(新)高三高考平面向量题型总结-经典

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量

一、平面向量的基本概念:

1.向量:既有大小又有方向的量叫做________.我们这里的向量是自由向量,即不改变大小和方向可以平行移动。

向量可以用_________来表示.向量的符号表示____________________. 2.向量的长度:向量的大小也是向量的长度(或_____),记作_________. 3.零向量:长度为0的向量叫做零向量,记作________. 4.单位向量:__________________________.

5.平行向量和共线向量:如果向量的基线平行或重合,则向量平行或共线;两个非零向量方向相同或相反.记作________规定:___________________. 注意:理解好共线(平行)向量。

6.相等向量:_______________________. 例:下列说法正确的是_____

①有向线段就是向量,向量就是有向线段;

②,,c b b a == 则c a = ;③

,//,//c b b a c a // ④若CD AB

=,则A ,B ,C ,D 四点是平行四边形的四个顶点;

⑤所有的单位向量都相等; 二、向量的线性运算: (一)向量的加法:

1.向量的加法的运算法则:____________、_________和___________.

(1)向量求和的三角形法则:适用于任何两个向量的加法,不共线向量或共线向量;模长之间的不等式关系_______________________;“首是首,尾是尾,首尾相连” 例1.已知AB=8,AC=5,则BC 的取值范围__________ 例2.化简下列向量

(1)PM QP MN NQ +++ (2))()()(MB PM AB CQ BC BP +++++

(2)平行四边形法则:适用不共线的两个向量,当两个向量是同一始点时,用平行四边形法则;

a + 是以a ,b

为邻边的平行四边形的一条对角线,如图:

例1.(09 山东)设P 是三角形ABC 所在平面内一点,2=+,则 A.0=+ B.0=+ C.0=+ D.0=++

例2.(13四川)在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AO AD AB λ=+ ,则.______=λ (3)多边形法则

2.向量的加法运算律:交换律与结合律

(二)向量的减法:

减法是加法的逆运算,A.-=-= (终点向量减始点向量)

在平行四边形中,已知以a 、b 为邻边的平行四边形中,a -+, 分别为平行四边形的两条对角线,当

a a -=+

时,此时平行四边形是矩形。

例1.已知

86==a

,且

a a -=+ ,则

a a -=+ =______

例2.设点M 是BC 的中点,点A 在线段BC 外,BC=16-=+____

=

向量的加减运算:

例1.(08辽宁)已知、O A 、B 是平面内的三个点,直线AB 上有一点C ,满足CB →+2AC →=0,则OC →

=______ A.2OA →-OB →

B.—OA →

+2OB →

C.

32OA →—31OB → D. —31OA →+3

2OB →

例2.(15课标全国I )设D 是三角形ABC 所在平面内一点,CD BC 3=,则______

A.AC AB AD 3431+-=

B.AC AB AD 3

4

31-= C.AC AB AD 3134+= D.AC AB AD 3

134-= 例3.(12全国)在ABC ∆中,AB 边上的高为CD ,CB →

=a, CA →

=b,a •b=0, 2,1==b a ,则AD →

=______ 例4.(10全国)在ABC ∆中,点D 在边AB 上,CD 平分ACB ∠,若CB →

=a, CA →

=b,2,1==b a ,则CD →

=________ 例5.在ABC ∆中,设D 为边BC 的中点, E 为边AD 的中点,若BE →

=m AB →

+n AC →

,则m +n =___

例 6.(15北京理)在ABC ∆中,点N M ,满足NC BN MC AM ==,2,若AC y AB x MN +=,则

_________==y x

例7.(13江苏)设D 、E 分别是ABC ∆的边AB 、BC 上的点,若BC BE AB AD 3

2

,21==,若DE →=1λAB →+2λAC →

(1λ,2λ为实数),则1λ+2λ=_________

例8.(12东北四市一摸)在ABC ∆中,设P 为边BC 的中点,内角C B A ,,的对边c b a ,,,若c AC →

+a PA →

+b PB →

=0,则ABC ∆的形状为________

(三)实数与向量的积:

1.定义:实数λ与非零向量a 的乘积a

λ是一个向量,它的长度是__________.它的方向是_________________________________________________________.当0=λ时,_______ 2.数乘向量的几何意义是把向量同方向或反方向扩大或缩小。

3.运算律:设a 、b

是任意向量,μλ,是实数,则实数与向量的积适合以下运算:

4.向量共线的判断:(平行向量的基本定理)

①如果b a λ= ,则b a // ;若b a // ,0≠b ,则存在唯一的实数λ,使得b a λ=

.

②若a 、b

是两个不共线的非零向量,则它们共线的充要条件是存在两个均不是零的实数μλ,,使________.

③若22122111,e e e e a μλμλ+=+= ,21

,e 不共线,b a // ,则在有意义的前提下,21

21μμλλ= 例1.(15课标全国II )设向量若a 、b

是两个不平行的向量,向量a + λ与a 2+ 平行,则____=λ

例2.(09湖南)对于非零向量,,a b “0a b +=”是“//a b ”的___A .充分不必要条件 B. 必要不充分条件C .充分必要条件 D. 既不充分也不必要条件 例3.(12四川)设a ,b 都是非零向量,下列四个条件中,使

||||

=a b a b 成立的充分条件是A .a =-b B .a ∥b C .a =2b D .a ∥b 且|a |=|b |

5.单位向量

给定一个向量a ,与a 同方向且长度为1的向量叫做a

的单位向量,即_______________ 重要结论:

已知ABC ∆,O 为定点,P 为平面内任意一点.

①PA →+PB →+PC →

=0⇔________________________⇔_______________________. ②若OP →=

3

1OA →+OB →+OC →

,则P 为ABC ∆__________________________ ③若OP →=OA →

+λ(AB →+AC →

),),0(+∞∈λ,则P 点的轨迹__________________. ④若OP →=OA →

+λ_________,),0(+∞∈λ,则P 点的轨迹通过ABC ∆的内心 ⑤若__________________________,则P 点的轨迹是ABC ∆的外心 ⑥若__________________________,则P 点的轨迹是ABC ∆的垂心

例1.(10湖北)在ABC ∆中,点M 满足MA →+MB →+MC →

=0,若存在实数m ,使得AB →+AC →

=m AM →

,则m =________. 例2.在ABC ∆中,重心为G ,若sin 3sin 3sin

2=++C B A ,则_____cos =B

相关文档
最新文档