2020高考备战优化重组专题-数列-试卷

合集下载

2020版新优化高考数学(人教A版)大一轮课件:第六章 数列 高考大题专项3

2020版新优化高考数学(人教A版)大一轮课件:第六章 数列 高考大题专项3
������������-1 ������������
-11题型一
题型二
整理得 n2-3n-4=0,解得 n=-1(舍),或 n=4. 所以,n 的值为 4.
-5题型一
题型二
题型三
题型四
解题心得1.对于等差、等比数列,求其通项及求前n项的和时,只 需利用等差数列或等比数列的通项公式及求和公式求解即可. 2.有些数列可以通过变形、整理,把它转化为等差数列或等比数 列,进而利用等差数列或等比数列的通项公式或求和公式解决问题.
32(1-8������ ) Tn= 1-8
2������������+1 3 * ������������ =2 =8(n∈N ), 2
=
32 n (8 -1). 7
-10题型一
题型二
题型三
题型四
解题心得证明与判断一个数列是等差(或等比)数列的要求不同, 证明必须是严格的,只能用等差(或等比)数列的定义.用定义法证明 一个数列是等差数列,常采用的两个式子 an-an-1=d(n≥2)和 an+1-an=d, 前者必须加上“n≥2”,否则 n=1 时 a0 无意义;在等比数列中也有:n≥2 ������ ������ 时,有 ������ =q(常数 q≠0),或 n∈N*时,有 ������+1 =q(常数 q≠0).
题型二
题型三
题型四
题型二 证明数列为等差或等比数列 3 7 例2已知数列{an},其前n项和为 Sn= n2+ n(n∈N*). 2 2 (1)求a1,a2; (2)求数列{an}的通项公式,并证明数列{an}是等差数列; (3)如果数列{bn}满足an=log2bn,试证明数列{bn}是等比数列,并求 其前n项和Tn.

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第六章 数列 Word版含解析.doc

2020高考数学(理)(全国通用)大一轮复习2020高考试题汇编 第六章 数列 Word版含解析.doc

第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ). A .1盏 B .3盏 C .5盏 D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________.解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①②显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T .解析 (1)设数列{}n x 的公比为q ,由已知0q >. 由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=, 因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以1n n T b b b b =++++=13n n n n ---⨯+⨯+⨯++-⨯++⨯① 又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯②-①②,得132(n n n T n ----=⨯++++-+⨯=1132(21n n n---+--所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = . 解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =. 又3123S a a a =++()2117174a q qa =++==,得114a =,所以78132a a q ==.故填32.解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n=,()12n n n S +=,()()112222122311nk kSn n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足1111+n k n kn nn ka aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k n a k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列. 解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-, 从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N ,使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α; 则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=. 所以()3211311k k k a aα----==,()2311223315111k k k k k a a a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列.2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析(1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k kb na -关于*k ∈N 单调递减.从而{}112211ma x ,,,1n n n c b a n b a n b an b a n=---=-=-, 将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--. 所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …, (){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++…()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A. 第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时.(1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N .(2)由()111l n 1n n n nx x x x +++=++>,得()()21111114222ln1nnn nn n n nx x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N …. (3)因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x x xx x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。

2020高考备战(2019高考真题+模拟分类汇编)优化重组专题-数列-试卷

2020高考备战(2019高考真题+模拟分类汇编)优化重组专题-数列-试卷

高考专题训练——数列一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·郑州质量预测)已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.则a 4=( )A .4B .32C .108D .2562.(2019·四川省达州市第一次诊断性测试)在等差数列{a n }中,a n ≠0(n ∈N *).角α顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(a 2,a 1+a 3),则sin α+2cos αsin α-cos α=( ) A .5 B .4 C .3 D .23.(2019·长春质量监测)已知S n 是等比数列{a n }前n 项的和,若公比q =2,则a 1+a 3+a 5S 6=( )A.13B.17C.23D.374.(2019·四川省绵阳市一诊)已知x >1,y >1,且lg x ,14,lg y 成等比数列,则xy 有( )A .最小值10B .最小值10C .最大值10D .最大值105.(2019·柳州市高三毕业班模拟)已知数列{a n }的首项为1,第2项为3,前n 项和为S n ,当整数n >1时,S n +1+S n -1=2(S n +S 1)恒成立,则S 15等于( )A .210B .211C .224D .2256.(2019·衡水中学模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n=( ) A .4n -1 B .4n -1 C .2n -1 D .2n -17.(2019·黄冈二模)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =2018n -13n +4,则a 3b 3=( ) A .528 B .529 C .530 D .5318.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .29.(2019·安庆二模)已知S n 是等差数列{a n }的前n 项和,a 2+a 4+a 6=12,则S 7=( )A .20B .28C .36D .410.(2019·岳阳一中二模)已知公差d ≠0的等差数列{a n }满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( )A .10B .20C .30D .5或4011.(2019·太原二模)13+13+6+13+6+9+…+13+6+9+…+30=( ) A.310 B.1033 C.35 D.203312.(2019·揭阳模拟)已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15C.111D.211二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·沈阳质量监测)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2019,则m =________.14.(2019·湖南湘潭一模)已知数列{a n }的前n 项和公式为S n =2n 2-n +1,则数列{a n }的通项公式为________.15.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.16.(2019·柳州市高三毕业班模拟)已知点(n ,a n )在函数f (x )=2x -1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =log 2S n +164,数列{b n }的前n 项和为T n .则T n 的最小值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·安徽省黄山市高三第一次质检)已知数列{a n }是公比大于1的等比数列,S n 是{a n }的前n 项和.若a 2=4,S 3=21.(1)求数列{a n }的通项公式;(2)令b n =log 4a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2b n b n +1的前n 项和T n .18.(本小题满分12分)(2019·吉林省吉林市第一次调研)已知数列{a n },点(n ,a n )在直线y =3x -22上.(1)求证:数列{a n }是等差数列;(2)设b n =|a n |,求数列{b n }的前20项和S 20.19.(本小题满分12分)(2019·桂林二模)在等比数列{a n }中,已知a 1=-1,a 2=2.(1)求{a n }的通项公式;(2)若a 3,a 4分别为等差数列{b n }的前两项,求{b n }的前n 项和S n .20.(本小题满分12分)(2019·北京高考)设{a n}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.21.(本小题满分12分)(2019·十堰二模)已知数列{a n}是递增的等差数列,a3=7,且a4是a1与27的等比中项.(1)求数列{a n}的通项公式;(2)若b n=1a n+a n+1,求数列{b n}的前n项和T n.22.(本小题满分12分)(2019·湖南联考)设S n是数列{a n}的前n项和,已知a1=1,S n=2-2a n+1.(1)求数列{a n}的通项公式;(2)设b n=(-1)n log12a n,求数列{b n}的前n项和T n.。

2020年人教版福建省高三数学专题练习-数列(附答案)

2020年人教版福建省高三数学专题练习-数列(附答案)
只需 成立,这是显然的,故 ;
综上所述 ;
由数学归纳法原理知 成立.
5.证明:(Ⅰ)以下用数学归纳法证明 .
当 时, 成立;
假设当 时,结论也成立,即 ,
则当 时有 ,
故知结论成立.
(Ⅱ)解法一:∵ ,∴

下面用数学归纳法结论
数学归纳法
当 时, 成立;
假设当 时,结论也成立,即 ,
则当 时有 ,
由数学归纳法原理知结论成立.
解法二:
∵ ,∴

,解得 ,∴ ;
(Ⅱ) ,记 ,则

证毕.
2.解:(Ⅰ)∵ ∴
∴ 即
∵ 成等差数列,∴
∵ ∴ ∴
又∵ 也满足上式,故 .
(Ⅱ)证明∵

∴ .
3.解法一:(Ⅰ)∵ ,当 时,整理得 ∵ ,∴ ;
当 时,∵ ,∴ ,整理得
∴ 是等差数列, ,∴当 时,
∵ 也满足上式,∴
(Ⅱ)证明:
故不等式获证.
4.解:(Ⅰ)∵ 成等差数列,∴ ,
2.
【解析】∵ ,
∴ ,

∴ 与 的单调性一样,故选 .
3.B
【解析】∵ ,整理得 ,
且 ,∴ ,∴ ,∴ ,∴ ,
∴ ,∴ .
4.B
【解析】由题前25项的和可以看作第1项加上以第2,3,4项为首项,三个公差为2的等差数列的前8项之和.
由题可得 ,∴ ,∴ ,
故选B.
5.D
【解析】利用三角函数的降幂公式将条件 转化为 再利用和差化积公式转化,求得 ,从而可求得等差数列 的公差 ,根据 即可求得首项 的取值范围.
7.设 为数列 的前 项和, ,则数列 的前 项和为.

2020届新高考高三数学试题分项汇编专题7 数列(原卷版+解析版)

2020届新高考高三数学试题分项汇编专题7 数列(原卷版+解析版)

(1)求an 的通项公式;
(2)设 bn 2an ,记 Tn 为数列 bn 的前 n 项和.若 Tm 124 ,求 m.
23.(2020 届山东省潍坊市高三模拟二)已知数列{an}的首项为 a1=1,且 an1 2(an 1)(n N * ) .
(Ⅰ)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
③数列 f an 是首项为 2,公差为 2 的等差数列的前 n 项和构成的数列.
2n1
(2)在(1)的条件下,当 k 2 时,设 anbn 4n2 1 ,求数列 bn 的前 n 项和 Tn .
26.(2020 届山东济宁市兖州区高三网络模拟考)在① a3 5,a2 a5 6b2 ;② b2 2,a3 a4 3b3 ;
bn
cn
,的前 n 项和 Tn .注:如果选择多个条件分别解答,按第一个解答计分.
1
2
3
nn
27.(2020·山东高三下学期开学)已知数列an 满足 2a1 5 2a2 5 2a3 5 … 2an 5 3 .
(1)求数列an 的通项公式;
1
1
1
(2)设数列
anan1
的前
n
项和为 Tn
数列, a2 a4 6 .
(1)求数列an 的通项 an ;
(2)设 bn an cos 2an 1 ,求数列bn 的前 2020 项的和 S2020 .
3
21. (2020 届山东省菏泽一中高三 2 月月考)设数列 an 的前 n 项和为 Sn ,已知 a1 1 , Sn1 2Sn 1, n N .
一、单选题 1.(2020 届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算 出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三

2020届高考数学全国模拟重组预测试卷3A新人教A版

2020届高考数学全国模拟重组预测试卷3A新人教A版

试卷类型:A2020届高三全国高考模拟重组预测试卷三数 学答案适用地区:新课标地区考查范围:集合、逻辑、函数、导数、三角、向量、数列、不等式 、立体几何、解析几何本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案填在答题卡上.在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.(理)若21π02sin d ,cos d ,a x x b x x ==⎰⎰则a 与b 的关系是( )A .b a <B .b a >C .b a =D .0=+b a(文) “a b c d >>且”是“a c b d +>+”的 ( ) A .充分不必要条件 B .充分必要条件C .必要不充分条件D .既不充分也不必要条件3.[2020·皖南八校二模]已知向量a =(3,4),b =(2,-1),如果向量λ+a b 与b 垂直,则λ的值为( )A .52B .52-C .25D .25-4.[2020·陕西卷] 设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x5.[2020·浙江卷] 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β6.[2020·皖南八校二模]已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A .12a -<< B .36a a <->或 C .36a -<< D .12a a <->或A .6 3B .9 3C .12 3D .18 38.[2020·山东潍坊质检]已知各项均不为零的数列{}n a ,定义向量1(,)n n n a a +=c ,(,1)n n n =+b ,n ∈*N . 下列命题中真命题是 ( )A. 若n ∀∈*N 总有//n n c b 成立,则数列{}n a 是等差数列B. 若n ∀∈*N 总有//n n c b 成立,则数列{}n a 是等比数列C. 若n ∀∈*N 总有n n ⊥c b 成立,则数列{}n a 是等差数列D. 若n ∀∈*N 总有n n ⊥c b 成立,则数列{}n a 是等比数列9.[2020·安徽卷] 已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ) A. ⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B. ⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C. ⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D. ⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 10.[2020·课标全国卷] 已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝ ⎛⎦⎥⎤2π3,πp 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3; p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 411.[2020·山东济南调研]已知点12,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于,A B 两点,若△2ABF 是锐角三角形,则该双曲线离心率的取值范围是( ) A .)3,1(B .)22,3(C .),21(+∞+D .)21,1(+12.[2020·福建四地六校联考]已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①m l ⊥⇒βα//;②m l //⇒⊥βα;③βα⊥⇒m l //;④.//βα⇒⊥m l 其中正确的两个命题是( )A .①与②B .①与③C .②与④D .③与④第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上) 13.[2020·苏、锡、常、镇四市调研]在平面直角坐标系xOy 中,双曲线2288kx ky -=的渐近线方程为 .14.[2020·天津卷] 一个几何体的三视图如图所示(单位:m),则该几何体的体积为_______m 3.15.[2020·辽宁锦州月考]已知直线220:1ax by c O x y ++=+=与圆相交于A ,B 两点,且||3,AB =则OA OB ⋅= .16. [2020·安徽淮南一模]若数列{}{},n n a b 的通项公式分别是a a n n ⋅-=+2010)1(,2011(1)2n n b n+-=+,且n n b a <对任意n *∈N 恒成立,则常数a 的取值范围是 .三、解答题(本大题共6小题,满分74分.解答须写出文字说明、证明过程和演算步骤)17.(本小题满分12分)[2020·福建卷] 已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.18.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,.OP x OA y OB =⋅+⋅(1)若BP PA =,求x ,y 的值;(2)若3BP PA =,||4OA =,||2OB =,且OA 与OB的夹角为60°时,求OP AB ⋅ 的值.20.(本小题满分12分) [2020·山东卷] 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.第一列 第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 21.(理)(本小题满分12分)[2020·天津宝坻区质检]设椭圆222:1(0)2x y C a a+=>的左、右焦点分别为F 1、F 2,A 是椭圆C 上的一点,2120AF F F ⋅=,坐标原点O 到直线AF 1的距离为11||.3OF(1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过点Q 的直线l 交x 轴于点(1,0)F -,交y 轴于点M ,若||2||MQ QF =,求直线l 的斜率.(文)[2020·天津南开中学月考]已知椭圆2222:1(0)x y C a b a b +=>>的离心率为33e =,且过点(0,2),,A B 分别是椭圆的左右两个顶点,P 为椭圆C 上的动点. (1)求椭圆的标准方程;(2)若P 与,A B 均不重合,设直线PA PB 与的斜率分别为12,k k ,求12k k 的值; (3)M 为过P 且垂直于x 轴的直线上的点,若(0)OPOMλλ=>,求点M 的轨迹方程. 22.(理)(本小题满分14分)[2020·山东淄博模拟]已知函数2()e 23xf x x x =+-. (1)求证函数)(x f 在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x 的近似值(误差不超过0.2);(参考数据e 2.7≈e 1.6≈,0.3e 1.3≈)(2)当12x ≥时,若关于x 的不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.(文)[2020·山东淄博模拟]已知函数2()e 23xf x x x =+-.(1)求证:函数)(x f 在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x 的近似值(误差不超过0.2);(参考数据e 2.7≈e 1.6≈,0.3e 1.3≈)(2)当1x ≥时,若关于x 的不等式()f x ax ≥恒成立,试求实数a 的取值范围.试卷类型:A2020届高三全国高考模拟重组预测试卷三参考答案数 学1.【答案】B【解析】阴影部分表示的是B A ,{}{}03|0)3(|03|<<-=<+=⎭⎬⎫⎩⎨⎧<+=x x x x x x x x A ,{}13|-<<-=x x B A ,故选B.2.(理)【答案】A 【解析】21π23ππsin d cos d cos 2sin1cossin 044a b x x x x -=-=--<--=⎰⎰,故选A. (文)【答案】A【解析】a b c d >>且根据不等式性质能够推出a c b d +>+,反之不成立,故选A. 3. 【答案】D【解析】()()()3,4,2,1,32,4,()0λλλλ-+-=,a =b =a +b =a +b b 即22(32)(4)0,5λλλ+--==-. 4. 【答案】B【解析】由题意设抛物线方程为y 2=2px (p >0),又∵其准线方程为x =-p2=-2,∴p=4,所求抛物线方程为y 2=8x . 5. 【答案】D【解析】若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A 正确;B 中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B 正确;由面面垂直的性质知选项C 正确.由A 正确可推出D 错误. 6. 【答案】B【解析】2()32(6)f x x ax a '=+++ ,因为函数有极大值和极小值,所以()0f x '=有两个不相等的实数根,所以判别式2443(6)0a a ∆=-⨯+>,解得3a <-或6a >. 7. 【答案】B【解析】由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3. 8. 【答案】 A【解析】由n n c b 可知11n n a n a n ++=, 故32411231n n n a a a a a a a a a a -==12341231na n -1na =,即n ∀∈*N 如果//n n cb 成立,则数列{}n a 是等差数列. 9. 【答案】C【解析】对x ∈R 时,f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6恒成立,所以f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,可得φ=2k π+π6或φ=2k π-5π6,k ∈Z .因为f ⎝ ⎛⎭⎪⎫π2=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ,故sin φ<0.所以φ=2k π-5π6,所以f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 由-π2+2k π≤2x -5π6≤π2+2k π,得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ),答案为C.10. 【答案】A【解析】因为||a +b >1⇔||a 2+2a ·b +||b 2>1⇔a ·b >-12⇔||a ||b cos θ=cos θ>-12⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3,所以p 1为真命题,p 2为假命题.又因为||a -b >1⇔||a 2-2a ·b +||b 2>1⇔a ·b <12⇔||a ||b cos θ=cos θ<12⇔θ∈⎝ ⎛⎦⎥⎤π3,π,所以p 4为真命题,p 3为假命题. 11. 【答案】D【解析】22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,22222,,2,b b F A c F B c a a ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,22222240,210,11 2.b F A F B c e e e a ⎛⎫⋅=->--<<<+ ⎪⎝⎭12.【答案】B【解析】②中l 和m 可以平行、异面、相交;④中l m ⊥推不出.αβ故选B .13. 【答案】2y x =±【解析】由题知得其渐近线方程为2280x y -=即22y x =±.14. 【答案】6π+【解析】根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π. 15. 【答案】12-【解析】因为圆的半径是1,所以 1.OA OB ==又3,=120AB AOB =∠则, 所以11cos 1122OA OB OA OB AOB ⎛⎫=∠=⨯⨯-=- ⎪⎝⎭.16. 【答案】32,2⎡⎫-⎪⎢⎣⎭【解析】17.解:(1)由q =3,S 3=133得a 11-331-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝ ⎛⎭⎪⎫2×π6+φ=1.又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π6. 18.解(1)∵BP PA =,∴BO OP PO OA +=+,即2OP OB OA =+,∴1122OP OA OB =+,即12x =,12y =.(2)∵3BP PA =, ∴33BO OP PO OA +=+,即43OP OB OA =+,∴3144OP OA OB =+, ∴34x =,14y =.31()()44OP AB OA OB OB OA ⋅=+⋅-131442OB OB OA OA OA OB =⋅-⋅+⋅221311244294422=⨯-⨯+⨯⨯⨯=- 19.(理)解:(1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD .故PA ⊥BD .(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0). 设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.(文)解:(1)证明:取BC 的中点M ,连接,PM QM ,易证平面PQM ACD 平面.又,PQ PQM PQ ACD ⊂∴平面平面.(2),,DC ABC AC DC AC BC AC BCDE ⊥⇒⊥⊥∴⊥平面又平面,-1433B ADE A BDE BDE S S S AC -∆∴==⋅=.20. 解:(1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意. 因此a 1=2,a 2=6,a 3=18, 所以公比q =3,故a n =2·3n -1.(2)因为b n =a n +(-1)nln a n=2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n[ln2+(n -1)ln3]=2·3n -1+(-1)n (ln2-ln3)+(-1)nn ln3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln2-ln3)+[-1+2-3+…+(-1)nn ]ln3.所以当n 为偶数时,S n =2·1-3n1-3+n2ln3=3n+n2ln3-1;当n 为奇数时,S n =2×1-3n1-3-(ln2-ln3)+⎝ ⎛⎭⎪⎫n -12-n ln3=3n-n -12ln3-ln2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln3-1,n 为偶数,3n-n -12ln3-ln2-1,n 为奇数.21. (理)解:(1)由题设知2212(2,0),(2,0),2F a F a a --->其中.由于2120AF F F ⋅=,则有212AF F F ⊥,所以点A 的坐标为22(2,)a a-± , 故1AF 所在直线方程为21()2xy aa a =±+- ,所以坐标原点O 到直线1AF 的距离为2221a a --.又212OF a =-,所以22221213a a a -=-- ,解得2a =, 所求椭圆的方程为22142x y += . (2)设直线斜率为k ,直线l 的方程为(1)y k x =+,则有(0,)M k . 设11(,)Q x y ,由于Q 、F 、M 三点共线,且2MQ QF=,根据题意得1111(,)2(1,)x y k x y -=±+,解得112,x y k =-⎧⎨=-⎩或112,3.3x k y ⎧=-⎪⎪⎨⎪=⎪⎩又Q 在椭圆C 上,故22(2)()142k --+=或222()()33142k-+= , 解得0k =或4k =±,所以所求直线l 的斜率为0或4±. (文)解:(1)由题意可得,2=b又33c e a==即2223.,a c a b c ==+由得,1,3==c a 所以椭圆方程为.12322=+y x(2)设),0)(,(000=/y y x P ),0,3(),0,3(B A -则,1232020=+y x 即,322202x y -= 则0103k x =+0203k x =-所以22200012222000222(3)233.3333x x y k k x x x --====---- 12k k ∴的值为2.3-(3)设(,)M x y ,其中3,3.x ∈() 由已知222||||λ=OM OP 及点P 在椭圆C 上可得,)(3632222222222λ=++=+-+y x x yx x x 整理得,63)13(2222=+-y x λλ其中3,3.x ∈() 22.(理)解:(1)()e 43xf x x '=+-,∵ 0(0)e 320f '=-=-<,(1)e 10f '=+>,∴ (0)(1)0f f ''⋅<. 令 ()()e 43xh x f x x '==+-,则()e 40xh x '=+>,∴ ()f x '在区间[0,1]上单调递增,∴ ()f x '在区间[0,1]上存在唯一零点, ∴ )(x f 在区间[0,1]上存在唯一的极小值点. 取区间[0,1]作为起始区间,用二分法逐次计算如下:① (0.5)0.60f '≈>,而(0)0f '<,∴ 极值点所在区间是[0,0.5]; ② 又(0.3)0.50f '≈-<,∴ 极值点所在区间是[0.3,0.5]; ③ ∵ |0.50.3|0.2-=,∴ 区间[0.3,0.5]内任意一点即为所求. (2)由25()(3)12f x x a x ≥+-+,得225e 23(3)12x x x x a x +-≥+-+,即 21e 12x ax x ≤--.∵ 12x ≥, ∴ 21e 12x x a x --≤. 令 21e 12()x x g x x--=, 则221e (1)12()x x x g x x --+'=. 令 21()e (1)12xx x x ϕ=--+,则()(e 1)x x x ϕ'=-.∵12x ≥,∴()0x ϕ'>,∴()x ϕ在1[,)2+∞上单调递增,∴171()()e 0282x ϕϕ≥=>,因此()0g x '>,故()g x 在1[,)2+∞上单调递增,则121e 1198()()2e 1242g x g --≥==,∴ a 的取值范围是92e 4a ≤.(文)解:(1)()e 43xf x x '=+-,∵ 0(0)e 320f '=-=-<,(1)e 10f '=+>,∴ (0)(1)0f f ''⋅<. 令 ()()e 43xh x f x x '==+-,则()e 40xh x '=+>,∴ ()f x '在区间[0,1]上单调递增,∴ ()f x '在区间[0,1]上存在唯一零点, ∴ )(x f 在区间[0,1]上存在唯一的极小值点. 取区间[0,1]作为起始区间,用二分法逐次计算如下:① (0.5)0.60f '≈>,而(0)0f '<,∴ 极值点所在区间是[0,0.5]; ② 又(0.3)0.50f '≈-<,∴ 极值点所在区间是[0.3,0.5]; ③ ∵ |0.50.3|0.2-=,∴ 区间[0.3,0.5]内任意一点即为所求.(2)由()f x ax ≥,得2e 23xax x x ≤+-,∵ 1x ≥, ∴ 2e 23x x x a x+-≤,令 2e 23()x x x g x x +-=,则22(1)e 2()x x x g x x-+'=, ∵ 1x ≥, ∴ ()0g x '>, ∴ ()g x 在[1,)+∞上单调递增, ∴min ()(1)e 1g x g ==-,∴a 的取值范围是e 1a ≤-.。

2020年高中数学 人教A版 必修5 章末优化试卷 《数列》(含答案解析)

2020年高中数学 人教A版 必修5 章末优化试卷 《数列》(含答案解析)

( ) A.-78
B.-82
C.-148
D.-182
n
12.定义:称

p1+p2+…+pn
n
个正数
p1,p2,…,pn
的“均倒数”,若数列{an}的前
n
项的
1 “均倒数”为2n-1,则数列{an}的通项公式为( )
A.2n-1
B.4n-1
C.4n-3

D.4n-5
二、填空题 13.已知 Sn 是等比数列{an}的前 n 项和,a5=-2,a8=16,则 S6 等于________.
14.设 Sn 为等差数列{an}的前 n 项和,若 S3=3,S6=24,则 a9=________.
15.在等差数列{an}中,Sn 为它的前 n 项和,若 a1>0,S16>0,S17<0,则当 n=________时,Sn 最 大.
1 16.已知函数 f(x)=xa 的图象过点(4,2),令 an=fn+1+fn,n∈N*.记数列{an}的前 n
项和为 Sn,则 S2 016=________.
三、解答题
17.在等比数列{an}中,a2=3,a5=81. (1)求 an; (2)设 bn=log3an,求数列{bn}的前 n 项和 Sn.
18.已知等差数列{an},a6=5,a3+a8=5. (1)求{an}的通项公式 an; (2)若数列{bn}满足 bn=a2n-1,求{bn}的通项公式 bn.
答案解析
1.答案为:A; 解析:设公差为 d,∴a7-a5=2d=4,∴d=2,又 a3=a1+2d,∴-6=a1+4,∴a1=-10.
2.答案为:B; 解析:由题意得,a4+a12=-3<0,a4·a12=1>0,∴a4<0,a12<0,∴a8<0, 又∵a28=a4·a12=1,∴a8=-1.

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。

备战2020年高考高三一轮单元训练金卷 数学(理) 第7单元 数列 A卷 Word版含答案

备战2020年高考高三一轮单元训练金卷 数学(理) 第7单元  数列 A卷  Word版含答案

单元训练金卷▪高三▪数学卷(A )第7单元 数列注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出★答案★后,用2B 铅笔把答题卡上对应题目的★答案★标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前n 项和为S n ,若a 1=12,S 5=90,则等差数列{a n }公差d =( ) A .2B .32C .3D .42.在正项等比数列{}n a 中,已知42a =,818a =,则5a 的值为( ) A .14B .14-C .1-D .13.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .364.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”. 其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7天,共走了700里,则这匹马第7天所走的路程等于( ) A .700127里 B .35063里 C .28051里 D .350127里 5.已知等差数列{}n a 的前n 项和n S 有最大值,且651a a <-,则满足0n S >的最大正整数n 的值 为( ) A .6B .7C .10D .126.已知等差数列{}n a 的公差不为零,n S 为其前n 项和,39S =,且21a -,31a -,51a -构成等比数列,则5S =( ) A .15B .15-C .30D .257.在等差数列{}n a 中,3a ,9a 是方程224120x x ++=的两根,则数列{}n a 的前11项和等于( )A .66B .132C .66-D .132-8.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )A .110B .114C .124D .1259.已知数列{}n a 的前n 项和为n S ,满足2=31n n S a -,则通项公式n a 等于( ) A .12n naB .2n n a =C .13-=n n aD .3nn a =10.已知数列错误!未找到引用源。

高考数学压轴专题2020-2021备战高考《数列》经典测试题含答案解析

高考数学压轴专题2020-2021备战高考《数列》经典测试题含答案解析

【高中数学】数学《数列》复习知识点(1)一、选择题1.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108 B .90C .72D .24【答案】B 【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.2.已知数列22333311313571351,,,,,,,...,,,,...2222222222n n n,则该数列第2019项是( ) A .1019892 B .1020192C .1119892D .1120192【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.4.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.5.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )A B C .12D 【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.则椭圆离心率为2,故选B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( )A .1845a a a a >B .1845a a a a <C .1845a a a a +>+D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.7.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.8.设数列是公差的等差数列,为前项和,若,则取得最大值时,的值为A .B .C .或D .【答案】C 【解析】,进而得到,即,数列是公差的等差数列,所以前五项都是正数,或时,取最大值,故选C.9.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21C .24D .36【答案】B 【解析】 【分析】根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】因为数列{}n a 是等差数列,1356a a a ++=, 所以336a =,即32a =, 又76a =, 所以73173a a d -==-,1320a a d =-=, 故1777()212a a S +== 故选:B 【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.10.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==, 设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1,∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974,故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.15.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.16.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a =∴1999()272a a S ⨯+== 故选D.17.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.18.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++,又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.19.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,给出下列五个命题: ①公差0d < ②110S < ③120S >④数列{}n S 中的最大项为11S ⑤67a a >其中正确命题的个数是( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】先由条件确定数列第六项和第七项的正负,进而确定公差的正负,最后11S ,12S 的符号由第六项和第七项的正负判定. 【详解】Q 等差数列{}n a 中,6S 最大,且675S S S >>,∴10a >,0d <,①正确; Q 675S S S >>,∴60a >,70a <,67 0a a +>,∴160a d +<,150a d +>,6S 最大, ∴④不正确;1111115511(5)0S a d a d =+=+>,12111267 126612()12()0S a d a a a a =+=+=+>, ∴③⑤正确,②错误.故选:B . 【点睛】本题考查等差数列的前n 项和的应用,考查逻辑思维能力和运算能力,属于常考题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A .B .C .D .【答案】B 【解析】 【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果. 【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,; 第三次运算:,; 第四次运算:,;第五次运算:,; 第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。

2020高中数学专项复习《数列高考题》+答案

2020高中数学专项复习《数列高考题》+答案

3a n + 13 nn+1nn+21. (福建卷)已知等差数列{a n }中, a 7 + a 9 = 16, a 4 = 1,则a 12 的值是( )A .15B .30C .31D .64{a }a 1 = 0, a n +1 = a n-(n ∈ N * )a2. (湖南卷)已知数列n 满足,则20 = ( )A .0B .- 3C .D . 23. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( )( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{a n }是等差数列,则( )(A) a 1 + a 8 < a 4 + a 5 (B) a 1 + a 8 = a 4 + a 5 (C) a 1 + a 8 > a 4 + a 5 (D) a 1a 8 = a 4 a 55. (全国卷II ) 11如果a 1 , a 2 ,L , a 8为各项都大于零的等差数列,公差 d ≠ 0 ,则( )(A)a 1a 8 > a 4 a 5 (B) a 1a 8 < a 4 a 5(C) a 1 + a 8 > a 4 + a 5 (D) a 1a 8 = a 4 a 56. (ft 东卷){a n } 是首项 a 1 =1,公差为 d =3的等差数列,如果 a n =2005,则序号n 等于( )(A )667 (B )668 (C )669 (D )6707. (重庆卷)有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( )(A ) 4; (B ) 5; (C ) 6; (D ) 7。

2020年高考数学(文)精选真题重组卷02 (新课标卷)(含答案)

2020年高考数学(文)精选真题重组卷02 (新课标卷)(含答案)

2020年高考精选真题重组卷02(新课标卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x 2−x −2>0 },则∁R A =( ) A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2} 【答案】B【解析】 解不等式x 2−x −2>0得x <−1或x >2,所以A ={x|x <−1或x >2},所以可以求得C R A ={x|−1≤x ≤2},故选B.2.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A.1+2i B.1-2i C.-1+2i D.-1-2i 【答案】B【解析】设z =a +b i(a ,b ∈R ),则z =a -b i , ∴2(a +b i)+(a -b i)=3-2i ,整理得3a +b i =3-2i ,∴⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i ,故选B. 3.“x >1”是“12log (2)x +<0”的( )A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件 【答案】B【解析】由x >1⇒x +2>3⇒12log (2)x +<0,12log (2)x +<0⇒x +2>1⇒x >-1,故“x >1”是“12log (2)x +<0”成立的充分不必要条件.因此选B.4.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A.4B.9C.10D.12 【答案】C【解析】满足条件⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如右图阴影部分(包括边界),x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然,当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.5.执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A.5B.4C.3D.2 【答案】D【解析】由题可知初始值t=1,M=100,S=0, 要使输出S 的值小于91,应满足“t≤N”, 则进入循环体,从而S=100,M=﹣10,t=2, 要使输出S 的值小于91,应接着满足“t≤N”, 则进入循环体,从而S=90,M=1,t=3,若此时输出S ,则S 的值小于91,故t=3应不满足“t≤N”,跳出循环体, 所以输入的N 的最小值为2, 故选D .6. 函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3]【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3].故选D. 7.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A.21 B.42 C.63 D.84 【答案】B【解析】设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B.8.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x −2)2+y 2=2上,则△ABP 面积的取值范围是A .[2 , 6]B .[4 , 8]C .[√2 , 3√2]D .[2√2 , 3√2] 【答案】A【解析】∵直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点 ∴A (−2,0),B(0,−2),则|AB |=2√2 ∵点P 在圆(x −2)2+y 2=2上∴圆心为(2,0),则圆心到直线距离d 1=|2+0+2|√2=2√2故点P 到直线x +y +2=0的距离d 2的范围为[√2,3√2] 则S △ABP =12|AB |d 2=√2d 2∈[2,6] 故答案选A.9.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( )A.4B.-4C.94D.-94【答案】B【解析】∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4,故选B. 10.若cos ⎝⎛⎭⎫π4-α=35,则sin 2α=( ) A.725 B.15 C.-15 D.-725 【答案】D【解析】 因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,又因为cos ⎝⎛⎭⎫π4-α=35, 所以sin 2α=2×925-1=-725,故选D.11.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34 【答案】A【解析】 设M (-c ,m ),则E ⎝⎛⎭⎫0,am a -c ,OE 的中点为D ,则D ⎝⎛⎭⎫0,am2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=m a +c,a =3c ,e =13.12.已知函数f(x)={e x ,x ≤0,lnx ,x >0,g(x)=f(x)+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)【答案】C【解析】画出函数f(x)的图像,y =e x 在y 轴右侧的去掉,再画出直线y =−x ,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程f(x)=−x −a 有两个解,也就是函数g(x)有两个零点,此时满足−a ≤1,即a ≥−1,故选C.二、填空题:本题共4小题,每小题5分,共20分。

2020-2021学年度高三下学期总复习数学专题精品试题 专题九 数列

2020-2021学年度高三下学期总复习数学专题精品试题   专题九 数列

2020-2021学年度高三下学期总复习数学专题精品试题专题九数列【满分:100分】(测试内容包括:数列的概念及其表示法、等差数列及其前项和、等比数列及其前项和、数列的综合应用.)一、单项选择题(共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合要求的.)1.已知数列的前n项和为,满足,则的通项公式()A.B.C.D.2.已知数列是等差数列,数列是等比数列,则的值为()A.B.C.D.3.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.记为等比数列的前项和,若数列也为等比数列,则()A.B.1C.D.25.已知数列,其前项和为,则()A.B.C.D.6.在等差数列中,,其前n项和为,若,则()A.0B.1C.2019D.20207.已知函数,数列满足,且是递减数列,则实数a的取值范围是()A.B.C.D.8.如图,方格蜘蛛网是由一族正方形环绕而成的图形.每个正方形的四个顶点都在其外接正方形的四边上,且分边长为.现用13米长的铁丝材料制作一个方格蜘蛛网,若最外边的正方形边长为1米,由外到内顺序制作,则完整的正方形的个数最多为(参考数据:)()A.6 个B.7 个C.8 个D.9 个二、多项选择题(共4小题,每小题4分,共16分.在每小题给出的选项中,有多项符合题目要求.全部选对的得4分,部分选对的得2分,有选错的得0分.)9.已知数列的前项和为,且有,,数列的前项和为,则以下结论正确的是()A. B. C. D.为递增数列10.设,数列满足,,,则下列说法不正确的是()A.当时,B.当时,C.当时,D.当时,11.已知数列的所有项都是正数,且满足,下列说法正确的是()A.数列的通项公式为B.数列是等差数列C.数列的前项和是D.数列是等比数列12.已知数列满足,则()A.B.C.D.三、填空题(共4小题,每小题4分,共16分.)13.已知为数列的前n项和,且,则的通项公式为 .14.已知是等比数列的前项和,成等差数列,,则 .15.已知数列的前项和为,,且(为常数).若数列满足,且,则满足条件的的取值集合为 .16.数列满足:对任意的且,总存在,使得,则称数列是“T 数列”.现有以下四个数列:①;②;③;④.其中所有“数列”的序号为 .四、解答题(共4小题,其中第17~18题每题各8分,第19~20题每题各10分,共36分;解答应写出文字说明、证明过程或演算步骤.)17.(8分)已知数列的前n项和为,且满足.(1)证明:是等比数列;(2)求.18.(8分)已知等差数列的前项和为,若.(1)求的通项公式和前项和;(2)记,数列的前项和为,求证:.19.(10分)已知数列满足,数列的前项和为.(1)求出数列,的通项公式;(2)求数列的前项和.20.(10分)设等比数列满足,.(1)令,求的最大值;(2)令,求数列的前n项和.专题九数列一、单项选择题1.B【解析】法一:当时,,,排除选项D;当时,,,排除选项A、C.故选B.法二:当时,,,当时,,,∴数列是首项为1,公比为2的等比数列,因此.故选B.2.C【解析】因为是等差数列,所以.又是等比数列,所以,因为,所以,所以.故选C.3.A【解析】在等比数列中,若是方程的两根,则,则,且,,解得,故充分性成立;而当时,,故必要性不成立,所以“是方程的两根”是“”的充分不必要条件.故选A.4.A【解析】设等比数列的公比为,当时,,显然不为等比数列,舍去.当时,,欲符合题意,需,得,故.故选A.5.B【解析】已知数列,其前项和,则,所以.故选B.6.A【解析】法一:设等差数列的前n项和为,则,是等差数列.,新数列是首项为,公差为1的等差数列,则第2 020项为,.故选A.法二:设等差数列的公差为d,则,,则,,代入,得:,.故选A.7.C【解析】因为是递减数列,则解得.故选C.8.B【解析】记由外到内的第n个正方形的周长为,则它们构成首项,公比为的等比数列,则其前n项和为,根据题意得,解得,两边同取常用对数得,故可制作完整的正方形的个数最多为7个.故选B.二、多项选择题9.BD【解析】由得化简得根据等比数列的性质得数列是等比数列,易知故的公比为2,则,,由裂项相消法得,故B正确,C错误,D正确.根据知A选项错误.故选BD.10.B CD【解析】当时,,,又,故,当时,故时,,不成立.同理和时,均存在小于10的数只需则故不成立.故选BCD.11.A BD【解析】当时,,可得,当时,由,可得,两式相减得,得,又也适合上式,则数列的通项公式为,故A正确;,,故C错误;结合等差数列、等比数列的定义知B,D都正确.故选ABD.12.A C【解析】由,可得,,,化简得,故A正确;由可得,故B错误;由,故C正确;若,满足,但,故D错误.故选AC.三、填空题13.【解析】由,得,当时,当时,(不满足上式),所以数列的通项公式为.14.2【解析】由成等差数列,得.设等比数列的公比则.由解得舍去,所以所以所以解得(舍去).又因为,即所以则.15.【解析】因为,且(为常数),所以,解得,所以,所以,所以,所以,因为,所以,所以,解得,又因为,所以或.所以,当或时,,即满足条件的的取值集合为.16.①④【解析】令,则,,,显然,当时,恒成立,所以数列是“T数列”;令,则,,,所以,所以数列不是“T数列”;令,则,,,所以,所以数列不是“T数列”;令,则,同理时,,即,所以数列是“T数列”.综上,所有“T数列”的序号为①④.四、解答题17.【解析】(1)由得,………………………1分当时,,所以,……………………………………………2分则,……………………3分所以是以为首项,2为公比的等比数列.…………………………………………………………………4分(2)由(1)得,所以,………5分所以…………………………………6分…………………………………………7分.………………………………………………8分18.【解析】(1)设数列的公差为,则,即,解得.……………2分,…………………………………3分. ………………………………………4分(2)当时,.……………………………………5分当时,,. ……………………………………7分综上可知,. ……………………………………………8分19.【解析】(1)由,,可得,是首项为2,公比为2的等比数列.,.即数列的通项公式.…………………………2分由数列的前项和为,可得当时,,即数列的通项公式为.………………………4分(2)可知.…………………………………………………………………5分设,,两式相减可得,可得,……………………………8分而数列的前项和为,所以.………………………………10分20.【解析】(1)设等比数列首项为,公比为q,所以,,………………………1分解得,所以,………………2分当时,解得,………………………3分又因为是递减数列,所以,…………………4分所以的最大值为.……………5分(2)由(1)知,则,……………………………………6分,两边同时乘以得,,………………7分两式相减得,……………………8分.…………………………………………………………………9分所以. …………………………………10分。

2020届高三专题复习:数列专项测试题(含答案)

2020届高三专题复习:数列专项测试题(含答案)

高三专题复习——数列专项测试题一、选择题(本大题共12小题,共60.0分)1. 数列{2a n+1}是等差数列,且a 1=1,a 3=−13,那么a 2020=( ) A. 10091010B. −10091010C. 20192020D. −201920202. 已知数列{a n }是等差数列且a n >0,设其前n 项和为S n .若a 1+a 9=a 52,则S 9=( )A. 36B. 27C. 18D. 93. 已知等比数列{a n }是递增数列,a 2=2,S 3=7,则数列{1a n}的前5项和为( ) A. 31B. 31或314C. 3116D. 3116或3144. 已知数列{a n }、{b n }满足b n =log 2a n ,n ∈N +,其中{b n }是等差数列,且a 9a 2009=4,则b 1+b 2+b 3+⋯+b 2017=( ) A. 2016B. 2017C. log 22017D.201725. 在等比数列{a n }中,a n >0,且a 7,a 6,−3a 5成等差数列,则公比q =( ) A. 1B. 1或−3C. 3D. 3或−16. 已知等差数列{a n }的前n 项和为S n ,a m−1与a m+1的等差中项的3倍等于a m 2,S 2m−1=57,其中m ≥2,且m ∈N ∗,则m =( ) A. 8B. 9C. 10D. 117. 已知数列{a n }的各项均为正数,其前n 项和S n 满足4S n =a n 2+2a n ,(n ∈N ∗),设b n =(−1)n ⋅a n a n+1,T n 为数列{b n }的前n 项和,则T 20=( ) A. 110B. 220C. 440D. 8808. 数列{a n }中,首项a 1=2,且点(a n ,a n+1)在直线x −y =2上,则数列{a n }的前n 项和S n等于( ) A. 3n −1B. −n 2+3nC. 3n +1D. n 2−3n9. 数列{a n }的前n 项和为S n ,且a n =(−1)n (2n −1),则S 2019=( ) A. 2019B. −2019C. −4037D. 403710. 在等差数列{}n a 中,19a =-,51a =-.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ).A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项11.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+ B .2n n ⋅ C. 31n -D .123n n -⋅12.定义n∑u ini=1为n 个正数u 1,u 2,u 3,...,u n 的“快乐数”。

2020届高三数学数列检测试卷 新课标 人教版

2020届高三数学数列检测试卷 新课标 人教版

2020届高三数学数列检测试卷试卷总分100分一、选择题:(本大题共6小题,每小题6分,共3 6分.在每小题给出的四个选项中,只有一项是符合题目要求的,将正确答案填入题中括号中.)1.等差数列{b n }中,b 1=1, b 1+b 2+b 3+……+b 10=145, 则数列{b n }的通项公式b n 是 ( )(A )3n -2 (B )4-3n (C )16n -15 (D )37310-n 2.在公比为q 且各项均为正数的等比数列{a n }中,若a n -3·a n +1=a k 2(n , k 均为自然数),则a k 为 ( )(A )a 1qn -1(B )a 1qn -2(C )a 1qn -3(D )以上答案都不正确3.在等差数列{a n }中,a 3+a 7-a 10=8, a 11-a 4=4, 记S n =a 1+a 2+a 3+……+a n ,则S 13等于 ( )(A )168 (B )156 (C )78 (D )152 4.等差数列{a n }的前n 项和是S n ,a 3+a 8>0, S 9<0, 则S 1, S 2, S 3, ……,S n 中最小的是( )(A )S 9 (B )S 8 (C )S 5 (D )S 45.已知等比数列{a n }的前n 项和是S n ,若S 30=13S 10, S 10+S 30=140,则S 20的值是( )(A )90 (B )70 (C )50 (D )40 6.等比数列{a n }中,公比q =21,且a 3+a 6+a 9+……+a 99=60,那么a 1+a 2+a 3+……+a 99的值等于 ( )(A )300 (B )420 (C )90 (D )100二、填空题:(本大题共5小题,每小题6分,共30分。

把答案填在题中横线上。

) 7.在等比数列{a n }中,记S n =a 1+a 2+a 3+……+a n ,已知a 5=2S 4+3,a 6=2S 5+3,则此数列的公比q 的值是 .8.等差数列{a n }的首项a 1=-5,它的前11项的平均值是5,若从中抽去一项,余下的10项的平均值是4.6,则抽去的这一项是第 项. 9.已知x =11,则1102112311222++++++++x x x x x x ΛΛ= . 10.某产品,计划每年成本降低q %,若三年后的成本是a 元,则现在的成本是 元.11.数列{a n }中,若a 1=5, a n =S n -1 (n ≥2),则a n = . 三、解答题:(本大题共2小题,共34分,解答应写出文字说明,或演算步骤)12、(本小题满分14分)已知三数成等比数列,若把第二个数增加4,则三数成等差数列,若再把第三个数增加32,则它们又成了等比数列,求这三个数。

2020年高考数学二轮复习热点难点全面突破 专题07 数列的综合(二)试卷及答案

2020年高考数学二轮复习热点难点全面突破 专题07  数列的综合(二)试卷及答案

xn1
xn2
xn

n
N
2019
* ,求[
xi
i1 1 xi
]
的值;
(3)设定义在正整数集 N *上的函数 f (n) 满足,当 m(m 1) n m(m 1) (m N*) 时, f (n) m ,问
2
2
n
是 否 存 在 正 整 数 n , 使 得 f (i) 2019 ? 若 存 在 , 求 出 n 的 值 ; 若 不 存 在 , 说 明 理 由 ( 已 知 i 1
6d 4
3

解得 a1
13 22
,d
7 66

自上而下取第 1,3,9 节,则这 3 节的容积之和为:
a1
a3
a9
3a1
10d
39 22
70 66
17 6
(升
)

故选: B .
巩固训练
一、填空题
1.(2019·静安区二模)若等比数列
h满足
,
值为______.
【答案】729
【解析】解:设等比数列 的公比为 q,
所以: an n 2n (首 项符合) ,
故: an n 2n .
Sn 1 21 2 22 n 2n ①,
2Sn 1 22 2 23 n 2n1 ②,
① ②得: Sn
2(2n 1) n 2 1
2n1 ,
整理得: Sn (n 1) 2n1 2 ,
所以: S33 (33 1) 2331 2 239 2 . 故选: B .
-10n+470,n≥4
的差.
(1)求该地区第 4 个月的共享单车的保有量; (2)已知该地区共享单车停放点第 n 个月底的单车容纳量 Sn=-4(n-46)2+8800(单位:辆)设在某月底, 共享单车保有量达到最大,问保有量是否超出了此时停放点的容纳量?

2020—2021年最新高考总复习数学(通用)数列(真题+模拟)专项复习及解析.docx

2020—2021年最新高考总复习数学(通用)数列(真题+模拟)专项复习及解析.docx

第五章数列考点16 等差数列两年高考真题演练1.(2015·重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=( ) A.-1 B.0 C.1 D.62.(2015·新课标全国Ⅱ)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=( )A.5 B.7 C.9 D.113.(2015·浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0 B.a1d<0,dS4<0C.a1d>0,dS4<0 D.a1d<0,dS4>04.(2015·新课标全国Ⅰ)已知{a n}是公差为1的等差数列,S n 为{a n}的前n项和.若S8=4S4,则a10=( )A.172B.192C.10 D.125.(2014·新课标全国Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1) B.n(n-1)C.n(n+1)2D.n(n-1)26.(2014·重庆)在等差数列{a n}中,a1=2,a3+a5=10,则a7=( )A .5B .8C .10D .147.(2015·陕西)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.8.(2015·浙江)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.9.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.10.(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.11.(2010·新课标全国Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.12.(2015·北京)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7;问:b 6与数列{a n }的第几项相等?13.(2014·新课标全国Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.考点16 等差数列一年模拟试题精练1.(2015·黄冈中学检测)已知{a n}是等差数列,a1+a7=-2,a3=2,则{a n}的公差d=( )A.-1 B.-2 C.-3 D.-42.(2015·惠州市三调)等差数列{a n}的前n项和为S n,且S3=6,a1=4,则公差d等于( )A.1 B.53C.-2 D.33.(2015·西安八校联考)在等差数列{a n}中,a1=0,公差d≠0,若a m=a1+a2+…+a9,则m的值为( )A.37 B.36 C.20 D.194.(2015·杭州七校联考)已知数列{a n}满足a n+2=a n+1+a n,若a1=1,a5=8,则a3=( )A.1 B.2 C.3 D.725.(2015·唐山一中高三期中)已知数列{a n}的前n项和为S n,且满足a n+2=2a n+1-a n,a5=4-a3,则S7=( )A.7 B.12 C.14 D.216.(2015·邯郸市质检)已知在等差数列{a n}中,a1=1,前10项的和等于前5项的和,若a m+a6=0,则m=( ) A.10 B.9 C.8 D.27.(2015·赣州十二县高三联考)设等差数列{a n}的前n项和为S n,若S3=3,S6=15,则S9=( )A.27 B.36 C.44 D.548.(2015·长春调研)已知数列{a n}为等差数列,其前n项和为S n,若S4=20,S6-S2=36,则该等差数列的公差d=( ) A.-2 B.2 C.-4 D.49.(2015·郑州市一预)已知数列{a n}是等差数列,其前n项和为S n,若a1a2a3=10,且5S1S5=15,则a2=( )A.2 B.3 C.4 D.510.(2015·济南一中高三期中)等差数列{a n}中,已知a1=-12,S13=0,使得a n>0的最小正整数n为( )A.7 B.8 C.9 D.1011.(2015·河北五市一中监测)等差数列{a n}的前n项和为S n,且a 1+a 2=10,S 4=36,则过点P(n ,a n )和Q(n +2,a n +2)(n ∈N *)的直线的一个方向向量是( )A.⎝ ⎛⎭⎪⎪⎫-12,-2 B .(-1,-1) C.⎝ ⎛⎭⎪⎪⎫-12,-1 D.⎝ ⎛⎭⎪⎪⎫2,12 12.(2015·泰安市检测)在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n 等于( )A .-2B .0C .1D .213.(2015·巴蜀中学一模)在等差数列{a n }中,a n >0,且a 1+a 2+a 3+…+a 8=40,则a 4·a 5的最大值是( )A .5B .10C .25D .5014.(2015·宿迁市摸底)已知{a n }是等差数列,若2a 7-a 5-3=0,则a 9的值是________.15.(2015·眉山市一诊)有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为________.16.(2015·大同市调研)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =n +1n -1,则a 2b 4+b 6+a 8b 3+b 7=________.17.(2015·宝鸡市质检)已知等差数列{a n }的公差不为零,a 3=5,且a 1,a 7,a 5成等比数列.(1)求数列{a n }的通项公式;(2)求a1+a3+a5+…+a2n-1.考点17 等比数列两年高考真题演练1.(2015·新课标全国Ⅱ)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=( )A.21 B.42 C.63 D.842.(2015·新课标全国Ⅱ)已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2=( )A.2 B.1 C.12D. 1 83.(2015·广东)若三个正数a,b,c成等比数列,其中a=5+26,c=5-26,则b=________.4.(2015·新课标全国Ⅰ)在数列{a n}中,a1=2,a n+1=2a n,S n 为{a n}的前n项和.若S n=126,则n=________.5.(2015·安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.6.(2015·湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=________.7.(2014·江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是________.8.(2014·安徽)数列{a n}是等差数列,若a1+1,a3+3,a5+5构成公比为q的等比数列,则q=________.9.(2015·重庆)已知等差数列{a n}满足a3=2,前3项和S3=92.(1)求{a n}的通项公式;(2)设等比数列{b n}满足b1=a1,b4=a15,求{b n}的前n项和T n.10.(2015·四川)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n-a1,且a1,a2+1,a3成等差数列.(1)求数列{a n}的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和为T n ,求T n .考点17 等比数列一年模拟试题精练1.(2015·绵阳市一诊)设各项均不为0的数列{a n }满足a n +1=2a n (n ≥1),若a 2a 4=2a 5,则a 3=( )A. 2 B .2 C .2 2 D .42.(2015·邢台市摸底)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( )A .9或-9B .9C .27或-27D .273.(2015·泰安市高三统考)正项等比数列{a n }的公比为2,若a 2a 10=16,则a 9的值是( )A .8B .16C .32D .644.(2015·安阳市高三摸底)已知等比数列{a n }的前n 项和为S n ,且S 3=7a 1,则数列{a n }的公比q 的值为( )A .2B .3C .2或-3D .2或35.(2015·云南师大附中适应性考试)各项均为正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则公比q 的值为( ) A.5-12 B.5+12C.1-52D.5-12或5+126.(2015·天津六校一联)设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =( )A .3B .4C .5D .67.(2015·赤峰市高三统考)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-78.(2015·沈阳市四校联考)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A.2 B.73C.83D.39.(2015·湖北八校一联)已知等比数列{a n}的前n项和为S n,则下列结论一定成立的是( )A.若a3>0,则a2 013<0 B.若a4>0,则a2 014<0C.若a3>0,则S2 013>0 D.若a4>0,则S2 014>010.(2015·济南一中检测)已知{a n}是等比数列,a2=2,a5=1 4,则a1a2+a2a3+…+a n a n+1=( ) A.16(1-4-n) B.16(1-2-n)C.323(1-4-n) D.323(1-2-n)11.(2015·桂林市检测)设等比数列{a n}的前n项和为S n.若a1=1,a4=-8,则S5=________.12.(2015·乐山市调研)等比数列{a n}满足a n a n+1=9n,则{a n}的公比为________.13.(2015·晋冀豫三省二调)设{a n}是等比数列,公比q=2,S n为{a n}的前n项和,记T n=17S n-S2na n+1,n∈N*,设Tn0为数列{T n}的最大项,则n0=________.14.(2015·豫南九校二联)设数列{a n}的前n项和为S n,对任意的正整数n,都有a n=5S n+1成立.(1)求数列{a n}的通项公式;(2)设b n =log 4⎪⎪⎪⎪⎪⎪⎪⎪1a n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n ·b n +1前n 项和T n .考点18 数列求和与数列的综合应用两年高考真题演练1.(2015·福建)在等差数列{a n}中,a2=4,a4+a7=15.(1)求数列{a n}的通项公式;(2)设b n=2a n-2+n,求b1+b2+b3+…+b10的值.2.(2015·安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=a n+1S n S n+1,求数列{b n}的前n 项和T n.3.(2015·安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明T n≥14n.4.(2014·新课标全国Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.考点18 数列求和与数列的综合应用一年模拟试题精练1.(2015·大庆市质检二)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36 2.(2015·青岛模拟)已知S n =12+1+13+2+12+3+…+1n +1+n,若S m =10,则m =( )A .11B .99C .120D .1213.(2015·重庆模拟)已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为( )A.n n +1B.4nn +1 C.3n n +1 D.5n n +14.(2015·衡水中学四调)已知等差数列{a n }的前n 项和为S n (n ∈N *),且a n =2n +λ,若数列{S n }在n ≥7时为递增数列,则实数λ的取值范围为( )A .(-15,+∞)B .[-15,+∞)C .[-16,+∞)D .(-16,+∞) 5.(2015·武汉市调考)如图,互不相同的点A 1,A 2,…,A n ,和B1,B2,…,B n,分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+!的面积均相等.设OA n=a n,若a1=1,a2=2,则a9=( )A.19B.22 C.5 D.276.(2015·济南一中高三期中)11×4+14×7+…+1(3n-2)(3n+1)=________.7.(2015·厦门市质检)数列{a n}中,a1=12,a n+1=a n-1a n,则该数列的前22项和等于________.8.(2015·南昌市调研)一牧羊人赶着一群羊通过4个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还1只给牧羊人,过完这些关口后,牧羊人只剩下2只羊,则牧羊人在过第一个关口前有________只羊.9.(2015·衡水中学四调)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和,该数列是一个非常美丽、和谐的数列,有很多奇妙的属性,比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887.人们称该数列为{a n}“斐波那契数列”,若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2 014项的值是________.10.(2015·衡水中学四调)数列{a n}的前n项和为S n,且a1=1,a n +1=2S n +1,数列{b n }为等差数列,且b 3=3,b 5=9.(1)求数列{a n },{b n }的通项公式; (2)若对任意的n ∈N *,⎝⎛⎭⎪⎪⎫S n +12·k ≥b n 恒成立,求实数k 的取值范围.参考答案 第五章 数 列 考点16 等差数列【两年高考真题演练】1.B [由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,选B.]2.A [∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5.故选A.]3.B [∵a 3,a 4,a 8成等比数列,∴(a 1+3d)2=(a 1+2d)(a 1+7d),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d23<0,故选B.] 4.B [由S 8=4S 4知,a 5+a 6+a 7+a 8=3(a 1+a 2+a 3+a 4),又d =1,∴a 1=12,a 10=12+9×1=192.5.A [因为a 2,a 4,a 8成等比数列,所以a 24=a 2·a 8,所以(a 1+6)2=(a 1+2)·(a 1+14),解得a 1=2.所以S n =na 1+n (n -1)2d =n(n +1).故选A.]6.B [由等差数列的性质得a 1+a 7=a 3+a 5,因为a 1=2,a 3+a 5=10,所以a 7=8,选B.]7.5 [由题意设首项为a 1,则a 1+2 015=2×1 010=2 020,∴a 1=5.]8.23-1 [因为a 2,a 3,a 7成等比数列,所以a 23=a 2a 7,即(a 1+2d)2=(a 1+d)(a 1+6d),∴a 1=-23d ,∵2a 1+a 2=1,∴2a 1+a 1+d =1即3a 1+d =1,∴a 1=23,d =-1.]9.27 [由已知数列{a n }是以1为首项,以12为公差的等差数列.∴S 9=9×1+9×82×12=9+18=27.]10.10 [因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.]11.-1n[由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n+1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n=-1-(n -1)=-n ,所以S n =-1n.]12.解 (1)设等差数列{a n }的公差为d. 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…). (2)设等比数列{b n }的公比为q. 因为b 2=a 3=8,b 3=a 7=16, 所以q =2,b 1=4. 所以b 6=4×26-1=128.由128=2n +2,得n =63, 所以b 6与数列{a n }的第63项相等.13.(1)证明 由题设知,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得 {a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 【一年模拟试题精练】1.C [a 1+a 7=a 3-2d +a 3+4d =2a 3+2d =-2,得d =-3.] 2.C [∵a 1=4,S 3=6,∴S 3=4×3+3×22d =6,得d =-2.]3.A [a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37.]4.C [a 3=a 2+a 1=a 2+1,a 4=a 3+a 2=2a 2+1,a 5=a 4+a 3=2a 2+1+a 2+1=3a 2+2,故a 2=2,因此a 3=a 2+a 1=3.]5.C [∵a n +2=2a n +1-a n ,∴a n +a n +2=2a n +1,故{a n }为等差数列,∵a 5=4-a 3,∴a 3+a 5=4,故S 7=(a 1+a 7)·72=(a 3+a 5)·72=4×72=14.]6.A [∵S 10=S 5,∴a 6+a 7+a 8+a 9+a 10=5a 8=0,即a 8=0.a m+a 6=a 8+(m -8)d +a 8-2d =0,得m =10.]7.B [∵{a n }为等差数列,∴S 3,S 6-S 3,S 9-S 6也成等差数列,即:S 3+(S 9-S 6)=2(S 6-S 3)得S 9=36.]8.B [由题意,a 1+a 2+a 3+a 4=20,a 3+a 4+a 5+a 6=36,作差可得8d =16,即d =2.]9.A [依题意得55a 1a 3=15,a 1a 3=5,a 2=10a 1a 3=2.]10.B [法一 S 13=(a 1+a 13)132=0,a 13=-a 1=12,d =a 13-a 113-1=2,故a n =a 1+(n -1)d =2n -14,解a n >0,得n >7,故使a n >0的最小正整数n 为8.法二 S 13=(a 1+a 13)132=13a 7=0,得a 7=0,故a 8>0,故a n >0的最小正整数n 为8.]11.A [设等差数列{a n }的公差为d ,则由题设得:⎩⎪⎨⎪⎧2a 1+d =10,4a 1+6d =36,解得:⎩⎪⎨⎪⎧a 1=3,d =4.所以a n =4n -1,PQ→=(n +2-n ,a n +2-a n )=(2,8)=-4×⎝ ⎛⎭⎪⎪⎫-12,-2,所以过点P(n ,a n )和Q(n +2,a n +2)(n ∈N *)的直线的一个方向向量是⎝ ⎛⎭⎪⎪⎫-12,-2,故选A.]12.A [∵{a n }为等差数列,∴a n +1+a n -1=2a n ,又∵a n +1+a n-1=a 2n ,∴a 2n =2a n ,∵a n ≠0,∴a n =2,故S 2n -1-4n =(2n -1)·2-4n =-2.]13.C [由a 1+a 2+a 3+…+a 8=40得4(a 4+a 5)=40即a 4+a 5=10,a 4+a 5≥2a 4·a 5,得:a 4·a 5≤25,故a 4·a 5的最大值为25.]14.3 [2a 7-a 5=a 7+(a 7-a 5)=a 7+2d =a 9=3.]15.1 472 [2,6,10,…,190的通项公式为a n =2+(n -1)·4=4n -2;2,8,14,…,200的通项公式为b m =2+(m -1)·6=6m -4,由4n -2=6m -4,得:n=3m-12,当m=1时,n=1;当m=3时,n=4;当m=5时,n=7,…;当m=31时,n=46构成一个新数列为2,14,26,…,182,其通项公式为C n=2+(n-1)·12=12n-10.其各项之和为C1+C2+…+C16=(C1+C16)·162=1 472.]16.54[a2b4+b6+a8b3+b7=a22b5+a82b5=2a52b5=a1+a9b1+b9=S9T9=9+19-1=54.]17.解(1)设{a n}的首项为a1,公差为d,由题意,a27=a1a5,即(a1+6d)2=a1(a1+4d),又a3=a1+2d=5(d≠0),得a1=9,d=-2,故a n=-2n+11.(2)令S n=a1+a3+a5+…+a2n-1,由(1)知a2n-1=-4n+13,故{a2n-1}是首项为9,公差为-4的等差数列.∴S n=n2(a1+a2n-1)=n2(-4n+22)=-2n2+11n.考点17 等比数列【两年高考真题演练】1.B [设等比数列{a n}的公比为q,则由a1=3,a1+a3+a5=21得3(1+q2+q4)=21,解得q2=-3(舍去)或q2=2,于是a3+a5+a7=q2(a1+a3+a5)=2×21=42,故选B.]2.C [由{a n}为等比数列,得a3a5=a24,所以a24=4(a4-1),解得a4=2,设等比数列{a n}的公比为q,则a4=a1q3,得2=14q3,解得q =2,所以a 2=a 1q =12.选C.]3.1 [∵三个正数a ,b ,c 成等比数列, ∴b 2=ac =(5+26)(5-26)=1. ∵b 为正数,∴b =1.]4.6 [由a n +1=2a n 知,数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n)1-2=126,解得n =6.]5.2n-1 [由等比数列性质知a 2a 3=a 1a 4,又a 2a 3=8,a 1+a 4=9,所以联立方程⎩⎪⎨⎪⎧a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1,又数列{a n }为递增数列,∴a 1=1,a 4=8,从而a 1q 3=8,∴q =2.∴数列{a n }的前n 项和为S n =1-2n1-2=2n-1.]6.3n -1[由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,∴公比q =3,故等比数列通项a n =a 1q n -1=3n -1.]7.4 [设等比数列{a n }的公比为q ,q>0.则a 8=a 6+2a 4即为a 4q 4=a 4q 2+2a 4,解得q 2=2(负值舍去),又a 2=1,所以a 6=a 2q 4=4.]8.1 [设{a n }公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , 所以(a 1+2d +3)2=(a 1+1)(a 1+4d +5), 解得d =-1,所以q =a 3+3a 1+1=a 1+2d +3a 1+1=a 1+1a 1+1=1.]9.解(1)设{a n}的公差为d,则由已知条件得a1+2d=2,3a1+3×22d=92,化简得a1+2d=2,a1+d=3 2,解得a1=1,d=12,故通项公式a n=1+n-12,即a n=n+12.(2)由(1)得b1=1,b4=a15=15+12=8.设{b n}的公比为q,则q3=b4b1=8,从而q=2,故{b n}的前n项和T n=b1(1-q n)1-q=1×(1-2n)1-2=2n-1.10.解(1)由已知S n=2a n-a1,有a n=S n-S n-1=2a n-2a n-1(n ≥2),即a n=2a n-1(n≥2),从而a2=2a1,a3=2a2=4a1,又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1),所以a1+4a1=2(2a1+1),解得a1=2,所以,数列{a n}是首项为2,公比为2的等比数列,故a n=2n.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=1-12n .【一年模拟试题精练】1.D [由a n +1=2a n (n ≥1)知数列{a n }是以2为公比的等比数列,因为a 2a 4=2a 5,所以a 1q ·a 1q 3=2a 1q 4⇒a 1=2,所以a 3=4.]2.B [依题意得a 27=a 5·a 9=81,又注意到a 7a 5=q 2>0(其中q为公比),因此a 5,a 7的符号相同,故a 7=9.]3.C [∵a n >0,∴a 2a 10=a 26=16,即a 6=4. 故a 9=a 6·q 3=4×8=32.]4.C [由公比不为1的等比数列前n 项和的公式得:a 1(1-q 3)1-q=7a 1,解得q =2或q =-3.]5.B [因为a 2,12a 3,a 1成等差数列,所以a 1+a 2=2×12a 3=a 3,即a 1+a 1q =a 1q 2,所以q 2-q -1=0,解得q =1+52或q =1-52<0(舍去).] 6.B [由3(S 3-S 2)=3a 3=(a 4-2)-(a 3-2)=a 4-a 3得a 4=4a 3,即q =a 4a 3=4.]7.D [a 5·a 6=a 4·a 7=-8,故a 4,a 7是方程x 2-2x -8=0的两根,得⎩⎪⎨⎪⎧a 4=-2,a 7=4,或⎩⎪⎨⎪⎧a 4=4,a 7=-2.当a 4=-2,a 7=4时,q 3=a 7a 4=-2,a 1+a 10=a 4q 3+a 7·q 3=-7;当a 4=4,a 7=-2时,q 3=a 7a 4=-12,a 7+a 10=a 4q3+a 7·q 3=-7.]8.B [设公比为q ,则S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q =1-q 61-q3=1+q 3=3,所以q 3=2,所以S 9S 6=1-q 91-q 6=1-231-22=73.故选B.]9.C [对于A :1,-1,1,-1,…,满足a 3>0,但a 2 013=1>0,排除A ;对于B :-1,1,-1,1,…,满足a 4>0,但a 2 014=-100,排除B ;对于D :-1,1,-1,1,…,满足a 4>0,但S 2 014=0,排除D ,故选C.]10.C [∵a 2=2,a 5=14,∴q 3=a 5a 2=18,即q =12,得a n =a 2q n -2=⎝ ⎛⎭⎪⎪⎫12n -3, 则b n =a n a n +1=⎝ ⎛⎭⎪⎪⎫122n -5,故a 1a 2+a 2a 3+…+a n a n +1=b 1+b 2+…+b n =323(1-4-n).]11.11 [∵a 4a 1=-8=q 3,∴q =-2,S 5=a 1(1-q 5)1-q =11.]12.3 [设{a n }的公比为q ,∵a n a n +1a n -1a n =q 2=9,则q =±3,∵a n a n +1=9n>0,∴q =3.] 13.4 [设等比数列的首项为a 1, 则a n =a 1(2)n -1,S n =a 1[1-(2)n]1-2,所以T n =17S n -S 2na n +1=17a 1[1-(2)n]1-2-a 1[1-(2)2n]1-2a 1(2)n=11-2⎣⎢⎢⎡⎦⎥⎥⎤(2)n+16(2)n -17, 因为(2)n+16(2)n≥8,当且仅当(2)n=16(2)n,即n =4时取等号,故当n 0=4,Tn 0最大.]14.(1)解 当n =1时,a 1=5S 1+1,∵a 1=-14,又∵a n =5S n +1,a n +1=5S n +1+1 ∴a n +1-a n =5a n +1, 即a n +1a n =-14, ∴数列{a n }是首项为a 1=-14,公比为q =-14的等比数列,∴a n =⎝ ⎛⎭⎪⎪⎫-14n . (2)b n =log 4|(-4)n|=n ,所以1b n b n +1=1n (n +1)=1n -1n +1,T n =⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫1-12+⎝ ⎛⎭⎪⎪⎫12-13+…+⎝ ⎛⎭⎪⎪⎫1n -1n +1=n n +1.考点18 数列求和与数列的综合应用【两年高考真题演练】1.解 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n+n ,所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.2.解 (1)由题设知a 1·a 4=a 2·a 3=8.又a 1+a 4=9.可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1q n -1=2n -1.(2)S n =a 1(1-q n)1-q =2n-1,又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎪⎫1S n-1S n +1=1S 1-1S n +1=1-12n +1-1. 3.(1)解 y ′=(x2n +2+1)′=(2n +2)x2n +1,曲线y =x2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=nn +1.(2)证明 由题设和(1)中的计算结果知 T n =x 21x 23…x22n -1=⎝ ⎛⎭⎪⎪⎫122⎝ ⎛⎭⎪⎪⎫342…⎝ ⎛⎭⎪⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x 22n -1=⎝ ⎛⎭⎪⎪⎫2n -12n 2=(2n -1)2(2n )2>(2n -1)2-1(2n )2=2n -22n =n -1n.所以T n >⎝ ⎛⎭⎪⎪⎫122×12×23×…×n -1n =14n .综上可得对任意的n ∈N *,均有T n ≥14n.4.证明 (1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎪⎫a n+12. 又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n2,因此{a n }的通项公式为a n =3n-12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.【一年模拟试题精练】1.B [∵a 2a 3=2a 1,∴a 1q 3=a 4=2.又∵a 4+2a 7=54×2,∴a 7=14, 故q =12,a 1=16, 因此S 5=a 1(1-q 5)1-q=31.] 2.C [∵S n =(2-1)+(3-2)+…+(n -n -1)+(n +1-n)=n +1-1.∴S m =m +1-1=10,得m =120.]3.B [∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4⎣⎢⎢⎡⎦⎥⎥⎤1n -1n +1. 故S n =b 1+b 2+…+b n =4⎣⎢⎢⎡⎦⎥⎥⎤1-12+12-13+…+1n -1n +1=4n n +1.] 4.D [∵a n =2n +λ,∴a 1=2+λ,∴S n =n (a 1+a n )2=n (2+λ+2n +λ)2=n 2+(λ+1)n , 又因为n ∈N *,由二次函数的性质和n ∈N *,可知-λ+12<7.5,即可满足数列{S n }为递增数列, 解不等式可得λ>-16.故选D.]5.C [由题意可知,△OA 1B 1∽△OA 2B 2,∴S △OA 1B 1S △OA 2B 2=⎝ ⎛⎭⎪⎪⎫OA 1OA 22=14,∴S △OA 1B 1SA 1B 1B 2A 2=13, 同理△OA 1B 1∽△OA 9B 9,∴S △OA 1B 1S △OA 9B 9=11+3×8=⎝ ⎛⎭⎪⎪⎫OA 1OA 92⇒OA 9=5,即a 9=5.] 6.n 3n +1 [a n =1(3n -2)(3n +1)=13⎣⎢⎢⎡⎦⎥⎥⎤13n -2-13n +1,S n =a 1+a 2+…+a n =13⎣⎢⎢⎡⎦⎥⎥⎤1-14+14-17+…+13n -2-13n +1=13⎣⎢⎢⎡⎦⎥⎥⎤1-13n +1=n 3n +1.] 7.11 [a n +1=a n -1a n =1-1a n ,∵a 1=12,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,故{a n }为周期为3的数列,即a 1=a 3n +1,a 2=a 3n +2,a 3=a 3n +3,故a 1+a 2+a 3+…+a 22=(a 1+a 2+a 3)·7+a 22=11.]8.2 [记此牧羊人通过第1个关口前、通过第2个关口前、……、通过第4个关口前剩下的羊的只数组成数列{a n }(n =1,2,3,4),则由题意得a 2=12a 1+1,a 3=12a 2+1,a 4=12a 3+1, 而12a 4+1=2,解得a 4=2,因此得a 3=2,…,a 1=2.]9.3 [1,1,2,3,5,8,13,…,除以4得的余数分别为1,1,2,3,1,0,1,1,2,3,1,0,…,即新数列{b n }是周期为6的周期数列,b 2 014=b 235×6+3=b 3=3,所以第2 014项的值是3.]10.解 (1)由a n +1=2S n +1①得a n =2S n -1+1②,①-②得a n +1-a n =2(S n -S n -1),∴a n +1=3a n (n ≥2),又a 2=3,a 1=1也满足上式, ∴a n =3n -1;b 5-b 3=2d =6,∴d =3.∴b n =3+(n -3)·3=3n -6.(2)S n =a 1(1-q n )1-q =1-3n 1-3=3n-12,∴⎝ ⎛⎭⎪⎪⎫3n-12+12k ≥3n -6,对n ∈N *恒成立,∴k ≥6n -123n 对n ∈N *恒成立,令c n =3n -63n ,c n -c n -1=3n -63n -3n -93n -1=-2n +73n -1,当n ≤3时,c n >c n -1,当n ≥4时,c n <c n -1,(c n )max =c 3=19,所以实数k 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫29,+∞.。

高考数学压轴专题2020-2021备战高考《数列》易错题汇编附答案

高考数学压轴专题2020-2021备战高考《数列》易错题汇编附答案

新高考数学《数列》练习题一、选择题1.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.2.已知数列{}n a 中,12a =,211n n n a a a +=-+,记12111n nA a a a =++⋯+,12111n nB a a a =⋅⋅⋯⋅,则( ) A .201920191A B +> B .201920191A B +< C .2019201912A B -> D .2019201912A B -< 【答案】C 【解析】 【分析】根据数列{}{},n n A B 的单调性即可判断n n A B -;通过猜想归纳证明,即可求得n n A B +. 【详解】注意到12a =,23a =,37a =,不难发现{}n a 是递增数列. (1)21210n n n n a a a a +-=-+≥,所以1n n a a +≥.(2)因为12a =,故2n a ≥,所以1n n a a +>,即{}n a 是增函数. 于是,{}n A 递增,{}n B 递减, 所以20192121156A A a a >=+=,20192121116B A a a <=⋅=, 所以2019201912A B ->. 事实上,111,A B +=221,A B +=331A B +=, 不难猜想:1n n A B +=. 证明如下:(1)211121111111111111n n n n n n n n a a a a a a a a a a ++-=-+⇒=-⇒++⋅⋅⋅+=----. (2)211n n n a a a +=-+等价于21111n n na a a +=--, 所以1111n n n a a a +-=-, 故12111111n n a a a a +⋅⋅⋯⋅=-, 于是12121111111n n a a a a a a ⎛⎫⋅⋅⋯⋅+++⋯+= ⎪⎝⎭, 即有1n n A B +=. 故选:C. 【点睛】本题考查数列的单调性,以及用递推公式求数列的性质,属综合中档题.3.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.4.已知数列{}n a 是正项等比数列,若132a =,3432a a ⋅=,数列{}2log n a 的前n 项和为n S ,则n S >0时n 的最大值为 ( ) A .5 B .6C .10D .11【答案】C 【解析】2525163412132323222log 62n n n n a a a q q q a a n --⋅===⇒=⇒=⨯=⇒=-⇒ max (56)011102n n n S n n +-=>⇒<⇒= ,故选C.5.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.6.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.7.已知椭圆221x y m n+=满足条件:,,m n m n +成等差数列,则椭圆离心率为( )AB.2C .12D【答案】B 【解析】 【分析】根据满足条件,,m n m n +成等差数列可得椭圆为2212x ym m+=,求出,a c .再求椭圆的离心率即可. 【详解】()22n m m n n m =++⇒=,∴椭圆为2212x y m m+=,22c m m m =-=,得c =又a =2c e a ∴==.B. 【点睛】一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.8.元代数学家朱世杰在《算学启蒙》中提及如下问题:今有银一秤一斤十两(1秤15=斤,1斤16=两),令甲、乙、丙从上作折半差分之,问:各得几何?其意思是:现有银一秤一斤十两,现将银分给甲、乙、丙三人,他们三人每一个人所得是前一个人所得的一半.若银的数量不变,按此法将银依次分给7个人,则得银最少的一个人得银( ) A .9两 B .266127两 C .26663两 D .250127两 【答案】B 【解析】 【分析】先计算出银的质量为266两,设分银最少的为a 两,由题意可知7人的分银量构成首项为a ,公比为2的等比数列,利用等比数列的求和公式可求得a 的值.【详解】共有银161610266⨯+=两,设分银最少的为a 两,则7人的分银量构成首项为a ,公比为2的等比数列, 故有()71226612a -=-,所以266127a =, 故选:B . 【点睛】本题以元代数学家朱世杰在《算学启蒙》中提出的问题为背景,贴近生活,考查了等比数列的求和问题,本题注重考查考生的阅读理解能力、提取信息能力、数学建模能力以及通过计算解决问题的能力,属中等题.9.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.10.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.11.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.12.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.13.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.14.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n nS a a ⎛⎫=+⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.15.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D .【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.16.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B【解析】 ∵等差数列,,,成等比数列,∴, ∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念17.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( )A .32B .32-C .23D .23- 【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.18.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( )A .121n -+B .2n n ⋅C .31n -D .123n n -⋅【答案】B【解析】【分析】 由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n n n n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n-+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n n S n n n =⨯+⋅=⋅+. 故选:B【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.19.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫ ⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .24,33⎛⎤ ⎥⎝⎦ D .33,42⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】 ∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7,∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1, ∴d 8π=.∴f (x )8π=cosωx , ∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦ 故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.20.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .43钱B .73钱C .83钱D .103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2019·郑州质量预测)已知数列{a n}为等比数列,首项a1=4,数列{b n}满足b n=
log
2a
n
,且b1+b2+b3=12.则a4=( ) A.4 B.32 C.108 D.256
2.(2019·四川省达州市第一次诊断性测试)在等差数列{a n}中,a n≠0(n∈N*).角α
顶点在坐标原点,始边与x轴正半轴重合,终边经过点(a2,a1+a3),则sinα+2cosαsinα-cosα
=( )
A.5 B.4 C.3 D.2
3.(2019·长春质量监测)已知S n是等比数列{a n}前n项的和,若公比q=2,则a
1
+a3+a5
S
6
=( )
4.(2019·四川省绵阳市一诊)已知x>1,y>1,且lg x,1
4
,lg y成等比数列,则xy
有( )
A.最小值10 B.最小值10 C.最大值10 D.最大值10
5.(2019·柳州市高三毕业班模拟)已知数列{a n}的首项为1,第2项为3,前n项和为S
n
,当整数n>1时,S n+1+S n-1=2(S n+S1)恒成立,则S15等于( )
A.210 B.211 C.224 D.225
6.(2019·衡水中学模拟)已知等比数列{a n}的前n项和为S n,且a1+a3=5
2
,a2+a4=
5
4

则S
n
a
n
=( )
A .4n -1
B .4n -1
C .2n -1
D .2n -1
7.(2019·黄冈二模)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =
2018n -13n +4,则a 3
b 3
=( )
A .528
B .529
C .530
D .531
8.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )
A .16
B .8
C .4
D .2
9.(2019·安庆二模)已知S n 是等差数列{a n }的前n 项和,a 2+a 4+a 6=12,则S 7=( )
A .20
B .28
C .36
D .4
10.(2019·岳阳一中二模)已知公差d ≠0的等差数列{a n }满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( )
A .10
B .20
C .30
D .5或40
11.(2019·太原二模)13+13+6+13+6+9+…+13+6+9+…+30
=( )
12.(2019·揭阳模拟)已知数列{a n }满足2a 1+22
a 2+…+2n a n =n (n ∈N *
),数列
⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )
二、填空题(本大题共4小题,每小题5分,共20分)
13.(2019·沈阳质量监测)已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =
2019,则m=________.
14.(2019·湖南湘潭一模)已知数列{a n}的前n项和公式为S n=2n2-n+1,则数列{a n}的通项公式为________.
15.(2019·江苏高考)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是________.
16.(2019·柳州市高三毕业班模拟)已知点(n,a n)在函数f (x)=2x-1的图象上(n∈
N*).数列{a n}的前n项和为S n,设b n=log2S
n
+1
64
,数列{b n}的前n项和为T n.则T n的
最小值为________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)(2019·安徽省黄山市高三第一次质检)已知数列{a n }是公比大于1的等比数列,S n 是{a n }的前n 项和.若a 2=4,S 3=21.
(1)求数列{a n }的通项公式;
(2)令b n =log 4a n +1,求数列⎩⎪⎨⎪⎧⎭
⎪⎬⎪
⎫2b n b n +1的前n 项和T n .
18.(本小题满分12分)(2019·吉林省吉林市第一次调研)已知数列{a n },点(n ,
a n )在直线y =3x -22上.
(1)求证:数列{a n }是等差数列;
(2)设b n =|a n |,求数列{b n }的前20项和S 20.
19.(本小题满分12分)(2019·桂林二模)在等比数列{a n}中,已知a1=-1,a2=2.
(1)求{a n}的通项公式;
(2)若a3,a4分别为等差数列{b n}的前两项,求{b n}的前n项和S n.
20.(本小题满分12分)(2019·北京高考)设{a n}是等差数列,a1=-10,且a2+10,a
3
+8,a4+6成等比数列.
(1)求{a n}的通项公式;
(2)记{a n}的前n项和为S n,求S n的最小值.
21.(本小题满分12分)(2019·十堰二模)已知数列{a n}是递增的等差数列,a3=7,且a4是a1与27的等比中项.
(1)求数列{a n}的通项公式;
(2)若b n=
1
a
n
+a n+1
,求数列{b n}的前n项和T n.
22.(本小题满分12分)(2019·湖南联考)设S n是数列{a n}的前n项和,已知a1=1,S
n
=2-2a n+1.
(1)求数列{a n}的通项公式;
(2)设b n=(-1)n log1
2a
n
,求数列{b n}的前n项和T n.。

相关文档
最新文档