201X版中考数学一轮复习 第12课时 二次函数(1)导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版中考数学一轮复习第12课时二次函数(1)导学案
姓名班级学号
学习目标:
1.掌握二次函数的定义、图像和性质
2.会用二次函数的图像性质在研究函数最值和增减性
3.进一步体会数形结合,分类讨论,函数与方程等数学思想在解题中的作用
学习重难点:二次函数最值和单调性,二次函数的最值和增减性的应用
学习过程:
一、知识梳理
1.二次函数:一般地,自变量x和因变量y之间存在如下关系:一般式:__________(a≠0,a、b、c 为常数),则称y为x的二次函数。
2.二次函数的解析式三种形式。
一般式:y=ax2 +bx+c(a≠0);顶点式:_________________;交点式: __________ __
3.二次函数图像与性质
二次函数y=ax2 +bx+c(a≠0)的对称轴是___________;顶点坐标是_______________;与y轴交点坐标_____________
4.增减性:当a>0时,对称轴左边,y随x增大而_____;对称轴右边,y随x增大而_____
当a<0时,对称轴左边,y随x增大而_____;对称轴右边,y随x增大而_____
5.二次函数图像画法:
勾画草图关键点:○1开口方向○2对称轴○3顶点○4与x轴交点○5与y轴交点
6.图像平移步骤:(1)配方2
=-+,确定顶点(h,k);
y a x h k
()
(2)沿x轴:左_____右_____;沿y轴:上_____下_____
7.用待定系数法求二次函数解析式的三种方法
(1)一般式:已知抛物线上的三点,通常设解析式为________________
(2)顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________求出表达式后化为一般形式.
(3)交点式:已知抛物线与x 轴的两个交点(x1,0)、(x2,0),通常设解析式为_____________求出表达式后化为一般形式.
二、典型例题
1.二次函数的定义
问题1 (1)下列函数中,y 关于x 的二次函数是( )
A .y=ax 2+bx+c
B .y=x (x ﹣1)
C .y=21x
D .y=(x ﹣1)2﹣x 2
(2)已知y=(m ﹣1)x 是关于x 的二次函数,求m 的值.
(3)已知函数y=(m 2﹣m )x 2+(m ﹣1)x+2﹣2m .
①若这个函数是二次函数,求m 的取值范围.
②若这个函数是一次函数,求m 的值.
③这个函数可能是正比例函数吗?为什么?
2.二次函数的图像与性质
问题2(1)二次函数y=(x ﹣2)2+7的顶点坐标是( )
A .(﹣2,7)
B .(2,7)
C .(﹣2,﹣7)
D .(2,﹣7)
(2)对于抛物线y=﹣(x+2)2+3,下列结论中正确结论的个数为( )
①抛物线的开口向下; ②对称轴是直线x=﹣2;
③图象不经过第一象限; ④当x >2时,y 随x 的增大而减小.
A .4
B .3
C .2
D .1
(3)在同一平面直角坐标系中,函数y=ax+b 和二次函数y=ax 2+bx+c 的图象可能为( )
A .
B .
C .
D .
(4)已知抛物线y=-x 2﹣3x ﹣
(1)求其开口方向、对称轴和顶点坐标;(2)x 取何值时,y 随x 的增大而减小?
3.二次函数的平移
问题3(1)已知抛物线2
C 23y x x =+:﹣,将抛物线c 平移得到抛物线c′,如果两条抛物线,关
于直线x=1对称,那么下列说法正确的是()
A .将c 沿x 轴向右平移个单位得到c′
B .将c 沿x 轴向右平移4个单位得到c′
C .将c 沿x 轴向右平移个单位得到c′
D .将c 沿x 轴向右平移6个单位得到c′
(2)将抛物线y=(x+m )2向右平移2个单位后,对称轴是y 轴,那么m 的值是 .
(3)已知一条抛物线的开口方向和大小与抛物线23y x =都相同,顶点与抛物线2
2y x =+()相同.
①求这条抛物线的解析式;
②将上面的抛物线向右平移4个单位会得到怎样的抛物线解析式?
③若(2)中所求抛物线的顶点不动,将抛物线的开口反向,求符合此条件的抛物线解析式.
4.二次函数的最值
问题4 (1)抛物线y=﹣(x+1)2+3有( )
A .最大值3
B .最小值3
C .最大值﹣3
D .最小值﹣3 (2)二次函数y=﹣x 2﹣2x+c 在﹣3≤x≤2的范围内有最小值﹣5,则c 的值是( )
A .﹣6
B .﹣2
C .2
D .3
(3)已知关于x 的函数y=kx 2+(2k ﹣1)x ﹣2(k 为常数).
①试说明:不论k 取什么值,此函数图象一定经过(﹣2,0);
②在x >0时,若要使y 随x 的增大而减小,求k 的取值范围;
③试问该函数是否存在最小值﹣3?若存在,请求出此时k 的值;若不存在,请说明理由.
5.用待定系数法求二次函数的解析式
问题1.(1)已知二次函数c bx x y ++-
=22
1的图象经过A (2,0)、B (0,-6)两点,求二次函数的表达式.