(完整word)安徽省合肥市包河区2017-2018学年第一学期期末九年级数学试卷(word版有答案)

合集下载

【精选3份合集】2017-2018年合肥市九年级上学期期末综合测试数学试题

【精选3份合集】2017-2018年合肥市九年级上学期期末综合测试数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上【答案】C【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.2.下列多边形一定相似的是()A.两个平行四边形B.两个矩形C.两个菱形D.两个正方形【答案】D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.3.方程x2+4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根【答案】B【分析】判断上述方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了.【详解】解:∵△=b 2﹣4ac =16﹣16=0∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.﹣12的绝对值为( ) A .﹣2 B .﹣12 C .12 D .1【答案】C 【解析】分析:根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.详解: ﹣12的绝对值为|-12|=-(﹣12)= 12. 点睛:主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.5.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【解析】试题分析:不可能事件发生的概率为0,故A 正确;随机事件发生的概率为在0到1之间,故B 错误;概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误;故选A .考点:随机事件.6.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为( )A .13-B .1-C .5D .13【答案】C 【分析】由一元二次方程根与系数的关系可得x 1+x 2=-3,x 1·x 2=2,利用完全平方公式即可求出答案. 【详解】∵12x x 、是一元二次方程2320x x ++=的两个实数根,∴x 1+x 2=-3,x 1·x 2=2, ∴2212x x +=( x 1+x 2)2-2x 1·x 2=9-4=5, 故选:C .【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个实数根为12x x 、,那么x 1+x 2=b a -,x 1·x 2=c a,熟练掌握韦达定理是解题关键. 7.下列方程中,关于x 的一元二次方程是( ) A .3(x +1)2=2(x +1)B .21x +1x -2=0C .ax 2+bx +c =0D .x 2+2x =x 2-1 【答案】A【分析】依据一元二次方程的定义判断即可.【详解】A. 3(x+1)2=2(x+1)是一元二次方程,故A 正确;B. 21x +1x-2=0是分式方程,故B 错误; C. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故C 错误;D. x 2+2x=x 2-1,整理得2x=-1是一元一次方程,故D 错误;故选A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.8.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >2【答案】A 【解析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x 的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >x k . 故选A .【点睛】本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键.9.如图,已知⊙O 的直径AB ⊥弦CD 于点E ,下列结论中一定正确的是( )A .AE =OEB .CE =DEC .OE =12CED .∠AOC =60°【答案】B 【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB ⊥弦CD∴CE =DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.10.一元二次方程的根是( ) A .3x =B .1203x x ==-,C .1203x x ==,D .1203x x ==, 【答案】D【解析】x 2−3x=0,x(x−3)=0,∴x 1=0,x 2=3.故选:D.11.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是( )A .0B .12C .±1D .12- 【答案】C【详解】解:05)1(22=-+-mx x m 是关于x 的一元二次方程,则210m -≠, 解得m ≠±1故选C.【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.12.如图,在平面直角坐标系中,直线OA过点(4,2),则tan 的值是( )A.12B.5C.5D.2【答案】A【分析】根据题意作出合适的辅助线,然后根据锐角三角函数和图象中的数据即可解答本题.【详解】如图:过点(4,2)作直线CD⊥x轴交OA于点C,交x轴于点D,∵在平面直角坐标系中,直线OA过点(4,2),∴OD=4,CD=2,∴tanα=CDOD=24=12,故选A.【点睛】本题考查解直角三角形、坐标与图形的性质,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.二、填空题(本题包括8个小题)13.正八边形的每个外角的度数和是_____.【答案】360°.【分析】根据题意利用正多边形的外角和等于360度,进行分析计算即可得出答案.【详解】解:因为任何一个多边形的外角和都是360°,所以正八边形的每个外角的度数和是360°.故答案为:360°.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.14.某班主任将其班上学生上学方式(乘公汽、骑自行车、坐小轿车、步行共4种)的调查结果绘制成下图所示的不完整的统计图,已知乘坐公汽上学的有12人,骑自行车上学的有24人,乘家长小轿车上学的有4人,则步行上学的学生人数在扇形统计图对应的扇形所占的圆心角的度数为_____.【答案】90°【分析】先根据骑自行车上学的学生有12人占25%,求出总人数,再根据步行上学的学生人数所对应的圆心角的度数为所占的比例乘以360度,即可求出答案.【详解】解:根据题意得:总人数是:12÷25%=48人,所以乘车部分所对应的圆心角的度数为360°×48122448--=90°;故答案为:90°.【点睛】此题主要考查了扇形统计图,读懂统计图,从统计图中得到必要的信息,列出算式是解决问题的关键.15.在△ABC中,已知(sinA-22)2+│3=1.那么∠C=_________度.【答案】2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA 22+|tanB3-,∴sinA22-=1,tanB3-=1,∴sinA22=,tanB3=∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.16.如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1.若△E 1FA 1∽△E 1BF ,则AD= .【答案】3.2.【详解】解:∵∠ACB=90°,AB=20,BC=6,∴2222AC AB BC 1068=-=-=.设AD=2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 2,点E 的对应点为E 2,∴AE=DE=DE 2=A 2E 2=x .∵DF ⊥AB ,∠ACB=90°,∠A=∠A ,∴△ABC ∽△AFD .∴AD :AC =DF :BC ,即2x :8 =DF :6 ,解得DF=2.5x .在Rt △DE 2F 中,E 2F 2= DF 2+DE 22=3.25 x 2,又∵BE 2=AB -AE 2=20-3x ,△E 2FA 2∽△E 2BF ,∴E 2F:A 2E 2=BE 2:E 2F ,即E 2F 2=A 2E 2•BE 2.∴()23.25x x 103x =-,解得x=2.6 或x=0(舍去). ∴AD 的长为2×2.6 =3.2.17.如图,以点O 为位似中心,将OAB ∆放大后得到OCD ∆,2,3OA AC ==,则AB CD=____.【答案】25. 【分析】直接利用位似图形的性质进而分析得出答案.【详解】解:∵以点O 为位似中心,将OAB ∆放大后得到OCD ∆,2,3OA AC ==,∴22235 OA ABOC CD===+.故答案为25.【点睛】此题主要考查了位似变换,正确得出对应边的比值是解题关键.18.已知,点A(-4,y1),B(12,y2)在二次函数y=-x2+2x+c的图象上,则y1与y2的大小关系为________.【答案】<【分析】由题意可先求二次函数y=-x2+2x+c的对称轴为2122bxa,根据点A关于x=1的对称点即可判断y1与y2的大小关系.【详解】解:二次函数y=-x2+2x+c的对称轴为x=1,∵a=-1<0,∴二次函数的值,在x=1左侧为增加,在x=1右侧减小,∵-4<12<1,∴点A、点B均在对称轴的左侧,∴y1<y2故答案为:<.【点睛】本题主要考查的是二次函数的增减性,注意掌握当a<0时,函数图象从左至右先增加后减小.三、解答题(本题包括8个小题)19.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.【答案】(1)证明见试题解析;(2)1;(3)50 13.【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶1,设BD =x ,则DO =DC =35x ,BO =45x, ∵CD +BD =8,∴35x +x =8,解得x =,1,即:BD =1. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x, ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB ′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆. ③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(1),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(1)20.解一元二次方程()()()21121x x -=-()222520x x --=【答案】(1)x 1=1,x 2=3,(2)125414144x x ==【分析】(1)根据因式分解法解一元二次方程即可;(2)利用公式法求一元二次方程即可.【详解】(1)2(1)2(1)0x x ---= (12)(1)0x x ---=即(3)(1)0x x --=∴30x -=或10x -=∴123,1x x ==(2)2,5,2a b c ==-=-224(5)42(2)41b ac -=--⨯⨯-=541541224x ∴==⨯ 12541541,44x x +∴== 【点睛】本题主要考查解一元二次方程,掌握一元二次方程的解法并灵活应用是解题的关键.21.如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =+-≠与x 轴交于(1,0)A 、(3,0)B 两点,与y 轴交于点C ,其顶点为点D ,点E 的坐标为(0,-1),该抛物线与BE 交于另一点F ,连接BC .(1)求该抛物线的解析式,并用配方法把解析式化为2()y a x h k =-+的形式;(2)若点(1,)H y 在BC 上,连接FH ,求FHB ∆的面积;(3)一动点M 从点D 出发,以每秒1个单位的速度沿平行于y 轴方向向上运动,连接OM ,BM ,设运动时间为t 秒(t >0),在点M 的运动过程中,当t 为何值时,90OMB ︒∠=?【答案】(1)222(2)33y x =--+;(2)56;(3)223t =- 【解析】(1)将A ,B 两点的坐标代入抛物线解析式中,得到关于a ,b 的方程组,解之求得a ,b 的值,即得解析式,并化为顶点式即可;(2)过点A 作AH ∥y 轴交BC 于H ,BE 于G ,求出直线BC ,BE 的解析式,继而可以求得G 、H 点的坐标,进一步求出GH ,联立BE 与抛物线方程求出点F 的坐标,然后根据三角形面积公式求出△FHB 的面积; (3)设点M 坐标为(2,m ),由题意知△OMB 是直角三角形,进而利用勾股定理建立关于m 的方程,求出点M 的坐标,从而求出MD ,最后求出时间t.【详解】(1)∵抛物线22(0)y ax bx a =+-≠与x 轴交于A (1,0),B(3,0)两点, ∴209320a b a b +-=⎧⎨+-=⎩∴2383a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线解析式为2228222(2)3333y x x x =-+-=--+. (2)如图1,过点A 作AH ∥y 轴交BC 于H ,BE 于G ,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=23x-2,∵H(1,y)在直线BC上,∴y=-43,∴H(1,-43),∵B(3,0),E(0,-1),∴直线BE解析式为y=-13x-1,∴G(1,-23),∴GH=23,∵直线BE:y=-13x-1与抛物线y=-23x2+83x-2相较于F,B,∴F(12,-56),∴S△FHB=12GH×|x G-x F|+12GH×|x B-x G|=12GH×|x B-x F|=12×23×(3-12)=56.(3)如图2,由(1)有y=-23x2+83x-2,∵D为抛物线的顶点,∴D(2,43),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>23),∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m=2或m=-2(舍),∴M(2,2),∴MD=2-23,∴t=2-2 3 .【点睛】本题考查了待定系数法求二次函数的表达式,待定系数法求一次函数表达式,角平分线上的点到两边的距离相等,勾股定理等知识点,综合性比较强,不仅要掌握性质定理,作合适的辅助线也对解题起重要作用. 22.装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)50 40设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ的长为米(用含x的代数式表示);(2)求y关于x的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.【答案】(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析【分析】(1)根据大正方形的边长减去两个小长方形的宽即可求解;(1)根据总费用等于两种材料的费用之和即可求解;(3)利用二次函数的性质和最值解答即可.【详解】解:(1)∵AH=GQ=x,AD=6,∴MQ=6-1x;故答案为:6-1x;(1)根据题意,得AH =x ,AE =6﹣x , S 甲=4S 长方形AENH =4x (6﹣x )=14x ﹣4x 1,S 乙=S 正方形MNQP =(6﹣1x )1=36﹣14x+4x 1.∴ y =50(14x ﹣4x 1)+40(36﹣14x+4x 1)=﹣40x 1+140x+2.答:y 关于x 的函数解析式为y =﹣40x 1+140x+2.(3)预备资金4元购买材料一定够用.理由如下:∵y =﹣40x 1+140x+2=﹣40(x -3)1+1800,由﹣40<0,可知抛物线开口向下,在对称轴的左侧,y 随x 的增大而增大.由x -3=0可知,抛物线的对称轴为直线x=3.∴ 当x <3时,y 随x 的增大而增大.∵ 中心区的边长不小于1米,即6﹣1x≥1,解得x≤1,又x >0,∴0<x≤1.当x=1时,y =﹣40(x -3)1+1800=﹣40(1-3)1+1800=4,∴ 当0<x≤1时,y≤4.∴ 预备资金4元购买材料一定够用.答:预备资金4元购买材料一定够用.【点睛】此题主要考查了二次函数的应用以及配方法求最值和正方形的性质等知识,正确得出各部分的边长是解题关键.23.已知如图,抛物线y =ax 2+bx+3与x 轴交于点A (3,0),B (﹣1,0),与y 轴交于点C ,连接AC ,点P 是直线AC 上方的抛物线上一动点(异于点A ,C ),过点P 作PE ⊥x 轴,垂足为E ,PE 与AC 相交于点D ,连接AP .(1)求点C 的坐标;(2)求抛物线的解析式;(3)①求直线AC 的解析式;②是否存在点P ,使得△PAD 的面积等于△DAE 的面积,若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)(0,3);(2)y =﹣x 2+2x+3;(3)①3y x =-+;②当点P 的坐标为(1,4)时,△PAD 的面积等于△DAE 的面积.【分析】(1)将0x =代入二次函数解析式即可得点C 的坐标;(2)把A (3,0),B (﹣1,0)代入y =ax 2+bx+3即可得出抛物线的解析式;(3)①设直线直线AC 的解析式为y kx m =+,把A (3,0),C ()03,代入即可得直线AC 的解析式; ②存在点P ,使得△PAD 的面积等于△DAE 的面积;设点P (x ,﹣x 2+2x+3)则点D (x ,﹣x+3),可得PD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,DE=﹣x+3,根据S△PAD =S△DAE 时,即可得PD=DE ,即可得出结论.【详解】解:(1)由y =ax 2+bx+3,令03x y =∴=,∴点C 的坐标为(0,3);(2)把A (3,0),B (﹣1,0)代入y =ax 2+bx+3得933=03=0a b a b ++⎧⎨-+⎩, 解得:=-1=2a b ⎧⎨⎩, ∴抛物线的解析式为:y =﹣x 2+2x+3;(3)①设直线直线AC 的解析式为y kx m =+,把A (3,0),C ()03,代入得 3=0 =3k m m +⎧⎨⎩, 解得=-1=3k m ⎧⎨⎩, ∴直线AC 的解析式为3y x =-+;②存在点P ,使得△PAD 的面积等于△DAE 的面积,理由如下:设点P (x ,﹣x 2+2x+3)则点D (x ,﹣x+3),∴PD=﹣x 2+2x+3﹣(﹣x+3)=﹣x 2+3x ,DE=﹣x+3,当S△PAD =S△DAE 时,有1122PD AE DE AE ⋅=⋅,得PD=DE , ∴﹣x 2+3x=﹣x+3解得x 1=1,x 2=3(舍去),∴y =﹣x 2+2x+3=﹣12+2+3=4,∴当点P 的坐标为(1,4)时,△PAD 的面积等于△DAE 的面积.【点睛】本题考查了用待定系数法求解析式,二次函数的综合,掌握知识点是解题关键.24.甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.【答案】13 【解析】用树状图列举出所有情况,看两个小球上的数字之和为5的情况数占总情况数的多少即可.【详解】解:树状图如下:共有6种等可能的结果,2163P ==. 25. “道路千万条,安全第一条”,《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70/km h ”,一辆小汽车在一条城市街道上由西向东行驶,在据路边25m 处有“车速检测仪O ”,测得该车从北偏西60︒的A 点行驶到北偏西30的B 点,所用时间为32s .(1)试求该车从A 点到B 点的平均速度(结果保留根号);(2)试说明该车是否超速.【答案】(1)1003/9m s ;(2)没有超过限速. 【分析】(1)分别在Rt AOC 、Rt BOC △中,利用正切求得AC 、BC 的长,从而求得AB 的长,已知时间路程则可以根据公式求得其速度. (2)将限速与其速度进行比较,若大于限速则超速,否则没有超速.此时注意单位的换算.【详解】解:(1)在Rt AOC 中,tan 25tan 60253AC OC AOC m =∠=⨯︒=,在Rt BOC △中,253tan 25tan 303BC OC BOC m =∠=⨯︒=, 503)AB AC BC m ∴=-=. ∴小汽车从A 到B 50331003/)2m s ÷=.(2)70100017570///36009km h m s m s ⨯==,又173.2175999≈<, ∴小汽车没有超过限速.【点睛】本题考查了解直角三角形的应用,掌握方向角的概念、锐角三角函数的定义是解题的关键.. 26.已知二次函数y=ax 2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?【答案】(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.27.某企业为了解饮料自动售卖机的销售情况,对甲、乙两个城市的饮料自动售卖机进行抽样调查,从两个城市中所有的饮料自动售卖机中分别抽取16台,记录下某一天各自的销售情况(单位:元)如下: 甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述数据:对销售金额进行分组,各组的频数如下:乙 2 6 a b分析数据:两组样本数据的平均数、中位数如下表所示:城市中位数 平均数 众数 甲C 1.8 45 乙 40 2.9 d请根据以上信息,回答下列问题:(1)填空:a=, b=, c=, d=.(2)两个城市目前共有饮料自动售卖机4000台,估计日销售金额不低于40元的数量约为多少台? (3)根据以上数据,你认为甲、乙哪个城市的饮料自动售卖机销售情况较好?请说明理由(一条理由即可).【答案】(1)6,2,2,33 (2)1875 (3)见解析(答案不唯一)【分析】(1)根据某一天各自的销售情况求出a b 、的值,根据中位数的定义求出c 的值,根据众数的定义求出d 的值.(2)用样本估算整体的方法去计算即可.(3)根据平均数、众数、中位数的性质判断即可.【详解】(1)623833a b c d ====,,,.(2)78400018751616+⨯=+(台) 故估计日销售金额不低于40元的数量约为1875台.(3)可以推断出甲城市的饮料自动售货机销售情况较好,理由如下:①甲城市饮料自动售货机销售金额的平均数较高,表示甲城市的销售情况较好;②甲城市饮料自动售货机销售金额的众数较高,表示甲城市的销售金额较高;可以推断出乙城市的饮料自动售货机销售情况较好,理由如下:①乙城市饮料自动售货机销售金额的中位数较高,表示乙城市销售金额高的自动售货机数量较多;【点睛】本题考查了概率统计的问题,掌握平均数、众数、中位数的性质、样本估算整体的方法是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .5【答案】B【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.2.若12x x 、是一元二次方程2320x x ++=的两个实数根,则2212x x +的值为( ) A .13-B .1-C .5D .13【答案】C 【分析】由一元二次方程根与系数的关系可得x 1+x 2=-3,x 1·x 2=2,利用完全平方公式即可求出答案. 【详解】∵12x x 、是一元二次方程2320x x ++=的两个实数根,∴x 1+x 2=-3,x 1·x 2=2, ∴2212x x +=( x 1+x 2)2-2x 1·x 2=9-4=5, 故选:C .【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax 2+bx+c=0(a≠0)的两个实数根为12x x 、,那么x 1+x 2=b a -,x 1·x 2=c a,熟练掌握韦达定理是解题关键. 3.cos30︒的值等于( ).A .12B .2CD .1【答案】C【分析】根据特殊三角函数值来计算即可.。

安徽省合肥市包河区九年级数学上学期期末试卷(含解析) 新人教版

安徽省合肥市包河区九年级数学上学期期末试卷(含解析) 新人教版

2015-2016学年安徽省合肥市包河区九年级(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.下列函数是二次函数的是()A.y=3x+1 B.y=ax2+bx+c C.y=x2+3 D.y=(x﹣1)2﹣x22.若反比例函数y=的图象位于第一、三象限,则k的取值可以是()A.﹣3 B.﹣2 C.﹣1 D.03.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.正方形D.菱形4.已知二次函数y=x2+x+c的图象与x轴的一个交点为(2,0),则它与x轴的另一个交点坐标是()A.(1,0)B.(﹣1,0)C.(2,0)D.(﹣3,0)5.已知Rt△ABC中,∠C=90°,AB=2,tanA=,则BC的长是()A.2 B.8 C.2 D.46.抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x27.b是a,c的比例中项,且a:b=1:3,则b:c=()A.1:3 B.3:1 C.1:9 D.9:18.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30° B.45° C.60° D.75°9.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O 的半径为1,则AP+BP的最小值为()A.1 B.C.D.10.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1 B.1 C.0 D.±1二、填空题(共4小题,每小题5分,满分20分)11.抛物线y=2(x﹣1)2+5的顶点坐标是______.12.若=,则=______.13.一只小虫由地面沿i=1:2的坡面向上前进了10m,则小虫距离地面的高度为______m.14.已知抛物线y1=﹣2x2+2和直线y2=2x+2的图象如图所示,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.则下列结论中一定成立的是______(把所有正确结论的序号都填在横线上)①当x>0时,y1>y2;②使得M大于2的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x值是﹣或.三、解答题(共2小题,满分16分)15.计算:6tan230°﹣sin60°﹣sin30°.16.如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.四、解答题(共2小题,满分16分)17.如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该函数图象对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数的解析式;(2)求一次函数的解析式.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.五、解答题(共2小题,满分20分)19.已知:如图,M是的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=cm.(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.20.如图所示,在天水至宝鸡(天宝)高速公路建设中需要确定某条隧道AB的长度,已知在离地面2700米高度C处的飞机上,测量人员测得正前方AB两点处的俯角分别是60°和30°,求隧道AB的长.(结果保留根号)六、解答题(共1小题,满分12分)21.如图,已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)并利用图象指出,当x为何值时有y1>y2;当x为何值时有y1<y2.七、解答题(共1小题,满分12分)22.如图,在Rt△ABC中,∠A=90°,BC=10cm,AC=6cm,在线段BC上,动点P以2cm/s的速度从点B向点C匀速运动;同时在线段CA上,点Q以acm/s的速度从点C向点A匀速运动,当点P到达点C(或点Q到达点A)时,两点运动停止,在运动过程中.(1)当点P运动s时,△CPQ与△ABC第一次相似,求点Q的速度a;(2)当△CPQ与△ABC第二次相似时,求点P总共运动了多少秒?八、解答题(共1小题,满分14分)23.某水果经销商到大圩种植基地采购葡萄,经销商一次性采购葡萄的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB→BC→CD所示(不包括端点A),(1)当500<x≤1000时,写出y与x之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,大圩种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,若经销商一次性付了16800元货款,求大圩种植基地可以获得多少元的利润?2015-2016学年安徽省合肥市包河区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.下列函数是二次函数的是()A.y=3x+1 B.y=ax2+bx+c C.y=x2+3 D.y=(x﹣1)2﹣x2【考点】二次函数的定义.【分析】依据一次函数、二次函数的定义求解即可.【解答】解:A、y=3x+1是一次函数,故A错误;B、当a=0时,y=ax2+bx+c不是二次函数,故B错误;C、y=x2+3是二次函数,故C正确;D、y=(x﹣1)2﹣x2可整理为y=﹣2x+1,是一次函数,故D错误.故选:C.2.若反比例函数y=的图象位于第一、三象限,则k的取值可以是()A.﹣3 B.﹣2 C.﹣1 D.0【考点】反比例函数的性质.【分析】先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.【解答】解:∵反比例函y=的图象位于第一、三象限,∴2k+1>0,解得k>﹣,∴k的值可以是0.故选D.3.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.正方形D.菱形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选:C.4.已知二次函数y=x2+x+c的图象与x轴的一个交点为(2,0),则它与x轴的另一个交点坐标是()A.(1,0)B.(﹣1,0)C.(2,0)D.(﹣3,0)【考点】抛物线与x轴的交点.【分析】根据根与系数的关系,,即可求出另一根,即可解答.【解答】解:∵a=1,b=1,∴,即:2+x=﹣1,解得:x=﹣3,∴二次函数与x轴的另一个交点为(﹣3,0),故选D.5.已知Rt△ABC中,∠C=90°,AB=2,tanA=,则BC的长是()A.2 B.8 C.2 D.4【考点】解直角三角形.【分析】根据题意可以设出BC和AC的长度,然后根据勾股定理可以求得BC的长,本题得以解决.【解答】解:∵Rt△ABC中,∠C=90°,AB=2,tanA=,∴设BC=a,则AC=2a,∴,解得,a=2或a=﹣2(舍去),∴BC=2,故选A.6.抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【考点】二次函数的图象.【分析】根据二次函数中|a|的值越小,则函数图象的开口也越大,可以得出那个选项是正确的.【解答】解:∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.7.b是a,c的比例中项,且a:b=1:3,则b:c=()A.1:3 B.3:1 C.1:9 D.9:1【考点】比例线段.【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得a:b=b:c,又由a:b=1:3,即可求得答案.【解答】解:∵b是a,c的比例中项,∴b2=ac,∴a:b=b:c,∵a:b=1:3,∴b:c=1:3;故选A.8.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30° B.45° C.60° D.75°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ACB的度数,再由AC=1,AB=2得出∠ABC=30°,故可得出∠A的度数,根据圆周角定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°.∵AB=2,AC=1,∴∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠D=∠A=60°.故选C.9.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O 的半径为1,则AP+BP的最小值为()A.1 B.C.D.【考点】垂径定理;勾股定理;圆心角、弧、弦的关系;轴对称-最短路线问题.【分析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.故选C.10.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1 B.1 C.0 D.±1【考点】二次函数图象上点的坐标特征.【分析】首先在坐标系中画出已知函数y=的图象,利用数形结合的方法即可找到使y=k成立的x值恰好有两个的k值.【解答】解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.二、填空题(共4小题,每小题5分,满分20分)11.抛物线y=2(x﹣1)2+5的顶点坐标是(1,5).【考点】二次函数的性质.【分析】根据顶点式的坐标特点直接写出顶点坐标.【解答】解:∵y=2(x﹣1)2+5是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为(1,5).12.若=,则= .【考点】比例的性质.【分析】根据两内项之积等于两外项之积列式整理即可得解.【解答】解:∵=,∴4(a﹣b)=3b,∴4a=7b,∴=.故答案为:.13.一只小虫由地面沿i=1:2的坡面向上前进了10m,则小虫距离地面的高度为2m.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度的概念得到CA、BC的关系,根据勾股定理计算即可.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2m.故答案为:2.14.已知抛物线y1=﹣2x2+2和直线y2=2x+2的图象如图所示,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.则下列结论中一定成立的是②④(把所有正确结论的序号都填在横线上)①当x>0时,y1>y2;②使得M大于2的x值不存在;③当x<0时,x值越大,M值越小;④使得M=1的x值是﹣或.【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>0时,利用函数图象可以得出y2>y1;当﹣1<x<0时,y1>y2;当x<﹣1时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣2x2+2=2x+2时,解得:x=0或x=﹣1,∴当x>0时,利用函数图象可以得出y2>y1;当﹣1<x<0时,y1>y2;当x<﹣1时,利用函数图象可以得出0>y2>y1;∴①不成立;∵抛物线y1=﹣2x2+2的最大值为2,故M大于2的x值不存在,∴②成立;∵抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴③不成立;∵如图:当﹣1<x<0时,y1>y2;当M=1,2x+2=1,x=﹣;x>0时,y2>y1;当M=1,﹣2x2+2=1,x1=,x2=﹣(舍去),∴使得M=1的x值是﹣或,∴④成立;故答案为:②④.三、解答题(共2小题,满分16分)15.计算:6tan230°﹣sin60°﹣sin30°.【考点】实数的运算.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=6×()2﹣×﹣=2﹣﹣=2﹣2=0.16.如图,在△ABC中,∠C=90°,在AB边上取一点D,使BD=BC,过D作DE⊥AB交AC于E,AC=8,BC=6.求DE的长.【考点】勾股定理;相似三角形的判定与性质.【分析】依题意易证△AED∽△ABC,根据相似三角形的对应边的比相等,即可求出DE的长.【解答】解:在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10,又∵BD=BC=6,∴AD=AB﹣BD=4,∵DE⊥AB,∴∠ADE=∠C=90°,又∵∠A=∠A,∴△AED∽△ABC,∴,∴DE==×6=3.四、解答题(共2小题,满分16分)17.如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该函数图象对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数的解析式;(2)求一次函数的解析式.【考点】待定系数法求二次函数解析式;待定系数法求一次函数解析式.【分析】(1)直接把A点坐标代入y=(x﹣2)2+m中秋出m即可得到二次函数的解析式;(2)根据二次函数的性质得抛物线的对称轴为直线x=2,再求出C点坐标,接着利用对称性得到B点坐标,然后利用待定系数法求直线AB的解析式.【解答】解:(1)把A(1,0)代入y=(x﹣2)2+m得1+m=0,解得m=﹣1,所以二次函数的解析式为y=(x﹣2)2﹣1;(2)抛物线的对称轴为直线x=2,当x=0时,y=(x﹣2)2﹣1=3,则C(0,3),因为点B是点C关于该函数图象对称轴对称的点,所以B点坐标为(4,3),设一次函数的解析式为y=kx+b,把A(1,0),B(4,3)代入得,解得,所以一次函数解析式为y=﹣x+1.18.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(﹣1,2),B(﹣3,4)C(﹣2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.【考点】作图-位似变换;作图-旋转变换.【分析】(1)由A(﹣1,2),B(﹣3,4)C(﹣2,6),可画出△ABC,然后由旋转的性质,即可画出△A1B1C1;(2)由位似三角形的性质,即可画出△A2B2C2.【解答】解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.五、解答题(共2小题,满分20分)19.已知:如图,M是的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=cm.(1)求圆心O到弦MN的距离;(2)求∠ACM的度数.【考点】垂径定理;圆周角定理;解直角三角形.【分析】(1)连接OM,作OD⊥MN于D.根据垂径定理和勾股定理求解;(2)根据(1)中的直角三角形的边求得∠M的度数.再根据垂径定理的推论发现OM⊥AB,即可解决问题.【解答】解:(1)连接OM,∵点M是的中点,∴OM⊥AB,过点O作OD⊥MN于点D,由垂径定理,得MD=MN=2,在Rt△ODM中,OM=4,MD=2,∴OD==2,故圆心O到弦MN的距离为2cm;(2)cos∠OMD=,∴∠OMD=30°,∵M为弧AB中点,OM过O,∴AB⊥OM,∴∠MPC=90°,∴∠ACM=60°.20.如图所示,在天水至宝鸡(天宝)高速公路建设中需要确定某条隧道AB的长度,已知在离地面2700米高度C处的飞机上,测量人员测得正前方AB两点处的俯角分别是60°和30°,求隧道AB的长.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】易得∠CAO=60°,∠CBO=30°,利用相应的正切值可得AO,BO的长,相减即可得到AB的长.【解答】解:由题意得∠CAO=60°,∠CBO=30°,∵OA=2700×tan30°=2700×=900m,OB=2700×tan60°=2700m,∴AB=2700﹣900=1800(m).答:隧道AB的长为1800m.六、解答题(共1小题,满分12分)21.如图,已知一次函数y1=kx+b的图象与反比例函数的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)并利用图象指出,当x为何值时有y1>y2;当x为何值时有y1<y2.【考点】反比例函数与一次函数的交点问题.【分析】(1)先利用反比例函数求出点A、B的坐标,再利用待定系数法求一次函数的解析式;(2)求出一次函数图象与y轴的交点坐标,然后求出△AOC与△BOC的面积,则S△AOB=S△AOC+S△BOC;(3)可根据图象直接写出答案.【解答】解:(1)∵点A的横坐标和点B的纵坐标都是﹣2,∴y=﹣=4,﹣=﹣2,解得x=4,∴A(﹣2,4),B(4,﹣2),把点AB的坐标代入函数解析式,得,解得,∴一次函数的解析式为y=﹣x+2;(2)一次函数图象与y轴的交点坐标为(0,2),∴S△AOB=S△AOC+S△BOC,=×2×|﹣2|+×2×4,=2+4,=6;(3)根据图象,当x<﹣2或0<x<4时,y1>y2,当﹣2<x<0,x>4,y1<y2.七、解答题(共1小题,满分12分)22.如图,在Rt△ABC中,∠A=90°,BC=10cm,AC=6cm,在线段BC上,动点P以2cm/s 的速度从点B向点C匀速运动;同时在线段CA上,点Q以acm/s的速度从点C向点A匀速运动,当点P到达点C(或点Q到达点A)时,两点运动停止,在运动过程中.(1)当点P运动s时,△CPQ与△ABC第一次相似,求点Q的速度a;(2)当△CPQ与△ABC第二次相似时,求点P总共运动了多少秒?【考点】相似三角形的判定.【分析】(1)由于∠QCP=∠ACB,则根据两组对应边的比相等且夹角对应相等的两个三角形相似,当=时可判定△CPQ∽△CBA,即=,然后解方程可求出a的值;(2)由于∠QCP=∠ACB,则=,△CPQ∽△CAB,即=,然后解t的方程即可.【解答】解:(1)如图1,BP=×2=,∵∠QCP=∠ACB,∴当=,△CPQ∽△CBA,即=,解得a=1,∴点Q的速度a为1cm/s;(2)如图2,设点P总共运动了t秒,∵∠QCP=∠ACB,∴当=,△CPQ∽△CAB,即=,解得t=,∴点P总共运动了秒.八、解答题(共1小题,满分14分)23.某水果经销商到大圩种植基地采购葡萄,经销商一次性采购葡萄的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB→BC→CD所示(不包括端点A),(1)当500<x≤1000时,写出y与x之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,大圩种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,若经销商一次性付了16800元货款,求大圩种植基地可以获得多少元的利润?【考点】一次函数的应用;一元二次方程的应用;二次函数的最值;二次函数的应用.【分析】(1)利用待定系数法求出当500<x≤1000时,y与x之间的函数关系式即可;(2)根据当0<x≤500时,当500<x≤1000时,分别求出获利W与x的函数关系式,进而求出最值即可;(3)根据货款确定采购量x的范围,再由:采购量×采购单价=货款,列方程求出采购量x 的值,由(2)可得利润.【解答】解:(1)设当500<x≤1000时,y与x之间的函数关系式为:y=ax+b,,解得.故y与x之间的函数关系式为:y=﹣0.02x+40;(2)当采购量是x千克时,蔬菜种植基地获利W元,当0<x≤500时,W=(30﹣8)x=22x,则当x=500时,W有最大值11000元,当500<x≤1000时,W=(y﹣8)x=(﹣0.02x+32)x=﹣0.02x2+32x=﹣0.02(x﹣800)2+12800,故当x=800时,W有最大值为12800元,综上所述,一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元;(3)当x=500时,y=30,采购总费用为15000元;当x=1000时,y=20采购总费用为20000元;∵15000<16800<20000,∴该经销商一次性采购量500<x<1000,故该经销商采购单价为:﹣0.02x+40,根据题意得,x(﹣0.02x+40)=16800,解得x1=1400(不符合题意,舍去),x2=600;当x=600时,大圩种植基地可以获得的利润w=﹣0.02(x﹣800)2+12800=12000(元).答:若经销商一次性付了16800元货款,大圩种植基地可以获得12000元的利润.。

∥3套精选试卷∥2018年合肥市九年级上学期数学期末经典试题

∥3套精选试卷∥2018年合肥市九年级上学期数学期末经典试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线2y x bx c =++的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为()2y x 14=--,则b 、c 的值为A .b=2,c=﹣6B .b=2,c=0C .b=﹣6,c=8D .b=﹣6,c=2 【答案】B【详解】函数()2y x 14=--的顶点坐标为(1,﹣4),∵函数()2y x 14=--的图象由2y x bx c =++的图象向右平移2个单位,再向下平移3个单位得到, ∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为()2y x 11=+-,即y=x 2+2x .∴b=2,c=1.故选B .2.反比例函数y =(k≠0)的图象经过点(2,-4),若点(4,n)在反比例函数的图象上,则n 等于( ) A .﹣8 B .﹣4 C .﹣ D .﹣2【答案】D【解析】利用反比例函数图象上点的坐标特征得到4n=1×(-4),然后解关于n 的方程即可.【详解】∵点(1,-4)和点(4,n )在反比例函数y=的图象上,∴4n=1×(-4),∴n=-1.故选D .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .3.如图,△ABC 中,点D 是AB 的中点,点E 是AC 边上的动点,若△ADE 与△ABC 相似,则下列结论一定成立的是( )A.E为AC的中点B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°【答案】D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.4.已知,当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,则m的值为() A.﹣5 B.﹣1 C.﹣1.25 D.1【答案】A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解5.在Rt ABC 中,∠C=90°,如果sin cos A A =,那么A ∠的值是( )A .90°B .60°C .45°D .30° 【答案】C【分析】根据锐角三角函数的定义解得即可. 【详解】解:由已知,sin BC A AB =,cos AC A AB = ∵sin cos A A =∴BC AC =∵∠C=90°∴A ∠=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.6.反比例函数3y x =-,下列说法不正确的是( ) A .图象经过点(1,-3)B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大 【答案】D【解析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x=-关于y x =对称是正确的,故C 也是正确的, 由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.7.二次函数()2213y x =++的顶点坐标是( )A .(1,3)--B .(1,3)-C .(1,3)-D .(1,3)【分析】根据抛物线的顶点式:()2213y x =++,直接得到抛物线的顶点坐标.【详解】解:由抛物线为:()2213y x =++, ∴ 抛物线的顶点为:()1,3.-故选B .【点睛】本题考查的是抛物线的顶点坐标,掌握抛物线的顶点式是解题的关键.8.对于二次函数y =2(x ﹣1)2+2的图象,下列说法正确的是( )A .开口向下B .对称轴是 x =﹣1C .与 x 轴有两个交点D .顶点坐标是(1,2) 【答案】D【分析】根据题意从y =2(x ﹣1)2+2均可以直接确定函数的开口方向、对称轴、顶点坐标等.【详解】解:y =2(x ﹣1)2+2,(1)函数的对称轴为x =1;(2)a =2>0,故函数开口向上;(3)函数顶点坐标为(1,2),开口向上,故函数与x 轴没有交点;故选:D .【点睛】本题考查的是二次函数的开口方向与x 轴的交点,以及函数顶点坐标等基本性质,是函数的基础题注意掌握.9.在Rt △ABC 中,∠C =90°,若 1sin 2A =,则∠B 的度数是( ) A .30°B .45°C .60°D .75° 【答案】C 【分析】根据特殊角的函数值1sin 302=可得∠A 度数,进一步利用两个锐角互余求得∠B 度数. 【详解】解:∵1sin 302=, ∴∠A=30°,∵∠C =90°,∴∠B=90°-∠A=60°故选:C .【点睛】此题主要考查了特殊角的函数值,以及直角三角形两个锐角互余,熟练掌握特殊角函数值是解题的关键.10.已知点()()121,,2,A y B y -都在双曲线3m y x +=上,且12y y >,则m 的取值范围是( ) A .m 0<B .0m >C .3m >-D .m 3<- 【答案】D 【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3m y x+=,得 13y m =--,232m y +=, ∵y 1>y 2,332m m +∴-->, 解得3m <-,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式. 11.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x+1)2=6B .(x ﹣1)2=6C .(x+2)2=9D .(x ﹣2)2=9【答案】B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6, 故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.12.下列运算正确的是( )A .a •a 1=aB .(2a )3=6a 3C .a 6÷a 2=a 3D .2a 2﹣a 2=a 2 【答案】D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A .a •a 1=a 2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.二、填空题(本题包括8个小题)13.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.【答案】1.【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB=22AC BC+=22512+=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.14.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.【答案】6【解析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得ED CDCD FD=,代入数据可得答案.【详解】如图,在EFC ∆中,90,9ECF ED ︒∠==米,4FD =米,易得~ EDC Rt CDF ∆∆, ED CD CD FD ∴=,即94CD CD =, 6CD ∴=米.故答案为:6.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小,是平行投影性质在实际生活中的应用. 15.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的侧面面积为_____cm 2(结果保留π).【答案】3π【详解】212033360ππ⨯=. 故答案为:3π.16.如图,根据图示,求得x 和y 的值分别为____________.【答案】4.5,101【分析】证明ADC BDE ∆∆∽,然后根据相似三角形的性质可解.【详解】解:∵7.232.4AD BD ==, 4.831.6CD DE ==, ∴AD CD BD DE=, ∵ADC BDE ∠=,∴ADC BDE ∆∆∽,∴3AC BE=,ACD BED ∠=∠, ∴AC=4.5,y=101.故答案是:x=4.5,y=101.【点睛】本题考查了相似三角形的判定和性质,要熟悉相似三角形的各种判定方法,关键在找角相等以及边的比例关键.17.在2,3,4-这三个数中,任选两个数的积作为k 的值,使反例函数k y x =的图象在第二、四象限的概率是______.【答案】23【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,并求出 k 为负值的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:,∵共有6种等可能的结果,任选两个数的积作为k 的值,k 为负数的有4种,∴反比例函数k y x=的图象在第二、四象限的概率是:4263=. 故答案为:23. 【点睛】 本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.18.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h (m )与飞行时间t (s )的关系式是252012h t t =-++,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s .【答案】1【解析】根据关系式可知焰火的运行轨迹是一个开口向下的抛物线,已知焰火在升到最高时引爆,即到达抛物线的顶点时引爆,顶点横坐标就是从点火到引爆所需时间.则t=1205-⨯-=1s , 故答案为1.三、解答题(本题包括8个小题)19.小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,草莓的销售价p (单位:元/千克)与上市时间x (单位:天)的函数关系如图2所示设第x 天的日销售额为w (单位:元)(1)第11天的日销售额w 为 元;(2)观察图象,求当16≤x≤20时,日销售额w 与上市时间x 之间的函数关系式及w 的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p 元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?【答案】(1)1980;(2)w =﹣5(x ﹣1)2+180, w 有最大值是680元;(3)112元【分析】(1)当3≤x <16时,设p 与x 的关系式为p =kx +b ,当x =11时,代入解析式求出p 的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可; (3)当x =15时代入(2)的解析式求出p 的值,再当x =15时代入(1)的解析式求出y 的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p 与x 之间的函数关系式为p =kx+b依题意得把(3,30),(16,17)代入,3031716k b k b ⎧⎨⎩=+=+解得133k b =-⎧⎨=⎩∴p =﹣x+33当x =11时,p =22所以90×22=1980答:第11天的日销售额w 为1980元.故答案为1980;(2)当11≤x≤20时设y 与x 之间的函数关系式为y =k 1x+b 1,依题意得把(20,0),(11,90)代入得11119011020k b k b ⎧⎨⎩=+=+ 解得1110200k b =-⎧⎨=⎩ ∴y =﹣10x+200当16≤x≤20时设p 与x 之间的函数关系式为:p =k 2x+b 2依题意得,把(16,17),(20,19)代入得222217161920k b k b ⎧⎨⎩=+=+ 解得k 2=12,b 2=9: ∴p =12x+9 w =py =(12x+9)(﹣10x+200) =﹣5(x ﹣1)2+1805∴当16≤x≤20时,w 随x 的增大而减小∴当x =16时,w 有最大值是680元.(3)由(1)得当3≤x≤16时,p =﹣x+33当x =15时,p =﹣15+33=18元,y =﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解. 20.先化简,再求值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x 为方程2320x x ++=的根. 【答案】1【分析】先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x 值,代入求值.【详解】解:原式=()()()21111111x x x x x x x --+-÷=-⋅=--+--. 解2320x x ++=得,122,?1x x =-=-,∵1x =-时,21x +无意义, ∴取2x =-.当2x =-时,原式=()211---=.21.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(1)根据表格中的数据,可计算出甲的平均成绩是 环(直接写出结果);(2)已知乙的平均成绩是9环,试计算其第二次测试成绩的环数;(3)分别计算甲、乙六次测试成绩的方差,根据计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎣⎦) 【答案】(1) 9 ;(2) 7 ;(3)22=3S 甲,24=3S 乙,选甲,理由见解析. 【分析】(1)根据图表中的甲每次数据和平均数的计算公式列式计算即可;(2)根据图表中的乙每次数据和平均数的计算公式列式计算即可; (3)分别从平均数和方差进行分析,即可得出答案.【详解】(1)甲的平均成绩是:()1089810969+++++÷=;(2)设第二次的成绩为a ,则乙的平均成绩是:()1010109869a +++++÷=,解得:7a = ;(3)()()()()()()2222222121098999891099963S ⎡⎤=-+-+-+-+-+-=⎣⎦甲, ()()()()()()22222221410979109109998963S ⎡⎤=-+-+-+-+-+-=⎣⎦乙, 推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【点睛】此题主要考查了平均数的求法、方差的求法以及运用方差做决策,正确的记忆方差公式是解决问题的关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价1元,则平均每天可多售出2件,要想平均每天在销售这种童装上获利1200元,那么每件童装应降价多少元?【答案】应该降价20元.【解析】设每件童装应降价x 元,那么就多卖出2x 件,根据每天可售出20件,每件获利40元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解.【详解】设每件童装应降价x 元,由题意得:()()402021200x x -+=,解得:10x =或20x =.因为减少库存,所以应该降价20元.【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解.23.如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5 cm ,两个车轮的圆心的连线AB 与地面平行,测得支架AC =BC =60cm ,AC 、CD 所在直线与地面的夹角分别为30°、60°,CD =50cm .(1)求扶手前端D 到地面的距离;(2)手推车内装有简易宝宝椅,EF 为小坐板,打开后,椅子的支点H 到点C 的距离为10 cm ,DF =20cm ,EF ∥AB ,∠EHD =45°,求坐板EF 的宽度.(本题答案均保留根号)【答案】(1)35+253(2)坐板EF 的宽度为(320)cm .【分析】(1)如图,构造直角三角形Rt △AMC 、Rt △CGD 然后利用解直角三角形分段求解扶手前端D 到地面的距离即可;(2)由已知求出△EFH 中∠EFH =60°,∠EHD =45°,然后由HQ +FQ =FH =20cm 解三角形即可求解.【详解】解:(1)如图2,过C 作CM ⊥AB ,垂足为M ,又过D 作DN ⊥AB ,垂足为N ,过C 作CG ⊥DN ,垂足为G ,则∠DCG =60°,∵AC =BC =60cm ,AC 、CD 所在直线与地面的夹角分别为30°、60°,∴∠A =∠B =30°,则在Rt △AMC 中,CM =12AC =30cm . ∵在Rt △CGD 中,sin ∠DCG =DG CD,CD =50cm , ∴DG =CD ⋅sin ∠DCG =50⋅sin60°=350=253 又GN =CM =30cm ,前后车轮半径均为5cm ,∴扶手前端D 到地面的距离为DG +GN +5=253+30+5=35+253(cm ).(2)∵EF ∥CG ∥AB ,∴∠EFH =∠DCG =60°,∵CD =50cm ,椅子的支点H 到点C 的距离为10cm ,DF =20cm ,∴FH =20cm ,如图2,过E 作EQ ⊥FH ,垂足为Q ,设FQ =x , 在Rt △EQF 中,∠EFH =60°,∴EF =2FQ =2x ,EQ 223EF FQ x -=,在Rt △EQH 中,∠EHD =45°,∴HQ =EQ 3x∵HQ +FQ =FH =20cm 3x x =20,解得x =10310,∴EF =2(10310)=320.答:坐板EF 的宽度为(320)cm .【点睛】本题考查了解直角三角形的应用,解题的难点在于从实际问题中抽象出数学基本图形构造适当的直角三角形,难度较大.24.东坡商贸公司购进某种水果成本为20元/kg ,经过市场调研发现,这种水果在未来48天的销售单价P (元/kg )与时间t (天)之间的函数关系式130(124)248(2548)t t P t t ⎧+⎪=⎨⎪-+⎩,t 为整数,且其日销售量y (kg )与时间t (天)的关系如下表: 时间t (天)1 3 6 10 20 … 日销售量y (kg ) 118 114 108 100 80 … (1)已知y 与t 之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?【答案】(1)第30天的日销售量为60kg ;(2)当20t =时,max 1600W =【分析】(1)设y=kt+b ,利用待定系数法即可解决问题.(2)日利润=日销售量×每kg 利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论.【详解】(1)设y=kt+b ,把t=1,y=118;t=3,y=114代入得到:1183114k b k b ++⎧⎨⎩== 解得,2120k b -⎧⎨⎩==, ∴y=-2t+1.将t=30代入上式,得:y=-2×30+1=2.所以在第30天的日销售量是2kg .(2)设第t 天的销售利润为w 元,则(20)W P y =-⋅当124t 时,由题意得,13020(2120)2W t t ⎛⎫=+-⋅-+⎪⎝⎭=2401200t t -++=2(20)1600t --+∴t=20时,w 最大值为120元.当2548t 时,22(4820)(2120)217633602(44)512W t t t t t =-+--+=-+=-- ∵对称轴t=44,a=2>0,∴在对称轴左侧w 随t 增大而减小,∴t=25时,w 最大值为210元,综上所述第20天利润最大,最大利润为120元.【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.25.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1AB=10米,AE=15米.(i=1是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414, 1.732)【答案】(1)点B距水平面AE的高度BH为5米.(2)宣传牌CD高约2.7米.【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH. (2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出宣传牌的高度.【详解】解:(1)过B作BG⊥DE于G,在Rt△ABF中,i=tan∠333=,∴∠BAH=30°∴BH=12AB=5(米).答:点B距水平面AE的高度BH为5米.(2)由(1)得:BH=5,3∴3在Rt△BGC中,∠CBG=45°,∴3+15.在Rt△ADE中,∠DAE=60°,AE=15,∴33∴CD=CG+GE﹣3﹣3﹣3(米). 答:宣传牌CD高约2.7米.26.如图,AB 是⊙O 的直径,C 是⊙O 上一点,且AC=2,∠CAB=30°,求图中阴影部分面积.【答案】3+29π 【分析】根据扇形的面积公式进行计算即可.【详解】解:连接OC 且过点O 作AC 的垂线,垂足为D ,如图所示.∵OA=OC∴AD=1在Rt △AOD 中∵∠DAO=30°∴2222OD AD OA 4OD +==∴323OA =∴AOC 1133S AC OD 22233∆=•=⨯⨯= 由OA=OC ;∠DAO=30可得∠COB=60°∴S 扇形BOC =2236023609⨯⎝⎭=ππ ∴S 阴影=S △AOC + S 扇形BOC =33+29π 【点睛】本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键.27.解方程:x 2﹣2x ﹣2=1.【答案】x 13x 2=13【解析】试题分析:把常数项2移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.试题解析:x2﹣2x﹣2=1移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣解得x1x2=1考点:配方法解一元二次方程九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列说法正确的是( )A .等弧所对的圆心角相等B .平分弦的直径垂直于这条弦C .经过三点可以作一个圆D .相等的圆心角所对的弧相等 【答案】A【分析】根据圆心角、弧、弦的关系、确定圆的条件、垂径定理的知识进行判断即可.【详解】等弧所对的圆心角相等,A 正确;平分弦的直径垂直于这条弦(此弦不能是直径),B 错误;经过不在同一直线上的三点可以作一个圆,C 错误;相等的圆心角所对的弧不一定相等,故选A.【点睛】此题考查圆心角、弧、弦的关系,解题关键在于掌握以及圆心角、弧、弦的关系2.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2) 【答案】B【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .3.如图,点A 在以BC 为直径的O 内,且AB AC =,以点A 为圆心,AC 长为半径作弧,得到扇形ABC ,且120BAC ∠=︒,2BC =.若在这个圆面上随意抛飞镖,则飞镖落在扇形ABC 内的概率是()A .13B .34C .49D .2π【答案】C【分析】如图,连接AO ,∠BAC =120︒,根据等腰三角形的性质得到AO ⊥BC ,∠BAO =60︒,解直角三角形得到AB 23ABC 的面积=223(433601209ππ⋅⨯=,根据概率公式即可得到结论.【详解】如图,连接AO,∠BAC=120︒,∵AB=AC,BO=CO,∴AO⊥BC,∠BAO=60︒,∵BC=2,∴BO=1,∴AB=BO÷cos30°=23,∴扇形ABC 的面积=223()433601209ππ⋅⨯=,∵⊙O的面积=π,∴飞镖落在扇形ABC内的概率是49ππ=49,故选:C.【点睛】本题考查了几何概率,扇形的面积的计算,等腰三角形的性质,解直角三角形的运用,正确的识别图形是解题的关键.4.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知ABC相似.()A.B.C.D.【答案】A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:已知给出的三角形的各边分别为125只有选项A2、210与它的各边对应成比例.故选:A.【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握.5.张家口某小区要种植一个面积为3500m 2的矩形草坪,设草坪的长为ym ,宽为xm ,则y 关于x 的函数解析式为( )A .y =3500xB .x =3500yC .y =3500xD .y =1750x 【答案】C 【解析】根据矩形草坪的面积=长乘宽,得3500xy = ,得3500y x =.故选C. 6.化简2(21)÷-的结果是( )A .221-B .22-C .12-D .2+2 【答案】D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=2×21-=2×(2+1)=2+2. 故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.7.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .3【答案】B 【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB ,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2,∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=1.故选B .8.如图,在平面直角坐标系中,正方形ABCO 的顶点O 在坐标原点,点B 的坐标为()2,6,点A 在第二象限,且反比例函数(0)k y k x=≠的图像经过点A ,则k 的值是( )A .-9B .-8C .-7D .-6【答案】B 【分析】作AD ⊥x 轴于D ,CE ⊥x 轴于E ,先通过证得△AOD ≌△OCE 得出AD=OE ,OD=CE ,设A (x ,kx),则C (k x ,-x ),根据正方形的性质求得对角线解得F 的坐标,即可得出1232k x x k x x ⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩,解方程组求得k 的值.【详解】解:如图,作AD x ⊥轴于D ,CE x ⊥轴于E 连接AC ,BO ,∵90AOC ∠=︒,∴90AOD COE ∠+∠=︒∵90AOD OAD ∠+∠=︒,∴OAD COE ∠=∠.在AOD △和OCE △中,90OAD COE ADO OEC OA OC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOD OCE AAS △≌△∴,AD OE OD CE ==.设,k A x x ⎛⎫ ⎪⎝⎭,则,()k C x x-. ∵AC 和OB 互相垂直平分,点B 的坐标为()2,6,∴交点F 的坐标为()1,3, ∴1232k x x k x x ⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩, 解得24x k x=-⎧⎪⎨=⎪⎩, ∴8k =-,故选B .【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键.9.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .25y x =C .21y x =D .13y x= 【答案】D【解析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-是一次函数,故不符合题意;B. 25y x =二次函数,故不符合题意;C. 21y x =不是反比例函数,故不符合题意; D. 13y x =是反比例函数,符合题意; 故选D.【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k≠0)的函数叫做反比例函数. 10.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°【答案】C【分析】根据题意画出相应的图形,由OD ⊥AB ,利用垂径定理得到D 为AB 的中点,由AB 的长求出AD 与BD 的长,且得出OD 为角平分线,在Rt △AOD 中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB 的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB 所对圆周角的度数.【详解】如图所示,∵OD ⊥AB ,∴D 为AB 的中点,即532 在Rt △AOD 中,OA=5,532∴sin ∠AOD=53325, 又∵∠AOD 为锐角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°, 又∵圆内接四边形AEBC 对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C .【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.11.如图所示,二次函数22y x x k =-++的图像与x 轴的一个交点坐标为(3,0),则关于x 的一元二次方程220x x k -++=的解为( )A .123,2x x ==-B .123,1x x ==-C .121,1x x ==-D .123,3x x ==-【答案】B 【分析】先确定抛物线的对称轴,然后根据抛物线的对称性确定图象与x 轴的另一个交点,再根据二次函数与一元二次方程的关系解答即可.【详解】解:∵二次函数22y x x k =-++的对称轴是直线1x =,图象与x 轴的一个交点坐标为(3,0), ∴图象与x 轴的另一个交点坐标为(﹣1,0),∴一元二次方程220x x k -++=的解为123,1x x ==-.故选:B .【点睛】本题考查了二次函数的图象与性质以及二次函数与一元二次方程的关系,属于常考题型,熟练掌握基本知识是解题的关键.12.已知二次函数y =ax 2+bx+c 的图象大致如图所示,则下列关系式中成立的是( )A .a >0B .b <0C .c <0D .b+2a >0【答案】D 【解析】分析:根据抛物线的开口、对称轴及与y 轴的交点的位置,可得出a <1、c >1、b >﹣2a ,进而即可得出结论.详解:∵抛物线开口向下,对称轴大于1,与y 轴交于正半轴,∴a <1,﹣2b a>1,c >1,∴b >﹣2a ,∴b +2a >1.故选D .点睛:本题考查了二次函数图象与系数的关系,根据抛物线的对称轴大于1找出b >﹣2a 是解题的关键.二、填空题(本题包括8个小题)13.已知3-是关于x 的一元二次方程2230ax x -+=的一个解,则此方程的另一个解为____.【答案】1x =【分析】将x =-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入2230ax x -+=得,a=-1,∴原方程为2230x x --+=,解得:x=1或-3,【点睛】本题考查了含参的一元二次方程的求解问题,属于简单题,熟悉概念是解题关键.14.如图,矩形ABCD 中,1AB =,3BC =,以B 为圆心,BD 为半径画弧,交BC 延长线于M 点,以D 为圆心,CD 为半径画弧,交AD 于点N ,则图中阴影部分的面积是_________.【答案】73122π-【分析】阴影部分的面积为扇形BDM 的面积加上扇形CDN 的面积再减去直角三角形BCD 的面积即可.【详解】解:∵1AB =,3BC =∴根据矩形的性质可得出,90,1,ADC AB CD ︒∠=== ∵3tan 3CBD ∠== ∴30CBD ︒∠=∴利用勾股定理可得出,2BD =因此,可得出2230290(3)133373=3603602342122RTBCD BDM S S S S πππππ⨯⨯⨯⨯+-=+-=+-=-阴扇扇CDN 故答案为:73122π-. 【点睛】。

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017-2018学年第一学期九年级期末检测数学试卷(附答案)

2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。

∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。

A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。

2017-2018学年第一学期九年级数学期末试题参考答案

2017-2018学年第一学期九年级数学期末试题参考答案

2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。

对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。

……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。

答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。

20172018第一学期期末测试九年级数学试题及答案

20172018第一学期期末测试九年级数学试题及答案

2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。

考试结束后,只分。

考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为1201. 上交答题卡。

毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。

在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。

答案不能答在试题卷上。

毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。

〖汇总3套试卷〗合肥市2018年九年级上学期数学期末考试试题

〖汇总3套试卷〗合肥市2018年九年级上学期数学期末考试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B 【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°;正六边形的内角和为720°,每一个内角为120°,则BAC ∠ =360°-120°-90°=150°,因为AB=AC,所以ABC ∠=ACB ∠=15°故选B【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键. 2.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,直接判断即可.【详解】解:A .不是中心对称图形;B .是中心对称图形;C .不是中心对称图形;D .不是中心对称图形.故选:B .本题考查的知识点是中心对称图形的判定,这里需要注意与轴对称图形的区别,轴对称形是:一定要沿某直线折叠后直线两旁的部分互相重合;中心对称图形是:图形绕某一点旋转180°后与原来的图形重合. 3.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2B.12C.55D.5【答案】B【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2=α.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.4.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.36【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC 面积=12AB×CD=30.故选C. 【详解】解:∵CE 是斜边AB 上的中线,∴AB =2CE =2×6=12,∴S △ABC =12×CD×AB =12×5×12=30, 故选:C .【点睛】本题的考点是直角三角形斜边上的中线性质及三角形面积公式.方法是根据题意求出三角形面积公式中的底,再根据面积公式即可得出答案.5.二次函数22y x =-图像的顶点坐标为( )A .(0,-2)B .(-2,0)C .(0,2)D .(2,0) 【答案】A【分析】根据顶点式的坐标特点,直接写出顶点坐标即对称轴.【详解】解:抛物线y=x 2-2是顶点式,根据顶点式的坐标特点可知,顶点坐标为(0,-2),故选A .【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为()h k ,,对称轴为x=h . 6.若关于的一元二次方程2210kx x +-= 有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k >-且0k ≠C .1k <D .1k <且0k ≠【答案】B【分析】根据一元二次方程的定义和根的判别式列出不等式求解即可.【详解】由题意得:20,4440k b ac k ≠∆=-=+>解得:1k >-且0k ≠故选:B .【点睛】本题考查了一元二次方程的根的判别式,熟记根的判别式是解题关键.对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根.7.如图,以点O 为位似中心,将△ABC 缩小后得到△A ′B ′C ′,已知OB =3OB ′,则△A ′B ′C ′与△ABC 的周长比为 ( )A .1:3B .1:4C .1:8D .1:9【答案】A 【分析】以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,可得△A′B′C′与△ABC 的位似比,然后由相似三角形的性质可得△A′B′C′与△ABC 的周长比.【详解】∵以点O 为位似中心,将△ABC 缩小后得到△A′B′C′,OB=1OB′,,∴△A′B′C′与△ABC 的位似比为:1:1,∴△A′B′C′与△ABC 的周长比为:1:1.故选:A .【点睛】此题考查了位似图形的性质.此题难度不大,注意三角形的周长比等于相似比.8.如图,已知双曲线(0)k y k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为A .12B .9C .6D .4【答案】B 【解析】∵点(6,4)A -,D 是OA 中点∴D 点坐标(3,2)-∵(3,2)D -在双曲线(0)k y k x =<上,代入可得23k =- ∴6k =-∵点C 在直角边AB 上,而直线边AB 与x 轴垂直∴点C 的横坐标为-6又∵点C 在双曲线6y x -= ∴点C 坐标为(6,1)- ∴22(66)(14)3AC =-++-=从而1136922AOC S AC OB ∆=⨯⨯=⨯⨯=,故选B 9.如图,在正方形ABCD 中,点E 是CD 的中点,点F 是BC 上的一点,且BF =3CF ,连接AE 、AF 、EF ,下列结论:①∠DAE =30°,②△ADE ∽△ECF ,③AE ⊥EF ,④AE 2=AD•AF ,其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据题意可得tan ∠DAE 的值,进而可判断①;设正方形的边长为4a ,根据题意用a 表示出FC ,BF ,CE ,DE ,然后根据相似三角形的判定方法即可对②进行判断;在②的基础上利用相似三角形的性质即得∠DAE =∠FEC ,进一步利用正方形的性质即可得到∠DEA+∠FEC =90°,进而可判断③;利用相似三角形的性质即可判断④.【详解】解:∵四边形ABCD 是正方形,E 为CD 中点,∴CE =ED =12DC =12AD , ∴tan ∠DAE =12DE AD =,∴∠DAE ≠30°,故①错误; 设正方形的边长为4a ,则FC =a ,BF =3a ,CE =DE =2a ,∴2,2DE AD FC EC ==,∴DE AD FC EC=,又∠D =∠C=90°, ∴△ADE ∽△ECF ,故②正确;∵△ADE ∽△ECF ,∴∠DAE =∠FEC ,∵∠DAE+∠DEA =90°∴∠DEA+∠FEC =90°,∴AE ⊥EF .故③正确;∵△ADE ∽△ECF ,∴AD AE AE AF=,∴AE 2=AD•AF ,故④正确. 综上,正确的个数有3个,故选:C.本题考查了正方形的性质、锐角三角函数、相似三角形的判定和性质等知识,属于常考题型,熟练掌握正方形的性质和相似三角形的判定和性质是解题的关键.10.下列事件中,是随机事件的是( )A .两条直线被第三条直线所截,同位角相等B .任意一个四边形的外角和等于360°C .早上太阳从西方升起D .平行四边形是中心对称图形【答案】A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B ,不可能事件.选项C ,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.11.将抛物线()2213y x =+-先向上平移3个单位长度,再向右平移1个单位长度可得抛物线( )A .22y x =B .()222y x =+C .226y x =-D .()2226y x =+-【答案】A【分析】根据抛物线平移的规律:上加下减,左加右减,即可得解.【详解】平移后的抛物线为()22211332y x x =+--+=故答案为A.【点睛】此题主要考查抛物线平移的性质,熟练掌握,即可解题.12.下列函数中,当x >0时,y 随x 的增大而增大的是( )A .y x 1=-+B .2y x 1=-C .1y x =D .2y x 1=-+【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图象在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k=1>0,分别在一、.三象限里,y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图象在对称轴右侧,y 随着x 的增大而减小,错误.故选B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.二、填空题(本题包括8个小题)13.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.【答案】1.【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠A+∠C =180°,∵∠A =125°,∴∠C =1°,故答案为:1.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键.14.已知锐角α,满足tanα=2,则sinα=_____.25 【解析】分析:根据锐角三角函数的定义,可得答案.详解:如图,由tanα=a b=2,得a=2b ,由勾股定理,得: 22a b +5,sinα=a c 5b 25.故答案为255.点睛:本题考查了锐角三角函数,利用锐角三角函数的定义解题的关键.15.已知二次函数y=3x2+2x,当﹣1≤x≤0时,函数值y的取值范围是_____.【答案】﹣13≤y≤1【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.16.如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角 的度数为______.【答案】60°或70°.【分析】连接AC,根据菱形的性质及等边三角形的判定易证△ABC是等边三角形.分两种情况:①将△ABE 绕点A逆时针旋转60°,点E可落在边DC上,此时△ABE与△ABE1重合;②将线段AE绕点A逆时针旋转70°,点E可落在边DC上,点E与点E2重合,此△AEC≌△AE2C.【详解】连接AC.∵菱形ABCD中,∠ABC=60°,∴△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∴∠ACD=60°.本题有两种情况:①如图,将△ABE 绕点A 逆时针旋转,使点B 与点C 重合,点E 与点E 1重合,此时△ABE ≌△ABE 1,AE=AE 1,旋转角α=∠BAC=60°;②∵∠BAC=60°,∠BAE=25°,∴∠EAC=35°.如图,将线段AE 绕点A 逆时针旋转70°,使点E 到点E 2的位置,此时△AEC ≌△AE 2C ,AE=AE 2,旋转角α=∠EAE 2=70°.综上可知,符合条件的旋转角α的度数为60度或70度.17.已知2x =-是一元二次方程240x mx ++=的一个解,则m 的值是__________.【答案】4【分析】把x=-2代入x 2+mx+4=0可得关于m 的一元一次方程,解方程即可求出m 的值.【详解】∵2x =-是一元二次方程240x mx ++=的一个解,∴4-2m+4=0,解得:m=4,故答案为:4【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 18.如图,在平面直角坐标系中,()()()0,44,46,2A B C 、、,则经过、、A B C 三点的圆弧所在圆的圆心M 的坐标为__________;点D 坐标为()8,2-,连接CD ,直线CD 与M 的位置关系是___________.【答案】(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC 是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).连接MC,MD,∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.三、解答题(本题包括8个小题)19.解方程(1)2x2﹣7x+3=1;(2)x2﹣3x=1.【答案】(1)x1=2,x212;(2)x1 =1或x2 =2.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)提取公因式x 后,求出方程的解即可; 【详解】解: (1)2x 2﹣7x+2=1, (x ﹣2)(2x ﹣1)=1, ∴x ﹣2=1或2x ﹣1=1, ∴x 1=2,x 212=; (2)x 2﹣2x=1, x(x ﹣2)=1, x 1 =1 或,x 2 =2. 【点睛】本题主要考查了解一元二次方程,掌握解一元二次方程是解题的关键.20.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低1万元,平均每周多售出2辆. (1)当售价为22万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 【答案】(1)98 (2)20万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x 万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x 的值,进而得到每辆汽车的售价.【详解】(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:25220.5-×1+8=14, 则此时,平均每周的销售利润是:(22−15)×14=98(万元); (2)设每辆汽车降价x 万元,根据题意得: (25−x−15)(8+2x )=90, 解得x 1=1,x 2=5,当x =1时,销售数量为8+2×1=10(辆); 当x =5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x =5,此时每辆汽车的售价为25−5=20(万元), 答:每辆汽车的售价为20万元. 【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.21.某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率. 【答案】(1)8 ;(2)144︒;(3)12【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值; (2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数; (3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可 【详解】解:(1)班级总人数为1230%40÷= 人,B 等级的人数为4020%8⨯= 人,故a 的值为8; (2)16360144?40⨯︒=︒ ∴C 等级对应扇形的圆心角的度数为144︒. (3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种. ∴P (一男一女)61122==答:恰好选中一男一女参加比赛的概率为12. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A的结果数目m ,然后利用概率公式计算事件A 的概率为mn.也考查了统计图. 22.(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:sin()sin cos cos sin αβαβαβ+=⋅+⋅,sin()sin cos cos sin αβαβαβ-=⋅-⋅cos()cos cos sin sin αβαβαβ+=⋅-⋅,cos()cos cos sin sin αβαβαβ-=⋅+⋅tan tan tan()1tan tan αβαβαβ++=-⋅,tan tan tan()1tan tan αβαβαβ--=+⋅,(理解应用)请你利用以上信息求下列各式的值:(1)sin15︒;(2)cos105︒(拓展应用)(3)为了求出海岛上的山峰AB 的高度,在D 处和F 处树立标杆CD 和EF ,标杆的高都是3丈,,D F 两处相隔1000步(1步等于6尺),并且,AB CD 和EF 在同一平面内,在标杆CD 的顶端C 处测得山峰顶端A 的仰角75°,在标杆EF 的顶端E 处测得山峰顶端A 的仰角30°,山峰的高度即AB 的长是多少步?(结果保留整数)(参考数据:2 1.4,3 1.7,5 2.2,6 2.4≈≈≈≈)【答案】(162-(226-(3)山峰的高度即AB 的长大约是719步 【分析】(1))sin15sin(4530)︒=︒-︒,直接利用所给等量关系式代入求解即可; (2)cos105cos 6045︒=︒+(),直接利用所给等量关系式代入求解即可; (3)连接CE ,返向延长CE 交AB 于点K ,再用含AK 的式子表示出KE ,KC ,再根据KE=CK+1000求解即可.【详解】解:(1)sin15sin(4530)︒=︒-︒sin 45cos30cos4530sin =︒︒-︒︒2321622-==(2)cos105cos 6045cos60cos45sin 60sin 45︒=︒+=︒︒-︒︒()12322622224-=⨯-⨯= (3)连接CE ,返向延长CE 交AB 于点K ,则35KB CD ===丈步,1000EC DF ==步,在Rt AKC ∆中,tan 75AKKC =同理:tan 30AKKE =∵31tan 45tan 30333tan 75tan(4530)1tan 45tan 30333113+++=+===-⋅--⨯3 1.7 3.63 1.7+≈≈- 1000KE KC EC KC =+=+∴1000tan 30tan 75AK AK=+∴1000tan 30tan 75AK AK-=解得:714AK ≈(步)∴7145719AB AK KB =+≈+=(步) 答:山峰的高度即AB 的长大约是719步. 【点睛】本题考查的知识点是锐角三角函数,解题的关键是读懂题意,能够灵活运用所给等量关系式.23.李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据. 摸球的次数n 100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251 摸到黑球的频率mn0.230.210.30_______________(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.【答案】表格内数据:0.26,0.25,0.25 (1)0.25;(2)1;(1)916.【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11+x=0.25,x=1.答:估计袋中有1个白球.(1)由题意画树状图得:由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.所以P(两次都摸出白球)=916.【点睛】本题主要考查了模拟实验以及频率求法和树状图法与列表法求概率, 解决本题的关键是要熟练掌握概率计算方法.24.如图,⊙O的直径AB与弦CD相交于点E,且DE=CE,⊙O的切线BF与弦AD的延长线交于点F.(1)求证:CD∥BF;(2)若⊙O的半径为6,∠A=35°,求DBC的长.【答案】(1)见解析;(2)143π【分析】(1)根据垂径定理、切线的性质求出AB ⊥CD ,AB ⊥BF ,即可证明; (2)根据圆周角定理求出∠COD ,根据弧长公式计算即可. 【详解】(1)证明:∵AB 是⊙O 的直径,DE =CE , ∴AB ⊥CD , ∵BF 是⊙O 的切线, ∴AB ⊥BF , ∴CD ∥BF ;(2)解:连接OD 、OC , ∵∠A =35°,∴∠BOD =2∠A =70°, ∴∠COD =2∠BOD =140°, ∴DBC 的长为:1406180π⨯=143π.【点睛】本题考查的是切线的性质、垂径定理、弧长的计算,掌握切线的性质定理、垂径定理和弧长的计算公式是解题的关键.25.在综合实践课中,小慧将一张长方形卡纸如图1所示裁剪开,无缝隙不重叠的拼成如图2所示的“L ”形状,且成轴对称图形.裁剪过程中卡纸的消耗忽略不计,若已知9AB =,16BC =,FG AD ⊥. 求(1)线段AF 与EC 的差值是___ (2)FG 的长度.【答案】9 6【分析】如图1,延长FG 交BC 于H ,设CE =x ,则E'H'=CE =x ,根据轴对称的性质得:D'E'=DC =E'F'=9,表示GH ,EH ,BE 的长,证明△EGH ∽△EAB ,则GH EHAB BE=,可得x 的值, 即可求出线段AF 、EC 及FG 的长,故可求解.【详解】(1)如图1,延长FG交BC于H,设CE=x,则E'H'=CE=x,由轴对称的性质得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16−(9+x)=7−x,即C'D'=DF=7−x=F'G',∴FG=7−x,∴GH=9−(7−x)=2+x,EH=16−x−(9+x)=7−2x,∴EH∥AB,∴△EGH∽△EAB,∴GH EH AB BE=,∴272 916x xx +-=-,解得x=1或31(舍),AF、EC及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案为:9;(2)由(1)得FG=7−x =7-1=6.【点睛】本题考查了图形的拼剪,轴对称的性质,矩形、直角三角形、相似三角形等相关知识,积累了将实际问题转化为数学问题经验,渗透了数形结合的思想,体现了数学思想方法在现实问题中的应用价值.26.如图,在正方形ABCD中,等边△AEF的顶点E、F分别在BC和CD上.(1)、求证:△ABE≌△ADF;(2)、若等边△AEF的周长为6,求正方形ABCD的边长.【答案】(1)证明见解析;(226 +【解析】试题分析:(1)根据四边形ABCD 是正方形,得出AB=AD ,∠B=∠D=90°,再根据△AEF 是等边三角形,得出AE=AF ,最后根据HL 即可证出△ABE ≌△ADF ;(2)根据等边△AEF 的周长是6,得出AE=EF=AF 的长,再根据(1)的证明得出CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE=x ,则,在Rt △ABE 中,AB 2+BE 2=AE 2,求出x 的值,即可得出正方形ABCD 的边长. 试题解析:(1)证明:∵四边形ABCD 是正方形, ∴AB=AD ,∵△AEF 是等边三角形, ∴AE=AF ,在Rt △ABE 和Rt △ADF 中, ∵AB =AD ,AE =AF ∴Rt △ABE ≌Rt △ADF ; (2)∵等边△AEF 的周长是6, ∴AE=EF=AF=2,又∵Rt △ABE ≌Rt △ADF , ∴BE=DF ,∴CE=CF ,∠C=90°, 即△ECF 是等腰直角三角形, 由勾股定理得CE 2+CF 2=EF 2, ∴,设BE=x ,则,在Rt △ABE 中,AB 2+BE 2=AE 2,即()2+x 2=4,解得x 1=2x 2=2,∴∴正方形ABCD 的边长为考点: 1.正方形的性质;2.全等三角形的判定与性质;27.如图,抛物线y=ax 2+bx+4(a ≠0)与x 轴交于点B (-3 ,0) 和C (4 ,0)与y 轴交于点A . (1) a = ,b = ;(2) 点M 从点A 出发以每秒1个单位长度的速度沿AB 向B 运动,同时,点N 从点B 出发以每秒1个单位长度的速度沿BC 向C 运动,当点M 到达B 点时,两点停止运动.t 为何值时,以B 、M 、N 为顶点的三角形是等腰三角形?(3) 点P 是第一象限抛物线上的一点,若BP 恰好平分∠ABC ,请直接写出此时点P 的坐标.【答案】(1)13-,13;(2)52530,,21111t =;(3)511(,)24 【解析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN 时,即5-t=t ,②当BM=NM=5-t 时,过点M 作ME ⊥OB ,因为AO ⊥BO ,所以ME ∥AO ,可得:BM BEBA BO =即可解答;③当BE=MN=t 时,过点E 作EF ⊥BM 于点F ,所以BF=12BM=12(5-t ),易证△BFE ∽△BOA ,所以BE BFBA BO=即可解答; (3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设出点P 坐标,易证△BGO ∽△BPD ,所以BO GOBD PD=,即可解答. 【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0), ∴934016440a b a b -+⎧⎨++⎩== ,解得:1313a b ⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax 2+bx+4,∴A(0,4),0A=4,OB=3, 在Rt △ABO 中,由勾股定理得:AB=5, t 秒时,AM=t ,BN=t ,BM=AB-AM=5-t , ①如图:当BM=BN 时,即5-t=t ,解得:t=52;,②如图,当BM=NM=5-t 时,过点M 作ME ⊥OB ,因为BN=t ,由三线合一得:BE=12BN=12t ,又因为AO ⊥BO ,所以ME ∥AO ,所以BM BE BA BO =,即15-253tt = ,解得:t=3011;③如图:当BE=MN=t 时,过点E 作EF ⊥BM 于点F ,所以BF=12BM=12(5-t ),易证△BFE ∽△BOA ,所以BE BF BA BO=,即5t 253t-= ,解得:t=2511 .(3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设P (m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD = ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114故点P的坐标为511(,)24【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,两根竹竿AB 和AD 都斜靠在墙CE 上,测得,CAB CAD αβ∠=∠=,则两竹竿的长度之比AB AD 等于( ) A .sin sin αβ B .cos cos αβ C .sin sin βα D .cos cos βα【答案】D【分析】在两个直角三角形中,分别求出AB 、AD 即可解决问题.【详解】根据题意:在Rt △ABC 中,cos AC AB α=,则cos AC AB α=, 在Rt △ACD 中,cos AC ADβ=,则cos AC AD β=, ∴cos cos cos cos ACAB AC AD βααβ==. 故选:D .【点睛】本题考查了解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题. 2.按如图所示的运算程序,输入的 x 的值为12,那么输出的 y 的值为( )A .1B .2C .3D .4【答案】D【分析】把1=2x 代入程序中计算,知道满足条件,即可确定输出的结果. 【详解】把1=2x 代入程序, ∵12是分数, ∴120=-=-<y x 不满足输出条件,进行下一轮计算;把=2x -代入程序,∵2-不是分数 ∴()()22112122214044=--+=-⨯--⨯-+=>y x x 满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.3.已知实数m ,n 满足条件m 2﹣7m+2=0,n 2﹣7n+2=0,则n m +m n 的值是( ) A .452 B .152 C .152或2 D .452或2 【答案】D【分析】①m≠n 时,由题意可得m 、n 为方程x 2﹣7x+2=0的两个实数根,利用韦达定理得出m+n 、mn 的值,将要求的式子转化为关于m+n 、mn 的形式,整体代入求值即可;②m=n ,直接代入所求式子计算即可.【详解】①m≠n 时,由题意得:m 、n 为方程x 2﹣7x+2=0的两个实数根,∴m+n=7,mn=2,n m +m n =22n m mn +=22m n mn mn +-()=27222-⨯=452; ②m=n 时,n m +m n=2. 故选D.【点睛】 本题主要考查一元二次方程根与系数的关系,分析出m 、n 是方程的两个根以及分类讨论是解题的关键. 4.关于x 的一元二次方程ax 2﹣4x+1=0有实数根,则整数a 的最大值是( )A .1B .﹣4C .3D .4【答案】D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=16﹣4a≥0且a≠0,∴a≤4且a≠0,所以a 的最大值为4,故选:D .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.5.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( ) A .978×103B .97.8×104C .9.78×105D .0.978×106 【答案】C【详解】解:978000用科学记数法表示为:9.78×105,故选C .【点睛】本题考查科学记数法—表示较大的数.6.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( ) A .9B .10C .11D .12 【答案】B【分析】观察得出第n 个数为(-2)n ,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n 个数为(-2)n ,那么(-2)n-2+(-2)n-1+(-2)n =768,当n 为偶数:整理得出:3×2n-2=768,解得:n=10;当n 为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B .7.用配方法解方程x 2+4x+1=0时,原方程应变形为( )A .(x+2)2=3B .(x ﹣2)2=3C .(x+2)2=5D .(x ﹣2)2=5 【答案】A【分析】先把常数项移到方程右侧,然后配一次项系数一半的平方即可求解.【详解】x 2+4x =﹣1,x 2+4x+4=3,(x+2)2=3,故选:A .【点睛】本题考查了解一元二次方程-配方法,掌握在二次项系数为1的前提下,配一次项系数一半的平方是关键. 8.下列四组a 、b 、c 的线段中,不能组成直角三角形的是( )A .1a =,3b =2c =B .13a =,14b =,15c =C .9a =,12b =,15c =D .8a =,15b =,=17c【答案】B 【分析】根据勾股定理的逆定理判断三角形三边是否构成直角三角形,依次计算判断得出结论.【详解】A.∵222214a b +=+=,2224c ==,∴222+=a b c ,A 选项不符合题意.B.∵22221141()()45400b c +=+=,2211()39a ==, ∴222bc a +≠,B 选项符合题意.C.∵2222912225a b +=+=,2215225c ==,∴222+=a b c ,C 选项不符合题意.D.∵2222815289a b +=+=,2217289c ==∴222+=a b c ,D 选项不符合题意.故选:B .【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键.9.方程(2)x x x -=的根是( )A .2B .0C .0或2D .0或3【答案】D【分析】先把右边的x 移到左边,然后再利用因式分解法解出x 即可.【详解】解:22x x x -= 230x x -=()30x x -=120,3x x ==故选D.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键.10.如图,在一块斜边长60cm 的直角三角形木板(Rt ACB )上截取一个正方形CDEF ,点D 在边BC 上,点E 在斜边AB 上,点F 在边AC 上,若CD :CB =1:3,则这块木板截取正方形CDEF 后,剩余部分的面积为( )A .202.5cm 2B .320cm 2C .400cm 2D .405cm 2【答案】C 【分析】先根据正方形的性质、相似三角形的判定与性质可得13AF EF AC BC ==,设AF x =,从而可得3,2,6AC x EF CF x BC x ====,再在Rt ACB 中,利用勾股定理可求出x 的值,然后根据三角形的面积公式、正方形的面积公式计算即可.【详解】∵四边形CDEF 为正方形,∴//EF BC ,EF CD =,∴AEF ABC ,AF EF AC BC∴=, ∵:1:3CD CB =, 13AF EF CD AC BC BC ∴===, 设AF x =,则3,2AC x EF CF x ===,∴6BC x =,在Rt ACB 中,222AC BC AB +=,即222(3)(6)60x x +=, 解得5x =45x =-(不符题意,舍去), 125,245,85AC BC EF ∴===, 则剩余部分的面积为22211125245(85)400()22AC BC EF cm ⋅-=⨯=, 故选:C .【点睛】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键.11.将抛物线y=﹣(x+1)2+3向右平移2个单位后得到的新抛物线的表达式为( )A .y=﹣(x+1)2+1B .y=﹣(x ﹣1)2+3C .y=﹣(x+1)2+5D .y=﹣(x+3)2+3 【答案】B【解析】解:∵将抛物线y=﹣(x +1)2+1向右平移2个单位,∴新抛物线的表达式为y=﹣(x +1﹣2)2+1=﹣(x ﹣1)2+1.故选B .12.下列事件中,是随机事件的是( )A .三角形任意两边之和大于第三边B .任意选择某一电视频道,它正在播放新闻联播C .a 是实数,|a|≥0D .在一个装着白球和黑球的袋中摸球,摸出红球【答案】B【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A 、三角形任意两边之和大于第三边是必然事件,故选项不合题意;B 、任意选择某一电视频道,它正在播放新闻联播,是随机事件,故选项符合题意;C 、a 是实数,|a|≥0,是必然事件,故选项不合题意;D 、在一个装着白球和黑球的袋中摸球,摸出红球,是不可能事件,故选项不合题意.故选:B .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本题包括8个小题)13.已知二次函数y=-x -2x +3的图象上有两点A(-7,1y ),B(-8,2y ),则1y ▲ 2y .(用>、<、=填空).【答案】>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A 、B 的横坐标的大小即可判断出y 1与y 1的大小关系:∵二次函数y=﹣x 1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y 随x 的增大而增大.∵点A (﹣7,y 1),B (﹣8,y 1)是二次函数y=﹣x 1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y 1>y 1.14.已知3-是关于x 的一元二次方程2230ax x -+=的一个解,则此方程的另一个解为____.【答案】1x =【分析】将x =-3代入原方程,解一元二次方程即可解题.【详解】解:将x=-3代入2230ax x -+=得,a=-1,∴原方程为2230x x --+=,解得:x=1或-3,【点睛】。

(汇总3份试卷)2018年合肥市九年级上学期数学期末检测试题

(汇总3份试卷)2018年合肥市九年级上学期数学期末检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是A.25πB.65πC.90πD.130π【答案】B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为( )A.14B.13C.12D.1【答案】B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】解:设一双是红色,一双是绿色,则列表得:∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率:41123 P==;故选择:B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.3.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6 B.5 C.4 D.3【答案】B【解析】过点O 作OC⊥AB,垂足为C ,则有AC=12AB=12×24=12,在Rt △AOC 中,∠ACO=90°,AO=13, ∴OC=22AO AC -=5,即点O 到AB 的距离是5.4.方程05)1(22=-+-mx x m 是关于x 的一元二次方程,则m 的值不能是( )A .0B .12C .±1D .12- 【答案】C【详解】解:05)1(22=-+-mx x m 是关于x 的一元二次方程,则210m -≠, 解得m ≠±1故选C .【点睛】本题考查一元二次方程的概念,注意二次项系数不能为零.5.如图,是一个几何体的三视图,则这个几何体是( )A .长方体B .圆柱体C .球体D .圆锥体【答案】B 【分析】根据三视图的规律解答:主视图表示由前向后观察的物体的视图;左视图表示在侧面由左向右观察物体的视图,俯视图表示由上向下观察物体的视图,由此解答即可.【详解】解:∵该几何体的主视图和左视图都为长方形,俯视图为圆∴这个几何体为圆柱体故答案是:B.【点睛】本题主要考察简单几何体的三视图,熟练掌握简单几何体的三视图是解题的关键.6.二次函数224y x x =-+图像的顶点坐标是( )A .()1,2-B .()1,1-C .()1,1D .()1,2【答案】D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵224y x x =-+ ()22211x x =--+-22(1)2x =--+, ∴二次函数224y x x =-+的顶点坐标为()12,. 故选:D .【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.7.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,⊙A 的半径为2,下列说法中不正确的是( )A .当1<a<5时,点B 在⊙A 内 B .当a<5时,点B 在⊙A 内C .当a<1时,点B 在⊙A 外D .当a>5时,点B 在⊙A 外【答案】B【解析】试题解析:由于圆心A 在数轴上的坐标为3,圆的半径为2,∴当d=r 时,⊙A 与数轴交于两点:1、5,故当a=1、5时点B 在⊙A 上;当d <r 即当1<a <5时,点B 在⊙A 内;当d >r 即当a <1或a >5时,点B 在⊙A 外.由以上结论可知选项A 、C 、D 正确,选项B 错误.故选B .点睛:若用d 、r 分别表示点到圆心的距离和圆的半径,则当d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内.8.如图,关于抛物线2(1)2y x =--,下列说法错误的是 ( )A .顶点坐标为(1,2-)B .对称轴是直线x=lC .开口方向向上D .当x>1时,y 随x 的增大而减小【答案】D【分析】根据抛物线的解析式得出顶点坐标是(1,-2),对称轴是直线x=1,根据a=1>0,得出开口向上,当x >1时,y 随x 的增大而增大,根据结论即可判断选项.【详解】解:∵抛物线y=(x-1)2-2,A 、因为顶点坐标是(1,-2),故说法正确;B 、因为对称轴是直线x=1,故说法正确;C 、因为a=1>0,开口向上,故说法正确;D 、当x >1时,y 随x 的增大而增大,故说法错误.故选D .9.如图,在Rt △ABC 中,∠C=90°,AC=3,AB=5,则cosB 的值为( )A .45B .34C .43D .35【答案】B【详解】解:在Rt △ABC 中,∠C=90°,AC=3,AB=5,由勾股定理,得:BC=22AB AC -=2253-=1.cosB=BC AB =45, 故选B .【点睛】本题考查锐角三角函数的定义.10.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为( )A .112B .512C .16D .12【答案】A【解析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,据此用黄灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是黄灯的概率为多少.【详解】根据题意可知,每分钟内黄灯亮的时间为秒,每分钟内黄灯亮的概率为516012P ==,故抬头看是黄灯的概率为112. 故选A.【点睛】本题主要考查求随机事件概率的方法,熟悉掌握随机事件A 的概率公式是关键.11.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.5【答案】B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴AE AGBF BE,又∵AE=BE,∴AE2=AG•BF=2,∴2,∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.12.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.8 【答案】B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P (A )=m n. 二、填空题(本题包括8个小题)13.如图,在矩形 ABCD 中,如果 AB =3,AD =4,EF 是对角线 BD 的垂直平分线,分别交 AD ,BC 于 点 EF ,则 ED 的长为____________________________.【答案】258【分析】连接EB ,构造直角三角形,设AE 为x ,则4DE BE x ==-,利用勾股定理得到有关x 的一元一次方程,即可求出ED 的长.【详解】连接EB ,∵EF 垂直平分BD ,∴ED=EB ,设AE x =,则4ED EB x ==-,在Rt △AEB 中,222AE AB BE +=,即:()22234x x +=-,解得:78x =. ∴725488ED EB ==-=, 故答案为:258. 【点睛】 本题考查了矩形的性质,线段的垂直平分线的性质和勾股定理,正确根据勾股定理列出方程是解题的关键. 14.菱形ABCD 的周长为20,且有一个内角为120°,则它的较短的对角线长为______.【答案】1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】 如图所示:菱形ABCD 的周长为20,∴AB=20÷4=1, 又120ABC ∠=︒,四边形ABCD 是菱形,∴60A ∠=︒,AB=AD ,∴ABD △是等边三角形,∴ BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.15.如图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,∠A=20°,∠C=15°,E 、B 、C 在同一直线上,则旋转角度是_______.【答案】35°【分析】根据旋转角度的概念可得∠ABE 为旋转角度,然后根据三角形外角的性质可进行求解.【详解】解:由题意得:∠ABE 为旋转角度,∵∠A=20°,∠C=15°,E 、B 、C 在同一直线上,∴∠ABE=∠A+∠C=35°;故答案为35°.【点睛】本题主要考查旋转及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.16.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为______.【答案】22(2)3y x =-+【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2x 2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的解析式为22(2)3y x =-+,故答案为:22(2)3y x =-+【点睛】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 17.若点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),则(3a+b)2020=______.【答案】1【分析】直接利用关于原点对称点的性质得出3a+b =﹣1,进而得出答案.【详解】解:∵点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),∴23322a b a b +=-⎧⎨-=⎩, 故3a+b =﹣1,则(3a+b)2020=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.18.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.【答案】16π【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl (其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴²42616S r rl πππππ=+=+⨯⨯=故答案为:16π.【点睛】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.三、解答题(本题包括8个小题)19.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 20.已知:如图,⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点,过点B 作CD 的平行线交弦AD 的延长线于点F .(1)求证:BF 是⊙O 的切线;(2)连结BC ,若⊙O 的半径为2,tan ∠BCD=34,求线段AD 的长. 【答案】(1)见解析;(2)165【分析】(1)由垂径定理可证AB ⊥CD ,由CD ∥BF ,得AB ⊥BF ,则BF 是⊙O 的切线;(2)连接BD ,根据同弧所对圆周角相等得到∠BCD =∠BAD ,再利用圆的性质得到∠ADB=90°,tan ∠BCD= tan ∠BAD=34,得到BD 与AD 的关系,再利用解直角三角形可以得到BD 、AD 与半径的关系,进一步求解即可得到答案.【详解】(1)证明:∵ ⊙O 的直径AB 与弦CD 相交于点E ,且E 为CD 中点∴ AB ⊥CD, ∠AED =90°∵ CD // BF∴ ∠ABF =∠AED =90°∴ AB ⊥BF∵ AB 是⊙O 的直径∴ BF 是⊙O 的切线(2)解:连接BD∵∠BCD、∠BAD是同弧所对圆周角∴∠BCD =∠BAD∵ AB是⊙O的直径∴∠ADB=90°∵ tan∠BCD= tan∠BAD=3 4∴34 BD AD=∴设BD=3x,AD=4x∴AB=5x∵⊙O的半径为2,AB=4∴5x=4,x=4 5∴AD=4x=16 5【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,解直角三角形的知识.关键是利用圆周角定理将已知角进行转化,利用直径证明直角三角形.21.如图,反比例函数y=kx(x>0)与直线AB:122y x=-交于点C(232,)m+,点P是反比例函数图象上一点,过点P作x轴的垂线交直线AB于点Q,连接OP,OQ.(1)求反比例函数的解析式;(2)点P在反比例函数图象上运动,且点P在Q的上方,当△POQ面积最大时,求P点坐标.【答案】(1)y =4x ;(2)P (2,2) 【分析】(1)点C 在一次函数上得:m =()123+2-2=3-12,点C 在反比例函数上:3-1=232+,求出 k 即可.(2)动点P (m ,4m ),则点Q (m ,1m 2﹣2),PQ=4m -1m 2+2,则△POQ 面积=1m 2PQ ,利用-b 2a 公式求即可. 【详解】解:(1)将点C 的坐标代入一次函数表达式得:m =()123+2-2=3-12, 故点C ()232,3-1+,将点C 的坐标代入反比例函数表达式得:3-1=232+,解得k =4, 故反比例函数表达式为y =4x ; (2)设点P (m ,4m),则点Q (m ,1m 2﹣2), 则△POQ 面积=12PQ×x P =12(4m ﹣12m+2)•m =﹣14m 2+m+2, ∵﹣14<0,故△POQ 面积有最大值,此时m =1-12-4⎛⎫⨯ ⎪⎝⎭=2, 故点P (2,2).【点睛】本题考查反比例函数解析式,及面积最大值问题,关键是会利用一次函数求点C 坐标,利用动点P 表示Q ,求出面积函数,用对称轴公式即可解决问题.22.如图,ABO 与CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .【答案】详见解析【分析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD ,OA=OC .∵AF=CE ,∴OF=OE .∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE .23.如图,在ABC ∆中,90BAC ∠=,AB AC =,点,D E 均在边BC 上,且45DAE ∠=.(1)将ABD ∆绕A 点逆时针旋转90,可使AB 与AC 重合,画出旋转后的图形ACG ∆,在原图中补出旋转后的图形.(2)求DAG ∠和ECG ∠的度数.【答案】(1)见解析;(2)=90DAG ∠︒,=90ECG ∠︒.【分析】(1)以C 为圆心BD 为半径作弧,与以A 为圆心AD 为半径作弧的交点即为G 点,然后连线即可得解;(2)根据旋转的性质可得∠CAG=∠BAD ,∠ACG=∠ABD ,然后根据题意即可得各角的大小.【详解】(1)△ACG 如图:(2)∵90BAC ∠=,45DAE ∠=,∴∠B+∠ACB=90°,∠BAD+∠CAE=45°,又∵ACG ∆为ABD ∆绕A 点逆时针旋转90所得,∴∠CAG=∠BAD ,∠ACG=∠ABD ,∴=90DAG DAE EAC GAC ∠=++︒∠∠∠,==90ECG ECA ACG ∠+︒∠∠.【点睛】本题主要考查画旋转图形,旋转的性质,解此题的关键在于熟练掌握其知识点.24.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.【答案】解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6, ∴a =135,b =134.5,c =1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.25.某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬衫涨价x 元,回答下列问题:(1)该商场每天售出衬衫 件(用含x 的代数式表示);(2)求x 的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?【答案】(1)602x -;(2)当15x =时,商场平均每天获利1050元;(3)能【分析】(1)根据题意写出答案即可.(2)根据题意列出方程,解出答案即可.(3)令利润代数式为1250,解出即可判断.【详解】(1)根据题意:每天可售出60件,如果每件衬衫每涨价1元,商场平均每天可少售出2件,则商场每天售出衬衫:602x -(2)(4020)(602)1050x x +--=解得115x =,25x =-(不符合题意,舍去).答:当15x =时,商场平均每天获利1050元.(3)根据题意可得:(4020)(602)1250x x +--=解得:x=5所以,商场平均每天获利能达到1250元【点睛】本题考查一元二次方程的应用,关键在于理解题意找出等量关系.26.放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300km 的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70L ,请回答下列问题:(1)写出油箱注满油后,汽车能够行使的总路程()s km 与平均耗油量(/)x L km 之间的函数关系式; (2)小明的爸爸以平均每千米耗油0.1L 的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?【答案】(1)70s x=;(2)不够,至少要加油20L 【分析】(1)根据总路程()s km ×平均耗油量(/)x L km =油箱总油量求解即可;(2)先计算去时所用油量,再计算返回时用油量,与油箱中剩余油量作比较即可得出答案.【详解】解:(1)由题意可得出总路程()s km 与平均耗油量(/)x L km 的函数关系式为:70s x=; (2)小明的爸爸始终以此速度行使,油箱里的油不能够回到家小明爸爸去时用油量是:3000.130⨯=(L )油箱剩下的油量是:703040-=(L )返回每千米用油量是:0.120.2⨯=(/L km )返回时用油量是:3000.260⨯=(L )40L >.所以,油箱里的油不能够回到家,至少要加油:604020L -=()【点睛】本题考查的知识点是求反比例函数的解析式,比较基础,易于掌握.27.如图,在平面直角坐标系中,四边形OABC 的顶点坐标分别为O (0,0),A (6,0),B (4,3),C (0,3).动点P 从点O 出发,以每秒32个单位长度的速度沿边OA 向终点A 运动;动点Q 从点B 同时出发,以每秒1个单位长度的速度沿边BC 向终点C 运动.设运动的时间为t 秒,PQ 2=y .(1)直接写出y 关于t 的函数解析式及t 的取值范围: ;(2)当PQ =10时,求t 的值;(3)连接OB 交PQ 于点D ,若双曲线y k x=(k≠0)经过点D ,问k 的值是否变化?若不变化,请求出k 的值;若变化,请说明理由.【答案】(1)22520254y t t =-+(0≤t ≤4);(2)t 1=2,t 2=65;(2)经过点D 的双曲线k y x =(k ≠0)的k 值不变,为10825. 【分析】(1)过点P 作PE ⊥BC 于点E ,由点P ,Q 的出发点、速度及方向可找出当运动时间为t 秒时点P ,Q 的坐标,进而可得出PE ,EQ 的长,再利用勾股定理即可求出y 关于t 的函数解析式(由时间=路程÷速度可得出t 的取值范围);(2)将10代入(1)的结论中可得出关于t 的一元二次方程,解之即可得出结论;(2)连接OB ,交PQ 于点D ,过点D 作DF ⊥OA 于点F ,求得点D 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值,此题得解.【详解】解:(1)过点P 作PE ⊥BC 于点E ,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(32t,0),点Q的坐标为(4-t,2),∴PE=2,EQ=|4-t-32t|=|4-52t|,∴PQ2=PE2+EQ2=22+|4-52t|2=254t2-20t+21,∴y关于t的函数解析式及t的取值范围:y=254t2−20t+21(0≤t≤4);故答案为:y=254t2−20t+21(0≤t≤4).(2)当PQ=10时,254t2−20t+21=(10)2整理,得1t2-16t+12=0,解得:t1=2,t2=65.(2)经过点D的双曲线y=kx(k≠0)的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=2,BC=4,∴OB22OC BC1.∵BQ∥OP,∴△BDQ∽△ODP,∴2332BD BQ ttOD OP===,∴OD=2.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,sin∠OBC=35OCOB=,cos∠OBC=BCOB=45,∴OF=OD•cos∠OBC=2×45=125,DF=OD•sin∠OBC=2×35=95,∴点D的坐标为(125,95),∴经过点D的双曲线y=kx(k≠0)的k值为125×95=10825..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个【答案】B【分析】根据相似多边形的定义判断①⑤,根据相似图形的定义判断②,根据相似三角形的判定判断③④.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故①错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,②错误;等边三角形的角都是60°,一定相似,③正确;钝角只能是等腰三角形的顶角,则底角只能是35°,所以两个等腰三角形相似,④正确;矩形之间的对应角相等,但是对应边不一定成比例,故⑤正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.2.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y =x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<1【答案】B【分析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,由此可知方程x2+x+c=0有两个不相等的实数根,即△=1-4c>0,再由题意可得函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,由此可得关于c的不等式组,解不等式组即可求得答案.【详解】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以△=1-4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y= x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc-⎧⎨++⎩><,解得c<﹣2,故选B.【点睛】本题考查了二次函数与一元二次方程的关系,正确理解题中的定义,熟练掌握二次函数与一元二次方程的关系是解题的关键.3.抛物线y=x 2+2x-2最低点坐标是( )A .(2,-2)B .(1,-2)C .(1,-3)D .(-1,-3)【答案】D【分析】利用配方法把抛物线的一般式转化为顶点式,再写出顶点坐标即可.【详解】∵()22222211213y x x x x x =+-=++--=+-,且10a =>, ∴最低点(顶点)坐标是()13--,. 故选:D .【点睛】此题考查利用顶点式求函数的顶点坐标,注意根据函数的特点灵活运用适当的方法解决问题. 4.已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( )A .2cmB .4cmC .6cmD .8cm【答案】B【详解】由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一半,所以斜边=2×2=4cm. 考点:含30°的直角三角形的性质.5.若点()1,6A x -,2(,2)B x -,()3,2C x 在反比例函数21m y x +=(m 为常数)的图象上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .321x x x <<C .231x x x <<D .213x x x <<【答案】D【分析】根据反比例函数的性质,可以判断出x 1,x 2,x 3的大小关系,本题得以解决. 【详解】解:∵反比例函数21m y x+=(m 为常数),m 2+1>0, ∴在每个象限内,y 随x 的增大而减小,∵点A (x 1,-6),B (x 2,-2),C (x 3,2)在反比例函数21m y x+=(m 为常数)的图象上,∵6202-<-<<, ∴x 2<x 1<x 3,故选:D.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 6.13的倒数是( ) A .3 B .13 C .13- D .3-【答案】A 【分析】根据乘积为1的两个数互为倒数进行解答即可.【详解】解:∵13×1=1, ∴13的倒数是1. 故选A .【点睛】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键.7.在同一平面直角坐标系中,函数y=x ﹣1与函数1y x=的图象可能是 A . B . C . D .【答案】C【解析】试题分析:一次函数y=kx+b 的图象有四种情况:①当k 0>,b 0>时,函数y=kx+b 的图象经过第一、二、三象限;②当k 0>,b 0<时,函数y=kx+b 的图象经过第一、三、四象限;③当k 0<,b 0>时,函数y=kx+b 的图象经过第一、二、四象限;④当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限.因此,∵函数y=x ﹣1的k 0>,b 0<,∴它的图象经过第一、三、四象限.根据反比例函数()k y k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.∵反比例函数1y x=的系数1>0,∴图象两个分支分别位于第一、三象限. 综上所述,符合上述条件的选项是C .故选C .8.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .【答案】A【解析】根据中心对称图形的定义逐项进行判断即可得.【详解】A 、是中心对称图形,故此选项正确;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项错误,故选A .【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.9.关于x 的一元二次方程x 2+bx ﹣10=0的一个根为2,则b 的值为( )A .1B .2C .3D .7【答案】C【解析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx ﹣10=0得4+2b ﹣10=0解得b=1.故选C .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 10.已知0x =是方程22210x x a ++-=的一个解,则a 的值是( )A .±1B .0C .1D .-1 【答案】A【分析】利用一元二次方程解得定义,将0x =代入22210x x a ++-=得到210a -=,然后解关于a 的方程.【详解】解:将0x =代入22210x x a ++-=得到210a -=,解得1a =±故选A【点睛】本题考查了一元二次方程的解.11.关于x 的一元二次方程x 2+mx ﹣1=0的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定 【答案】A【解析】计算出方程的判别式为△=m 2+4,可知其大于0,可判断出方程根的情况.【详解】方程x 2+mx ﹣1=0的判别式为△=m 2+4>0,所以该方程有两个不相等的实数根,【点睛】此题主要考查根的判别式,解题的关键是求出方程根的判别式进行判断.12.下列方程中,是一元二次方程的是( )A .230x -=B .220x y -=C .213x x +=-D .20x = 【答案】D【解析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【详解】解:A 、是一元一次方程,故A 不符合题意;B 、是二元二次方程,故B 不符合题意;C 、是分式方程,故C 不符合题意;D 、是一元二次方程,故D 符合题意;故选择:D.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx+c=0(a ≠0)的形式,则这个方程就为一元二次方程.二、填空题(本题包括8个小题)13.若点(p ,2)与(﹣3,q )关于原点对称,则p+q =__.【答案】1【分析】直接利用关于原点对称点的性质得出p ,q 的值进而得出答案.【详解】解:∵点(p ,2)与(﹣3,q )关于原点对称,∴p =3,q =﹣2,∴p+q =3﹣2=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的坐标之间的关系是解题关键. 14.已知扇形的半径为6,面积是12π,则这个扇形所对的弧长是_____.【答案】4π.【分析】根据扇形的弧长公式解答即可得解.【详解】设扇形弧长为l ,面积为s ,半径为r . ∵1161222S lr l π==⨯⨯=, ∴l=4π.故答案为:4π.本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题. 15.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .【答案】103. 【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE∴DE=83∴2210=3AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.16.抛物线y =ax 2+bx +c 的部分图象如图所示,则当y <0时,x 的取值范围是_____.【答案】x <﹣1或x >1.【分析】利用二次函数的对称性得到抛物线与x 轴的另一个交点坐标为(1,0),然后写出抛物线在x 轴下方所对应的自变量的范围即可.【详解】∵抛物线的对称轴为直线1x =,而抛物线与x 轴的一个交点坐标为(-1,0),∴抛物线与x 轴的另一个交点坐标为(1,0),∴当0y <时,x 的取值范围为1x <-或3x >.故答案为:1x <-或3x >.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.。

(完整word)安徽省合肥市包河区2017-2018学年第一学期期末九年级数学试卷(word版有答案)

(完整word)安徽省合肥市包河区2017-2018学年第一学期期末九年级数学试卷(word版有答案)

合肥市包河区2017-2018学年第一学期期末九年级数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1. 二次函数y=-(x+2)2+1图象的对称轴是直线( )A. x=1B.x=-1C.x=2D.x=-22. 已知⊙O 的半径为5,弦AB 的长为8,则圆心O 到弦AB 的距离为( )A.3B.4C.5D.63.在△ABC 中,∠C=90°,AC=3BC ,则sinA 的值为( )A. 31 B.3 C.1010 D.10103 4.如图,在△ABC 中,DE ∥BC ,D 、E 分别在AB 、AC 边上,已知4DB AD =,则BC DE 的值为( ) A.32 B.43 C.54 D.65 5.如图,△ABC 内接于⊙O ,∠C+∠O=60° ,则∠OAB 的度数是 ( )A.50°B.70°C.60°D.72°6. 如图,过原点O 的直线交反比例函数xk y =的图象与A 、B 两点,分别过A 、B 两点作x 轴、y 轴的垂线,相交于C 点,已知△ABC 的面积等于4,则k 的值为( )A. -1B.-2C.-3D.-47. △ABC 内接于⊙O ,记∠A=x ,∠OBC=y ,则x 、y 之间存在的等量关系是( )A. x=2yB.x+y=90°C.x-y=90°D.x+y=90°或x-y=90°8. 如图,以平行四边形ABCD 的对角线AC 为一边作平行四边形ACEF ,其中E 在CD 边上,F 在BA 的延长线上,EF 交AD 于G 点,连接BD 交AC 于O 点,交EF 于H 点,已知31EC DE =,则HF EH 的值为( )A 71 B.61 C.51 D.819. 如图,在边长为4 的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,设P 点运动的时间为x ,△APQ 的面积为y ,则y 与x 的函数图象大致是( )10. 如图,在半圆⊙O 中,直径AB=4,点C 、D 是半圆上两点,且∠BOC=84°,∠BOD=36°,P 为直径上一点,则PC+PD 的最小值为( ) A.4 B.32 C.22 D.2二、填空题(本大题共4小题,每小题5分,满分20分)11. 反比例函数图象xk y =(x <0)的y 随x 增大而增大,则k 的取值范围是 ; 12. 关于x 的二次函数y=ax 2+a 2的最大值为4,则a 的值为 ;13. 如图 ,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,交AC 于D ,AE ⊥BD 于E ,AD :DC=3:5,则DE :BE 的值是 ;14. 如图,Rt △ABC 中,∠C=90°,点P 在以AB 为直径的⊙O 上,P 、C 分别位于AB 的两侧(P 不与A 、B 重合),点D 为PB 延长线上一点,且∠PCD=90°,AB 、PC 相交于点E ,则下列结论一定成立的是 (把所有正确结论的序号都填在横线上)三、(本大题共2小题,每小题8分,满分16分)15. 计算:︒•︒︒60sin 45tan -30tan -1216. 如图,四边形ABCD 的对角线AC 、BD 相交于点E ,∠ABD=∠ACD=90°,AC=2CD ,过C 作CF ⊥BC ,交BD 于F ,求证:AB=2DF.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在△ABC 中,AD 是角平分线,∠ABC=∠BAC=30°,AC=2,求线段AD 的长度(结果保留根号).18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点网格线的交点)以及格点P.(1)将△ABC 绕点P 逆时针旋转90°得到△DEF ,画出△DEF ;(2)以D 为一个顶点,画一个格点△A 1B 1C 1,使得△A 1B 1C 1∽△ABC ,且相似比为2.五、(本大题共2小题,每小题10分,满分20分)19. 如图,已知一次函数y 1=kx-2的图象与反比例函数xm y 2=(x >0)的图象交于A 点,与x 轴、y 轴交于C 、D 两点,过A 作AB 垂直于x 轴于B 点.已知AB=1,BC=2.(1)求一次函数y 1=kx-2和反比例函数xm y 2=(x >0)的表达式;(2)观察图象:当x >0时,比较y 1、y 2的大小.20. 如图,在⊙O 中,AB 是直径,CD 是弦(不过圆心),AB ⊥CD.(1)E 是优弧CAD 上一点(不与C 、D 重合),求证:∠CED=∠COB ;(2)点E ´在劣弧CD 上(不与C 、D 重合)时,∠CE ´D 与∠COB 有什么数量关系?请证明你的结论.六、(本题满分12分)21. 如图,已知抛物线y 1=ax 2+bx-3与x 轴交于A(1,0)、B (3,0).(1)求抛物线的顶点坐标;(2)将抛物线向上平移几个单位,可使平移后抛物线的顶点落在反比例函数x6y 2=(x >0)图象上? (3)将抛物线向右平移几个单位,可使平移后的抛物线的顶点落在反比例函数x 6y 2=(x >0)图象上?七、(本题满分12分)22.某水果销售商发现某种高档水果市场需求量较大,经过市场调查发现月销量y (箱)与销售单价x (元/箱)之间的函数关系y=-x+800,而该种水果的进价z (元/箱)与销售单价x (元/箱)之间的函数关系为240x 51z +=.已知每月为此支付员工工资和场地租金等费用总计20000元。

2017-2018学年九年级(上)期末数学试卷

2017-2018学年九年级(上)期末数学试卷

2017-2018学年九年级(上)期末数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共6小题,共18.0分)1.平面直角坐标系中,与点,关于原点中心对称的点是A. ,B. ,C. ,D. ,2.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数下列事件是必然事件的是A. 掷一次骰子,朝上的一面的点数大于0B. 掷一次骰子,朝上的一面的点数为7C. 掷一次骰子,朝上的一面的点数为4D. 掷两次骰子,朝上的一面的点数都是33.方程的根是A. 4B.C. 0或4D. 0或4.设,,,,,是抛物线上的三点,则,,的大小关系为A. B. C. D.5.已知圆O是正n边形的外接圆,半径长为18,如果弧的长为,那么边数n为A. 5B. 10C. 36D. 726.二次函数的图象经过,,则方的解A. ,B. ,C. ,D. ,二、填空题(本大题共8小题,共24.0分)7.设、是方程的两个根,且则______ .8.如图,,的圆心O在边BC上,的半径为3,在圆心O向点C运动的过程中,当______ 时,与直线CA相切.9.10.11.12.13.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同小华通过多次试验后发现,从盒子中摸出红球的频率是,摸出白球的频率是,那么可以估计盒子中黄球的个数是______ .14.某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为______ .15.一抛物线和另一抛物线的形状和开口方向完全相同,且顶点坐标是,,则该抛物线的解析式为______ .16.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型若圆的半径为r,扇形的半径为R,扇形的圆心角等于,则R与r之间的关系是______ .17.18.19.如图,在平面直角坐标系xOy中,由绕点P旋转得到,则点P的坐标为______ .20.如图,在平面直角坐标系中,将绕点A顺时针旋转到的位置,点B、O分别落在点、处,点在x轴上,再将绕点顺时针旋转到的位置,点在x轴上,将绕点顺时针旋转到的位置,点在x轴上,依次进行下去若点,,,,则点的坐标为______ .三、计算题(本大题共1小题,共5.0分)21.解方程:.四、解答题(本大题共2小题,共11.0分)22.如图,中,, ,与相切于点C,求图中阴影部分的面积结果保留23.24.25.26.27.如图,中,, ,,逆时针旋转一定角度后与重合,且点C恰好成为AD的中点.指出旋转中心,并求出旋转的度数;求出的度数和AE的长.28.五、计算题(本大题共1小题,共7.0分)29.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.六、解答题(本大题共6小题,共55.0分)30.某商店将进货价为8元件的商品按10元件售出,每天可售200件,通过调查发现,该商品若每件涨元,其销量就减少10件.请你帮店主设计一种方案,使每天的利润为700元.能否使每天的利润为800元?为什么?31.已知二次函数,完成下列各题:将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴;它的图象与x轴交于,两点,顶点为C,求.32.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、,是圆的切线,过点F作BC的垂线交BC于点G.求证:;若AF的长为2,求FG的长.33.人工浮床又称人工浮岛,自20年前人类开发出第一个人工浮床之后,就将人工浮床应用于地表水体的污染治理和生态修复近年来,我国的人工浮床技术开发及用于正好处于快速发展时期如图所示,是我市在某湖面上为净化水质而搭建的一个水上圆形人工浮床示意图,其中圆和三块边长为16米的正方形是浮岛框架部分,被分割成的7部分将运用无土技术分别栽培7种不同的水生植物,正方形的顶点A、B、C、D都在圆上,且整个浮床成轴对称图形,求这个圆形人工浮床的半径.34.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本单位:元、销售价单位:元与产量单位:之间的函数关系.请解释图中点D的横坐标、纵坐标的实际意义;求线段AB所表示的与x之间的函数表达式;当该产品产量为多少时,获得的利润最大?最大利润是多少?35.如图,抛物线与直线交于点,的两点,点B是点A关于y轴的对称点.求,,两点的坐标.当点P在x轴上运动时,若以,,,为顶点的四边形是平行四边形,求P 点的坐标.点F为线段AC上一动点,过F作轴,轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.将中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC 交于点,所在的直线与AC交于点N,连接DM,是否存在这样的t,使是等腰三角形?若存在,求t的值;若不存在请说明理由.【答案】1. C2. A3. C4. A5. C6. C7. 38.9. 2410.11.12.13. ,14. ,15. 解:移项得:,配方得:,即,开方得:,原方程的解是:,.16. 解:连接OC,与圆O相切,,,, ,在中,,,, ,,,即,.则阴影扇形故图中阴影部分的面积为.17. 解:逆时针旋转一定角度后与重合,A为顶点,旋转中心是点A;根据旋转的性质可知:,旋转角度是;由可知:,由旋转可知: ≌ ,,,又C为AD中点,.18. 解:方法一画树状图得:方法二列表得:2种,恰好选中甲、乙两位同学的概率为:;一共有3种等可能性的结果,其中恰好选中乙同学的有1种,恰好选中乙同学的概率为:.19. 解:设涨价x元,根据题意可得:,解得:,,故此时的售价为或,答:售价为13元或15元时,每天的利润可得到700元;不能,理由:设涨价x元,,此方程无解,故不能使每天的利润为800元.20. 解:.,顶点坐标为,,对称轴为直线.令解得:,.,,,.,,.21. 证明:连结OD,如图,是圆的切线,,,为等边三角形,,,而,,,,;解:在中,,,,而,点O为BC的中点,为的中位线,,即,,,,,在中,,.22. ,这个圆形人工浮床的半径为米23. 解:点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;这个一次函数的表达式为;;,这个一次函数的表达式为,设产量为xkg时,获得的利润为W元,当时,,当时,W的值最大,最大值为2250;当时,,由知,当时,W随x的增大而减小,时,,当时,,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.24. 解:抛物线与直线交于点,的两点,,整理得:,解得:或.将代入得:,点A的坐标为,.点B是点A关于y轴的对称点,点B的坐标为,.将代入得:,点C的坐标为,.点A的坐标为,,点B的坐标为,,.以,,,为顶点的四边形是平行四边形,.又的坐标为,,点P在x轴上,的坐标为,或,;当点F在第一象限时,如图1所示:设正方形OEFG的边长为P,则,.点,在直线上,,解得,点F的坐标为,.当点F在第二象限时,同理可得点F的坐标为,,此时点F不在线段AC上,舍去.综上所述:点F的坐标为,;过点M作于H,如图2,则,.点E和点C重合时停止运动,.当时,,则,,,当时,,则,,,在中,.在中,,,.当时,,解得;当时,,解得;当时,,解得,舍去.综上所述:当是等腰三角形时,t的值为,或1.。

〖汇总3套试卷〗合肥市2018年九年级上学期期末达标检测数学试题

〖汇总3套试卷〗合肥市2018年九年级上学期期末达标检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若34yx=,则x yx+的值为()A.1 B.47C.54D.74【答案】D【解析】∵34yx=,∴x yx+=434+=74,故选D2.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.34;B.43;C.45;D.54;【答案】A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得∠BCD=∠Atan∠BCD=tan∠A=34 BCAC=,故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.3.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.8 【答案】B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.那么事件A 的概率P (A )=m n. 4.已知a =3,b =5,且b 与a 的方向相反,用a 表示b 向量为( ) A .35b a =B .53b a =C .35b a =-D .53b a =-【答案】D【分析】根据a =3,b =5,且b 与a 的方向相反,即可用a 表示b 向量. 【详解】a =3,b =5,b =53a ,b 与a 的方向相反,∴5.3b a =-故选D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.5.如图,在ABCD □中,AE BC ⊥,垂足为E ,BAE DEC ∠=∠,若45,sin 5AB B ==,则DE 的长为( )A .203B .163C .5D .125【答案】A【分析】根据题意先求出AE 和BE 的长度,再求出∠BAE 的sin 值,根据平行线的性质得出∠ADE=∠BAE ,即可得出答案.【详解】∵45,sin 5AB B ==,AE BC ⊥ ∴4AE AB sinB == 223AB AE -=∴35BE sin BAE AB ∠== ∵ABCD 是平行四边形 ∴AD ∥BC又∵∠BAE=∠DEC ∴∠BAE=∠ADE∴35AE sin ADE sin BAE DE ∠=∠== ∴203DE =故答案选择A. 【点睛】本题考查的是平行四边形的综合,难度适中,涉及到了平行四边形的性质以及三角函数值相关知识,需要熟练掌握.6.某商品原价为180元,连续两次提价后售价为300元,设这两次提价的年平均增长率为x ,那么下面列出的方程正确的是( ) A .180(1+x )=300 B .180(1+x )2=300 C .180(1﹣x )=300 D .180(1﹣x )2=300【答案】B【分析】本题可先用x 表示出第一次提价后商品的售价,再根据题意表示出第二次提价后的售价,然后根据已知条件得到关于x 的方程.【详解】当商品第一次提价后,其售价为:180(1+x ); 当商品第二次提价后,其售价为:180(1+x )1. ∴180(1+x )1=2. 故选:B . 【点睛】本题主要考查一元二次方程的应用,要根据题意表示出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于2即可.7.若要得到函数2(1)2y x =-+的图象,只需将函数2yx 的图象( )A .先向右平移1个单位长度,再向上平移2个单位长度B .先向左平移1个单位长度,再向上平移2个单位长度C .先向左平移1个单位长度,再向下平移2个单位长度D .先向右平移1个单位长度,再向下平移2个单位长度 【答案】A【分析】找出两抛物线的顶点坐标,由a 值不变即可找出结论.【详解】∵抛物线y=(x-1)1+1的顶点坐标为(1,1),抛物线y=x 1的顶点坐标为(0,0), ∴将抛物线y=x 1先向右平移1个单位长度,再向上平移1个单位长度即可得出抛物线y=(x-1)1+1.【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键. 8.下列运算中,正确的是( ). A .2x - x = 2 B .x 2 y ÷ y = x 2 C .x ⋅ x 4 = 2x D .(-2x )3 = -6x 3【答案】B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 【详解】A. 2x - x = x,故本选项错误, B. x 2 y ÷ y = x 2 ,故本选项正确, C. 45x x x ⋅=,故本选项错误, D.()3328x x -=- ,故本选项错误. 故选B. 【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则. 9.已知点()()()1233,2,,1,A y B y C y --,都在函数3y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 2【答案】A【分析】根据反比例函数图象上点的坐标特征,将点()()()1233,2,,1,A y B y C y --,分别代入函数3y x=-,求得123,,y y y 的,然后比较它们的大小.【详解】解:把()()()1233,2,,1,A y B y C y --,分别代入:3,y x=-12331,,3,2y y y ∴===-∵32>1>3-, ∴2y >1y >3y 故选:A . 【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键. 10.在平面直角坐标系中,对于二次函数22()1y x =-+,下列说法中错误的是( ) A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =D .它的图象可以由2y x 的图象向右平移2个单位长度,再向上平移1个单位长度得到【答案】C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确. 【详解】解:二次函数22()1y x =-+,10a =>,∴该函数的图象开口向上,对称轴为直线2x =,顶点为(2,1),当2x =时,y 有最小值1,当2x >时,y 的值随x 值的增大而增大,当2x <时,y 的值随x 值的增大而减小;故选项A 、B 的说法正确,C 的说法错误; 根据平移的规律,2yx 的图象向右平移2个单位长度得到2(2)y x =-,再向上平移1个单位长度得到22()1y x =-+;故选项D 的说法正确, 故选C . 【点睛】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.11.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是()A .5B .6C .7D .8【答案】B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可. 【详解】解:∵半径OC 垂直于弦AB , ∴AD=DB=127 在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)27 )2, 解得,OA=4 ∴OD=OC-CD=3, ∵AO=OE,AD=DB,故选B 【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键12.为了让市民游客欢度“五一”,泉州市各地推出了许多文化旅游活动和景区优惠,旅游人气持续兴旺.从市文旅局获悉,“五一”假日全市累计接待国内外游客171.18万人次,171.18万这个数用科学记数法应表示为( ) A .1.7118×102 B .0.17118×107 C .1.7118×106 D .171.18×10【答案】C【分析】用科学记数法表示较大数的形式是10n a ⨯ ,其中110a ≤<,n 为正整数,只要确定a,n 即可. 【详解】将171.18万用科学记数法表示为:1.7118×1. 故选:C . 【点睛】本题主要考查科学记数法,掌握科学记数法是解题的关键. 二、填空题(本题包括8个小题)13.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)【答案】不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案. 【详解】∵∆ABC 是等腰三角形,AB=AC=13m ,AH ⊥BC , ∴CH=12BC=12m , ∴2213125-=m , ∴楼顶的坡度=50.512AH CH =<, ∴这一楼顶铺设的瓦片不会滑落下来. 故答案是:不会. 【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.14.若点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),则(3a+b)2020=______.【分析】直接利用关于原点对称点的性质得出3a+b =﹣1,进而得出答案. 【详解】解:∵点P(2a+3b ,﹣2)关于原点的对称点为Q(3,a ﹣2b),∴23322a b a b +=-⎧⎨-=⎩,故3a+b =﹣1, 则(3a+b)2020=1. 故答案为:1. 【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.15.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 . 【答案】【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.16.请你写出一个函数,使它的图象与直线y x =无公共点,这个函数的表达式为_________.【答案】1y x=-(答案不唯一) 【分析】直线y x =经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】∵直线y x =经过一三象限,1y x=-图象在二、四象限 ∴两个函数无公共点 故答案为1y x=- 【点睛】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键. 17.一元二次方程2310x x -++=的两根之积是_________. 【答案】1-【分析】根据一元二次方程两根之积与系数的关系可知. 【详解】解:根据题意有两根之积x 1x 2=ca=-1. 故一元二次方程-x 2+3x+1=0的两根之积是-1. 故答案为:-1. 【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型.两根之积x 1x 2=c a.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.三、解答题(本题包括8个小题)19.已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA【答案】见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵ DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG∽△BCA.【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.20.已知反比例函数3kyx-=,(k为常数,3k≠).(1)若点(2,3)A在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.【答案】(1)k=9;(2)k<3(2)根据反比例函数的性质得30k-<,然后解不等式即可;【详解】解:(1)∵点(2,3)A在这个函数的图象上,323k∴-=⨯,解得9k=;(2)∵在函数3kyx-=图象的每一支上,y随x的增大而增大,30k∴-<,得3k<.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.21.为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.分数段频数频率74.5~79.5 2 0.0579.5~84.5 m 0.284.5~89.5 12 0.389.5~94.5 14 n94.5~99.5 4 0.1(1)表中m=__________,n=____________;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在_________分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.【答案】 (1)8,0.35;(2)见解析;(3)89.5~94.5;(4)23. 【分析】(1)根据频数=总数×频率可求得m 的值,利用频率=频数÷总数可求得n 的值;(2)根据m 的值补全直方图即可;(3)根据中位数的概念进行求解即可求得答案;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,然后利用概率公式进行求解即可.【详解】(1)m =40×0.2=8,n =14÷40=0.35, 故答案为8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在89.5~94.5, ∴推测他的成绩落在分数段89.5~94.5内,故答案为89.5~94.5;(4)选手有4人,2名是男生,2名是女生,画树状图如下:共有12种等可能的结果,其中一名男生一名女生的结果数有8种,所以恰好是一名男生和一名女生的概率为82123=. 【点睛】本题考查了频数(率)分布表,频数分布直方图,中位数,列表法或树状图法求概率,正确把握相关知识是解题的关键.22.如图,在矩形纸片ABCD 中,已知2AB =6=BC E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°;(2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.【答案】(1)22,30;(2)2322CE =-;(3)CC '的长223π= 【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '= 易证AB D DC E ''∆∆∽∴C E DC BD AB ''='' ∴6222CE -= ∴2322CE =(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长602222ππ⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.23.如图,反比例函数y =k x (k≠0,x >0)的图象与矩形OABC 的边AB 、BC 分别交于点E 、F ,E (32,6),且E 为BC 的中点,D 为x 轴负半轴上的点.(1)求反比倒函数的表达式和点F 的坐标;(2)若D (﹣32,0),连接DE 、DF 、EF ,则△DEF 的面积是 . 【答案】(1)y =9x ,F (3,3);(2)S △DEF =1. 【分析】(1)利用待定系数法即可求得反比例函数的解析式,根据题意求得B 的坐标,进而得到F 的横坐标,代入解析式即可求得纵坐标;(2)设DE 交y 轴于H ,先证得H 是OC 的中点,然后根据S △DEF =S 矩形OABC +S △ODH ﹣S △ADF ﹣S △CEH ﹣S △BEF 即可求得.【详解】(1)∵反比例函数y =k x (k≠0,x >0)的图象过E (32,6), ∴k =32×6=1,∴反比例函数的解析式为y =9x , ∵E 为BC 的中点, ∴B (3,6),∴F 的横坐标为3,把x =3代入y =9x 得,y =93=3, ∴F (3,3);(2)设DE 交y 轴于H ,∵BC ∥x 轴,∴△DOH ∽△ECH , ∴OH D CH CEO ==3232=1, ∴OH =CH =3,∴S △DEF =S 矩形OABC +S △ODH ﹣S △ADF ﹣S △CEH ﹣S △BEF =3×6+12×32×3﹣12×(3+32)×3﹣13322⨯⨯﹣13322⨯⨯=1.【点睛】此题主要考查反比例函数与相似三角形,解题的关键是熟知反比例函数的图像与性质及相似三角形的判定与性质.24.如图,在由边长为1个单位长度的小正方形组成的网格图中,△ABC 的顶点都在网格线交点上. (1)图中AC 边上的高为 个单位长度;(2)只用没有刻度的直尺,在所给网格图中按如下要求画图(保留必要痕迹):①以点C 为位似中心,把△ABC 按相似比1:2缩小,得到△DEC ;②以AB 为一边,作矩形ABMN ,使得它的面积恰好为△ABC 的面积的2倍.【答案】(1)32;(2)①见解析,②见解析【分析】(1)利用等面积法即可求出AC边上的高;(2)①利用位似图形的性质得出对应点位置连接即可;②利用矩形的判定方法即可画出.【详解】解:(1)由图可知225552AC=+=,设AC边上的高为x,则由三角形面积公式可得:116552 22x⨯⨯=⨯解得32x=,即AC边上的高为32. (2)①如图所示:△DEC即为所求.②如图所示:矩形ABMN即为所求.【点睛】本题考查作位似图形,矩形的判定,勾股定理.(1)中熟练掌握等面积法是解决此问的关键;(2)中能作出AC 的中点是解题关键;(3)中注意矩形的四个角都是直角,且矩形的一边为AB ,另一边要与△ABC 中AB 边上的高相等.25.某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?【答案】(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x 元,台灯将少售出10x ,那么利润为(40+x-30)(600-10x )=10000,解方程即可;(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【详解】解:(1)设这种台灯上涨了x 元,依题意得:()()40306001010000x x +--=,化简得:2504000x x -+=,解得:40x =(不合题意,舍去)或10x =,售价:401050+=(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了t 元,利润为y 元,依题意:()()403060010y t t =+--∴2105006000y t t =-++对称轴25t =,在对称轴的左侧y 随着t 的增大而增大,∵单价在60元以内,∴20t ≤∴当20t =时,12000y =最大元,答:商场要获得最大利润,则应上涨20元.【点睛】此题考查一元二次方程和二次函数的实际运用---销售利润问题,能够由实际问题转化为一元二次方程或二次函数的问题是解题关键,要注意的是二次函数的最值要考虑自变量取值范围,不一定在顶点处取得,这点很容易出错.26.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【答案】 (1)见解析;(2)13. 【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.27.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系.销售量y (千克)… 34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【答案】(1)当天该水果的销售量为2千克;(2)如果某天销售这种水果获利150元,该天水果的售价为3元.【分析】(1)根据表格内的数据,利用待定系数法可求出y 与x 之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润每千克利润销售数量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【详解】(1)设y 与x 之间的函数关系式为y=kx+b ,将(22.6,34.8)、(24,32)代入y=kx+b ,22.634.82432k b k b +=⎧⎨+=⎩,解得:280k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y=﹣2x+1.当x=23.5时,y=﹣2x+1=2.答:当天该水果的销售量为2千克.(2)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=35,x2=3.∵20≤x≤32,∴x=3.答:如果某天销售这种水果获利150元,那么该天水果的售价为3元.【点睛】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知矩形ABCD ,下列结论错误的是( )A .AB =DCB .AC =BD C .AC ⊥BD D .∠A+∠C =180°【答案】C【分析】由矩形的性质得出AB =DC ,AC =BD ,∠A =∠B =∠C =∠D =90°,则∠A+∠C =180°,只有AB =BC 时,AC ⊥BD ,即可得出结果.【详解】∵四边形ABCD 是矩形,∴AB =DC ,AC =BD ,∠A =∠B =∠C =∠D =90°,∴∠A+∠C =180°,只有AB =BC 时,AC ⊥BD ,∴A 、B 、D 不符合题意,只有C 符合题意,故选:C .【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键.2.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为t (单位:h )温度为y (单位:C ︒).当48t ≤≤时,y 与t 的函数关系是21011y t t =-++,则48t ≤≤时该地区的最高温度是( )A .11C ︒B .27C ︒ C .35︒CD .36C ︒ 【答案】D【分析】利用配方法求最值.【详解】解:221011(5)36y t t t =-++=--+∵a=-1<0∴当t=5时,y 有最大值为36故选:D【点睛】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.3.若一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( ).A .2:1B .4:1 C.2:1 D .1:2【答案】C 【分析】根据相似图形对应边成比例列出关系式即可求解.【详解】如图,矩形ABCD 对折后所得矩形与原矩形相似,则矩形ABCD ∽矩形BFEA ,设矩形的长边长是a ,短边长是b ,则AB=CD=EF=b ,AD=BC=a ,BF=AE=2a , 根据相似多边形对应边成比例得:BF EF =AB BC ,即b 2=b a a∴222=b 1a ∴b=2::1a故选C.【点睛】本题考查相似多边形的性质,根据相似多边形对应边成比例建立方程是关键.4.如图,△ABC 中,点D 是AB 的中点,点E 是AC 边上的动点,若△ADE 与△ABC 相似,则下列结论一定成立的是( )A .E 为AC 的中点B .DE 是中位线或AD·AC=AE·ABC .∠ADE=∠CD .DE ∥BC 或∠BDE+∠C=180°【答案】D 【分析】如图,分两种情况分析:由△ADE 与△ABC 相似,得,∠ADE=∠B 或∠ADE=∠C ,故DE ∥BC 或∠BDE+∠C=180°.【详解】因为,△ADE 与△ABC 相似,所以,∠ADE=∠B 或∠ADE=∠C所以,DE ∥BC 或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质. 5.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.12B.22C.32D.3【答案】B【详解】解:连接AD,CD,设正方形网格的边长是1,则根据勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.则cos∠AOB=22.故选B.6.抛物线y=3(x+2)2﹣(m2+1)(m为常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】根据二次函数的性质求出抛物线的顶点坐标,根据偶次方的非负性判断.【详解】抛物线y =3(x+2)2﹣(m 2+1)的的顶点坐标为(﹣2,﹣(m 2+1)),∵m 2+1>0,∴﹣(m 2+1)<0,∴抛物线的顶点在第三象限,故选:C .【点睛】本题考查的是二次函数的性质,掌握二次函数的顶点坐标的确定方法、偶次方的非负性是解题的关键. 7.如图,在扇形纸片AOB 中,OA =10,ÐAOB=36°,OB 在直线l 上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( )A .B .C .D .【答案】A【分析】点O 所经过的路线是三段弧,一段是以点B 为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O 所经过的路线长.故选A.【点睛】 解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.8.半径为3的圆中,30的圆心角所对的弧的长度为( )A .2πB .32πC .34πD .12π 【答案】D【分析】根据弧长公式l=180n r π ,计算即可. 【详解】弧长=303=1802ππ⨯ , 故选:D .【点睛】本题考查弧长公式,解题的关键是记住弧长公式,属于中考常考题型.9.数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A,B的距离,他们设计了如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:①AC,∠ACB;②EF,DE,AD;③CD,∠ACB,∠ADB;④∠F,∠ADB,FB.其中能根据所测数据求得A,B两树距离的有()A.1组B.2组C.3组D.4组【答案】C【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案.【详解】∵已知∠ACB的度数和AC的长,∴利用∠ACB的正切可求出AB的长,故①能求得A,B两树距离,∵AB//EF,∴△ADB∽△EDF,∴AB ADEF DE=,故②能求得A,B两树距离,设AC=x,∴AD=CD+x,AB=tanxACB∠,AB=tanx CDADB+∠;∵已知CD,∠ACB,∠ADB,∴可求出x,然后可得出AB,故③能求得A,B两树距离,已知∠F,∠ADB,FB不能求得A,B两树距离,故④求得A,B两树距离,综上所述:求得A,B两树距离的有①②③,共3个,故选:C.【点睛】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出.10.下列长度的三条线段能组成三角形的是()A.1,2,3 B.2,3,4 C.3,4,7 D.5,2,8【答案】B【解析】根据三角形三边关系定理得出:如果较短两条线段的和大于最长的线段,则三条线段可以构成三角形,由此判定即可.【详解】A .1+2=3,不能构成三角形,故此选项错误;B .2+3>4,能构成三角形,故此选项正确;C .3+4=7,不能构成三角形,故此选项错误;D .5+2<8,不能构成三角形,故此选项错误.故选:B .【点睛】本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形. 11.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x ﹣k )2+h .已知球与D 点的水平距离为6m 时,达到最高2.6m ,球网与D 点的水平距离为9m .高度为2.43m ,球场的边界距O 点的水平距离为18m ,则下列判断正确的是( )A .球不会过网B .球会过球网但不会出界C .球会过球网并会出界D .无法确定【答案】C 【解析】分析:(1)将点A(0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入2(6) 2.6y a x =-+,得:36a+2.6=2, 解得:160a ,=- ∴y 与x 的关系式为21(6) 2.660y x =--+; 当x=9时,()2196 2.6 2.45 2.4360y =--+=>, ∴球能过球网, 当x=18时,()21186 2.60.2060y =--+=>, ∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.12.对于反比例函数32y x=,下列说法错误的是( ) A .它的图像在第一、三象限B .它的函数值y 随x 的增大而减小C .点P 为图像上的任意一点,过点P 作PA x ⊥轴于点A .POA ∆的面积是34.D .若点()11,A y -和点()2B y 在这个函数图像上,则12y y <【答案】B 【分析】对反比例函数32y x =化简得32y x=,所以k=32>0,当k >0时,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A 、∵k=32>0,∴它的图象分布在第一、三象限,故本选项正确; B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵k=32,根据反比例函数中k 的几何意义可得POA ∆的面积为12k ⨯=34,故本选项正确;D 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=﹣1<0,x 2=0,且x 1>x 2,∴12y y <,故本选项正确.故选:B .【点睛】题考查的是反比例函数的性质,熟知反比例函数y=k x (k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键.二、填空题(本题包括8个小题)13.点A(﹣2,y 1),B(0,y 2),,y 3)是二次函数y =ax 2﹣ax (a 是常数,且a <0)的图象上的三点,则y 1,y 2,y 3的大小关系为_____(用“<”连接).【答案】y 1<y 3<y 1【分析】求出抛物线的对称轴,求出C 关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.【详解】y=ax 1﹣ax(a 是常数,且a <0),对称轴是直线x 122a a -=-=, 即二次函数的开口向下,对称轴是直线x 12=, 即在对称轴的左侧y 随x 的增大而增大,。

2017-2018学年九年级数学上期末试卷含详细答案解析

2017-2018学年九年级数学上期末试卷含详细答案解析

2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。

2017-2018学年包河区九(上)期末化学试卷

2017-2018学年包河区九(上)期末化学试卷

1.下列生活操作中涉及化学变化的是( A . 用生石灰做干燥剂C .用干冰冷藏食物)B .用砂纸除去铁器上的铁锈 D .用竹炭除去冰箱中的异味2.2018 年 1 月 1 日起,合肥市区将全面禁止燃放烟花爆竹。

这是我市治理环境污染问题的 又一大举措。

下列说法与环境保护不相符的是( )A .提倡使用电子烟花 C .生活污水处理达标后排放 3.下列实验操作或设计中正确的是(B .北方冬季取暖煤改气 D .秸秆直接田间焚烧 )A .用50mL 量筒量取8.5mL 水B .检查装置气密性C .验证质量守恒定律D .硬水软化4.金刚烷胺(C 10H 17N )是防治 A 型流感病毒所引起的呼吸道感染药物 , 服用该药物不得接 触酒精(C 2H 5OH )下列叙述错误的是( A .金刚烷胺是由三种元素组成 )B .金刚烷胺中氮元素的质量分数最低 2017-2018 学年合肥市包河区九年级第一学期期末化学考试可能用到的相对原子质量:H :1 C :12O :16 N :14 Cl :35.5 K :39一、选择题(本大题包括 10 小题,每题 2 分,共 20 分。

每小题 4 个选项中只有 1 个答案符合题意,请将选出的选项序号填在答题表内)C .酒精是氧化物D .一个酒精分子由 9 个原子构成5.天宫二号是我国首个真正意义上的空间实验室。

在太空舱里,常用NiFe 2O 4作催化剂将宇 航员呼出的CO 2转化为O 2。

已知NiFe 2O 4中Ni 为+2价,则Fe 的化合价为( )A .+1B .+2C .+3D .+46.2017年12月25日,我省公布已探明湛岭钼矿中伴生稀有“超级金属”铼,这也是我省首次发现和探明铼资源。

根据如图提供的有关铼的信息回答问题,下列说法正确的是()A.铼的化学式为ReB.铼原子的中子数为75C.铼的相对原子质量是186.21gD.铼原子的核外电子数为1117.如图是一定条件下某反应的微观过程,下列说法中正确的是()A.反应物分子个数比为1:1 B.该反应属于分解反应C.化学变化的本质:分子、原子改变D.生成物中有三种元素8.分析推理是常用的一种学习方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

合肥市包河区2017-2018学年第一学期期末九年级数学试卷
一、选择题(本大题共10小题,每小题4分,满分40分)
1. 二次函数y=-(x+2)2+1图象的对称轴是直线( )
A. x=1
B.x=-1
C.x=2
D.x=-2
2. 已知⊙O 的半径为5,弦AB 的长为8,则圆心O 到弦AB 的距离为( )
A.3
B.4
C.5
D.6
3.在△ABC 中,∠C=90°,AC=3BC ,则sinA 的值为( )
A. 3
1 B.3 C.1010 D.10103 4.如图,在△ABC 中,DE ∥BC ,D 、E 分别在AB 、AC 边上,已知
4DB AD =,则BC DE 的值为( ) A.32 B.43 C.54 D.6
5 5.如图,△ABC 内接于⊙O ,∠C+∠O=60° ,则∠OAB 的度数是 ( )
A.50°
B.70°
C.60°
D.72°
6. 如图,过原点O 的直线交反比例函数x
k y =的图象与A 、B 两点,分别过A 、B 两点作x 轴、y 轴的垂线,相交于C 点,已知△ABC 的面积等于4,则k 的值为( )
A. -1
B.-2
C.-3
D.-4
7. △ABC 内接于⊙O ,记∠A=x ,∠OBC=y ,则x 、y 之间存在的等量关系是( )
A. x=2y
B.x+y=90°
C.x-y=90°
D.x+y=90°或x-y=90°
8. 如图,以平行四边形ABCD 的对角线AC 为一边作平行四边形ACEF ,其中E 在CD 边上,F 在BA 的延长线上,EF 交AD 于G 点,连接BD 交AC 于O 点,交EF 于H 点,已知31EC DE =,则HF EH 的值为( )A 71 B.61 C.51 D.81
9. 如图,在边长为4 的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC →CD 方向运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,设P 点运动的时间为x ,△APQ 的面积为y ,则y 与x 的函数图象大致是( )
10. 如图,在半圆⊙O 中,直径AB=4,点C 、D 是半圆上两点,且
∠BOC=84°,∠BOD=36°,P 为直径上一点,则PC+PD 的最小值为
( ) A.4 B.32 C.22 D.2
二、填空题(本大题共4小题,每小题5分,满分20分)
11. 反比例函数图象x
k y =(x <0)的y 随x 增大而增大,则k 的取值范围是 ; 12. 关于x 的二次函数y=ax 2+a 2的最大值为4,则a 的值为 ;
13. 如图 ,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,交AC 于D ,AE ⊥BD 于E ,AD :DC=3:5,则DE :BE 的值是 ;
14. 如图,Rt △ABC 中,∠C=90°,点P 在以AB 为直径的⊙O 上,P 、C 分别位于AB 的两侧(P 不与A 、B 重合),点D 为PB 延长线上一点,且∠PCD=90°,AB 、PC 相交于点E ,则下列结论一定成立的是 (把所有正确结论的序号都填在横线上)
三、(本大题共2小题,每小题8分,满分16分)
15. 计算:︒•︒︒60sin 45tan -30tan -12
16. 如图,四边形ABCD 的对角线AC 、BD 相交于点E ,∠ABD=∠ACD=90°,AC=2CD ,过C 作CF ⊥BC ,交BD 于F ,求证:AB=2DF.
四、(本大题共2小题,每小题8分,满分16分)
17. 如图,在△ABC 中,AD 是角平分线,∠ABC=∠BAC=30°,
AC=2,求线段AD 的长度(结果保留根号).
18. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点网格线的交点)以及格点P.
(1)将△ABC 绕点P 逆时针旋转90°得到△DEF ,画
出△DEF ;
(2)以D 为一个顶点,画一个格点△A 1B 1C 1,使得△
A 1
B 1
C 1∽△ABC ,且相似比为2.
五、(本大题共2小题,每小题10分,满分20分)
19. 如图,已知一次函数y 1=kx-2的图象与反比例函数x
m y 2=(x >0)的图象交于A 点,与x 轴、y 轴交于C 、D 两点,过A 作AB 垂直于x 轴于B 点.已知AB=1,BC=2.
(1)求一次函数y 1=kx-2和反比例函数x
m y 2=(x >0)的表达式;
(2)观察图象:当x >0时,比较y 1、y 2的大小.
20. 如图,在⊙O 中,AB 是直径,CD 是弦(不过圆心),AB ⊥CD.
(1)E 是优弧CAD 上一点(不与C 、D 重合),求证:∠CED=∠COB ;
(2)点E ´在劣弧CD 上(不与C 、D 重合)时,∠CE ´D 与∠COB 有什么数量关系?请证明你的结论.
六、(本题满分12分)
21. 如图,已知抛物线y 1=ax 2+bx-3与x 轴交于A(1,0)、B (3,0).
(1)求抛物线的顶点坐标;
(2)将抛物线向上平移几个单位,可使平移后抛物线的顶点落在反比例函数x
6y 2=(x >0)图象上? (3)将抛物线向右平移几个单位,可使平移后的抛物线的顶点落在反比例函数x 6y 2=
(x >0)图象上?
七、(本题满分12分)
22.某水果销售商发现某种高档水果市场需求量较大,经过市场调查发现月销量y (箱)与销售单价x (元/箱)之间的函数关系y=-x+800,而该种水果的进价z (元/箱)与销售单价x (元/箱)之间的函数关系为240x 5
1z +=.已知每月为此支付员工工资和场地租金等费用总计20000元。

(注:月获利=月销售总额-月进货总价-工资和租金费用)
(1)求月获利w (元)与x 之间的函数关系式;
(2)当销售单价x 为何值时,月获利最大?并求出这个最大值;
(3)若该水果店希望销售这种水果的月利润不低于2.2万元,确定销售单价的范围.在此情况下,要使销售量最大,你认为销售单价应定为多少元?
八、(本题满分14分)
23.如图1,在△ABC 中,∠ACB=90°,AC=6,BC=8,点P 、Q 分别在AB 、BC 上,AQ ⊥CP 于
D.
(1)若AQ=CP ,求CQ 的长;
(2)若5
4BP CQ =, ①如图2,求△ACP 的面积;
②如图3,连接PQ ,求证PQ 的中点M 一定在△ABC 的一条中位线上.
答案:1~10 DACCB BDACB 11.k <0 12.-2 13.1:4 14.①②④ 15.
367 16.略 17.6 18.略 19.(1))>(、0x x
6y 2-x 21y 21==;(2)y 1>y 2 20.(1)略;(2)∠CE ´D+∠COB=180°,证明略 21.(1)顶点坐标(2,1);(2)2 ;(3)4 22.(1)
212000-x 880x 54-w 2+=;(2)30000550-x 54-w 2+=)(;(3)450元/箱.23.(1)23;(2)①2
27 ②提示:过P 作PF ⊥AC 于F 连接FQ.。

相关文档
最新文档