 若,//,//n m n m αβα= ,则//m β.C. 若,,//,//m n m n ααββÌÌ,则//αβ.D. 若//,,m n m n αβ⊥⊥,则//αβ.【答案】D 【解析】【分析】根据空间直线、平面间的位置关系判断.【详解】对于A ,直线m 与平面α可能平行、相交或直线m 在平面α内,故错误;对于B ,//m β或m β⊂,故错误;对于C ,平面α与平面β平行或相交,故错误;对于D ,//,,m n m α⊥则n α⊥,又n β⊥,所以//αβ,D 正确;故选:D .6. 若曲线1()ln f x x x=+在2x =处的切线的倾斜角为α,则()sin cos cos 1sin2αααα-=-( )A. 1712-B. 56-C. 175-D. 【答案】A 【解析】【分析】根据导数的几何意义先求出函数()f x 在2x =处的导数值,即可得到在2x =处切线的斜率,进而得到倾斜角α的正切值,再根据tan α求出题中式子的值.【详解】由题意得,211()f x x x'=-,所以411(2)241f '=-=,于是()f x 在2x =处切线的斜率为14,即1tan 4α=.又()22sin cos sin cos cos 1sin2cos (sin 2sin cos cos )ααααααααααα--=--+2sin cos 1cos (sin cos )cos (sin cos )αααααααα-==--222sin cos sin cos cos ααααα+=-,将原式分子分母同时除以2cos α得,2222sin cos tan 1sin cos cos tan 1ααααααα++=--,代入1tan 4α=可得最终答案为1712-.故选:A.7. 已知数列{}n a 的首项12025a =,前n 项和n S ,满足2n n S n a =,则2024a =( )A.12025B.12024C.11012D.11013【答案】C 【解析】【分析】根据2n n S n a =得到211(1)n n S n a --=-,两式相减得到221(1)n n n a n a n a -=--,求出n a 即可求解.【详解】因为2n n S n a =,所以211(1)(2)n n S n a n --=-≥,两式相减得221(1)n n n a n a n a -=--,所以11(2)1n n a n n a n --=≥+,所以1321221123121213121(1)n n n n a a a n n a a a n a n a n n -------⋅⋅⋅⋅=⋅⋅⋅⋅=++++L L ,所以12(2)(1)n a n a n n =≥+,所以4050(2)(1)n a n n n =≥+,所以202411012a =.故选:C.8. 已知1x 是函数()()2ln 1f x x x =---的零点,2x 是函数()2266g x x ax a =+--的零点,且满足1234x x -<,则实数a 的取值范围是( )A. )3,-+∞B. 253,8⎫-⎪⎭C. 7125,,568⎫⎫⎛⎛-∞-+∞ ⎪ ⎪⎝⎝⎭⎭ D. 7125,568⎫⎛-⎪⎝⎭【答案】B 【解析】【分析】利用导数研究函数的单调性可证明函数()f x 存在唯一零点,即12x =,可得()g x 在511,44⎛⎫ ⎪⎝⎭有零点,利用参变分离可求解.【详解】由()()2ln 1f x x x =---,1x >,可得()12111x x f x x --=-'-=,当12x <<时,()0f x '<,此时()f x 在()1,2单调递减;当2x >时,()0f x '>,此时()f x 在()2,+∞单调递增;又因为()20f =,所以函数()f x 存在唯一的零点,即12x =.因为122324x x x -=-<,解得2511,44x ⎛⎫∈ ⎪⎝⎭.即()2266g x x ax a =+--在511,44⎛⎫⎪⎝⎭上有零点,故方程2623x a x -=-在511,44⎛⎫⎪⎝⎭上有解,而263336(3)333x x x x x x -⎡⎤=---=-+-+⎢⎥---⎣⎦,因为511,44x ⎛⎫∈⎪⎝⎭,故713,44x ⎛⎫-∈ ⎪⎝⎭,故349(3)34x x ≤-+<-,所以25624a ≤<2538a -≤<故选:B.【点睛】方法点睛:对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间(),m n 上的题型,一般采取列不等式组(主要考虑判别式、对称轴、()(),f m f n 的符号)的方法解答.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 在下列函数中,最小正周期为π且在π0,2⎛⎫⎪⎝⎭为减函数的是( )A. ()cos f x x= B. ()1πsin 23f x x ⎛⎫=-⎪⎝⎭C. ()22cos sin f x x x=- D. ()πtan 4f x x ⎫⎛=-⎪⎝⎭【答案】ACD【解析】【分析】根据三角函数图象与性质,以及复合函数的单调性判断方法逐项判断即可.【详解】对于A ,()cos f x x =的最小正周期为π,当π0,2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()cos cos f x x x ==,根据余弦函数的单调性可知,此时函数单调递减,故A 正确;对于B ,()1πsin 23f x x ⎛⎫=- ⎪⎝⎭的最小正周期2πT=4π12=,故B 不正确;对于C ,()22cos sin f x x x =-cos 2x =,所以最小正周期2πT=π2=,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()20,πx ∈,根据余弦函数的单调性可知,此时函数单调递减,故C 正确;对于D ,最小正周期πT=π1=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,πππ,444x ⎛⎫-∈- ⎪⎝⎭,由复合函数单调性判断方法可知,此时()πtan 4f x x ⎛⎫=- ⎪⎝⎭单调递减,故D 正确.故选:ACD.10. ABC V中,BC =BC 边上的中线2AD =,则下列说法正确的有( )A. 4AB AC +=B. AB AC ⋅为定值C. 2220AC AB +=D.BAD ∠的最大值为45︒【答案】ABD 【解析】【分析】由中线的性质结合向量的线性运算判断A 选项;由中线的性质和向量数量积的运算有22AB AC AD DB ⋅=- ,求值判断B 选项;C 选项,由πADB ADC ∠+∠=,结合余弦定理求22AC AB +的值;D 选项,ABD △中,余弦定理得22cos 4AB BAD AB+∠= ,结合均值不等式求解.【详解】A .24AB AC AD +==,故A 正确;的B .22()()()()422AB AC AD DB AD DC AD DB AD DB AD DB ⋅=+⋅+=+⋅-=-=-= ,故B 正确;C .πADB ADC ∠+∠= ,cos cos 0ADB ADC ∴∠+∠=,由余弦定理知,222222022AD BD AB AD CD AC AD BD AD CD+-+-+=⋅⋅0=,化简得2212AC AB +=,故C 错误;D .22cos 4AB BAD AB +∠==≥=AB =时等号成立,由于090BAD <∠< ,所以BAD ∠的最大值为45 ,故D 正确;故选:ABD .11. 在正方体1111ABCD A B C D -中,6AB =,,P Q 分别为11C D 和1DD 的中点,M 为线段1B C 上一动点,N 为空间中任意一点,则下列结论正确的有( )A. 直线1BD ⊥平面11AC DB. 异面直线AM 与1A D 所成角的取值范围是ππ,42⎡⎤⎢⎥⎣⎦C. 过点,,B P Q的截面周长为+D. 当AN BN ⊥时,三棱锥A NBC -体积最大时其外接球的体积为【答案】ACD 【解析】【分析】利用线面垂直的判定定理,结合正方体的性质可判断A 正确;由11A D B C 转化异面直线所成的角,在等边1AB C △中分析可知选项B 错误;找出截面图形,利用几何特征计算周长可得选项C 正确;确定三棱锥体积最大时点N 的位置,利用公式可求外接球的半径和体积,得到选项D 正确.【详解】A.∵11111111111,,AC B D AC B B B D B B B ⊥⊥= ,11B D ⊂平面11BDD B ,1BB ⊂平面11BDD B ,∴11A C ⊥平面11BDD B ,∵1BD ⊂平面11BDD B ,∴111A C BD ⊥,同理可证,11DC BD ⊥,∵1111A C DC C ⋂=,11AC ⊂平面11AC D ,1DC ⊂平面11AC D ,∴直线1BD ⊥平面11AC D ,选项A 正确.B. 如图,连接1,AB AC ,由题意得,11A D B C ,11AB AC B C ===直线AM 与1A D 所成的角等于直线AM 与1B C 所成的角,在等边1AB C △中,当点M 与1,B C 两点重合时,直线AM 与1B C 所成的角为3π,当点M 与1B C 中点重合时,1AM BC ⊥,此时直线AM 与1B C 所成的角为2π,故直线AM 与1A D 所成角的取值范围是[,]32ππ,选项B 错误.C. 如图,作直线PQ 分别与直线1,CC CD 交于点,S T ,连接BS 与11B C 交于点E ,连接BT 与AD 交于点F ,则五边形BEPQF 即是截面.由题意得,1SPC △为等腰直角三角形,113PC SC ==,由1BB CS ∥得,1112BB B EC S CE==,∴114,2B E C E ==,∴BE =PE =,同理可得,BF QF ==,∵,P Q 分别为11C D 和1DD 的中点,∴PQ =,∴截面周长为+C 正确.D.当AN BN ⊥时,点N 的轨迹为以AB 为直径的球,球心为AB 中点,半径为3,三棱锥A NBC -的体积即为三棱锥N ABC -的体积,点N 到平面ABC 距离的最大值为球的半径,此时点N 在正方形11ABB A 的中心处,三棱锥A NBC -体积有最大值.由题意得,平面NAB ^平面ABC ,NAB △,ABC V 均为等腰直角三角形,NAB △的外接圆半径为132AB r ==,ABC V 的外接圆半径为22ACr ==,∴三棱锥A NBC -的外接球半径R ==,∴外接球体积为3344ππ33R =´=,选项D 正确.故选:ACD.【点睛】方法点睛:本题为立体几何综合问题,求三棱锥外接球半径方法为:(1)在三棱锥A BCD -中若有AB ⊥平面BCD ,设三棱锥外接球半径为R ,则2224h R r =+,其中r为底面BCD △的外接圆半径,h 为三棱锥的高即AB 的长.(2)在三棱锥A BCD -中若有平面ABC ⊥平面BCD ,设三棱锥外接球半径为R ,则2222124l R r r =+-,其中12,r r 分别为,ABC BCD 的外接圆半径,l 为,ABC BCD 公共边BC 的长.三、填空题:本题共3小题,每小题5分,共15分.12. 复数221iz =--(i 是虚数单位),则复数z 的模为________.【解析】【分析】利用复数除法运算化简,再由复数模的计算公式求解.【详解】()()()()21i 22221i 1i 1i 1i 1i z +=-=-=-+=---+,z ∴==.13. 在数列{a n }中,111,34n n a a a +==+,若对于任意的()*,235n n k a n ∈+≥-N 恒成立,则实数k 的最小值为______.【答案】427【解析】【分析】利用构造法分析得数列{}2n a +是等比数列,进而求得2n a +,从而将问题转化为353nn k -≥恒成立,令()()*253nn f n n -=∈N ,分析数列(){}f n 的最值,从而得解.【详解】由134n n a a +=+,得()1232n n a a ++=+,又12123a +=+=,故数列{}2n a +为首项为3,公比为3的等比数列,所以12333n n n a -+=⨯=,则不等式()235n k a n +≥-可化为353nn k -≥,令()()*353n n f n n -=∈N ,当1n =时,()0f n <;当2n ≥时,()0f n >;又()()1132351361333n n n n n nf n f n ++---+-=-=,则当2n =时,()()32f f >,当3n ≥时,()()1f n f n +<,所以()()333543327f n f ⨯-≤==,则427k ≥,即实数k的最小值为427.故答案为:427.14. 若定义在()0,+∞的函数()f x 满足()()()6f x y f x f y xy +=++,且有()3f n n ≥对n *∈N 恒成立,则81()i f i =∑的最小值为________.【答案】612【解析】【分析】由条件等式变形为()()()()222333f x y x y f x x f y y +-+=-+-,再构造函数()()23g x f x x =-,得到()()()g x y g x g y +=+,并迭代得到()()13g n n f =-⎡⎤⎣⎦,由此得到()()23133f n n f n n =+-≥⎡⎤⎣⎦,,并求和,利用放缩法,即可求解最小值.【详解】因为()()()6f x y f x f y xy +=++,所以()()()()222333f x y x y f x x f y y +-+=-+-,设()()23g x f x x =-,则()()()g x y g x g y +=+,因此()()()()()()()()11211221g n g n g g n g g g n g =-+=-++=-+()()()()()211321g n g ng n f ==+-==-⎡⎤⎣⎦ ,所以()()23133f n n f n n =+-≥⎡⎤⎣⎦,取1n =,得()13f ≥,所以()8111188822()3133612i i i i f i ii i f =====+-≥=⎡⎤⎣⎦∑∑∑∑,所以81()i f i =∑的最小值为612.故答案:612.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 平面四边形ABCD中,已知4,120,AB BC ABC AC =∠=︒=(1)求ABC V 的面积;(2)若150,BCD AD ∠=︒=ADC ∠的大小.【答案】(1(2)60︒【解析】【分析】(1)由已知,设BC x =,则4AB x =,由余弦定理,可得1x =,利用三角形的面积公式即可求得ABC V 的面积;(2)在ABC V中,由正弦定理,可求得sin ACB ∠=,进而求得cos ACB ∠=,进而求得sin ACD ∠=ACD中,由正弦定理,求得sin ADC ∠=ADC ∠的大小.【小问1详解】由已知,设BC x =,则4AB x =,在ABC V 中,由余弦定理,2222cos AC AB BC AB BC ABC =+-⋅∠,为因为120,ABC AC ∠=︒=,所以22222116421x x x x =++=,解得1x =,所以1BC =,4AB =,所以11sin 4122ABC S AB BC ABC =⋅∠=⨯⨯= .【小问2详解】在ABC V 中,由正弦定理,sin sin ACB ABCAB AC ∠∠=,因为120,ABC AC ∠=︒=,4AB =,所以sin sin 4ABC ACB AB AC ∠∠=⋅==,又在ABC V 中,120ABC ∠=︒,则060ACB ︒<∠<︒,所以cos ACB ∠==,因为150BCD ∠=︒,所以()sin sin 150ACD ACB ∠=︒-∠sin150cos cos150sin ACB ACB=︒∠-︒∠12⎛== ⎝,在ACD 中,由正弦定理,sin sin ADC ACDAC AD∠∠=,又AD ==解得sin ADC ∠=>,所以60ACD ∠>︒,因为0180ADC ︒<∠<︒,则60ADC ∠=︒.16. 如图,在直三棱柱111ABC A B C -中,1,3,4,,,AB AC AC AB AA M N P ⊥===分别为11,,AB BC A B 的中点.(1)求证://BP 平面1C MN ;(2)求二面角1P MC N --的余弦值.【答案】(1)证明见解析(2).【解析】【分析】(1)先证明1,,,M N C A 四点共面,再证明1MA BP ,由线面平行的判定定理可证;(2)以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,结合空间向量的坐标运算以及二面角公式,带入求解即可.【小问1详解】证明:连接1A M ,因为,M N 分别为,AB BC 的中点,则MN AC ∥,在三棱柱111ABC A B C -中,11ACA C ,则11MN A C ∥,则11,,,M N A C 四点共面,11AB A B = ,且11AB AB ∥,,M P 分别为11,AB A B 的中点,则1BM PA 且1BM PA =,则四边形1BMA P 为平行四边形,则1MA BP ,BP ⊄ 平面1C MN ,1MA ⊂平面1C MN ,则//BP 平面1C MN .【小问2详解】在直棱柱111ABC A B C -中,11,,AA AB AA AC AB AC ⊥⊥⊥,则以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系:则有13(0,0,0),(4,0,0),(0,3,0),(2,0,0),(2,,0),(2,0,4),(0,3,4)2A B C M N P C ,13(2,3,4),(0,,0),(0,0,4)2MC MN MP =-== ,设平面1MPC 的一个法向量为(,,)m x y z = ,平面1MNC 的一个法向量为(,,)n a b c =,则1234040m MC x y z m MP z ⎧⋅=-++=⎪⎨⋅==⎪⎩及12340302n MC a b c n MN b ⎧⋅=-++=⎪⎨⋅==⎪⎩,令3,1x c ==,则有(3,2,0),(2,0,1)m n ==,则cos ,m n m n m n ⋅===,因为二面角1P MC N --为钝角,则所求二面角的余弦值为.17. 已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,点()4,3P 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点()10-,的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.【答案】(1)22143x y -=; (2)存在,29(,0)8Q -,58564.【解析】【分析】(1)根据题意由双曲线的渐近线方程得到ba的值,再根据(4,3)P 在双曲线上,将坐标代入双曲线方程即可解得,a b 的值.(2)设出直线l 方程与M ,N 点坐标1122(,),(,)x y x y ,联立直线与双曲线方程,结合韦达定理可表示出12x x +、21x x 、12y y +、12y y ,再设出Q 坐标(,0)t ,则可以表示出,QM QN 坐标,即可用坐标表示出QM QN⋅的值,再结合具体代数式分析当QM QN ⋅为常数时t 的值.【小问1详解】由题意得,因为双曲线渐近线方程为y x =,所以b b a =⇒=,又点(4,3)P 在双曲线上,所以将坐标代入双曲线标准方程得:221691a b-=,联立两式解得21612a a -=⇒=,b =,所以双曲线的标准方程为:22143x y -=.【小问2详解】如图所示,点(1,0)E -,直线l 与双曲线交于,M N 两点,由题意得,设直线l 的方程为1x my =-,Q 点坐标为(,0)t ,联立221431x y x my ⎧-=⎪⎨⎪=-⎩得,22(34)690m y my ---=,设11(,)M x y ,22(,)N x y ,则122634m y y m +=-,122934y y m -=-,21212122268(1)(1)()223434m x x my my m y y m m +=-+-=+-=-=--,22121212122124(1)(1)()134m x x my my m y y m y y m --=--=-++=-,11)(,t y QM x =- ,22,)(Q x t y N =-,所以21212121212()()()Q t x t y y x x t x x t y M N y Q x +⋅--=-++=+2222212489343434m t t m m m ---=-⋅++---222222121384(34)8293434m t m t t tm m -------=+=+--22829434t t m +=--+-,所以若要使得上式为常数,则8290t +=,即298t =-,此时58564QM QN ⋅= ,所以存在定点29(,0)8Q -,使得QM QN ⋅ 为常数58564.【点睛】关键点点睛:本题(2)问解题关键首先在用适当的形式设出直线l 的方程,当已知直线过x 轴上的定点(,0)n 时,可设直线方程为x my n =+,这样可简化运算,其次在于化简QM QN ⋅时计算要仔细,最后判断何时为常数时要抓住“消掉m ”这个关键,即最后的代数式中没有我们设出的m.18. 已知函数()2sin cos f x x x x x =--.(1)求()f x 在πx =处的切线方程;(2)证明:()f x 在()0,2π上有且仅有一个零点;(3)若()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,求a 的取值范围.【答案】(1)220x y π+-= (2)证明见解析 (3)1πa <-【解析】分析】(1)根据解析式求出切点,再根据导函数求出斜率,点斜式可得到切线方程;(2)先分析函数的单调性,需要二次求导,再结合函数值的情况进行判断;(3)对于函数图象的位置关系问题,可先特值探路求出参数的取值范围,再证明在该条件不等式恒成立即可.【小问1详解】()2sin cos f x x x x x =--,当πx =时,()π2sin ππcos ππ0f =--=,所以切点为()π,0,因为()2cos cos sin 1cos sin 1f x x x x x x x x =-+-=+-',【所以斜线方程的斜率()πcos ππsin π12k f ==+-=-',根据点斜式可得()02πy x -=--可得220x y π+-=,所以()f x 在πx =处的切线方程为220x y π+-=;【小问2详解】由(1)可得()cos sin 1f x x x x =+-',令()()cos sin 1g x f x x x x ==+-',所以()sin sin cos cos g x x x x x x x '=-++=,当π0,2x ⎛⎫∈ ⎪⎝⎭和3π,2π2x ⎛⎫∈ ⎪⎝⎭时,cos 0x >,()0g x '>,()g x 单调递增;当π3π,22x ⎛⎫∈⎪⎝⎭时,cos 0x <,()0g x '<,()g x 单调递减;()πππππ0cos00sin010,cos sin 11022222g g ⎛⎫=+⨯-==+⨯-=-> ⎪⎝⎭,()πcos ππsin π1=2<0g =+--,3π3π3π3π3πcos cos 11022222g ⎛⎫=+-=--< ⎪⎝⎭,()2πcos 2π2πsin 2π10g =+-=,存在0π,π2x ⎛⎫∈⎪⎝⎭使得g (x 0)=0,所以()f x 在()00,x 上单调递增,在()0,2πx 单调递减,又()()02sin 00cos 00,π2sin ππcos ππ0f f =-⨯==-⨯-=,()2π2sin 2π2πcos 2π2π=4πf =---,所以()f x 在()0,2π上有且仅有一个零点;【小问3详解】因为()0,x ∞∈+时,()sin g x x =的图象恒在()2h x ax x =+的图象上方,即2sin x ax x >+恒成立,等价于2sin x xa x -<恒成立,当πx =时,有2sin 1ππa ππ-<=-,下证:2sin 1πx x x -≥-即证21sin πx x x -≥-,()0,x ∞∈+恒成立,令()21sin πs x x x x =-+,当2πx ≥时,2sin 2π4π>01sin πx x x x --++>,当()0,2πx ∈时,()2cos 1πs x x x -+'=,设()2cos 1πt x x x =-+,则()2sin πt x x -'=+,此时()0t x '=在()0,2π有两个不同解1212π,,0π2x x x x <<<<,且当10x x <<或22πx x <<时,()0t x '>,当12x x x <<时,()0t x '<,故()t x 在()12,x x 上为减函数,在()10,x ,()2,2πx 上为增函数,而()()()π0π0,2π402t t t t ⎛⎫====> ⎪⎝⎭,故当π02x <<时,()0t x >,当ππ2x <<时,()0t x <,当π2πx <<时,()0t x >,故()s x 在π0,2⎛⎫ ⎪⎝⎭上为增函数,在π,π2⎛⎫ ⎪⎝⎭为减函数,在()π,2π为增函数,而()()0π0s s ==,故()0,2πx ∈时,()0s x ≥恒成立,综上1πa <-.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数y =g (x )的图象的交点问题.19. 数列{}n b 满足32121222n n b b b b n -++++= ,{}n b 前n 项和为n T ,等差数列{}n a 满足的的1143,a b a T ==,等差数列前n 项和为n S .(1)求数列{}{},n n a b 的通项公式;(2)设数列{}n a 中的项落在区间()21,1m m T T ++中的项数为()m c m N*∈,求数列{}mc 的前n 和n H;(3)是否存在正整数m ,使得3m m m mS T S T +++是{}n a 或{}n b 中的项.若有,请求出全部的m 并说明理由;若没有,请给出证明.【答案】(1)21n a n =-,12n n b -=(2)2121233m m m H +=-+(3)1m =,2m =或5m =【解析】【分析】(1)先利用数列通项与前n 项和的关系求出12n n b -=,然后得到12n n b -=为等差数列,求得n T ,再求得14,a a ,计算数列{a n }的通项公式即可;(2)先求出区间()21,1m m T T ++的端点值,然后明确{a n }的项为奇数,得到()21,1m m T T ++中奇数的个数,得到()m c m N*∈通项公式,然后求和即可;(3)先假设存在,由(1)求得2n S n =,21nn T =-,令3m m m mS T L S T ++=+,然后判断L 的取值,最后验证,不同取值时,m 的值即可.【小问1详解】由题可知,当1n =时,11b =;当2n ≥时,得3121221222n n b b b b n --++++=- 因为32121222n n b b b b n -++++= 两式相减得11122n n n n bb --=⇒=经检验,当*N n ∈时,12n n b -=显然,{b n }是以1为首项,2为公比的等比数列,所以122112nn n T -==--所以1143,17a b a T ====等差数列{a n }的公差71241d -==-所以21n a n =-【小问2详解】由(1)可知,2212,12m m m m T T +=+=因为21n a n =-,所以21n a n =-为奇数;故()m c m N *∈为区间()21,1m m TT ++的奇数个数显然2212,12m m m m T T +=+=为偶数所以21224222m m mm m c --==-所以()2121444412222m mm m m H ---++++=-++++ ()214141122122141233m mm m +--=⨯-=-+--【小问3详解】由(1)可知2n S n =,21nn T =-所以23322121m m m m m m S T m S T m ++++-=++-若3m m m mS T S T +++是{a n }或{b n }中的项不妨令3m m m mS T L S T ++=+,则L *∈N 则有()()()232221118221m m m m L L m L m ++-=⇒--=-+-因为210,20m m -≥>所以18L ≤≤因为L 为数列{a n }或{b n }中的项所以L 的所有可能取值为1,2,3,4,5,7,8当1L =时,得20m =无解,所以不存在;当18L <≤时得28112m L m L --=-令()2*1,2m m g m m -=∈N 得()22ln 2ln 22mm m g m +='-令()22ln 2ln 2h m m m =-+显然()22ln 2ln 2h m m m =-+为二次函数,开口向下,对称轴为()11,2ln 2m =∈()()()120,368ln 20,4815ln 20h h h =>=->=-<所以当3m ≤时,()0g m '>,()2*1,2m m g m m N -=∈单调递增;当3m ≥时,()0g m '<,()2*1,2m m g m m N -=∈单调递减得()()1531,416g g ==因为28112m L m L --=-所以89112L L L -≤⇒≥-所以L 的可能取值有5,7,8我们来验证,当5L =时,得21324m m -=,可得存在正整数解2m =或5m =,故5L =满足;当7L =时,得21126m m -=,当m 为整数时,212m m -分子为整数,分母不能被3整除;所以21126m m -=无正整数解,故7L =不满足;当8L =时,得2102m m -=,得存在正整数解1m =,故8L =满足;综上所诉,1m =,2m =或5m =.【点睛】关键点点睛:(1)需要构造数列,然后合理利用数列通项与前n 项和的关系求解即可;(2)需要明确两个数之间奇数的个数即可;(3)先假设存在,然后确定数列{a n }或{b n }中的项是哪些,最后再反过来求m 的值即可.。
重庆涪陵实验中学高三数学第一学月第二次测试卷新人教版
重庆涪陵实验中学高三数学第一学月第二次测试卷新人教版(注: 150 分, 120 分钟达成;请答在答题卡上)一、选择题 (每题5 分,共 50 分. 在每题给出的四个选项中,恰有一项为哪一项切合题目要求的)1.设全集 U={ - 2,- 1, 0, 1, 2} ,A={ - 2,- 1, 0} , B={0 , 1, 2} ,则( U A ) ∩ B=( )A .{0}B .{-2,- 1}C .{1,2}D . {0,1, 2}2.以下函数中,在定义域内既是奇函数又是减函数的是()A . yx3B . ysin xC . y xD . y ( 1) x23.设 a log 0.3 4, blog 4 3, c 0.3 2,则 a 、b 、 c 的大小关系是()A . a c bB . a b cC . c b aD . b a ca 1aa”的 ()4.条件甲: “ ”是条件乙: “A .充要条件B .既不充足也不用要条件C .充足不用要条件D .必需不充足条件5.设 f(x)= |x - 1|- |x|,则 f[f(1 )] 等于()21 1 A . 1B . 0C .2D .-26.已知函数 f ( x) 存在反函数 f 1(x) ,且 f ( x 1) 的图象过定点( 3, 1),则函数 f1( x) 的图象必定过点()A . (4,1)B . (2,1)C . (1,4)D . (1,2)7.若函数 f (x)log a x1 在区间(- 1, 0)上有 f (x)0,则 f (x) 的递加区间是()A . (,1)B . (1,)C . ( , 1)D .( 1, )8.已知 f (x)a2 x2是定义在 R 上的奇函数,则 f1 (3) 的值是( )15A .3B .- 2C .1552D .39.如下图, 单位圆中弧 AB 的长为 x , f ( x) 表示弧 AB 与弦 AB 所围成的弓形面积, 则函数 yf ( x) 的图象是( )A BC D10.已知定义域为R 的函数f(x)知足 f (x) f ( x4) ,当x> 2 时,f( x)单一递加.假如x1x24且 ( x12)( x22)0 ,则 f ( x1 ) f ( x2 ) 的值().A .可能为0B.恒大于0C.恒小于0D.可正可负二、填空题 : (本大题共6小题,每题4分,共24分)11.函数 f x 的图象如右图所示,则g x f log 2 x 的定义域为y12 .已知f ( x 2) 4x24x 3 (x∈R),则函数 f ( x) 的最小值为____________ .013x13.不等式log2(13 的解集为6).x14.若直线y a 与函数y| x2x |的图象恰有两个不一样的交点,则实数 a 的取值范围是 _______.15.设f ( x)log 2 (x1)的反函数为 f1(x),若 [f1( ) 1][f 1(n) 1]8,则 f (m n) m_____________ .16.设函数f (x)2x3,给出以下四个命题:① f ( x) 的图象可由反比率函数y7x2经平移变换得x到;② f ( x) 的图象是中心对称图形,其对称中心是(-2 , 2);③f ( x)必定存在反函数;④ f (x) 在定义域(,2)(2,) 上是增函数.此中正确命题的序号是____________ .三、解答题(本大题共 5 小题,共70 分。
2020届高三毕业班第一次综合质量检测数学(理)试题—附答案
5.
已知函数
f
(
x)
1
x x
2
sin x ,则函数 y
f (x) 的图像大致为
A.
B.
C.
D.
6.从区间 0,1随机抽取 2n 个数 x1, x2 ,, xn , y1, y2 ,, yn ,组成坐标平面上的 n 个点
(x1, y1 ) ,(x2 , y2 ) ,… (xn , yn ) ,其中到原点距离小于1的点有 m 个,用随机模拟的
A.20100
B.20200
C.40200
D.40400
12.在棱长为 4 的正方体 ABCD A1B1C1D1 中, E, F 分别为 AA1, BC 的中点,点 M 在
棱 B1C1 上, B1M
1 4
B1C1
,若平面
FEM
交
A1B1 于点 N
,四棱锥 N
BDD1B1 的五
个顶点都在球 O 的球面上,则球 O 半径为
A(3, 0, 0) , B(0, 3, 0) , S(0, 3 , 3 3 ) , C(1,0,0) , 22
上.
(1)求曲线 C 的普通方程及直线 l 的直角坐标方程. (2)求△PAB 面积的最大值.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知函数 f (x) | 2x t | ,若 f (x) 1的解集为 (1,0) . (1)求 t 并解不等式 f (x) x 2 ; (2)已知: a,b R ,若 f (x) 2a b | 2x 2 | ,对一切实数 x 都成立, 求证: a 2b 1 .
3
2
根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用
重庆市涪陵实验中学校2019-2020学年高三上学期第一次月考数学(理)试题
重庆市涪陵实验中学校高2020级高三上期第一次月考数学(理科)试题第Ⅰ卷 (选择题 共60分)一、选择题(共12小题,每小题5分,共60分;每小题只有唯一符合题目要求的答案)1.已知集合{{},0,1,2,3,4A x y B ===,则AB =( ) A. φB. {}0,1,2C. {}0,1,2,3D. (]{},34-∞ 2.若命题00:,1x P x Z e∃∈<,则p ⌝为( ) A. ,1x x Z e ∀∈< B. ,1x x Z e ∀∈≥ C. ,1x x Z e ∀∉< D. ,1x x Z e ∀∉≥ 3.下列函数中,既在()0,∞+上单调递增,又是奇函数的是( ) A. y x =B. 1y x x -=-C. 1y x x -=-D. lg y x = 4.定积分()1214d x x x --=⎰( ) A. 0 B. 1- C. 23- D. 2-5.sin15cos75cos15sin105︒︒+︒︒等于( )A. 0B. 12C. 1D. 26.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 7.设0.5342,log π,c=log 2a b -== ,则( )A. b a c >>B. b c a >>C. a b c >>D. a c b >> 8.已知函数()f x 满足:()()0f x f x -+=,且当0x ≥时,2()12x m f x +=-,则(1)=f -( ) A. 32 B. 32- C. 12 D. 12-9.函数3x xe e y x x--=-的图像大致是( ) A. B. C. D. 10.将函数()sin 2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A. 在(0,)4π上单调递增,为偶函数B. 最大值为1,图象关于直线34x π=对称 C. 在3(,)88ππ-上单调递增,为奇函数 D. 周期π,图象关于点3(,0)8π对称 11.如果函数()f x 上存在两个不同点,A B 关于原点对称,则称,A B 两点为一对友好点,记作,A B 规定,A B 和,B A 是同一对,已知()() 0,lg ?0cosx x f x x ⎧≥⎪=⎨--<⎪⎩,则函数()f x 上 共存在友好点 ( )A. 14对B. 3对C. 5对D. 7对12.已知点A 是函数()sin()(0,0)f x x ωϕωϕπ=+><<的图像上的一个最高点,点B 、C 是函数()f x 图像上相邻两个对称中心,且三角形ABC 的周长的最小值为2.若0m ∃>,使得()()f x m mf x +=-,则函数()f x 的解析式为 A. sin()24y x ππ=+ B. sin()23y x ππ=+ C. sin()4y x ππ=+ D. sin()3y x ππ=+第Ⅱ卷 (非选择题 共90分)二、填空题(共4小题,每小题5分,共20分)13.函数()sin 126f x x ππ⎛⎫=++ ⎪⎝⎭最小正周期为_____.14.已知tan 2α=,则2sin 2sin cos ααα+=__________.15.16/17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰∙纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即b a N = ⇔ log a b N =.现在已知23a =, 34b =,则ab =__________.16.在(1,)+∞上的函数()f x 满足:①(2)()f x cf x =(c 为正常数);②当24x ≤≤时,2()1(3)f x x =--,若()f x 的图象上所有极大值对应的点均落在同一条直线上,则c =___.三、解答题(共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤) 17.已知2:340p x x +-≤,()():10q x x m +-<. (1)若2m =,命题“p ∨q ”为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数m 的取值范围.18.已知α,β为锐角,3sin 5α=,()sin αβ-=(1)求cos2α的值;(2)求sin()αβ+的值.19.已知函数()()1x f x ex =+ (1)求函数()f x 极值;(2)若函数()()3x g x f x e m =--有两个零点,求实数m 的取值范围.20.已知函数()()πsin 2(0,)2f x x ωϕωϕ=+><最小正周期为π,它的一个对称中心为(6π,0) (1)求函数y =f(x)图象的对称轴方程;(2)若方程f(x)=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值. 21.已知函数()sin f x x x =+. (Ⅰ)求曲线()y f x =在点(,())22f ππ处的切线方程; .(Ⅱ)若不等式()f x ax ≥对任意π[0,]2x ∈恒成立,求实数a 的取值范围. 22.已知函数()()2ln 21f x x ax a x =-+-+. (1)讨论函数()f x 的单调性;(2)设a Z ∈,若对任意的()0,0x f x >≤恒成立,求整数a 的最小值;(3)求证:当0x >时,32ln 210x e x x x x x -+-+->.。
重庆市2020届高三数学上学期月考试卷理
2020届高三数学上学期第一次月考试卷 理数学测试卷共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须用0.5毫米黑色签字笔,将答案书写在答题卡上规定的位置上。
4.所有题目必须在答题卡上作答,在试卷上答案无效。
5.考试结束后,将试卷带走(方便老师评讲),答题卡不得带走。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的。
)1. 已知集合{}(){}24,lg |2|A x x B x y x =<=-<=-,则()R A C B ⋂=( )A .()2,4B .()2,4-C .()2,2-D .(]2,2-2. 设复数z 满足(1)3+=+i z i (其中i 为虚数单位),则错误!未找到引用源。
( )A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!D!未找到引用源。
3. 命题“2,240x R x x ∀∈-+≤”的否定为( )A .2,240x R x x ∀∈-+≥ B .2000,240x R x x ∃∈-+>C .2,240x R x x ∀∉-+≥D .2000,240x R x x ∃∉-+>4. 函数()ln 26f x x x =+-的零点0x 所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)5. 已知1275a -⎛⎫=⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a b c 、、的大小关系是( ) A .b a c <<B .c b a <<C .c a b <<D .b c a <<6. 已知函数()sin[(1)],02,0x x x f x x π-≥⎧=⎨<⎩,则12log 4f f ⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭( )A.2B.2-C.2D.2-7. 函数)(x f =)6(log 221++ax x 在[-2,+∞)上是减函数,则a 的取值范围为( )A .[4,+∞)B .[4,5)C .[4,8)D .[8,+∞)8. 设命题0)12(:22<+++-a a x a x p ,命题1)13lg(:≤-x q ,若p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .]38,31[B .)38,31[C .)38,31(D .]38,(-∞9. 函数1()sin(ln)1x f x x -=+的图象大致为( )10.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为( )A . 11,4⎡⎤-⎢⎥⎣⎦ B . 1,14⎡⎤⎢⎥⎣⎦C . 12,4⎡⎤-⎢⎥⎣⎦ D . 1,13⎡⎤⎢⎥⎣⎦11.已知定义域为R 的奇函数()f x ,当0x >时,满足()()()23log 720233,2x x f x f x x ⎧--<≤⎪⎪=⎨⎪->⎪⎩,,则()()()()1232020f f f f ++++=L ( ) A .2log 5B .2log 5-C .-2D .012.把函数()()1log 2+=x x f 的图象向右平移一个单位,所得图象与函数()x g 的图象关于直线x y =对称;已知偶函数()x h 满足()()11--=-x h x h ,当[]1,0∈x 时,()()1-=x g x h ;若函数()()x h x kf y -=有五个零点,则k 的取值范围是( )A .()1,2log 3B .[)1,2log 3C .⎪⎭⎫ ⎝⎛21,2log 6 D .⎥⎦⎤ ⎝⎛21,2log 6第Ⅱ卷本卷包括必考题和选考题两部分。
重庆市涪陵实验中学2020届高三数学上学期第一次月考试题理2020010803107
重庆市涪陵实验中学2020届高三数学上学期第一次月考试题 理第Ⅰ卷 (选择题 共60分)一、选择题(共12小题,每小题5分,共60分;每小题只有唯一符合题目要求的答案) 1.已知集合{|A x y ==,{0,1,2,3,4}B =,则A B =I ( )A .∅B .{0,1,2}C .{0,1,2,3}D .(,3){4}-∞U 2.若命题1,:00<∈∃x e Z x P ,则为( ) A .B .C .D .3.下列函数中,既在()0,+∞上单调递增,又是奇函数的是( )A .y x =B .1y x x -=- C .1y x x -=- D .lg y x = 4.定积分( ) A .0 B .C .D .5.等于( )A .0B .C .1D .6.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增”是“4a ≤-”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0.5342,log π,c=log 2a b -== ,则( )A .b a c >>B .b c a >>C .a b c >>D .a c b >>8.函数()f x 满足:()()0f x f x -+=,且当0x ≥时,2()12xmf x +=-,则(1)=f -( ) A .32 B .32- C .12 D .12- 9. 函数3x xe e y x x--=-的图像大致是( )A .B .C .D .10.将函数x x f 2sin )(=向右平移4π个单位后得到函数)(x g ,则)(x g 具有性质( ) A .在)4,0(π上单调递增,为偶函数 B .最大值为1,图象关于直线43π=x 对称C .在)8,83(ππ-上单调递增,为奇函数 D .周期为π,图象关于点)0,83(π对称 11.若函数()x f 上存在两个不同点B A ,关于原点对称,则称B A ,两点为一对“优美点记作()B A ,,规定()B A ,和()A B ,是同一对“优美点”.已知()()⎩⎨⎧<--≥=0lg 0 cos x x x x x f ,则函数()x f 上共存在“优美点” ( )A .14对B . 3对C .5对D .7对12.已知点A 是函数()sin()(0,0)f x x ωϕωϕπ=+><<的图像上的一个最高点,点B 、C 是函数()f x 图像上相邻两个对称中心,且三角形ABC的周长的最小值2.若0m ∃>,使得()()f x m mf x +=-,则函数()f x 的解析式为( )A .sin()24y x ππ=+ B .sin()23y x ππ=+ C.sin()4y x ππ=+D .sin()3y x ππ=+第Ⅱ卷 (非选择题 共90分)二、填空题(共4小题,每小题5分,共20分)13. 函数()sin 126f x x ππ⎛⎫=++⎪⎝⎭的最小正周期为_____.14. 已知tan 2α=,则=__________.15.十六世纪与十七世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.后来天才数学家欧拉发现了对数与指数的关系,即b a N = ⇔log a b N =.现在已知23a =, 34b =,则ab =__________.16.在),1(+∞上的函数)(x f 满足:①)()2(x cf x f =(c 为正常数);②当42≤≤x 时,2)3(1)(--=x x f ,若)(x f 的图象上所有极大值对应的点均落在同一条直线上,则=c .三、解答题(共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知2:340p x x +-≤,()():10q x x m +-<.(1)若2m =,命题“”为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数m 的取值范围.18.(本小题满分12分)已知α.β为锐角,3sin 5α=,()sin 5αβ-=. (1)求cos2α的值; (2)求的值.19.(本小题满分12分)已知函数.(1)求函数的极值;(2)若函数()()3xg x f x e m =--有两个零点,求实数m 的取值范围.20.(本小题满分12分)已知函数()()sin 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,它的一个对称中心为,06π⎛⎫⎪⎝⎭.(1)求函数()x f y =图象的对称轴方程;(2)若方程()13f x =在(0,π)上的解为21,x x ,求()12cos x x -的值.21.(本小题满分12分)已知函数()sin f x x x =+.(1)求曲线()y f x =在点(,())22f ππ处的切线方程;(2)若不等式()f x ax ≥对任意(0,]2x π∈恒成立,求实数a 的取值范围.22.(本小题满分12分)已知函数.(1)讨论函数()f x 的单调性;(2)设a Z ∈,若对任意的()0,0x f x >≤恒成立,求整数a 的最小值; (3)求证:当320ln 210xx e x x x x x >-+-+->时,.重庆市涪陵实验中学校2019年秋期高2020级第一次月考理科数学答案一、选择题(每小题5分)1、C2、 B3、C4、 C5、C6、B7、A8、C9、A 10、A 11、D 12、A 二、填空题(每小题5分)13、4 14、 15、2 16、 1或2三、解答题17、(本小题10分)解:(1)时,,“”为真时,,两个命题都为真,即,所以为真时,即x 的取值范围为……………………………(4分)(2)若是的必要不充分条件,则的解集的解集,①时,即时,满足题意②时,当时,,因为,所以。
高三数学上学期第一次月考试题 理 7
涪陵实验中学2021届高三数学上学期第一次月考试题 理制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
第一卷 〔选择题 一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分;每一小题只有唯一符合题目要求之答案〕1.集合{|A x y ==,{0,1,2,3,4}B =,那么AB =( )A .∅B .{0,1,2}C .{0,1,2,3}D .(,3){4}-∞ 2.假设命题1,:00<∈∃x e Z x P ,那么为〔 〕A .B .C .D .3.以下函数中,既在()0,+∞上单调递增,又是奇函数的是〔 〕A .y x =B .1y x x -=- C .1y x x -=- D .lg y x = 4.定积分〔 〕 A .0 B .C .D .5.等于〔 〕A .0B .C .1D .6.“函数2()2(1)3f x x a x =--++在区间(,2]-∞上单调递增〞是“4a ≤-〞的〔 〕A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0.5342,log π,c=log 2a b -== ,那么〔 〕A .b a c >>B .b c a >>C .a b c >>D .a c b >>8.函数()f x 满足:()()0f x f x -+=,且当0x ≥时,2()12xmf x +=-,那么(1)=f -〔 〕 A .32 B .32- C .12 D .12-9. 函数3x xe e y x x--=-的图像大致是〔 〕A .B .C .D .10.将函数x x f 2sin )(=向右平移4π个单位后得到函数)(x g ,那么)(x g 具有性质〔 〕 A .在)4,0(π上单调递增,为偶函数 B .最大值为1,图象关于直线43π=x 对称C .在)8,83(ππ-上单调递增,为奇函数 D .周期为π,图象关于点)0,83(π对称 11.假设函数()x f 上存在两个不同点B A ,关于原点对称,那么称B A ,两点为一对“优美点记作()B A ,,规定()B A ,和()A B ,是同一对“优美点〞.()()⎩⎨⎧<--≥=0lg 0cos x x x x x f ,那么函数()x f 上一共存在“优美点〞 〔 〕A .14对B . 3对C .5对D .7对A 是函数()sin()(0,0)f x x ωϕωϕπ=+><<的图像上的一个最高点,点B 、C 是函数()f x 图像上相邻两个对称中心,且三角形ABC的周长的最小值2.假设0m ∃>,使得()()f x m mf x +=-,那么函数()f x 的解析式为( )A .sin()24y x ππ=+ B .sin()23y x ππ=+ C.sin()4y x ππ=+D .sin()3y x ππ=+第二卷 〔非选择题 一共90分〕二、填空题〔一共4小题,每一小题5分,一共20分〕13. 函数()sin 126f x x ππ⎛⎫=++ ⎪⎝⎭的最小正周期为_____.14. tan 2α=,那么=__________.15.十六世纪与十七世纪之交,随着天文、航海、工程、贸易以及HY 事的开展,改良数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而创造了对数.后来天才数学家欧拉发现了对数与指数的关系,即b a N = ⇔ log a b N =.如今23a =, 34b =,那么ab =__________.16.在),1(+∞上的函数)(x f 满足:①)()2(x cf x f =〔c 为正常数〕;②当42≤≤x 时,2)3(1)(--=x x f ,假设)(x f 的图象上所有极大值对应的点均落在同一条直线上,那么=c .三、解答题〔一共6个小题,一共70分,解答题应写出文字说明、证明过程或者演算步骤〕17.〔本小题满分是10分〕2:340p x x +-≤,()():10q x x m +-<.〔1〕假设2m =,命题“〞为真,务实数x 的取值范围;〔2〕假设p 是q 的必要不充分条件,务实数m 的取值范围.18.〔本小题满分是12分〕α.β为锐角,3sin 5α=,()sin αβ-=〔1〕求cos2α的值; 〔2〕求的值.19.〔本小题满分是12分〕函数.〔1〕求函数的极值;〔2〕假设函数()()3xg x f x e m =--有两个零点,务实数m 的取值范围.20.〔本小题满分是12分〕函数()()sin 20,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的最小正周期为π,它的一个对称中心为,06π⎛⎫⎪⎝⎭.〔1〕求函数()x f y =图象的对称轴方程;〔2〕假设方程()13f x =在(0,π)上的解为21,x x ,求()12cos x x -的值.21.〔本小题满分是12分〕函数()sin f x x x =+.〔1〕求曲线()y f x =在点(,())22f ππ处的切线方程;〔2〕假设不等式()f x ax ≥对任意(0,]2x π∈恒成立,务实数a 的取值范围.22.〔本小题满分是12分〕函数.〔1〕讨论函数()f x 的单调性;〔2〕设a Z ∈,假设对任意的()0,0x f x >≤恒成立,求整数a 的最小值; 〔3〕求证:当320ln 210xx e x x x x x >-+-+->时,.涪陵实验中2021年秋期高2021级第一次月考理科数学答案一、选择题〔每一小题5分〕1、C2、 B3、C4、 C5、C6、B7、A8、C9、A 10、A 11、D 12、A二、填空题〔每一小题5分〕13、4 14、 15、2 16、 1或者2 三、解答题17、〔本小题10分〕 解:〔1〕时,,“〞为真时,,两个命题都为真,即,所以为真时,即x 的取值范围为……………………………(4分) 〔2〕假设是 的必要不充分条件,那么的解集的解集,①时,即时,满足题意 ②时,当时,,因为,所以。
重庆市涪陵实验中学2020届高三物理上学期第一次月考试题(含解析)
重庆市涪陵实验中学2020届高三物理上学期第一次月考试题(含解析)1.下面说法正确的是( )A. 研究跳水比赛中选手在空中的动作时可以看做质点B. 物体静止时,对水平支持面的压力就是物体的重力C. 做曲线运动的物体,其运动状态也可能不变D. 速度在变化而加速度可以不发生变化 【答案】D 【解析】【详解】A. 研究跳水比赛中选手在空中的动作时,要看动作,此时不能看作质点,故A 错误; B. 物体对水平支持面的压力大小可能等于物体重力,二者性质不同。
故B 错误; C. 做曲线运动的物体,由于速度方向一直改变,故其运动状态一定改变,故C 错误。
D. 速度变化而加速度可以不发生变化,故匀变速运动,故D 正确。
2.物体做匀变速直线运动,依次通过A 、B 、C 、D 四个点,通过相邻两点的时间间隔均为2s ,已知AB =12m,CD =28m 下列说法正确的是( ) A. 物体的加速度大小为4m/s 2 B. 物体通过A 点的速度大小为0m/s C. 物体在BC 段的平均速度大小为10m/s D. 物体通过C 点的速度大小为16m/s 【答案】C 【解析】【详解】A. 由公式x m −x n =(m −n )at 2可得:2222812m/s =2m/s 22a -=⨯ 故A 错误。
B. 由公式2AB A 12x v t at =+可得:v A =4m/s故B 错误;C. 匀变速直线运动连续相等时间间隔内的位移之差等于定值即2BC AB x x at -=解得:x BC =20m所以平均速度为:20m/s 10m /s 2v == 故C 正确。
D. 通过C 点的速度等于BD 间的平均速度即C BD 2028m /s 12m /s 22v v +===⨯ 故D 错误。
3.地球绕着太阳公转,其运动可看成匀速圆周运动。
已知万有引力常量为G ,如果要通过观测求得太阳的质量,还需要测量下列哪些量 A. 地球公转的轨道半径和公转周期 B. 地球公转的轨道半径和自转周期 C. 地球半径和地球的公转周期 D. 地球半径和地球的自转周期【答案】A 【解析】 【分析】由题意可知,考查中心天体质量的计算,根据万有引力提供向心力计算可得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市涪陵实验中学 2020 届高三数学上学期第一次月考试题 理
第Ⅰ卷 (选择题 共 60 分) 一、选择题(共 12 小题,每小题 5 分,共 60 分;每小题只有唯一符合题目要求的答案)
1. 已知集合 A { x | y 3 x} , B {0,1,2,3,4} ,则 A B ( )
A.
B . {0,1, 2}
A.在 (0, ) 上单调递增,为偶函数 4
B .最大值为 1,图象关于直线 x
3
对称
4
C.在 ( 3 , ) 上单调递增,为奇函数
D .周期为
,图象关于点
3 (
,0) 对称
88
8
11.若函数 f x 上存在两个不同点 A, B 关于原点对称,则称 A, B 两点为一对“优美点
记作 A, B , 规定 A, B 和 B, A 是同一对 “优美点” . 已知 f x
ab N
b log a N . 现在已知 2a 3 , 3b 4 ,则 ab __________.
A. b a c
B.b c a
C. a b c
D. a c b
8. 函数 f (x) 满足: f ( x)
f ( x)
0 ,且当 x
0 时, f (x)
2m 2x
1,则 f ( 1)=
(
)
3
A.
2
3
1
B
.
C
.
2
2
1
D
.
2
9. 函数 y
ex
3
e
x
的图像大致是(
)
xx
A.
B.
C.
D.
10.将函数 f ( x) sin 2x向右平移 个单位后得到函数 g( x) ,则 g (x) 具有性质( ) 4
C . {0,1,2,3}
D . ( ,3) {4}
2. 若命题 P : x 0 Z, ex 0 1 ,则 为( )
A.
B.C.Βιβλιοθήκη D.3. 下列函数中,既在 0, 上单调递增,又是奇函数的是(
)
A. y x
B
. y x 1 x C . y x x 1 D . y lg x
4. 定积分
()
A. 0
B.
C.
发现错误后要划掉重新写,忌原地用涂黑的方式改,这会使阅卷老师看不清。如果对现有 的题解不满意想重新写,要先写出正确的,再划去错误的。有的同学先把原来写的题解涂 抹了,写新题解的时间又不够,本来可能得的分数被自己涂掉了。考试期间遇到这些事, 莫慌乱!不管是大型考试还是平时的检测,或多或少会存在一些突发情况。遇到这些意外 情况应该怎么办?为防患于未然,老师家长们应该在考前给孩子讲清楚应急措施,告诉孩 子遇事不慌乱,沉重冷静,必要时可以向监考老师寻求帮助。
cos x x 0
,
lg x x 0
则函数 f x 上共存在“优美点” ( )
A. 14 对
B
.3 对
C
.5对
D
.7 对
12. 已知点 A 是函数 f ( x) sin( x )( 0,0
) 的图像上的一个最高点,点
B 、 C 是函数 f ( x) 图像上相邻两个对称中心,且三角形 ABC 的周长的最小值
D.
5.
等于( )
A. 0
B.
C. 1
D.
1
6.“函数 f (x) x2 2(a 1)x 3 在区间 ( , 2] 上单调递增”是“ a 4”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
7.设 a 2 0.5 ,b log 3 π,c=log 4 2 ,则( )
13. 函数 f x sin x
1 的最小正周期为 _____.
26
14. 已知 tan 2 ,则
=__________.
15.十六世纪与十七世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字 计算方法成了当务之急, 约翰 纳皮尔正是在研究天文学的过程中, 为了简化其中的
计算而发明了对数 . 后来天才数学家欧拉发现了对数与指数的关系,即
2 2 2 . 若 m 0 ,使得 f ( x m) mf ( x) ,则函数 f ( x) 的解析式为 ( )
A. y sin( x )
B
. y sin( x )
24
23
C. y sin( x )
D
4
第Ⅱ卷 (非选择题
. y sin( x ) 3
共 90 分)
二、填空题(共 4 小题,每小题 5 分,共 20 分)