巴中市南江县2020-2021学年人教版七年级下期末数学试卷含答案解析

合集下载

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年人教版七年级下学期期末考试数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学记数法可表示为()A.152×105米B.1.52×10﹣5米C.﹣1.52×105米D.1.52×10﹣4米解:0.0000152=1.52×10﹣5.故选:B.2.(3分)下列各式变形中,是因式分解的是()A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1B.2x2+2x=2x2(1+1 x )C.(x+2)(x﹣2)=x2﹣4D.x2﹣6x+9=(x﹣3)2解:A、没把一个多项式转化成几个整式乘积的形式,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、整式的乘法,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.3.(3分)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠4解:A、∠B的内错角是∠1,故此选项符合题意;B、∠B与∠2是同旁内角,故此选项不合题意;C、∠B与∠3是同位角,故此选项不合题意;D、∠B与∠4是不是内错角,故此选项不合题意;故选:A.4.(3分)不等式﹣2x+6<0的解集在数轴上表示,正确的是()A .B .C .D .解:﹣2x <﹣6, x >3, 故选:A .5.(3分)下列运算正确的是( ) A .(a 2)5=a 7 B .(x ﹣1)2=x 2﹣1 C .3a 2b ﹣3ab 2=3D .a 2•a 4=a 6解:A 、(a 2)5=a 10,故原题计算错误; B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D .6.(3分)若a >b ,则下列结论正确的是( ) A .a ﹣5<b ﹣5 B .3a >3bC .2+a <2+bD .a3<b3解:∵a >b , ∴a ﹣5>b ﹣5, ∴选项A 不正确; ∵a >b , ∴3a >3b , ∴选项B 正确; ∵a >b , ∴2+a >2+b , ∴选项C 不正确; ∵a >b ,∴a 3>b3,∴选项D 不正确. 故选:B .7.(3分)下列命题中,假命题的是( ) A .三角形中至少有两个锐角B .如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形C .直角三角形一定是轴对称图形D .三角形的一个外角一定大于和它不相邻的任何一个内角 解:A 、三角形中至少有两个锐角,正确,是真命题;B 、如果三条线段的长度比是3:3:5,那么这三条线段能组成三角形,正确,是真命题;C 、等腰直角三角形一定是轴对称图形,错误,是假命题;D 、三角形的一个外角大于和它不相邻的任何一个内角,故正确,是真命题, 故选:C .8.(3分)如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A 、B 两架轰炸机对应点的坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么轰炸机C 对应点的坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)解:因为A (﹣2,1)和B (﹣2,﹣3),所以建立如图所示的坐标系,可得点C 的坐标为(2,﹣1),故选:A.9.(3分)已知点M(a,3)在第二象限,则a的取值范围是()A.a>0B.a<0C.a<3D.a>3解:∵点M(a,3)在第二象限,∴a<0,故选:B.10.(3分)在平面直角坐标系中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20,若D(1,2)、E(﹣2,1)、F(0,t)三点的“矩面积”为15,则t的值为()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或6解:∵D(1,2)、E(﹣2,1)、F(0,t),∴“水平底”a=1﹣(﹣2)=3.“铅垂高“h=1或|2﹣t|或|1﹣t|①当h=1时,三点的“矩面积”S=1×3=3≠15,不合题意;②当h=|2﹣t|时,三点的“矩面积”S=3×|2﹣t|=15,解得:t=﹣3或t=7(舍去);③当h=|1﹣t|时,三点的“矩面积”S=3×|1﹣t|=15,解得:t=﹣4(舍去)或t=6;综上:t=﹣3或6.故选:D.二.填空题(共8小题,满分16分,每小题2分)11.(2分)一个长方形的面积为a 3﹣4a ,宽为a ﹣2,则长为 a (a +2) .解:根据题意得:(a 3﹣4a )÷(a ﹣2)=a (a +2)(a ﹣2)÷(a ﹣2)=a (a +2), 故答案为:a (a +2)12.(2分)√−273+(−12)﹣1+(3.14﹣π)0= ﹣4 .解:原式=﹣3﹣2+1 =﹣4. 故答案为:﹣4.13.(2分)如图所示,∠BAC =90°,AD ⊥BC ,则下列结论中,正确的为 ①② (填序号).①点A 到BC 的距离是线段AD 的长度; ②线段AB 的长度是点B 到AC 的距离; ③点C 到AB 的垂线段是线段AB .解:∵AD ⊥BC ,∴点A 到BC 的距离是线段AD 的长度,①正确; ∵∠BAC =90°, ∴AB ⊥AC ,∴线段AB 的长度是点B 到AC 的距离,②正确 ∵AB ⊥AC ,∴C 到AB 的垂线段是线段AC ,③不正确. 其中正确的为①②, 故答案是:①②.14.(2分)如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 同位角相等,两直线平行 .解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.15.(2分)如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF =34°,则∠BOD的大小为22°.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.16.(2分)当前,“低头族”已成为热门话题之一,为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是D;A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在图书馆里看书的人发放问卷进行调查D.对在路边行走的路人随机发放问卷进行调查并说出你的理由样本具有代表性.解:为了了解路边行人边走路边低头看手机的情况,应采用的收集数据的方式是对在路边行走的路人随机发放问卷进行调查, 理由是抽取的样本具有代表性, 故答案为:D ;样本具有代表性.17.(2分)在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =2a ﹣3b .如:1⊕5=2×1﹣3×5=﹣13,则不等式x ⊕4<2的解集为 x <7 . 解:根据题中的新定义化简得:2x ﹣12<2, 移项合并得:2x <14, 解得:x <7. 故答案为:x <7.18.(2分)已知△ABC 中,AB =AC ,求证:∠B <90°,若用反证法证这个结论,应首先假设 ∠B ≥90° .解:用反证法证明:第一步是:假设∠B ≥90°. 故答案是:∠B ≥90°.三.解答题(共9小题,满分54分,每小题6分) 19.(6分)解不等式组,并写出该不等式组的所有整数解. {5x +2≥3(x −1)1−x−26>12x解:解不等式5x +2≥3(x ﹣1),得:x ≥−52, 解不等式1−x−26>12x ,得:x <2, ∴不等式组的解集为−52≤x <2, 则不等式组的整数解为﹣2,﹣1,0,1. 20.(6分)化简求值.(1)[(x +y )(x ﹣y )﹣(x ﹣y )2+2y (x ﹣y )]÷(﹣2y ),其中x =−12,y =2. (2)已知x 2﹣2x ﹣2=0,求(x ﹣1)2+(x +3)(x ﹣3)+(x ﹣3)(x ﹣1)的值. 解:(1)原式=(x ﹣y )[(x +y )﹣(x ﹣y )+2y ]÷(﹣2y ) =2y ﹣2x ,当 x =−12,y =2时,原式=2×2﹣2×(−12)=5;(2)原式=x2﹣2x+1+x2﹣9+x2﹣4x+3=3x2﹣6x﹣5,原式=3(x2﹣2x)﹣5=3×2﹣5=1.21.(6分)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)解:(1)x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2;(2)m2(a﹣b)+n2(b﹣a),=m2(a﹣b)﹣n2(a﹣b),=(a﹣b)(m2﹣n2),=(a﹣b)(m+n)(m﹣n).22.(5分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,(1)问直线EF与AB有怎样的位置关系?加以证明;(2)若∠CEF=70°,求∠ACB的度数.解:(1)EF和AB的关系为平行关系.理由如下:∵CD∥AB,∠DCB=70°,∴∠DCB=∠ABC=70°,∵∠CBF=20°,∴∠ABF=∠ABC﹣∠CBF=50°,∵∠EFB=130°,∴∠ABF+∠EFB=50°+130°=180°,∴EF ∥AB ;(2)∵EF ∥AB ,CD ∥AB , ∴EF ∥CD , ∵∠CEF =70°, ∴∠ECD =110°, ∵∠DCB =70°,∴∠ACB =∠ECD ﹣∠DCB , ∴∠ACB =40°.23.(6分)如图,在平面直角坐标系中:A (0,1),B (2,0),将点B 向上平移1.5个单位得到点C .(1)求△ABC 的面积.(2)如果在第二象限内有一点P (a ,1),使得四边形ABOP 的面积与△ABC 的面积相等?求出P 点的坐标.解:(1)∵将点B 向上平移1.5个单位得到点C , ∴点C 的坐标为(2,1.5), ∴△ABC 的面积=12×1.5×2=1.5; (2)∵四边形ABOP 的面积与△ABC 的面积相等, ∴12×2×1+12×1×|a|=12×2×1.5,解得:a =±1,∵在第二象限内有一点P (a ,1), ∴a =﹣1,所以点P 的坐标(﹣1,1).24.(7分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:56406430652067987325843082157453744667547638683473266830864887539450986572907850对这20个数据按组距1000进行分组,并统计整理.(1)请完成下面频数分布统计表;组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)在上图中请画出频数分布直方图;(3)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.解:(1)补全频数分布表如下:组别步数分组频数A5500≤x<65002B6500≤x<750010C7500≤x<85004D8500≤x<95003E9500≤x<105001(2)频数分布直方图如下:(3)根据题意得:200×2+4+1020=160(人),则估计一天行走的步数少于8500步的人数约为160人.25.(5分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.26.(7分)根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=160度.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=12(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=12(180°﹣a)=90°−12a,答:∠GFB的度数为90°−12α.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.27.(6分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“关联方程”.如:方程x ﹣1=0就是不等式组{x +1>0x −2<0的“关联方程”. (1)试判断方程①3x +2=0,②x ﹣(3x ﹣1)=﹣4是否是不等式组{2x −7<04x −3>0的关联方程,并说明理由;(2)若关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程,求整数k 的值;(3)若方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程,求m 的取值范围.解:(1)解方程3x +2=0得:x =−23,解方程x ﹣(3x ﹣1)=﹣4得:x =52,解不等式组{2x −7<04x −3>0得:34<x <72, 所以不等式组{2x −7<04x −3>0的关联方程是②; (2)解方程2x +k =1(k 为整数)得:x =1−k 2解不等式组{x −1<12x −2≥−3x −1得:14≤x <32,∵关于x 的方程2x +k =1(k 为整数)是不等式组{x −1<12x −2≥−3x −1的一个关联方程, ∴14≤1−k 2<32, 解得﹣2<k <12∴整数k =﹣1,0;(3)解方程9﹣x =2x 得:x =3,解方程9+x =2(x +52)得:x =4,解不等式组{x +m <2x x −m ≤2得:m <x ≤2+m , ∵方程9﹣x =2x ,9+x =2(x +52)都是关于x 的不等式组{x +m <2x x −m ≤2的关联方程, ∴2≤m <3,即m 的取值范围是2≤m <3.。

最新人教版数学七年级下学期《期末考试题》含答案解析

最新人教版数学七年级下学期《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b --B . 22a b --C . 22a bD . 22a b ++ 2. 在实数4、3、13、0.3、π、2.1234567891011121314…(自然数依次排列)、38-中,无理数有( ) A . 2个 B . 3个 C . 4个 D . 5个3. 下列命题中,属于真命题的是 ( )A . 两个锐角的和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 4. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3) 5. 如图,直线A B ,C D 被直线EF 所截,交点分别为点E,F ,若A B ∥C D ,下列结论正确的是( )A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°6. 下列说法正确是( )A . 周长相等的锐角三角形都全等B . 周长相等的直角三角形都全等C . 周长相等钝角三角形都全等D . 周长相等的等边三角形都全等7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)1020 30 40 户数 2 15 10 3则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,208. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <9. 不等式组42103x x >⎧⎪⎨-+≥⎪⎩的整数解为( ) A . 0,1,2,3 B . 1,2,3C . 2,3D . 3 10. 要反映某市某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可二、填空题(本共 18 分,每小题 3 分)11. 分解因式:﹣m 2+4m ﹣4═_____.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y 轴,且A B =3,则点B 的坐标是___13. 小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.14. 如图,A D 是△A B C 的中线,E 是A D 的中点,如果S △A B D =12,那么S △C D E =__. 15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P (m+2,2m ﹣1)在第四象限,则m 的值为_____.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.三、解答题17. 计算:3827﹣(π﹣1)0﹣(12)﹣1.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T恤的数量分别是多少?24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是 ;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是 .25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0). (1)△A B C 的形状是 等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y 轴上找一点P ,如果△PA B 是等腰三角形,请直接写出点P 的坐标.答案与解析一、选择题(本大题 共 30 分,每小题 3 分.在每小题给出的四个选项中,只有一项是符合 题目要求的)1. 已知a b ,则下列四个不等式中,不正确的是( ) A . 22a b -- B . 22a b -- C . 22a b D . 22a b ++【答案】B【解析】【分析】根据不等式的性质即可得出答案.在不等式的左右两边同时加上或减去一个数,不等式成立;在不等式的左右两边同时乘以或除以一个正数,不等式成立;在不等式的左右两边同时乘以或除以一个负数,不等符号需要改变.【详解】根据不等式的性质可知:-2A >-2B ,故选B .【点睛】本题主要考查的是不等式的基本性质,属于基础题型.记住不等式的性质是解决这个问题的关键.2.、13、0.3、π、2.1234567891011121314…(自然数依次排列),无理数有( ) A . 2个B . 3个C . 4个D . 5个 【答案】B【解析】π,2.1234567891011121314…(自然数依次排列),共3个,故选B .3. 下列命题中,属于真命题的是 ( )A . 两个锐角和是锐角B . 在同一平面内,如果A ⊥B ,B ⊥C ,则A ⊥C C . 同位角相等D . 在同一平面内,如果A //B ,B //C ,则A //C 【答案】D【解析】【分析】【详解】试题解析:A . 两个锐角的和是锐角,错误;B . 同一平面内,如果A ⊥B ,B ⊥C ,则A ∥C ,错误; C . 同位角相等,错误;D . 在同一平面内,如果A //B ,B //C ,则A //C ,正确.故选D .4. 点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A . (﹣3,4)B . ( 3,﹣4)C . (﹣4,3)D . ( 4,﹣3)【答案】C【解析】【分析】【详解】由点且到x轴的距离为3、到y轴的距离为4,得|y|=3,|x|=4.由P是第二象限的点,得x=-4,y=3.即点P的坐标是(-4,3),故选C .5. 如图,直线A B ,C D 被直线EF所截,交点分别为点E,F,若A B ∥C D ,下列结论正确的是()A . ∠2=∠3B . ∠2=∠4C . ∠1=∠5D . ∠3+∠A EF=180°【答案】D【解析】试题解析:∵A B ∥C D ,∴∠3+∠A EF=180°.所以D 选项正确,故选D .6. 下列说法正确的是()A . 周长相等的锐角三角形都全等B . 周长相等直角三角形都全等C . 周长相等的钝角三角形都全等D . 周长相等的等边三角形都全等【答案】D【解析】试题分析:根据全等三角形的判定方法依次分析各选项即可作出判断.A .周长相等的锐角三角形不一定全等,B .周长相等的直角三角形不一定全等,C .周长相等的钝角三角形不一定全等,故错误;D .周长相等的等腰直角三角形都全等,本选项正确.考点:全等三角形的判定点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7. 某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:则五月份这30户家庭节电量的众数与中位数分别为( )A . 20,20B . 20,25C . 30,25D . 40,20【答案】A【解析】试题解析:由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选A .8. 点A 在直线m 外,点B 在直线m 上,AB 、两点的距离记作a ,点A 到直线m 的距离记作b ,则a 与b 的大小关系是 ( )A . a b >B . a b ≤C . a b ≥D . a b <【答案】C【解析】【分析】分两种情况:①A 和B 构成一个直角三角形,且A 是斜边,B 是直角边,所以A >B ;②若B 是垂足时,A =B .【详解】如图,A 是斜边,B 是直角边,∴A >B ,若点A 、点B 所在直线垂直直线m,则A =B ,故选C .【点睛】本题考查了点到直线的距离,明确点到直线的距离是这点到直线的垂线段的长度,属于基础题.9. 不等式组42103xx>⎧⎪⎨-+≥⎪⎩的整数解为()A . 0,1,2,3B . 1,2,3C . 2,3D . 3 【答案】B【解析】试题分析:解不等式4x>2,可得x>12;解不等式103x-+≥,解得x≤3,因此不等式组的解集为12<x≤3,所以整数解为1,2,3.故选B .点睛:此题主要考查了不等式组的解法,根据不等式的解法分别解两个不等式,取其公共部分,然后确定其整数解即可.10. 要反映某市某一周每天的最高气温的变化趋势,宜采用()A . 条形统计图B . 扇形统计图C . 折线统计图D . 以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C .【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.二、填空题(本共18 分,每小题3 分)11. 分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.12. 已知点A (﹣2,﹣1),点B (A ,B ),直线A B ∥y轴,且A B =3,则点B 的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A (-2,-1),A B ∥y轴,∴点B 的横坐标为-2,∵A B =3,∴点B 的纵坐标为-1+3=2或-1-3=-4,∴B 点的坐标为(-2,2)或(-2,-4).13. 小华将直角坐标系中猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________.【答案】(-1,3)、(1,3)【解析】【分析】利用坐标系中的移动法则右加左减,上加下减来确定向右平移后的各点的坐标即可【详解】∵向右平移三个单位长度,横坐标分别加3,纵坐标不变∴移动后猫眼的坐标为:(-1,3)、(1,3)【点睛】在坐标系中确定点的位置和平移是本题的考点,熟练掌握平移法则是解题的关键.14. 如图,A D 是△A B C 的中线,E是A D 的中点,如果S△A B D =12,那么S△C D E=__.【答案】6.【解析】试题解析:△A C D 的面积=△A B D 的面积=12,△C D E的面积=12△A C D 的面积=12×12=6.15. 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点是整点.若整点P(m+2,2m ﹣1)在第四象限,则m的值为_____.【答案】﹣1或0.【解析】试题分析:由点P(m+2,2m﹣1)在第四象限,可得m+2>0,2m-1<0,解得﹣2<m<12,又因点的横、纵坐标均为整数可得m是整数,所以m的值为﹣1或0.考点:点的坐标.16. 已知等腰三角形的两条边长分别是3C m、7C m,那么这个等腰三角形的周长是________C m.【答案】17【解析】【分析】【详解】解∵等腰三角形的两条边长分别是3C m、7C m,∴当此三角形的腰长为3C m时,3+3<7,不能构成三角形,故排除,∴此三角形的腰长为7C m,底边长为3C m,∴此等腰三角形的周长=7+7+3=17C m,故答案为:17.三、解答题17. 3827π﹣1)0﹣(12)﹣1.【答案】3. 【解析】试题分析:原式利用零指数幂、负整数指数幂法则,以及分数指数幂法则计算即可得到结果.试题解析:原式=3827﹣1﹣2=6﹣1﹣2=3.18. 已知A ﹣2B =﹣1,求代数式(A ﹣1)2﹣4B (A ﹣B )+2A 的值.【答案】2.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则化简,去括号合并得到最简结果,把已知等式代入计算即可求出值.试题解析:原式=A 2﹣2A +1﹣4A B +4B 2+2A =(A ﹣2B )2+1,当A ﹣2B =﹣1时,原式=2.19. 分解因式:(1)x2﹣16x.(2)(x2﹣x)2﹣12(x2﹣x)+36.【答案】(1)x(x+4)(x﹣4);(2)(x+2)2(x﹣3)2.【解析】试题分析:(1)原式提取x,再利用平方差公式分解即可;(2)原式利用完全平方公式及十字相乘法分解即可.试题解析:(1)原式=x(x2﹣16)=x(x+4)(x﹣4);(2)原式=(x2﹣x﹣6)2=(x+2)2(x﹣3)2.20. 解不等式2x﹣11<4(x﹣5)+3,并把它的解集在数轴上表示出来.【答案】x>3.【解析】试题分析:先去括号,再移项,合并同类项,把x的系数化为1并在数轴上表示出来即可.试题解析:去括号得,2x﹣11<4x﹣20+3,移项得,2x﹣4x<﹣20+3+11,合并同类项得,﹣2x<﹣6,x的系数化为1得,x>3.在数轴上表示为:.21. 已知:如图,点D 是△A B C 内一点,A B =A C ,∠1=∠2.求证:A D 平分∠B A C .【答案】见解析.【解析】【分析】易证△A B D ≌△A C D ,则可得证.【详解】解:证明:∵∠1=∠2,∴B D =C D ,在△A B D 与△A C D 中,A B =A C ,B D =C D ,A D =A D ,∴△A B D ≌△A C D (SSS),∴∠B A D =∠C A D ,即A D 平分∠B A C .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.22. 已知:如图,直线l分别与直线A B ,C D 相交于点P,Q,PM垂直于PQ,∠1+∠2=90°.求证:A B ∥C D .【答案】证明见解析.【解析】【分析】【详解】试题分析:先根据垂直的定义得出∠A PQ+∠2=90°,再由∠1+∠2=90°得出∠A PQ=∠1,进而可得出结论.试题解析:如图,∵PM ⊥PQ (已知),∴∠A PQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠A PQ=∠1(同角的余角相等),∴A B ∥C D (内错角相等,两直线平行).23. 列方程组解应用题.某工厂经审批,可生产纪念北京申办2022年冬奥会成功的帽子和T 恤.若两种纪念品共生产6000件,且T 恤比帽子的2倍多300件.问生产帽子和T 恤的数量分别是多少?【答案】生产帽子1900件,生产T 恤4100件.【解析】试题分析:设生产帽子x 件,生产T 恤y 件,根据“两种纪念品共生产6000件,且T 恤比帽子的2倍多300件”列方程组求解可得.试题解析::设生产帽子x 件,生产T 恤y 件.根据题意,得:6000{2300x y y x ++==, 解得:1900{4100x y == 答:生产帽子1900件,生产T 恤4100件.【点睛】此题主要考查了二元一次方程组的应用,弄清题意,找出合适的等量关系,据此列出方程组是解题关键.24. 某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题:(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数是.【答案】(1)详见解析;(2)100;(3)360.【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.【详解】(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(2)本次抽样调查的样本容量是:30+6+14+50=100;(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.【点睛】此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据25. 如图,在直角坐标平面内有两点A (0,2)、B (﹣2,0)、C (2,0).(1)△A B C 的形状是等腰直角三角形;(2)求△A B C 的面积及A B 的长;(3)在y轴上找一点P,如果△PA B 是等腰三角形,请直接写出点P的坐标.【答案】(1)等腰直角三角形,(2)22(3)P(0,﹣2)或P(0,2﹣22或P(0,2+22或P(0,0).【解析】【分析】(1)根据点的坐标判断出OA =OB =OC ,从而得出结论;(2)根据点的坐标求出求出B C ,OA ,再用三角形面积公式即可;(3)设出点P坐标,根据平面坐标系中,两点间的距离公式表示出B P,A P,再分三种情况计算即可.【详解】∵A (0,2)、B (﹣2,0)、C (2,0).∴OB =OC =OA ,∴△A B C 是等腰三角形,∵A O⊥B C ,∴△A B C 是等腰直角三角形.故答案为等腰直角三角形,(2)∵A (0,2)、B (﹣2,0)、C (2,0).∴B C =4,OA =2,∴S△A B C =12B C ×A O=12×4×2=4,∵A (0,2)、B (﹣2,0), ∴4+4=22(3)设点P(0,m),∵A (0,2)、B (﹣2,0),∴,A P=|m﹣2|,∵△PA B 是等腰三角形,∴①当A B =B P时,∴,∴m=±2,∴P(0,2)(与点A 重合,舍去)或P(0,﹣2),②当A B =A P时,∴﹣2|,∴m=2﹣∴P(0,2﹣P(0,③当A P=B P时,∴|m﹣,∴m=0,∴P(0,0),∴P(0,﹣2)或P(0,2﹣P(0,P(0,0).【点睛】此题是等腰三角形性质,主要考查了等腰三角形的判定,两点间的距离公式,方程的解法,解本题的关键是分类讨论计算即可.。

【人教版】数学七年级下册《期末考试题》含答案解析

【人教版】数学七年级下册《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、精心选一选,相信自己的判断力!(每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是()A .1xy=⎧⎨=⎩B .1xy=⎧⎨=⎩C .11xy=⎧⎨=⎩D .11xy=⎧⎨=-⎩2. 下列各数中无理数有().3.141,227-,327-, π,0,2.3 ,0.101001000……A . 2个B . 3 个C . 4个D . 5个3. 如图,直线A B 与直线C D 相交于点O,OE⊥A B ,垂足为O,∠EOD =30°,则∠B OC =()A . 150°B . 140°C . 130°D . 120°4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠55. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( ) A . (0,-2) B . (2,0) C . (4,0) D . (0,-4)7. 把不等式组{x10x10+≥-<的解集表示在数轴上正确的是()A .B .C .D .8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重9. 下列说法正确的是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 911. 点P(1,-2)( )A .第一象限B . 第二象限C . 第三象限D . 第四象限12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( ) A . 301216400x y x y+=⎧⎨+=⎩ B . 301612400x y x y+=⎧⎨+=⎩ C . 121630400x y x y+=⎧⎨+=⎩ D . 161230400x y x y+=⎧⎨+=⎩二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x+1>3x-2的非负整数解是______.14. 算术平方根等于本身的实数是__________. 15. 若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是_____.16. 实a、b在数轴上的位置如图所示,则化简()2a b b a++-=___________.17. 点()2,1M-关于y轴的对称点的坐标为______.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐的学生共有_________人.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.三、计算题(每小题4分,共20分)21. 239(6)27--22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 24. 已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积26. 如图,△A B C 中,D 在B C延长线上,过D 作D E ⊥A B 于E ,交A C 于F .∠A =30°,∠FC D =80°,求∠D .27. 一支部队第一天行军4h ,第二天行军5h ,两天共行军98KM ,且第一天比第二天少走2KM ,第一天和第二天行军的平均速度各是多少?28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?参考答案一、精心选一选,相信自己的判断力!( 每小题3分.共36分)1. 二元一次方程x-2y=1有无数多个解,下列四组值中是该方程的解的是( )A . 01x y =⎧⎨=⎩B . 10x y =⎧⎨=⎩C . 11x y =⎧⎨=⎩D . 11x y =⎧⎨=-⎩【答案】B【解析】【分析】 将各项中x 与y 的值代入方程检验即可得到结果.【详解】A 、x=0、y=1时,x-2y=0-2=-2≠1,不符合题意;B 、x=1、y=0时,x-2y=1,符合题意;C 、x=1、y=1时,x-2y=1-2=-1≠1,不符合题意;D 、x=1、y=-1时,x-2y=1+2=3≠1,不符合题意;故选B .【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 2. 下列各数中无理数有( ).3.141, 227-, , π ,0,2.3 ,0.101001000…… A . 2个B . 3 个C . 4个D . 5个【答案】A【解析】【分析】根据无理数的定义求解即可.【详解】解:π,0.1010010001…是无理数,故选A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.3. 如图,直线A B 与直线C D 相交于点O ,OE ⊥A B ,垂足为O ,∠EOD =30°,则∠B OC =( )A . 150°B . 140°C . 130°D . 120°【答案】D【解析】【分析】运用垂线,邻补角的定义计算.【详解】∵OE⊥A B ,∴∠EOB =90°,∵∠EOD =30°,∴∠D OB =90°-30°=60°,∴∠B OC =180°-∠D OB =180°-60°=120°,故选D【点睛】本题主要考查了垂线,邻补角,灵活运用垂线,邻补角的定义计算是解题的关键.4. 下列条件不能判定A B //C D 的是( )A . ∠3=∠4B . ∠1=∠5C . ∠1+∠2=180°D . ∠3=∠5 【答案】D【解析】【分析】根据平行线的判定逐个判断即可.【详解】A .∵∠3=∠4,∴A B ∥C D ,故本选项不符合题意;B .∵∠1=∠5,∴A B ∥CD ,故本选项不符合题意;C .∵∠1+∠2=180°,∠1+∠3=180°,∴∠3=∠2,∴A B ∥CD ,故本选项不符合题意;D .根据∠3=∠5,不能推出A B ∥C D ,故本选项符合题意.故选D .【点睛】本题考查了平行线的判定,能灵活运用平行线的判定进行推理是解答此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5. 下列A 、B 、C 、D ;四幅图案中,能通过平移左图案得到的是()A .B .C .D .【答案】A【解析】试题分析:依题意知,平移的概念是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,不改变图像大小与形状.故A 图笑脸为原图以一定方向平移所得,不改变形状与大小.选A .考点:平移点评:本题难度较低,主要考查学生对平移知识点的掌握.根据平移的性质判定即可.6. 如果点M(A +3,A +1)在直角坐标系的x轴上,那么点M的坐标为( )A . (0,-2)B . (2,0)C . (4,0)D . (0,-4)【答案】B【解析】∵点M(A +3,A +1)在直角坐标系的x轴上,∴A +1=0,解得A =−1,所以,A +3=−1+3=2,点M的坐标为(2,0).故选B .7. 把不等式组{x10x10+≥-<解集表示在数轴上正确的是()A .B .C .D .【答案】D【解析】【分析】先解不等式组,再把解集表示在数轴上.【详解】解:x+10x10≥⎧-<⎨⎩①②,解①得,x1≥-,解②得,x1<,把解集表示在数轴上,不等式组的解集为1x1-≤<.故选D .【点睛】本题考查了一元一次不等式组的解法以及在数轴上表示不等式的解集,是基础知识比较简单.8. 为了了解某校初二年级400名学生的体重情况,从中抽取50名学生的体重进行统计分析;在这个问题中,总体是指( )A . 400B . 被抽取的50名学生C . 初二年级400名学生的体重D . 被抽取50名学生的体重【答案】C【解析】在这个问题中,总体是指400名学生的体重,故选C .9. 下列说法正确是( )A . 4的平方根是2B . ﹣4的平方根是﹣2C . (﹣2)2没有平方根D . 2是4的一个平方根【答案】D【解析】【分析】依据平方根的性质即可作出判断.【详解】A .4的平方根是±2,故A 错误;B .−4没有平方根,故B 错误;C .()224-=,有平方根,故C 错误;D .2是4的一个平方根,故D 正确.故选D .【点睛】此题主要考查平方根的相关知识,求一个数A 的平方根的运算,叫做开平方,其中A 叫做被开方数.A >0时,A 有两个平方根;A =0时,A 只有一个平方根;A <0时,没有平方根.10. 已知关于x的方程5x+3k=24与方程5x+3=0的解相同,则k的值是( )A . 7B . ﹣8C . ﹣10D . 9【答案】D【解析】【分析】可以分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.【详解】解第一个方程得x=2435k-,第二个方程得x=-35,∴243355k-=-,解得k=9.故选D .【点睛】本题解决的关键是能够求解关于x的方程,正确理解方程解的含义.11. 点P(1,-2)在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D .12. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是( )A . 301216400x y x y +=⎧⎨+=⎩B . 301612400x y x y +=⎧⎨+=⎩C . 121630400x y x y +=⎧⎨+=⎩D . 161230400x y x y +=⎧⎨+=⎩【答案】B【解析】【分析】 设购买甲种奖品x 件,乙种奖品y 件,根据“花了400元钱购买甲、乙两种奖品共30件”列方程即可.【详解】若设购买甲种奖品x 件,乙种奖品y 件,根据题意得:301612400x y x y +=⎧⎨+=⎩. 故选:B .【点睛】本题考查了根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二、认真填一填,试试自己的身手!填空题(每小题3分,共24分)13. 不等式2x +1>3x -2的非负整数解是______.【答案】0,1,2【解析】【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x ,合并同类项得,3>x ,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.14. 算术平方根等于本身的实数是__________.【答案】0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案. 解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.15. 若点(m ﹣4,1﹣2m )在第三象限内,则m 的取值范围是_____. 【答案】142m << 【解析】【分析】先根据第三象限的点的坐标的符号特征列出关于m 的不等式组,再求解即可.【详解】由题意得40120m m -<⎧⎨-<⎩,解得:142m <<. 【点睛】解题的关键是熟练掌握求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16. 实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.【答案】2a -【解析】由数轴得,A +B <0,B -A >0,|A +B |+()2b a - A -B +B -A =-2A .故答案为-2A .点睛:根据,0,0a a a a a ≥⎧=⎨-<⎩,推广此时A 可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简.17. 点()2,1M -关于y 轴的对称点的坐标为______.【答案】()2,1【解析】【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.18. 如图,已知A B ∥C D ,∠A =60°,∠C =25°,则∠E=_____度.【答案】35【解析】【分析】设A E交C D 于点F,先根据平行线的性质求出∠D FE的度数,再由三角形外角的性质即可得出结论.【详解】设A E交C D 于点F,∵A B ∥ C D ,∠A =60°,∴∠D FE=∠A =60°,∵∠D FE是△C EF的外角,∴∠E=∠D FE-∠C =60°-25°=35°,故答案为35【点睛】本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:(1)两直线平行,同位角相等;(2)三角形的一个外角等于不相邻的两个内角和.19. 某校对1000名学生进行“个人爱好”调查,调查结果统计如图,则爱好音乐学生共有_________人.【答案】190【解析】试题解析:根据扇形统计图的定义,各部分占总体的百分比之和为1,由图可知,爱好音乐的学生占总体的百分比为:1-32%-33%-16%=19%,所以爱好音乐的学生共有1000×19%=190人.故答案为190.20. 一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一分,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.【答案】24.【解析】试题分析:设小明答对了x题.故(30-x)×(-1)+4x≥90,解得:x≥24.考点:一元一次不等式的应用.三、计算题(每小题4分,共20分)21.【答案】0.【解析】【分析】根据算术平方根、立方根进行计算.【详解】原式33627=3630【点睛】本题考查的是算术平方根、立方根,需要注意开立方里面的负号要保留,出来后要变号.22. 解方程组:(1)1235 y xx y=-⎧⎨+=⎩(2)3(1)55(1)3(5)x yy x-=+⎧⎨-=+⎩【答案】(1)23xy=-⎧⎨=⎩; (2)57xy=⎧⎨=⎩.【解析】【分析】(1)直接用代入法求解即可,(2)解题时需要先化简,再用代入法或加减消元法求解.【详解】(1) 原方程组标记为1235y x x y =-⎧⎨+=⎩①②, 将①代入②得2315x x ,解得2x =- ,把2x =-代入1y x =-,解得3y =∴方程组的解为23x y =-⎧⎨=⎩; (2) 原方程组可化为383520x y x y -⎧⎨--⎩=③=④,③-④得,4y=28,即y=7,把y=7代入3x-y=8得,3x-7=8,即x=5.∴方程组的解为57x y =⎧⎨=⎩. 【点睛】本题考查的是计算能力,解题时要注意观察,选择适当的解题方法会达到事半功倍的效果.23. 解不等式组3(2)4,1413x x x x --≥⎧⎪+⎨>-⎪⎩,并把解集在数轴上表示出来. 【答案】x≤1,数轴详见解析.【解析】【分析】分别解两个不等式,再取两个解集的公共解集,并在数轴上表示出来.【详解】()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②, 解:由①得:x≤1,由②得:x <4,∴ 原不等式的解集为x≤1.24. 已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.【答案】0.【解析】试题分析:利用已知倒数,相反数关系代入求值.试题解析:由题意得A b=1,C +D =0,所以31ab c d-+++=-1+1=0.故答案为0.四、解答题(共40 分)25. 已知△A B C 在平面直角坐标系中的位置如图所示.将△A B C 向右平移6个单位长度,再向下平移6个单位长度得到△A 1B 1C 1.(图中每个小方格边长均为1个单位长度).(1)在图中画出平移后的△A 1B 1C 1;(2)直接写出△A 1B 1C 1各顶点的坐标(3)求出△A 1B 1C 1的面积【答案】(1)详见解析;(2)A 1(4,−2), B 1(1,−4), C 1(2,−1);(3)7 2【解析】【分析】(1)直接利用平移的性质得出A ,B ,C 平移后对应点位置;(2)利用(1)中图形得出各对应点坐标;(3)利用△A 1B 1C 1所在矩形面积减去周围三角形面积即可得出答案.【详解】(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:A 1(4,−2), B 1 (1,−4), C 1(2,−1);(3) △A 1B 1C 1的面积为:3×3−12×1×3−12×1×2−12×2×3=3.5【点睛】此题考查作图-平移变换,解题关键在于掌握作图法则26. 如图,△A B C 中,D 在B C 的延长线上,过D 作D E⊥A B 于E,交A C 于F.∠A =30°,∠FC D =80°,求∠D .【答案】40°【解析】【分析】由三角形内角和定理,可将求∠D 转化为求∠C FD ,即∠A FE,再在△A EF中求解即可.【详解】∵D E⊥A B (已知),∴∠FEA =90°(垂直定义),∵△A EF中,∠FEA =90°,∠A =30°(已知),∴∠A FE=180°−∠FEA −∠A (三角形内角和是180)=180°−90°−30°=60°,又∵∠C FD =∠A FE(对顶角相等),∴∠C FD =60°,∴在△C D F中,∠C FD =60°,∠FC D =80°(已知),∴∠D =180°−∠C FD −∠FC D =180°−60°−80°=40°27. 一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?【答案】第一天行军速度为12km/h,第二天行军速度为10km/h.【解析】【分析】设:第一天行军的平均速度为xkm/h ,第二天行军的平均速度为ykm/h ,根据两天共行军98km ,第一天比第二天少走2km ,列出方程组求解.【详解】设:第一天行军平均速度为xkm/h,第二天行军平均速度为ykm/h可得方程组4598542x y y x +=⎧⎨-=⎩ 解得1210x y =⎧⎨=⎩答:第一天行军的平均速度为12km/h ,第二天行军的平均速度为10km/h .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.28. 某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7 000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4 120元.每台电脑机箱、液晶显示器的进价各是多少元?【答案】每台电脑机箱的进价是60元,液晶显示器的进价是800元.【解析】 解:设每台电脑机箱的进价是元,液晶显示器的进价是元,得, 解得. 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元. 29. 某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元. (1)符合公司要求的购买方案有几种?请说明理由; (2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?【答案】(1)有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x辆,则要购买面包车(10-x)辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x的取值范围,最后根据x的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金30. 为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名七年级男生中,估计有多少人体能达标?【答案】(1)50人;(2)见解析;(3)252人【解析】【分析】(1)由引体向上的次数为4次的人数除以所占的百分比即可求出抽测的男生数;(2)求出次数为5次的人数,补全统计图即可;(3)求出5次以上(含5次)人数占的百分比,乘以350即可得到结果【详解】(1)根据题意得:10÷20%=50(人),答:本次抽测的男生有50人;(2)5次的人数为50-(4+10+14+6)=16(人),补全条形统计图,如图所示:(3)根据题意得:16146350252()50人答:该校350名七年级男生中估计有252人体能达标.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.。

最新人教版数学七年级下册《期末测试卷》附答案

最新人教版数学七年级下册《期末测试卷》附答案

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.第I 卷(选择题 共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 4的平方根是( )A . ±16B . 2C . ﹣2D . ±2 2. 若点P (A ,B )是第二象限内的点,则点Q (B ,A )在( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 3. 要调查下列问题,应采用全面调查的是( )A . 了解某班学生的身高情况B . 了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况C . 调查某批次汽车的抗撞击能力D . 调查某池塘里面有多少条鱼4. 如图,点E 在B C 的延长线上,下列条件中能判断A D ∥B C 的是( )A . ∠1=∠3B . ∠2=∠4C . ∠B =∠D C ED . ∠B +∠B C D =180° 5. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A . (3,4)-B . (4,3)-C . (4,3)-D . ()3,4-6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A . 1、2 B . 1、5 C . 5、1 D . 2、47. 若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是下列的( ) A . B . C . D .8. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A . 3分钟B . 4分钟C . 4.5分钟D . 5分钟9. 不等式组523x x x m +>+⎧⎨<⎩的解集是2x <,则m 的取值范围是( ) A . m <2 B . m >2 C . m ≤2 D .m ≥2 10. 关于x ,y 的方程组,3453x y a x y a +=-⎧⎨-=⎩下列说法:①51x y =⎧⎨=-⎩是方程组的解;②不论a 取什么实数,x y +的值始终不变;③当2a =-时, x 与y 相等,正确的个数是( )A . 3B . 2C . 1D . 0第Ⅱ卷(非选择题 共70分)二、填空题(本题5个小题,每小题3分,共15分.)11. 如图,a //b ,c ,d 是截线,∠1=80°,则∠2+∠3-∠4=____°.12. 命题”对顶角相等”的题设是__________________________,结论是这两个角相等.13. 3 1.732≈30017.32≈0.03≈_________30000≈_________.从以上结果可以发现,被开方数的小数点向左成向右移动___位,它的算术平方根的小数点就相应地向左或向右移动1位.14. 已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.15. 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.三、解答题:(本大题共7道题,共55分.) 16. (1)计算33223816+-(2)用适当的方法解方程组:25371x y x y +=⎧⎨-=-⎩①② (3)解一元一次不等式:54x +≥2316x --. 17. 《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.18. (1)如图,在平面直角坐标系中有一个三角形ABC ,请写出它三个顶点坐标:A 、B 、C .(2)在平面直角坐标系中描出以下3个点:A '(-2,1)、B '(1,-1)、C '(-3,-3),然后顺次连接,,A B C ''',得到三角形A B C '''.(3)观察所画的图形,判断三角形A B C '''能否由三角形ABC 平移得到,如果能,请说出三角形A B C '''是由三角形ABC 怎样平移得到的;如果不能,说明理由.19. 下面数据是20位同学的身高(单位:cm): 159157164161167153166163162158 162164160172166162168167161156 (1)这组数据中,最大值与最小值的差是; (2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是;(3)完成下面频数分布表,并将频数分布直方图补充完整.身高分组划记频数≤< 3x153158≤<158163xx≤<正丅7163168≤<168173x20. 在等式2y ax bx c =++中,当1x =时,6y =;当2x =时,9y =;当3x =时,16y =.求a b c ,,的值.21. 一工厂要将300吨货物运往外地,计划租用某运输公司甲、乙两种型号的货车共16辆一次将货物全部运完,已知每辆甲型货车最多能装该种货物18吨,租金1200元,每辆乙型货车最多能装该种货物20吨,租金1600元,若此工厂计划此次租车费用不超过22400元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.22. 如图,点D 是三角形ABC 的边BC 所在直线上的一个动点.(1)填空:当点D 在线段BC 上时,过点D 作DE //AB ,DF //AC .求证:∠EDF =∠BAC . 证明:∵DE //AB (已知),∴∠EDF =____________________(__________ ________).∵ ( ),∴∠BFD =_____________(___________________________).∴∠EDF =∠BAC (____________________________).(2)当点D 移动到BC 延长线上时,如果过点D 画DE //AB 交AC 延长线于点E ,DF //CA 交BA 延长线于点F ,∠EDF 和∠BAC 又存在什么数量关系?请根据题意把下图补画完整,并直接写出∠EDF 和∠BAC存在的数量关系,不需证明.数量关系为: .参考答案1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.第I卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 4的平方根是()A . ±16B . 2C . ﹣2D . ±2【答案】D【解析】【分析】根据平方根的定义以及性质进行计算即可.【详解】4的平方根是±2,故选:D .【点睛】本题考查了平方根的问题,掌握平方根的定义以及性质是解题的关键.2. 若点P(A ,B )是第二象限内的点,则点Q(B ,A )在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【答案】D【解析】【分析】应先判断出所求的点的横坐标的符号,进而判断其所在的象限.【详解】解:∵点P(A 、B )在第二象限,∴A <0,B >0,∴点Q(B ,A )在第四象限,故选D .【点睛】”点睛”本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点. 四个象限的符号特点分别是:第一象限(+,-);第二象限(-,+);第三象限(-,-)第四象限(+,-).3. 要调查下列问题,应采用全面调查的是()A . 了解某班学生的身高情况B . 了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况C . 调查某批次汽车的抗撞击能力D . 调查某池塘里面有多少条鱼【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、了解某班学生的身高情况,适合全面调查,故本选项符合题意;B 、了解某校2000名学生对新闻、体育、科教三类电视节目的喜爱情况,适合抽样调查,故本选项不合题意;C 、调查某批次汽车的抗撞击能力,适合抽样调查,故本选项不合题意;D 、调查某池塘里面有多少条鱼,适合抽样调查,故本选项不合题意.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,点E在B C 的延长线上,下列条件中能判断A D ∥B C 的是()A . ∠1=∠3B . ∠2=∠4C . ∠B =∠D CE D . ∠B +∠B C D =180°【答案】B【解析】分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:由∠2=∠4,可得A D ∥C B ;由∠1=∠3或∠B =∠D C E 或∠B +∠B C D =180°,可得A B ∥D C ;故选B .【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A . (3,4)-B . (4,3)-C . (4,3)-D . ()3,4-【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离. 6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A . 1、2B . 1、5C . 5、1D . 2、4 【答案】C【解析】【分析】把x =2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解.【详解】根据 {x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C .【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键. 7. 若一个不等式的正整数解为1,2,则该不等式的解集在数轴上的表示可能是下列的( )A .B .C .D .【答案】C【解析】【分析】根据题意,逐一判断各个选项,即可得到答案【详解】A .表示x>1,正整数解有无数个,不符合题意;B .表示x>0,正整数解有无数个,不符合题意;C .表示x≤2,正整数解为1,2,符合题意;D .表示x≤3,正整数解为1,2,3,不符合题意;故选C【点睛】本题主要考查不等式在数轴上的表示,通过数轴得到未知数的取值范围,是解题的关键.8. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A . 3分钟B . 4分钟C . 4.5分钟D . 5分钟【答案】B【解析】【分析】设这人跑了x分钟,则走了(18-x)分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x 一元一次不等式,解之即可得出x的取值范围,取其中的最小值即可得出结论.【详解】解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.9. 不等式组523x x x m +>+⎧⎨<⎩的解集是2x <,则m 的取值范围是( ) A .m <2 B . m >2 C . m ≤2 D .m ≥2 【答案】D【解析】【分析】先求出每个不等式的解集,根据已知进行得出关于m 的不等式,即可得出选项.【详解】∵不等式523x x +>+的解集为2x <,又∵不等式组的解集为2x <,∴2m ≥,故选:D .【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能得出关于m 的不等式. 10. 关于x ,y 的方程组,3453x y a x y a +=-⎧⎨-=⎩下列说法:①51x y =⎧⎨=-⎩是方程组的解;②不论a 取什么实数,x y +的值始终不变;③当2a =-时, x 与y 相等,正确的个数是( )A . 3B . 2C . 1D . 0【答案】B【解析】【分析】①将51x y ==-,代入,判断A 的值是否相等即可;②将x 和y 分别用A 表示出来,然后求出x+y 的值即可判断;③将2a =-代入方程组求出方程组的解,代入方程中检验即可判断. 【详解】①将51x y =⎧⎨=-⎩代入方程组得: 534553a a -=-⎧⎨+=⎩①②,解得2103a a =⎧⎪⎨=⎪⎩①②两个方程A 的值不相等,所以①错误;②解方程组3453x y a x y a +=-⎧⎨-=⎩,得5 2 1 2axay+⎧=⎪⎪⎨-⎪=⎪⎩,51322a ax y+-+=+=,∴x+y的值和A 的取值无关,始终为3,所以②正确;③将2a=-代入方程组得,3232xy⎧=⎪⎪⎨⎪=⎪⎩,因此③正确;本题②③正确,故选B .【点睛】本题考察了含参二元一次方程组中参数的确定,二元一次方程组的解法,逢解必代入式解决本类题的关键,是本章的重要考点.第Ⅱ卷(非选择题共70分)二、填空题(本题5个小题,每小题3分,共15分.)11. 如图,a//b,c,d是截线,∠1=80°,则∠2+∠3-∠4=____°.【答案】80°【解析】【分析】根据邻补角定义得到∠4=100°,再根据平行线的性质得到∠2+∠3-∠4的值即可.【详解】解:如下图:∵∠1=80°,∴∠4=100°,∵a //b ,∴∠3=∠5,∴∠2+∠3=∠2+∠5=180°,∴∠2+∠3-∠4=180°-100°=80°.故答案为:80°.【点睛】本题考查平行线的性质及邻补角定义.熟练掌握平行线的性质,准确得到∠2+∠3的度数是解题的关键.12. 命题”对顶角相等”的题设是__________________________,结论是这两个角相等.【答案】两个角是对顶角【解析】【分析】先根据命题有两部分组成,即题设和结论,找到命题的题设和结论,再写成”如果…,那么…”的形式.【详解】命题”对顶角相等”可写成:如果两个角是对顶角,那么这两个角相等.故命题”对顶角相等”的题设是”两个角是对顶角”.故答案为:两个角是对顶角.【点睛】本题考查了命题的题设与结论,解答此题目只要把命题写成”如果…,那么…”的形式,便可解答.13. 1.732≈17.32≈≈_________≈_________.从以上结果可以发现,被开方数的小数点向左成向右移动___位,它的算术平方根的小数点就相应地向左或向右移动1位.【答案】 (1). 0.1732 (2). 173.2 (3). 两【解析】分析】本题根据题干所给的示例,总结被开方数与其算数平方根小数点移动位数的规律即可作答.【详解】 1.732≈17.32≈可知,其被开方数小数点向右移动两位,其算数平方根小数点向右移动一位,;同理可得被开方数小数点向左平移两位,其算数平方根小数点向左平移一位,0.1732≈;综上可得:被开方数小数点向左或向右平移两位,其算数平方根小数点向左或向右平移一位.故填:0.1732;173.2;两.【点睛】本题考查算数平方根,解题关键在于通过示例总结规律,其次本题规律可作为解题技巧,面对类似题目计算时可直接得出答案提升解题效率.14. 已知点M (3,-2),它与点N (x ,y )在同一条平行于x 轴的直线上,且MN =4,那么点N 的坐标是______.【答案】(1,2)--或(7,2)-【解析】【分析】本题根据两点在同一平行于x 轴的直线上确定点N 的纵坐标,继而根据两点距离确定点N 的横坐标.【详解】由已知得:点N 的纵坐标为2-,设点N 的横坐标为x ,则M 、N 的距离可表示为3x -,∵4MN =,∴34x -=,求解得:7x =或1x =-,故点N 坐标为(1,2)--或(7,2)-.故填:(1,2)--或(7,2)-.【点睛】本题考查点坐标的求法,解题关键在于理清两点之间的位置关系,其次此类型题目通常需要分类讨论,确保结果不重不漏.15. 小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.【答案】11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:(18.514)3 1.5cm -÷=,量筒与原水面高度差:301416cm -=,∵16 1.510.7÷≈,∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.三、解答题:(本大题共7道题,共55分.)16. (1)计算2+(2)用适当的方法解方程组:25371x y x y +=⎧⎨-=-⎩①② (3)解一元一次不等式:5 4x +≥2316x --. 【答案】(14;(2)21x y =⎧⎨=⎩;(3)73x ≤ 【解析】【分析】 (1)先求绝对值,立方根,算术平方根,再进行加减法计算,即可求解;(2)利用代入消元法,即可求解;(3)通过去分母,移项,合并同类项,未知数系数化为1,即可求解详解】(1)原式=2(2)4-+4;(2)由①,得52y x =- ③把③代入②,得37(52)1x x --=-.解这个方程,得2x =.把2x =代入③,得1y =.∴这个方程组的解是21x y =⎧⎨=⎩; (3)解不等式:54x +≥2316x --. 去分母,得:()35x +≥()12223x --去括号,得:315x +≥1246x -+移项,得:36x x -≥12415--合并同类项,得:3x -≥7-.系数化为1,得:x ≤73. 【点睛】本题主要考查二次根式的加减法,二元一次方程的解法,一元一次方程的解法,熟练掌握解方程以及二次根式的运算方法,是解题的关键.17. 《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.【答案】甲有钱752,乙有钱25. 【解析】【分析】设甲有钱x ,乙有钱y ,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x ,乙有钱y . 由题意得:15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ , 解方程组得:75225x y ⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25. 【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键. 18. (1)如图,在平面直角坐标系中有一个三角形ABC ,请写出它的三个顶点坐标:A 、B 、C .(2)在平面直角坐标系中描出以下3个点:A '(-2,1)、B '(1,-1)、C '(-3,-3),然后顺次连接,,A B C ''',得到三角形A B C '''.(3)观察所画的图形,判断三角形A B C '''能否由三角形ABC 平移得到,如果能,请说出三角形A B C '''是由三角形ABC 怎样平移得到的;如果不能,说明理由.【答案】(1)A (3,5)、B (6,3)、C (2,1);(2)见解析;(3)能,由三角形A B C 向左平移5个单位长度,向下平移4个单位长度得到的【解析】【分析】(1)根据A ,B ,C 三点的位置确定坐标.(2)根据点的坐标确定点的位置.(3)利用平移的性质解决问题即可.【详解】(1)A (3,5)、B (6,3)、C (2,1);(2)如图所示,三角形A ′B ′C ′即为所求,(3)三角形'''ABC 能由三角形A B C 平移得到,三角形'''ABC 是由三角形A B C 向左平移5个单位长度,向下平移4个单位长度得到的.【点睛】本题考查了平面直角坐标系以及坐标与图形变化-平移,解题的关键是熟练掌握平移的性质. 19. 下面数据是20位同学的身高(单位:cm ):159 157 164 161 167 153 166 163 162 158162 164 160 172 166 162 168 167 161 156(1)这组数据中,最大值与最小值的差是 ;(2)将这组数据分为4组:153≤x <158,158≤x <163, 163≤x <168,168≤x <173, 则组距是 ; (3)完成下面频数分布表,并将频数分布直方图补充完整. 身高分组 划记频数 153158x ≤<3 158163x ≤<163168x ≤< 正丅7 168173x ≤<【答案】(1)19;(2)5;(3)见解析【解析】【分析】(1)根据题目中给出的数据,可以找到最大数据是172,最小数据是153,然后作差即可解答本题;(2)根据题目中的分组,可以得到相应的组距;(3)根据题目中给出的数据,可以将频数分布表和频数分布直方图补充完整.【详解】(1)172-153=19,即这组数据中,最大值与最小值的差是19,故答案为:19;(2)组距是:158-153=5,故答案为:5;(3)补充完整的频数分布表如下表所示,身高分组划记频数153158≤< 3x≤<正8158163x≤<正丅7163168x≤<丅 2x168173补充完整的频数分布直方图如下图所示,【点睛】本题考查频数分布直方图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答. 20. 在等式2y ax bx c =++中,当1x =时,6y =;当2x =时,9y =;当3x =时,16y =.求a b c ,,的值.【答案】A ,B ,C 的值分别为2,-3,7【解析】【分析】根据题意可以得到相应的三元一次方程组,从而可以解答本题.【详解】解:根据题意,得三元一次方程组a b c 64a 2b c 99a 3b c 16.++=⎧⎪++=⎨⎪++=⎩ ,①,②③②-①,得33a b +=; ④③-①,得 45a b +=.⑤④与⑤组成二元一次方程组334 5.a b a b +=⎧⎨+=⎩, 解这个方程组,得2,3.a b =⎧⎨=-⎩把2,3.a b =⎧⎨=-⎩代入①,得7c = 因此即A ,B ,C 的值分别为2,-3,7【点睛】本题考查解三元一次方程组应用,解答本题的关键是明确解三元一次方程组的方法.21. 一工厂要将300吨货物运往外地,计划租用某运输公司甲、乙两种型号的货车共16辆一次将货物全部运完,已知每辆甲型货车最多能装该种货物18吨,租金1200元,每辆乙型货车最多能装该种货物20吨,租金1600元,若此工厂计划此次租车费用不超过22400元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.【答案】共有三种租车方案;最低的租车费用案是租用甲型汽车10辆,租用乙型汽车6辆,费用为21600元.【解析】【分析】设租用甲型汽车x辆,则租用乙型汽车(16-x)辆,根据装货物的吨数是300吨,以及租车费用不超过22400元,列出不等式组,解出x的值,进一步即可求解.【详解】解:设租用甲型汽车x辆,则租用乙型汽车(16x-)辆,依题意,得182016-)300 12001600(16)22400x xx x+≥⎧⎨+-≤⎩(解得8≤x≤10.∵x的值是整数∴x的值是8,9,10∴该公司有三种租车方案:①租用甲型汽车8辆,租用乙型汽车16-8=8(辆),费用为1200⨯8+1600⨯8=22400(元);②租用甲型汽车9辆,租用乙型汽车16-9=7(辆),费用为1200⨯9+1600⨯7=22000(元);③租用甲型汽车10辆,租用乙型汽车16-10=6(辆),费用为1200⨯10+1600⨯6=21600(元).∴最低的租车费用为21600元.【点睛】本题考查了一元一次不等式组的应用,关键是要把实际问题转化为数学问题,通过数量关系列出不等式组.22. 如图,点D是三角形ABC的边BC所在直线上的一个动点.(1)填空:当点D在线段BC上时,过点D作DE//AB,DF//AC.求证:∠EDF=∠BAC.证明:∵DE//AB(已知),∴∠EDF =____________________(__________ ________).∵ ( ),∴∠BFD =_____________(___________________________).∴∠EDF =∠BAC (____________________________).(2)当点D 移动到BC 延长线上时,如果过点D 画DE //AB 交AC 延长线于点E ,DF //CA 交BA 延长线于点F ,∠EDF 和∠BAC 又存在什么数量关系?请根据题意把下图补画完整,并直接写出∠EDF 和∠BAC 存在的数量关系,不需证明.数量关系为: .【答案】(1)BFD ∠;两直线平行,内错角相等;//DF AC ;已知;BAC ∠;两直线平行,同位角相等;等量代换;(2)图见解析,∠ED F+∠B A C =180°.【解析】【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据D E ∥A B ,D F ∥C A 即可求出∠ED F 和∠B A C 存在的数量关系.【详解】证明:∵DE ∥AB (已知),∴∠EDF = ∠BFD ( 两直线平行,内错角相等 ).∵ D F //A C ( 已知 ),∴∠BFD = ∠BAC ( 两直线平行,同位角相等 ).∴∠EDF =∠BAC ( 等量代换______).故答案为:BFD ∠;两直线平行,内错角相等;//DF AC ;已知;BAC ∠;两直线平行,同位角相等;等量代换; (2)∠ED F+∠B A C =180°,理由如下: ∵D E ∥A B ,∴∠ED F+∠F=180°,∵D F ∥C A ,∴∠B A C =∠F ,∴∠ED F+∠B A C =180°,补画图形如图所示;故答案为:∠ED F+∠B A C =180°.【点睛】本题考查了平行线的性质,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.。

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年人教版七年级下期末考试数学试题及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共20小题)1.(3分)已知|a|=5,√b2=7,且|a+b|=a+b,则a﹣b的值为()A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【解答】解:∵|a|=5,∴a=±5,∵√b2=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.2.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=120°,则∠BOC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠1+∠2=120°,∴∠1=60°.∵∠1与∠BOC互为邻补角,∴∠BOC=180°﹣∠1=180°﹣60°=120°.故选:B.3.(3分)若点P(a,b)在第三象限,则点Q(a﹣3,﹣b)一定在()A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:∵点P (a ,b )在第三象限,∴a <0,b <0,∴a ﹣3<0,﹣b >0,∴点Q (a ﹣3,﹣b )一定在第二象限.故选:B .4.(3分)已知{x =−1y =2是关于x 、y 的二元一次方程组{3x +ny =8mx −y =2的解,则m +2n 的值为( )A .−52B .1C .7D .11【解答】解:把x =﹣1,y =2代入方程组,得{−3+2n =8−m −2=2解得m =﹣4,n =112, ∴m +2n =﹣4+11=7.故选:C .5.(3分)把不等式2﹣x <1的解集在数轴上表示正确的是( )A .B .C .D .【解答】解:不等式移项合并得:﹣x <﹣1,解得:x >1,表示在数轴上,如图所示故选:A .6.(3分)为了解某校3000名学生的视力情况,从中抽取了350名学生的视力,就这个问题来说,说法正确的是( )A .3000名学生的视力是总体B .3000名学生是总体C .每个学生是个体D.350名学生是所抽取的一个样本【解答】解:为了了解3000名学生的视力情况,从中抽取了350名学生进行视力调查,这个问题中的总体是3000名学生的视力情况,个体是每一个学生的视力情况,样本是抽取的350名学生的视力情况;故选:A.7.(3分)设a为正整数,且a<√37<a+1,则a的值为()A.5B.6C.7D.8【解答】解:∵√36<√37<√49,∴6<√37<7,∵a为正整数,且a<√37<a+1,∴a=6.故选:B.8.(3分)实数a、b在数轴上的位置如图所示,化简√(a+1)2+√(b−1)2−√(a−b)2的结果是()A.﹣2B.0C.﹣2a D.2b【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴√(a+1)2+√(b−1)2−√(a−b)2=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.9.(3分)点P(2,﹣3)到x轴的距离等于()A.﹣2B.2C.﹣3D.3【解答】解:点P(﹣2,﹣3)到x轴的距离是:3.故选:D.10.(3分)下列选项中a ,b 的取值,可以说明“若a >b ,则|a |>|b |”是假命题的反例为( )A .a =﹣5 b =﹣6B .a =6 b =5C .a =﹣6 b =5D .a =6 b =﹣5【解答】解:当a =﹣5,b =﹣6时,a >b ,但|a |<|b |,∴“若a >b ,则|a |>|b |”是假命题,故选:A .11.(3分)已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c |+√b −7=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a +b +c 的值为() A .12 B .15 C .17 D .20【解答】解:∵且|a ﹣c |+√b −7=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7﹣3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a =5,∴c =5,∴a +b +c =5+7+5=17,故选:C .12.(3分)关于x ,y 的二元一次方程组{2x +3y =2ax −y =a −5的解满足x +y =5,则a 的值为()A .6B .5C .4D .3【解答】解:解方程组{2x +3y =2a x −y =a −5得{x =a −3y =2,又x +y =5,∴a ﹣3+2=5,解得a =6,故选:A .13.(3分)如图所示,直角坐标系中四边形的面积是( )A.15.5B.20.5C.26D.31【解答】解:图中四边形可以视为由两个直角三角形和一个梯形构成,则其面积为:1×2×3+12(3+4)×3+12×1×4=3+212+2=15.5.2故选:A.14.(3分)如图,在中国象棋棋盘中,如果将“卒”的位置记作(3,1),那么“相”的位置可记作()A.(2,8)B.(2,4)C.(8,2)D.(4,2)【解答】解:∵将“卒”的位置记作(3,1),∴“相”的位置可记作(8,2).故选:C.15.(3分)如图,从C到B地有①②③条路线可以走,每条路线长分别为l,m,n()A.l>m>n B.l=m>n C.m<n=l D.l>n>m【解答】解:由题意可得:∵从C到B地有①②③条路线可以走,每条路线长分别为l,m,n,则AC+AB=l>BC∴l =n >m .故选:C .16.(2分)已知关于x 的不等式组{x −a >03−2x >0的整数解共有5个,则a 的取值范围是( ) A .﹣4<a <﹣3 B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32 【解答】解:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.故选:B .17.(2分)如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于28”为一次运算.若运算进行了3次才停止,则x 的取值范围是( )A .2<x ≤4B .2≤x <4C .2<x <4D .2≤x ≤4【解答】解:依题意,得:{3(3x −2)−2≤283[3(3x −2)−2]−2>28, 解得:2<x ≤4.故选:A .18.(2分)如图,若AB ∥DE ,∠B =130°,∠D =35°,则∠C 的度数为( )A .80°B .85°C .90°D .95°【解答】解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.19.(2分)我们知道实数和数轴上的点一一对应,如图,正方形的边长为1,点P是半圆与数轴的交点,则点P对应的实数为()A.√2B.√2+1C.2.4D.2.5【解答】解:∵正方形的边长为1,∴根据图示,点P是以1为圆心,以√2(2+12=√2)为半径的圆与x的交点,∴点P表示的数是√2+1.故选:B.20.(2分)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(a,b),则点A2020的坐标为()A.(a,b)B.(﹣b+1,a+1)C.(﹣a,﹣b+2)D.(b﹣1,﹣a+1)【解答】解:观察发现:A1(a,b),A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),A6(﹣b+1,a+1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1),故选:D .二.填空题(共6小题,满分18分,每小题3分)21.(3分)已知方程2x +3y ﹣1=0,用含x 的代数式表示y ,则 y =−23x +13.【解答】解:方程2x +3y ﹣1=0,移项得:3y =1﹣2x ,解得:y =−23x +13.故答案为:y =−23x +13.22.(3分)一个正数a 的平方根分别是2m ﹣1和﹣3m +52,则这个正数a 为 4 .【解答】解:根据题意,得:2m ﹣1+(﹣3m +52)=0,解得:m =32,∴正数a =(2×32−1)2=4,故答案为:4.23.(3分)运算符号⊗的含义是a ⊗b ={a(a ≥b)b(a <b),则(1+x )⊗(1﹣2x )=5时x 的值为 4或﹣2 .【解答】解:当1+x ≥1﹣2x 时,即x ≥0,此时1+x =5,解得x =4;当1+x <1﹣2x 时,即x <0,此时1﹣2x =5,解得x =﹣2.故答案为:4或﹣2.24.(3分)如图,△DEF 是由△ABC 沿直线BC 向右平移得到,若BC =6,当点E 刚好移动到BC 的中点时,则CF = 3 .【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.25.(3分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.则由统计图可知,在扇形统计图中,“乒乓球”部分所对应的圆心角的度数是100.8°.【解答】解:调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),则“乒乓球”部分所对应的圆心角的度数是:360°×1450=100.8°;故答案为:100.8°.26.(3分)已知点M在y轴上,纵坐标为4,点P(6,﹣4),则△OMP的面积是12.【解答】解:∵M在y轴上,纵坐标为4,∴OM=4,∵P(6,﹣4),∴S△OMP=12OM•|x P|=12×4×6=12.故答案为12.三.解答题(共3小题,满分27分)27.(12分)(1)计算:|√3−2|+√−83+√(−2)2−|−2|(2)解方程组{x =2y −13x +y =4(3)解不等式组{4(x +1)<7x +13x −4<x−83,并写出它所有负整数解. 【解答】解:(1)原式=2−√3−2+2﹣2=−√3;(2){x =2y −1①3x +y =4②, 将①代入②,得:3(2y ﹣1)+y =4,解得y =1,将y =1代入①,得:x =1,则方程组的解为{x =1y =1; (3)解不等式4(x +1)<7x +13,得:x >﹣3,解不等式x ﹣4<x−83,得:x <2, 则不等式组的解集为﹣3<x <2,∴这个不等式组的负整数解为﹣2、﹣1.28.(6分)已知:如图,DB ⊥AF 于点G ,EC ⊥AF 于点H ,∠C =∠D .求证:∠A =∠F .证明:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°( 垂直的定义 ).∴DB ∥EC ( 同位角相等,两直线平行 ).∴∠C = ∠DBA ( 两直线平行,同位角相等 ).∵∠C =∠D (已知),∴∠D = ∠DBA ( 等量代换 ).∴DF ∥AC ( 内错角相等,两直线平行 ).∴∠A =∠F ( 两直线平行,内错角相等 ).【解答】解:∵DB ⊥AF 于点G ,EC ⊥AF 于点H (已知),∴∠DGH =∠EHF =90°(垂直的定义),∴DB ∥EC (同位角相等,两直线平行),∴∠C =∠DBA (两直线平行,同位角相等),∵∠C =∠D (已知),∴∠D =∠DBA (等量代换),∴DF ∥AC (内错角相等,两直线平行),∴∠A =∠F (两直线平行,内错角相等).故答案为:垂直的定义;同位角相等,两直线平行;∠DBA ,两直线平行,同位角相等;∠DBA ,等量代换;内错角相等,两直线平行;两直线平行,内错角相等.29.(9分)某商场计划用7.8万元从同一供应商处购进A ,B 两种商品,供应商负责运输.已知A 种商品的进价为120元/件,B 种商品的进价为100元/件.如果售价定为:A 种商品135元/件,B 种商品120元/件,那么销售完后可获得利润1.2万元.(1)该商场计划购进A ,B 两种商品各多少件?(2)供应商计划租用甲、乙两种货车共16辆,一次性将A ,B 两种商品运送到商场,已知甲种货车可装A 种商品30件和B 种商品12件,乙种货车可装A 种商品20件和B 种商品30件,试通过计算帮助供应商设计几种运输用车方案?【解答】解:(1)设购进A 种商品x 件,B 种商品y 件.根据题意得:{120x +100y =78000(135−120)x +(120−100)y =12000, 解得:{x =400y =300. 答:购进A 种商品400件,B 种商品300件.(2)设租用甲种货车a 辆,则租用乙种货车(16﹣a )辆,则{30a +20(16−a)≥40012a +30(16−a)≥300. 解得8≤a ≤10.∵a为整数,∴a=8,9,10.故有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A种车10辆,B种车6辆.答:有3种用车方案:①A种车8辆,B种车8辆;②A种车9辆,B种车7辆;③A 种车10辆,B种车6辆.。

最新人教版数学七年级下册《期末检测试卷》含答案解析

最新人教版数学七年级下册《期末检测试卷》含答案解析

2020-2021学年第二学期期末测试 人教版数学七年级试题 学校________ 班级________ 姓名________ 成绩________ 一、选择题1. 在3.14,2,31-,0.1010010001……,2(2)-这五个数中,无理数的个数是( )A . 1B . 2C . 3D . 42. 下列计算中正确的是( )A . 235+=B . 9=3±C . |12|=21--D . 2(3)3--= 3. 如图,已知直线a b ,被直线C 所截,a b ∥,160∠=︒,则2∠的度数为( ) A . 150︒B . 120︒C . 60︒D . 30 4. 如图,如果B AEF ∠=∠,下面结论正确的是()A . //AD BCB . //AD EFC . //BC EFD . //AB CD5. 在平面直角坐标系中,在第一象限的点是( )A . (1,2)B . (4,2)-C . (4,1)--D . (1,1)-6. 在平面直角坐标系xoy 中,若A 点坐标为(﹣3,3) ,B 点坐标为(2,0) ,则△A B O 的面积为( )A . 15B . 7.5C . 6D . 37. 以下调查中,适宜抽样调查的是( )A . 调查某班学生的身高B . 某学校招聘教师,对应聘人员面试C . 对乘坐某班客机的乘客进行安检D . 调查某批次汽车的抗撞击能力 8. 方程组72194x y x y +=⎧⎨-=⎩的解是( ) A . 16x y =⎧⎨=⎩ B . 31x y =⎧⎨=-⎩C . 40x y =⎧⎨=⎩D . 15x y =-⎧⎨=-⎩ 9. 不等式组2030x x -≤⎧⎨+>⎩的解集是( ) A . 32x -<≤B . 32x -≤<C . 2x ≥D . 3x <10. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A . 8374x y x y -=⎧⎨+=⎩B . 8374y x y x -=⎧⎨-=⎩C . 8374x y x y -=⎧⎨-=⎩D . 8374x y x y +=⎧⎨-=⎩二、填空题11. 计算:36425-+=________ .12. 若点(2,3)A a -在x 轴上,则a =________ . 13. 有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有________个 .14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题加10分,答错(或不答) 一道题扣5分,如果小明参加本次竞赛得分要不低于140分,那么他至少答对________道题 .15. 《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?根据题意,求得大马有________匹 .16. 下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个钝角;④在同一平面内,平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直 .其中真命题的序号是______ .三、解答题17. 计算:2(2)45(15)|25|----+-18. 如图,AD 平分CAB ∠,//DE AC ,130∠=︒,求2∠的度数 .19. 解不等式组:2355623(2)x x x x +≤+⎧⎨--<-⎩20. 解方程组 3{3814x y x y -=-= 21. 为了解某品牌电动汽车的性能,对该批电动汽车进行了抽检,将一次充电后行驶的里程数分为A ,B ,C ,D 四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,并将抽查结果整理后,绘制成如下的两个不完整的统计图,根据所给信息解答以下问题:(1) 补全条形统计图;(2) 扇形统计图中D 等级对应的扇形的圆心角是多少度?(3) 如果该厂每年生产5000辆该品牌电动汽车,估计能达到D 等级的有多少辆?22. 如图,在平面直角坐标系xOy 中,ABC 的三个顶点的坐标分别是(3,0)A -,(6,2)B --,(2,5)C -- .将ABC 向上平移5个单位长度,再向右平移8个单位长度,得到111A B C △ . (1) 在平面直角坐标系xOy 中画出111A B C △;(2) 直接写出点1A ,1B ,1C 的坐标;(3) 求111A B C △的面积 .23. 某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元 .(1) 大樱桃和小樱桃的进价分别是每千克多少元?(2) 该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15% .若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0,1)24. 如图,以直角△A OC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,A ) ,C (B ,0) 满足280a b b -++-=.(1) 点A 的坐标为________;点C 的坐标为________.(2) 已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.A C 的中点D 的坐标是(4,3) ,设运动时间为t 秒.问:是否存在这样的t ,使得△OD P 与△OD Q 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2) 的条件下,若∠D OC =∠D C O ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接C E 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠A C E 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用) .答案与解析一、选择题1. 在3.140.1010010001……这五个数中,无理数的个数是( )A . 1B . 2C . 3D . 4【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.1-2=,0.1010010001……共2个,故选B .【点睛】此题主要考查了无理数的定义.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2. 下列计算中正确的是( )3±C . |11D . 3= 【答案】C【解析】【分析】根据算术平方根和实数的性质逐项判断即可.【详解】解:AB ,故错误;C 、|11=,故正确;D 、3=-,故错误;故选C .【点睛】本题主要考查了算术平方根和实数的性质,解题的关键是掌握运算法则. 3. 如图,已知直线a b ,被直线C 所截,a b ∥,160∠=︒,则2∠的度数为( )A . 150︒B . 120︒C . 60︒D .30【答案】B【解析】【详解】如图,已知A ∥B ,∠1=60°,根据平行线的性质可得∠3=∠1=60°,所以∠2=180°﹣∠1=180°-60°=120°,故选B .4. 如图,如果B AEF ∠=∠,下面结论正确的是()A . //AD BCB . //AD EFC . //BC EFD . //AB CD 【答案】C【解析】【分析】根据同位角相等,两直线平行,可判定B C ∥EF . 【详解】解:∵∠B =∠A EF ,且∠B 和∠A EF 互为同位角, ∴B C ∥EF ,故选C .【点睛】本题考查了平行线的判定,解答本题的关键是掌握平行线的判定定理:同位角相等,两直线平行.5. 在平面直角坐标系中,在第一象限的点是()A .(1,2)B . (4,2)-C . (4,1)--D . (1,1)-【答案】A 【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:A 、(1,2)在第一象限,故本选项符合题意;B 、(-4,2)在第二象限,故本选项不合题意;C 、(-4,-1)在第三象限,故本选项不合题意;D 、(1,-1)在第四象限,故本选项不合题意.故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6. 在平面直角坐标系xoy中,若A 点坐标为(﹣3,3),B 点坐标为(2,0),则△A B O的面积为()A . 15B . 7.5C . 6D . 3【答案】D【解析】【详解】易知点A 到x轴的距离为3,OB =2,∴1332ABOS OB=⨯⨯=,故选D .7. 以下调查中,适宜抽样调查的是()A . 调查某班学生的身高B . 某学校招聘教师,对应聘人员面试C . 对乘坐某班客机的乘客进行安检D . 调查某批次汽车的抗撞击能力【答案】D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【详解】解:A 、调查某班学生的身高,人数不多,适合全面调查,故不符合;B 、某学校招聘教师,对应聘人员面试,比较重要,适合全面调查,故不符合;C 、对乘坐某班客机的乘客进行安检,事关重大,适合全面调查,故不符合;D 、调查某批次汽车的抗撞击能力,具有破坏性,适合抽样调查,故符合;故选:D .【点睛】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8. 方程组72194x yx y+=⎧⎨-=⎩的解是()A .16xy=⎧⎨=⎩B .31xy=⎧⎨=-⎩C .4xy=⎧⎨=⎩D .15xy=-⎧⎨=-⎩【答案】B【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:72194x yx y+=⎧⎨-=⎩①②,①+②×2得:927x=,解得:3x=,代入②中,解得:1y=-,则方程组的解为31 xy=⎧⎨=-⎩,故选:B .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 不等式组2030xx-≤⎧⎨+>⎩的解集是()A . 32x-<≤ B . 32x-≤<C . 2x≥ D . 3x<【答案】A 【解析】【分析】先解出不等式组的解集,再选出正确的答案.【详解】解:解不等式x-2≤0得:x≤2,解不等式x+3>0得:x>-3,∴不等式组的解集是-3<x≤2,故选:A .【点睛】本题主要考查了解一元一次不等式组,解题的关键是掌握不等式组的解法.10. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A .8374x yx y-=⎧⎨+=⎩B .8374y xy x-=⎧⎨-=⎩C .8374x yx y-=⎧⎨-=⎩D .8374x yx y+=⎧⎨-=⎩【答案】A【解析】【分析】根据题中的等量关系,列出方程即可.【详解】由题意可知:如果每人出8钱,则多了3钱,∴83x y -=由如果每人出7钱,则少了4钱,∴74x y +=∴8374x y x y -=⎧⎨+=⎩. 故选:A .【点睛】本题主要考查了二元一次方程的概念和性质,正确掌握二元一次方程的概念和性质是解题的关键.二、填空题11. ________ .【答案】1【解析】【分析】利用立方根和算术平方根的定义分别计算,再相加.=45-+=1,故答案为:1.【点睛】本题考查了实数的混合运算,解题的关键是掌握立方根和算术平方根的求法.12. 若点(2,3)A a -在x 轴上,则a =________ .【答案】3【解析】【分析】直接利用x 轴上点的坐标特点得出答案.【详解】解:∵点A (2,A -3) 在x 轴上,∴A -3=0,解得:A =3.故答案为:3.【点睛】此题主要考查了点的坐标,正确掌握x 轴上点的纵坐标为0是解题关键.13. 有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有________个 .【答案】120 【解析】【分析】取了12个,发现含有两个做标记,则作标记的乒乓球所占的比例是212010=,再根据作标记的共有12个,即可求得乒乓球的总数.【详解】解:∵取了20个,发现含有两个做标记,∴作标记的乒乓球所占的比例是21 2010=,又∵作标记的共有12个,∴乒乓球共有12÷110=120,故答案为:120.【点睛】本题考查了用样本估计总体的思想.其中所抽取的20个是样本,计算其中有标记出现的频率可以近似地估计总体中的频率.14. 某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题加10分,答错(或不答)一道题扣5分,如果小明参加本次竞赛得分要不低于140分,那么他至少答对________道题.【答案】16【解析】【分析】设小明应答对x道题,则答错(或不答)(20-x)道题,根据总分=10×答对题目数-5×答错(或不答)题目数结合得分要不低于140分,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设小明应答对x道题,则答错(或不答)(20-x)道题,依题意,得:10x-5(20-x)≥140,解得:x≥16.故答案为:16.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15. 《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?根据题意,求得大马有________匹.【答案】25【解析】【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组求解.【详解】解:设有x匹大马,y匹小马,根据题意得:100131003x y x y+=⎧⎪⎨+=⎪⎩,解得2575x y=⎧⎨=⎩.答:有25匹大马,75匹小马.故答案为:25.【点睛】本题考查了二元一次方程组的应用,解题关键是弄清题意,选择合适的等量关系,列出方程组.16. 下列命题:①相等的角是对顶角;②互补的角就是平角;③互补的两个角一定是一个锐角,另一个钝角;④在同一平面内,平行于同一条直线的两条直线平行;⑤邻补角的平分线互相垂直.其中真命题的序号是______.【答案】④⑤【解析】【分析】根据对顶角,平角,互补,平行公理,角平分线的定义对各小题分析判断后求解.【详解】解:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还要考虑位置;②互补的角就是平角,错误,因为互补的角既要考虑大小,还要考虑位置;③互补的两个角一定是一个为锐角,另一个为钝角,错误,两个直角也可以;④在同一平面内,同平行于一条直线的两条直线平行,是平行公理,正确;⑤邻补角的平分线互相垂直,正确.所以只有④⑤命题正确,故答案为:④⑤.【点睛】本题考查了命题与定理,解决本题的关键是熟记对顶角相等、互为补角的定义、平行线的平行公理.三、解答题17. 2--+-(2)45(15)|25【答案】1【解析】【分析】分别化简各项,计算乘法,最后合并.【详解】解:2(2)45(15)|25|----+-=245552--++-=1【点睛】本题考查了实数的混合运算,二次根式的混合运算,解题的关键是掌握运算法则和运算顺序. 18. 如图,AD 平分CAB ∠,//DE AC ,130∠=︒,求2∠的度数 .【答案】60°【解析】【分析】根据角平分线的定义得到∠C A B =2∠1=60°,由平行线的性质即可得到结论.【详解】解:∵A D 平分∠C A B ,∴∠C A B =2∠1=60°,∵D E ∥A C ,∴∠2=∠C A B =60°.【点睛】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.19. 解不等式组:2355623(2)x x x x +≤+⎧⎨--<-⎩ 【答案】-1<x ≤2【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:2355623(2)x x x x +≤+⎧⎨--<-⎩①②, 解不等式①得:x ≤2,解不等式②得:x >-1,∴所以不等式组的解集是-1<x ≤2.【点睛】本题考查了解一元一次不等式组,解集规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20. 解方程组3{3814 x yx y-=-=【答案】21 xy=⎧⎨=-⎩【解析】【详解】解:由①得③把③代入②得把代人③得∴原方程组的解为21. 为了解某品牌电动汽车的性能,对该批电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,并将抽查结果整理后,绘制成如下的两个不完整的统计图,根据所给信息解答以下问题:(1)补全条形统计图;(2)扇形统计图中D等级对应的扇形的圆心角是多少度?(3)如果该厂每年生产5000辆该品牌电动汽车,估计能达到D等级的有多少辆?【答案】(1)见解析;(2)72°;(3)1000辆【解析】【分析】(1)先利用B 等级的数量和它所占的百分比可计算出抽检的电动汽车的总数,然后计算出A 等级电动汽车的数量,再补全条形统计图;(2)用D 等级所占的百分比乘以360°可得D 等级对应的扇形的圆心角;(3) 利用样本估计总体,用样本中D 等级所占的百分比乘以5000即可.【详解】解:(1) 抽检的电动汽车的总数为30÷30%=100(辆) , A 等级电动汽车的数量为100-30-40-20=10(辆) ,条形统计图为:(2) 20÷100×360°=72°,答:扇形统计图中D 等级对应的扇形的圆心角是72°;(3) 20÷100×5000=1000, 答:估计能达到D 等级的车辆有1000辆.【点睛】本题考查了条形统计图和扇形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.22. 如图,在平面直角坐标系xOy 中,ABC 的三个顶点的坐标分别是(3,0)A -,(6,2)B --,(2,5)C -- .将ABC 向上平移5个单位长度,再向右平移8个单位长度,得到111A B C △ .(1) 在平面直角坐标系xOy 中画出111A B C △;(2) 直接写出点1A ,1B ,1C 的坐标;(3) 求111A B C △的面积 .【答案】(1) 见解析;(2) 1(5,5)A ,1(2,3)B ,1(6,0)C ;(3) 172【解析】【分析】(1) 分别将三个顶点分别向右平移8个单位长度,再向上平移5个单位长度得到对应点,再首尾顺次连接即可;(2) 根据以上所作图形可得答案;(3) 利用割补法求解即可.【详解】解:(1) 如图所示,△111A B C 即为所求.(2) 由图知,1(5,5)A ,1(2,3)B ,1(6,0)C ; (3) △111A B C 的面积为11117452315342222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查作图-平移变换,解题的关键是掌握平移变换的定义和性质,并据此得出变换后的对应点.23. 某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元 .(1) 大樱桃和小樱桃的进价分别是每千克多少元?(2) 该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15% .若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0,1)【答案】(1) 小樱桃的进价为每千克10元,大樱桃的进价为每千克30元;(2) 43.8元【解析】【分析】(1) 根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出方程求出答案;(2) 先求出第一次所赚钱数,再根据第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【详解】解:(1) 设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,根据题意可得: 200200800020x y y x +=⎧⎨-=⎩, 解得:1030x y =⎧⎨=⎩, ∴小樱桃的进价为每千克10元,大樱桃的进价为每千克30元;(2) 200×[(40-30) +(16-10) ]=3200(元) , ∴第一次销售完后,该水果商共赚了3200元;设第二次大樱桃的售价为a 元/千克,(115%)20016(15%)2008000320090%a -⨯⨯+-⨯-≥⨯, 解得:83219a ≥≈43.8, 答:大樱桃的售价最少应为43.8元/千克.【点睛】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.24. 如图,以直角△A OC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,A ) ,C (B ,0) 满足280a b b -++-=.(1) 点A 的坐标为________;点C 的坐标为________.(2) 已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.A C 的中点D 的坐标是(4,3) ,设运动时间为t 秒.问:是否存在这样的t ,使得△OD P 与△OD Q 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2) 的条件下,若∠D OC =∠D C O ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接C E 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠A C E 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用) .【答案】(1) (0,6) ,(8,0) ;(2) 存在t=2.4时,使得△OD P 与△OD Q 的面积相等;(3) 2∠GOA +∠A C E=∠OHC ,理由见解析.【解析】【分析】(1) 根据算术平方根的非负性,绝对值的非负性即可求解;(2) 根据运动速度得到OQ=t ,OP=8-2t ,根据△OD P 与△OD Q 的面积相等列方程求解即可;(3) 由∠A OC =90°,y 轴平分∠GOD 证得OG ∥A C ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC =∠AC E ,∠FHO=∠GOD ,从而∠GOD +∠A C E=∠FHO+∠FHC ,即可证得2∠GOA +∠A C E=∠OHC .【详解】(1) 80b +-=,∴A -B +2=0,B -8=0,∴A =6,B =8,∴A (0,6) ,C (8,0) ;故答案为:(0,6) ,(8,0) ;(2) 由(1) 知,A (0,6) ,C (8,0) ,∴OA =6,OB =8,由运动知,OQ=t ,PC =2t ,∴OP=8-2t ,∵D (4,3) , ∴114222ODQ D S OQ x t t =⨯=⨯=△, 1182312322ODP D S OP y t t =⨯=-⨯=-△(), ∵△OD P 与△OD Q 的面积相等,∴2t=12-3t ,∴t=2.4,∴存在t=2.4时,使得△OD P与△OD Q的面积相等;(3)2∠GOA +∠A C E=∠OHC ,理由如下:∵x轴⊥y轴,∴∠A OC =∠D OC +∠A OD =90°,∴∠OA C +∠A C O=90°.又∵∠D OC =∠D C O,∴∠OA C =∠A OD .∵x轴平分∠GOD ,∴∠GOA =∠A OD .∴∠GOA =∠OA C .∴OG∥A C ,如图,过点H作HF∥OG交x轴于F,∴HF∥A C ,∴∠FHC =∠A C E.∵OG∥FH,∴∠GOD =∠FHO,∴∠GOD +∠A C E=∠FHO+∠FHC ,即∠GOD +∠A C E=∠OHC ,∴2∠GOA +∠A C E=∠OHC .【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.。

2020届巴中市南江县七年级下册期末数学试卷(有答案)(已审阅)

2020届巴中市南江县七年级下册期末数学试卷(有答案)(已审阅)

四川省巴中市南江县七年级下学期期末考试数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=.【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2019=22018.故答案为:22018.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2018+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a 与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2018+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。

2020—2021年人教版七年级数学下册期末考试卷含答案

2020—2021年人教版七年级数学下册期末考试卷含答案

2020—2021年人教版七年级数学下册期末考试卷含答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12.解不等式组:()41710853x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.6.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)17、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.18、不等式组的所有非负整数解为:0,1,2,3.19、(1)证明见解析;(2)105°20、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.22、(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.。

2020-2021学年人教版七年级下期末考试数学试题及答案

2020-2021学年人教版七年级下期末考试数学试题及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分20分,每小题2分)1.(2分)点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P(a,b)在第四象限,且|a|>|b|,∴a>0,b<0,a+b>0,a﹣b>0,∴点Q(a+b,a﹣b)在第一象限.故选:A.2.(2分)在下列考察中,是抽样调查的是()A.了解全校学生人数B.调查某厂生产的鱼罐头质量C.调查广州市出租车数量D.了解全班同学的家庭经济状况【解答】解:A.了解全校学生人数,适合普查,故本选项不合题意;B.调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C.调查广州市出租车数量,适合普查,故本选项不合题意;D.了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B.3.(2分)射箭时,新手的成绩往往不太稳定.小明和小华练习射箭,当一局12支箭全部射完以后两人的成绩如图所示,根据图中信息,判断两人成绩的方差较小的是()A.小明的方差B.小华的方差C.两人方差一样大D.无法判断两人方差大小【解答】解:由图可以看出,两人的成绩都在8的上下波动,小明波动幅度较小,小华波动幅度较大,故小明的方差较小,小华的方差较大. 故选:A .4.(2分)下列各式中,正确的是( ) A .√(−4)2=−4B .√83=2C .−√16=4D .±√16=4【解答】解:√(−4)2=4,因此选项A 不正确;√83=2,因此选项B 正确;−√16=−4,因此选项C 不正确; ±√16=±4,因此选项D 不正确; 故选:B .5.(2分)如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【解答】解: ∵AB ∥CD , ∴∠C =∠1=45°, ∵∠3是△CDE 的一个外角, ∴∠3=∠C +∠2=45°+35°=80°, 故选:D .6.(2分)已知a <b ,则下列四个不等式中,不正确的是( ) A .a +2<b +2 B .ac 2<bc 2C .12a <12bD .﹣2a ﹣1>﹣2b ﹣1【解答】解:A .∵a <b ,∴a +2<b +2,故本选项不符合题意; B .∵a <b ,∴ac 2≤bc 2,故本选项符合题意;C .∵a <b ,∴12a <12b ,故本选项不符合题意;D .∵a <b , ∴﹣2a >﹣2b ,∴﹣2a ﹣1>﹣2b ﹣1,故本选项不符合题意; 故选:B .7.(2分)已知x ,y 为正整数,且x <√8<y ,则y x 的最小值为( ) A .1B .3C .4D .9【解答】解:∵x ,y 为正整数,且x <√8<y , ∴x 最小为1,y 最小为3, ∴y x 的最小值为31=3, 故选:B .8.(2分)如图,三角形ABC 的顶点坐标分别是A (4,3),B (3,1),C (1,2)若将三角形ABC 向左移动3个单位,向下移动2个单位得三角形A 1B 1C 1,则A 1,B 1,C 1对应的坐标分别为( )A .(7,5)、(6,3)、(4,4)B .(7,1)、(6,﹣1)、(4,0)C .(1,1)、(0,﹣1)、(﹣2,0)D .(1,5)、(0,3)、(﹣2,4)【解答】解:如图,△A 1B 1C 1即为所求,则A 1,B 1,C 1对应的坐标分别为(1,1)、(0,﹣1)、(﹣2,0), 故选:C .9.(2分)下列命题为真命题的是()A.两个锐角之和一定是钝角B.两直线平行,同旁内角相等C.如果x2>0,那么x>0D.平行于同一条直线的两条直线平行【解答】解:A、20°和30°都是锐角,20°+30°=50°,50°是锐角,∴两个锐角之和一定是钝角,是假命题;B、两直线平行,同旁内角互补,不一定相等,∴两直线平行,同旁内角相等,是假命题;C、(﹣1)2>0,﹣1<0,∴如果x2>0,那么x>0,是假命题;D、平行于同一条直线的两条直线平行,是真命题;故选:D.10.(2分)如图所示是最近微信朋友圈常被用来“醒醒盹,动动脑”的图片,请你一定认真观察,动动脑子想一想,图中的?表示什么数()A.25B.15C.12D.14【解答】解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:{6x =302x +2y =20y +4z =13,解得{x =5y =5z =2,故x +yz =5+5×2=15. 故选:B .二.填空题(共6小题,满分12分,每小题2分)11.(2分)某次知识竞赛共有20道题,每答对一题得10分,答错或不答都扣5分,娜娜得分要不低于80分,设她答对了x 道题,则根据题意可列不等式为 10x ﹣5(20﹣x )≥80 .【解答】解:设她答对了x 道题,则答错或不答的有(20﹣x )道, 由题意得:10x ﹣5(20﹣x )≥80, 故答案为:10x ﹣5(20﹣x )≥80. 12.(2分)若关于x 的不等式组{x <4x <m的解集是x <4,则P (m +1,2﹣m )在第 四 象限.【解答】解:∵关于x 的不等式组{x <4x <m的解集是x <4,∴m ≥4.∴m +1>0,20m <0,∴P (m +1,2﹣m )在第四象限. 故答案为:四.13.(2分)如图:已知直线AB 、CD 交于点O ,EO ⊥CD ,∠DOB =35°,则∠EOA = 55 °.【解答】解:∵∠DOB =35°, ∴∠BOD =∠AOC =35°, ∵EO ⊥CD , ∴∠EOC =90°,∴∠AOE =∠EOC ﹣∠AOC =90°﹣35°=55°, 故答案为:55.14.(2分)如图,将小王某月手机费中各项费用的情况制成扇形统计图,表示短信费的扇形的圆心角等于 61.2 度.【解答】解:360°×(1﹣4%﹣45%﹣34%) =360°×17% =61.2°, 故答案为:61.2.15.(2分)若点P (a +1,2a +3)在平面直角坐标系的x 轴上,则a 的值为 ﹣1.5 . 【解答】解:∵点P (a +1,2a +3)在平面直角坐标系的x 轴上, ∴2a +3=0, 解得a =﹣1.5. 故答案为:﹣1.5. 16.(2分)√12+√13=7√33. 【解答】解:√12+√13=2√3+√33=7√33, 故答案为:7√33. 三.解答题(共8小题,满分68分)17.(8分)计算:(1)√−643−|2−√5|−√(−3)2+2√5; (2)3√5−|√6−√5|.【解答】解:(1)√−643−|2−√5|−√(−3)2+2√5 =﹣4−√5+2﹣3+2√5 =√5−5.(2)3√5−|√6−√5| =3√5−√6+√5 =4√5−√6. 18.(8分)解方程组(1){2x −5y =−3−4x +y =−3;(2){4(x −y −1)=3(1−y)−2x 2+y 3=2;【解答】解:(1){2x −5y =−3①−4x +y =−3②,①×2+②得:﹣9y =﹣9, 解得:y =1,把y =1代入②得:x =1, 则方程组的解为{x =1y =1;(2)方程组整理得:{4x −y =5①3x +2y =12②,①×2+②得:11x =22, 解得:x =2,把x =2代入①得:y =3, 则方程组的解为{x =2y =3.19.(8分)解不等式(组) (1)解不等式x +x+13≤1−x−146,并把解集在数轴上表示出来. (2)解不等式组{8−x >3x5x+13≥x −1,并写出它的所有整数解.【解答】解:(1)去分母,得:6x+2(x+1)≤6﹣(x﹣14),去括号,得:6x+2x+2≤6﹣x+14,移项,得:6x+2x+x≤6+14﹣2,合并同类项,得:9x≤18,系数化为1,得:x≤2,将解集表示在数轴上如下:;(2){8−x>3x①5x+13≥x−1②,解不等式①得:x<2,解不等式②得:x≥﹣2,则不等式组的解集为﹣2≤x<2,∴不等式组的整数解为﹣2、﹣1、0、1.20.(8分)某供电公司为了解2020年4月份某小区家庭月用电情况,随机调查了该小区部分家庭,并将调查数据进行整理,绘制了如下尚不完整的统计图表.调查结果统计表:月用电量x(千瓦时)频数(户)频率0<x≤2020.0420<x≤401240<x≤60a0.3660<x≤8080.1680<x≤1006b100<x≤1200.08合计c1根据以上信息解答下列问题:(1)统计表中,a=18b=0.12c=50;(2)请把频数分布直方图补充完整;(3)求该小区月用电量超过80千瓦时的家庭数占被调查家庭总数的百分比;(4)若该小区有1000户家庭,根据调查数据估计该小区月用电量不超过60千瓦时的家庭大约有多少户?【解答】解:(1)c=2÷0.04=50,b=6÷50=0.12,a=50×0.36=18,故答案为:18,0.12,50;(2)50×0.08=4,补全频数分布直方图如下:(3)(6+4)÷50×100%=20%,答:用电量超过80千瓦时的家庭数占被调查家庭总数的20%;(4)1000×2+12+1850=640(户),答:该小区月用电量不超过60千瓦时的家庭大约有640户.21.(8分)如图,直线AD∥BC,AB∥DC,∠1=120°,求∠2的度数.【解答】解:∵直线AD∥BC,AB∥DC,∴∠1﹣∠3,∠3+∠2=180°,∵∠1=120°,∴∠3=120°,∠2=60°,即∠2的度数是60°.22.(8分)如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A (1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.【解答】解:(1)建立直角坐标系如图所示:图书馆(B )位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C 如图所示,观察可得,△ABC 中BC 边长为5,BC 边上的高为4,所以△ABC 的面积为=12×5×4=10.23.(10分)某电器超市销售每台进价分别为2000元、1700元的A 、B 两种型号的空调,如表是近两周的销售情况:销售时段销售数量 销售款 A 种型号B 种型号 第一周4台 5台 20500元 第二周 5台 10台 33500元 (1)求A 、B 两种型号的空调的销售单价;(2)求近两周的销售利润.【解答】解:(1)设A 型号空调的销售单价为x 元,B 型号空调的销售单价为y 元,依题意可得:{4x +5y =205005x +10y =33500, 解得:{x =2500y =2100, 答:A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元.(2)由(1)题知A 型号空调的销售单价为2500元,B 型号空调的销售单价为2100元, 则销售总利润为:(2500﹣2000)(4+5)+(2100﹣1700)(5+10)=10500(元); 答:近两周的销售利润为10500元.24.(10分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB =∠EHF ,∠C =∠D .试说明:∠A =∠F .请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB =∠DGF ( 对顶角相等 )∠AGB =∠EHF (已知)∴∠DGF =∠EHF ( 等量代换 )∴ BD ∥ CE ( 同位角相等,两直线平行 )∴∠D = ∠CEF ( 两直线平行,同位角相等 )∵∠D =∠C (已知)∴ ∠CEF =∠C ( 等量代换 )∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)【解答】解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。

2020-2021学年四川省巴中市七年级(下)期末数学试卷

2020-2021学年四川省巴中市七年级(下)期末数学试卷

2020-2021学年四川省巴中市七年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.方程2a=−4的解是()D. a=−6A. a=2B. a=−2C. a=−122.以下四个标志中,是轴对称图形的是()A. B. C. D.3.根据不等式的性质,下列变形正确的是()A. 由a>b得ac2>bc2B. 由ac2>bc2得a>ba>2得a<2 D. 由2x+1>x得x>1C. 由−124.人字梯中间一般会设计一“拉杆”,这样做的道理是()A. 两点之间,线段最短B. 垂线段最短C. 两直线平行,内错角相等D. 三角形具有稳定性5.如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A. 4B. 6C. 8D. 106.二元一次方程2x+3y=11的正整数解有()A. 2组B. 3组C. 4组D. 5组7.如图,在△ABC中,∠BAC=65°,∠C=20°,将△ABC绕点A逆时针旋转n度(0<n<180)得到△ADE,若DE//AB,则n的值为()A. 65B. 75C. 85D. 1308. 已知等腰三角形的两边长分别为a ,b ,且a ,b 满足√2a −3b +5+(2a +3b −13)2=0,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或109. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{2x +3y =27x +2y =14,类似地,图2所示的算筹图我们可以表述为( ) A. {2x +y =164x +3y =22B. {2x +y =164x +3y =27 C. {2x +y =114x +3y =27 D. {2x +y =114x +3y =22 10. 如图,已知四边形ABCD 中,∠B =98°,∠D =62°,点E 、F 分别在边BC 、CD 上.将△CEF 沿EF 翻折得到△GEF ,若GE//AB ,GF//AD ,则∠C 的度数为( )A. 80°B. 90°C. 100°D. 110°11. 关于x 的不等式组{x −a ≥03−2x >−1的整数解共有5个,则a 的取值范围是( ) A. a =−3 B. −4<a <−3 C. −4≤a <−3 D. −4<a ≤−312. 在直角三角形ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AC 于点E ,AD 、BE相交于点F ,过点D 作DG//AB ,过点B 作BG ⊥DG 交DG 于点G.下列结论:①∠AFB =135°;②∠BDG =2∠CBE ;③BC 平分∠ABG ;④∠BEC =∠FBG.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13. 若一个正多边形的一个内角等于140°,那么这个多边形是正______ 边形.14. 如图,已知△ABC≌△ADE ,若AB =7,AC =3,则BE 的值为______.15. 若关于x 的方程(k −2)x |k−1|+5k +1=0是一元一次方程,则k = ______ .16. 若不等式组{x −b <0x +a >0的解集为2<x <3,则(a +b)2021=______. 17. 按下面的程序计算,若开始输入的x 值为正数,最后输出的结果为53,请写出符合条件的所有x 的值______.18. 如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点相遇时,它们同时停止运动.设Q 点运动的时间为x(秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值范围是______.三、解答题(本大题共8小题,共84.0分)19. (1)解方程:2+5x =8+3x .(2)解不等式组{2(x −1)≥3x −4①x+12≥3−x 4−1②,并把解集在数轴上表示出来.20. 甲、乙两位同学在解关于x 、y 的方程组{2x +ay =1bx −y =2时,甲同学看错a 得到方程的解为{x =3y =4,乙同学看错b 得到方程组的{x =2y =−3,求x +y 的值.21. 如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得C 1P +C 2P 的值最小.22.已知关于x、y的方程组{x−y=11−mx+y=7−3m中,x为非负数、y为负数.(1)试求m的取值范围;(2)当m取何整数时,不等式3mx+2x>3m+2的解集为x<1.23.如图,在△ABC中,CM⊥AB于点M,∠ACB的平分线CN交AB于点N,过点N作ND//AC交BC点D.若∠A=78°,∠B=50°.求:(1)∠CND的度数;(2)∠MCN的度数.24.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的2,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费3用最低?25.定义:对于任何有理数m,符号【m】表示不大于m的最大整数.例如:【4.5】=4,【8】=8,【−3.2】=−4.(1)填空:【π】=______,【−2.1】+【5.1】=______.(2)求方程4x−3【x】+5=0的整数解;(3)如果【5−2x】=−4,求满足条件的x的取值范围.326.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:∠MCP=90°−1∠A;2(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.答案和解析1.【答案】B【解析】解:2a=−4,方程两边同时除以2,得a=−2.故选:B.根据等式的性质,把方程的系数化为1即可.本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.【答案】A【解析】解:选项B,C,D不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以这些图形不是轴对称图形;选项A能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以这个图形是轴对称图形;故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】B【解析】解;A、a>b,c=0时,ac2=bc2,故A不符合题意;B、由ac2>bc2得a>b,故B符合题意;a>2得a<−4,故C不符合题意;C、由−12D、由2x+1>x得x>−1,故D不符合题意;故选:B.根据不等式的性质,可得答案.本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.4.【答案】D【解析】【分析】此题考查了三角形的性质,关键是根据三角形的稳定性解答.根据三角形的稳定性解答即可.【解答】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.5.【答案】C【解析】【分析】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°−90°)÷2=135°,则135°n=(n−2)180°,解得n=8.故选C.6.【答案】A,【解析】解:原方程可变形为:x=11−3y2由于方程的解是正整数,所以y为不大于3的奇数.当y=1时,x=4;当y=3时,x=1;所以满足条件的正整数有两组.故选:A.先变形二元一次方程,用含一个字母的代数式表示另一个字母,根据奇偶性,可得结论.本题考查了二元一次方程,理解方程解的意义是解决本题的关键.解决本题亦可通过试验的办法.7.【答案】C【解析】解:∵在△ABC 中,∠BAC =65°,∠C =20°,∴∠ABC =180°−∠BAC −∠C =180°−65°−20°=95°,∵将△ABC 绕点A 逆时针旋转n 角度(0<n <180°)得到△ADE ,∴∠ADE =∠ABC =95°,∵DE//AB ,∴∠ADE +∠DAB =180°,∴∠DAB =180°−∠ADE =85°,∴旋转角n 的度数是85°,故选:C .根据三角形内角和定理求出∠ABC ,根据旋转得出∠EDA =∠ABC =95°,根据平行四边形的性质求出∠DAB 即可.本题考查了平行线的性质,三角形内角和定理,旋转的性质等知识点,能根据旋转得出∠ADE =∠ABC =95°是解此题的关键.8.【答案】A【解析】解:∵√2a −3b +5+(2a +3b −13)2=0,∴{2a −3b +5=02a +3b −13=0解得:{a =2b =3, 当a 为底时,三角形的三边长为2,3,3,则周长为8;当b 为底时,三角形的三边长为2,2,3,则周长为7.故选:A .首先根据√2a −3b +5+(2a +3b −13)2=0求得a 、b 的值,然后求得等腰三角形的周长即可.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,3分别作为腰,由三边关系定理,分类讨论.9.【答案】C【解析】解:第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:{2x +y =114x +3y =27, 故选:C .由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.10.【答案】C【解析】【分析】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE//AB ,GF//AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =12×(360°−98°−62°)=100°,故选C . 11.【答案】D【解析】解:{x −a ≥0①3−2x >−1②, 解①得:x ≥a ,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则−4<a≤−3,故选:D.首先解不等式组确定不等式组的解集,然后根据不等式组的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG//AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C.根据三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等.13.【答案】九【解析】【分析】本题考查了多边形的内角与外角,解决本题的关键是由外角和求正多边形的边数.一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°−140°=40°,∵多边形外角和为360°,∴360°÷40°=9,则这个多边形是九边形.故答案为九.14.【答案】4【解析】解:∵△ABC≌△ADE ,∴AE =AC ,∵AB =7,AC =3,∴BE =AB −AE =AB −AC =7−3=4.故答案为:4.根据△ABC≌△ADE ,得到AE =AC ,由AB =7,AC =3,根据BE =AB −AE 即可解答.本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.15.【答案】0【解析】解:根据题意得:{|k −1|=1k −2≠0, 解得:k =0,故答案为:0.根据x 的次数为1,x 的系数不等于0,计算即可.本题考查了一元一次方程的定义,解题时注意x的系数不等于0.16.【答案】1【解析】解:由x−b<0,得:x<b,由x+a>0,得:x>−a,∵不等式组的解集为2<x<3,∴−a=2,b=3,则a=−2,∴(a+b)2021=(−2+3)2021=12021=1,故答案为:1.分别求出每一个不等式的解集,根据不等式组的解集得出a、b的值,代入计算即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【答案】1、5、17【解析】解:根据题意得:3x+2=53,解得,x=17.根据题意得:3x+2=17,解得,x=5.根据题意得:3x+2=5,解得,x=1.故答案为:1、5、17.根据输出结果,由运算顺序,列一元一次方程求出结果.本题考查有理数的混合运算,掌握用方程的思想解决此题,转化为一元一次方程解决此题是关键.18.【答案】0<x≤4或x=23【解析】解:当点P 在AB 上时,点Q 在AD 上时,此时△APQ 为直角三角形,则0<x ≤43;当点P 在BC 上时,点Q 在AD 上时,此时△APQ 为锐角三角形,则43<x <2;当点P 在C 处,此时点Q 在D 处,此时△APQ 为直角三角形,则x =2时;当点P 在CD 上时,点Q 在DC 上时,此时△APQ 为钝角三角形,则2<x <3.故答案是:0<x ≤43或x =2.由题意可得当0<x ≤43△AQM 是直角三角形,当 43<x <2时△AQM 是锐角三角形,当x =2时,△AQM 是直角三角形,当2<x <3时△AQM 是钝角三角形.本题主要考查矩形的性质和列代数式的知识点,解答本题的关键是熟练掌握矩形的性质,还要熟练掌握三角形形状的判断,此题难度一般.19.【答案】解:(1)移项,得:5x −3x =8−2,合并同类项,得:2x =6,系数化为1,得:x =3;(2)解不等式①,得:x ≤2,解不等式②,得:x ≥−1,则不等式组的解集为−1≤x ≤2,将不等式组的解集表示在数轴上如下:【解析】(1)移项、合并同类项、系数化为1即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:把{x =3y =4代入bx −y =2得:3b −4=2,解得:b =2,把{x =2y =−3代入2x +ay =1得:4−3a =1, 解得:a =1,∴原方程组为{2x +y =12x −y =2, 解得:{x =34y =−12, ∴x +y =34−12=14.【解析】把{x =3y =4代入bx −y =2可求出b 的值,把{x =2y =−3代入2x +ay =1可求出a 的值,把a 、b 的值代入原方程组即可求出x 、y 的值,进而求出x +y 的值.本题考查了二元一次方程组的解法,正确理解题意先求出a 、b 的值是解决问题的关键.21.【答案】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)连接连接C 1C 2交直线m 于点P ,则点P 即为所求点.【解析】本题考查的是作图−轴对称变换和作图−平移变换.(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)根据轴对称的性质画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)连接C 1C 2交直线m 于点P ,则点P 即为所求点.22.【答案】解:(1){x −y =11−m①x +y =7−3m②, ①+②得:2x =18−4m ,x =9−2m ,①−②得:−2y =4+2m ,y =−2−m ,∵x 为非负数、y 为负数,∴{9−2m ≥0−2−m <0,解得:−2<m ≤92; (2)3mx +2x >3m +2,(3m +2)x >3m +2,∵不等式3mx +2x >3m +2的解为x <1,∴3m +2<0,∴m <−23,由(1)得:−2<m ≤92,∴−2<m <−23, ∵m 整数,∴m =−1;即当m =−1时,不等式3mx +2x >3m +2的解为x <1.【解析】(1)把m 看作常数,解方程组,根据x 为非负数、y 为负数,列不等式组解出即可;(2)根据不等式3mx +2x >3m +2的解为x <1,求出m 的取值范围,综合①即可解答.本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是求出方程组的解集,同时学会利用参数解决问题.23.【答案】(1)解:在△ABC 中,∵∠A =78°,∠B =50°,∴∠ACB =52°,又∵CN 平分∠ACB ,∴∠ACN =12∠ACB =26°, ∵ND//AC ,∴∠CND =∠ACN =26°.(2)在△ACN 中,∠ANC =180°−(∠A +∠ACN)=180°−(78°+26°)=76°,又∵CM ⊥AB ,∴∠MCN =90°−76°=14°.【解析】(1)求出∠ACN ,利用平行线的性质解决问题即可.(2)利用直角三角形的两锐角互余解决问题即可.本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)设A 型每套x 元,则B 型每套(x +40)元.由题意得:4x +5(x +40)=1820.解得:x =180,x +40=220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元;(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200−a)套.由题意得:{a ≤23(200−a)180a +220(200−a)≤40880, 解得:78≤a ≤80.∵a 为整数,∴a =78或79或80.∴共有3种方案,设购买课桌凳总费用为y 元,则y =180a +220(200−a)=−40a +44000.∵−40<0,y 随a 的增大而减小,∴当a =80时,总费用最低,此时200−a =120,即总费用最低的方案是:购买A 型80套,购买B 型120套.【解析】此题主要考查了一元一次方程的应用,不等式组的应用以及一次函数的性质,根据已知得出不等式组,求出a 的值是解题关键.(1)根据购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,以及购买4套A 型和5套B 型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,得出不等式组,求出a 的值即可,再利用一次函数的增减性得出答案即可.25.【答案】3 2【解析】解:(1)由题意得:【π】=3,【−2.1】+【5.1】=−3+5=2,故答案为3,2;(2)∵4x −3【x 】+5=0,∴【x 】=4x+53,∴x −1<4x+53≤x , 解得不等式组的解集为:−8<x ≤−5,∵【x 】是整数,设4x +5=3n(n 是整数),∴x =3n−54,∴−8<3n−54≤−5, 解得不等式组的解集为:−9<n ≤−5,∵n 是整数,∴n 为−8,−7,−6,−5,∴当n =−5,方程的整数解为x =−5;(3)根据题意得:−4≤5−2x 3<−3, 解得:7<x ≤172,则满足条件的x 的取值范围为7<x ≤172. (1)根据题目所给信息求解;(2)整理方程得【x 】=4x+53,根据定义得出x −1<4x+53≤x ,解不等式组求得x 的取值范围,由[x]是整数,设4x +5=3n(n 是整数)得到x =3n−54,则−8<3n−54≤−5,解得−9<n ≤−5,即可求得当n =−5,方程的整数解为x =−5;(3)根据题意得出:−4≤5−2x 3<−3,求出x 的取值范围.本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.26.【答案】(1)解:∵∠A:∠ABC=3:4,∴可设∠A=3k,∠ABC=4k,又∵∠ACD=∠A+∠ABC=140°,∴3k+4k=140°,解得k=20°.∴∠A=3k=60°.(2)证明:∵∠MCD是△MBC的外角,∴∠M=∠MCD−∠MBC.同理可得,∠A=∠ACD−∠ABC.∵MC、MB分别平分∠ACD、∠ABC,∴∠MCD=12∠ACD,∠MBC=12∠ABC,∴∠M=12(∠ACD−∠ABC)=12∠A.∵CP⊥BM,∴∠PCM=90°−∠M=90°−12∠A.(3)猜想∠BQC=90°+14∠A.证明如下:∵BQ平分∠CBN,CQ平分∠BCN,∴∠QBC=12∠CBN,∠QCB=12∠BCN,∴∠Q=180°−12(∠CBN+∠BCN)=12(180°−∠N)=90°+12∠N.由(2)知:∠M=12∠A.又由轴对称性质知:∠M=∠N,∴∠BQC=90°+14∠A.【解析】(1)先根据∠A:∠ABC=3:4,设∠A=3k,∠ABC=4k,再由三角形外角的性质求出k的值,进而可得出结论;(2)根据三角形外角的性质得出∠M=∠MCD−∠MBC,∠A=∠ACD−∠ABC.再由MC、MB分别平分∠ACD、∠ABC得出∠MCD=12∠ACD,∠MBC=12∠ABC,故∠M=12(∠ACD−∠ABC)=12∠A.根据CP⊥BM即可得出结论;(3)根据BQ平分∠CBN,CQ平分∠BCN可知∠QBC=12∠CBN,∠QCB=12∠BCN,再根据三角形内角和定理可知,∠Q=180°−12(∠CBN+∠BCN)=12(180°−∠N)=90°+12∠N.由(2)知:∠M=12∠A.根据轴对称性质知:∠M=∠N,由此可得出结论.本题考查的是三角形内角和定理,在解答此题时要注意轴对称的性质及翻折变换、三角形外角的性质及角平分线的性质等知识的灵活运用,难度适中.第21页,共21页。

2020-2021学年人教版七年级下期末考试数学试卷及答案

2020-2021学年人教版七年级下期末考试数学试卷及答案

2020-2021学年七年级下期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分) 1.(3分)√64的立方根是( ) A .±2B .±4C .4D .2【解答】解:√64=8,8的立方根是2, 故选:D .2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A .﹣2<x <2B .x <2C .x ≥﹣2D .x >2【解答】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x >2, 故选:D .3.(3分)如图,在阴影区域的点是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(1,﹣2)【解答】解:由图可知,阴影区域在第二象限,所以,各选项点的坐标中,在阴影区域的点是(﹣1,2). 故选:B .4.(3分)下列实数中是无理数的是( ) A .23B .√2C .3.1D .0【解答】解:A 、23是分数,属于有理数,故本选项不合题意; B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意. 故选:B .5.(3分)如图,一个倾斜的天平两边分别放有小立方体和砝码,每个砝码的质量都是5克,每个小立方体的质量都是m克,则m的取值范围为()A.m<15B.m>15C.m<152D.m>152【解答】解:由题意得:2m>3×5,解得:m>15 2.故选:D.6.(3分)下列四个图形中,BE不是△ABC的高线的图是()A.B.C.D.【解答】解:BE不是△ABC的高线的图是C,故选:C.7.(3分)如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有()A.3个B.4个C.5个D.6个【解答】解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.8.(3分)下列语句是命题的是()A.你喜欢数学吗?B.小明是男生C.大庙香水梨D.出门戴口罩【解答】解:A、你喜欢数学吗?是疑问句,没有对事情做出判断,不是命题,不符合题意;B、小明是男生是命题,符合题意;C、大庙香水梨是陈述性的句子,没有做出判断,不是命题,不符合题意;D、出门戴口罩是陈述性的句子,没有做出判断,不是命题,不符合题意;故选:B.9.(3分)某公司的生产量在1~7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.2~6月生产量逐月减少B.1月份生产量最大C.这七个月中,每月的生产量不断增加D.这七个月中,生产量有增加有减少【解答】解:观察折线图可知,这七个月中,每月的生产量不断增加,故选:C.10.(3分)若关于x的不等式3x+1<m的正整数解是1,2,3,则整数m的最大值是()A.10B.11C.12D.13【解答】解:解不等式3x+1<m,得x<13(m﹣1).∵关于x的不等式3x+1<m的正整数解是1,2,3,∴3<13(m﹣1)≤4,∴10<m≤13,∴整数m的最大值是13.故选:D.二.填空题(共8小题,满分18分)11.(2分)√2−1的相反数是1−√2.【解答】解:√2−1的相反数是1−√2,故答案为:1−√2.12.(2分)为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序③④②①.(只填序号)【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.13.(3分)欢欢观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是23°.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE﹣∠CFE=115°﹣92°=23°.故答案为:23.14.(2分)已知平面内有一点A的横坐标为﹣6,且到原点的距离等于10,则A点的坐标为(﹣6,8)或(﹣6,﹣8).【解答】解:∵点A的横坐标为﹣6,到原点的距离是10,∴点A到x轴的距离为√102−62=8,∴点A的纵坐标为8或﹣8,∴点A的坐标为(﹣6,8)或(﹣6,﹣8).故答案为:(﹣6,8)或(﹣6,﹣8).15.(2分)若一个多边形的内角和与外角和之和是1800°,则此多边形是十边形.【解答】解:∵多边形的一个内角与它相邻外角的和为180°,∴1800°÷180°=10.故答案为:十.16.(2分)“如果1a >1b,那么a<b.”是假命题,举一个反例,其中a=1,b=﹣2.【解答】解:当a=1,b=﹣2可说明“如果1a >1b,那么a<b.”是假命题.故答案为1,﹣2.17.(2分)如图,在△ABC中,点D在边BC上,已知点E,F分别是AD,CE边上的中点,且△BEF的面积为6,则△ABC的面积等于24.【解答】解:∵由于E、F分别为AD、CE的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为24.18.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得到点P2,点P2绕点C旋转180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2019的坐标为(0,4).【解答】解:如图,观察图形可知P6与P重合,6次一个循环,2019÷6=336余数为3,∴P2019与P3重合,∴P2019的坐标为(0,4).故答案为(0,4).三.解答题(共8小题,满分52分)19.(6分)解一元一次不等式组:{2x+4<4 1−2x>0.【解答】解:由①得:x<0,由②得:x<1 2,∴不等式组的解集为:x<0.20.(6分)已知关于x的一元二次方程x2﹣mx﹣3=0.(1)求证:无论m取何值,该方程总有两个不相等的实数根;(2)当m=2时,求方程的根.【解答】解:(1)∵x2﹣mx﹣3=0,∵△=(﹣m)2﹣4×1×(﹣3)=m2+12>0,∴无论m取何值,方程总有两个不相等的实数根;(2)把m=2代入方程得到x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.21.(6分)已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.理由如下: ∵AB ∥CD ,∴∠AEF +∠CFE =180°, ∵FN 平分∠CFE , ∴∠CFE =2∠CFN , ∵∠AEF =2∠CFN , ∴∠AEF =∠CFE =90°, ∴∠CFN =∠EFN =45°,∴∠DFN =∠HFN =180°﹣45°=135°, 同理:∠AEM =∠GEM =135°.∴∠AEM ,∠GEM ,∠DFN ,∠HFN 度数都为135°.22.(6分)如图,在正方形网格中,每个小正方形的边长均为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A 、C 的坐标分别为(﹣4,5)、(﹣1,3). (1)请在如图所示的网格平面内画出平面直角坐标系;(2)点D (m ,n )是△ABC 边BC 上任意一点,三角形经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(m +6,n ﹣2).①直接写出点B 1的坐标 (4,﹣1) ; ②画出△ABC 平移后的△A 1B 1C 1.(3)在y 轴上是否存在点P ,使△AOP 的面积等于△ABC 面积的23,若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)如图,平面直角坐标系如图所示:(2)①B 1(4,﹣1). 故答案为(4,﹣1). ②如图,△A 1B 1C 1即为所求.(3)设P (0,m ).由题意,12×|m |×4=23×(3×4−12×2×4−12×2×3−12×1×2),解得m =±43,∴P (0,43)或(0,−43).23.(7分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有 ②③ ;(只要填写序号即可) ①随机抽取一个班级的48名学生; ②在全年级学生中随机抽取48名学生; ③在全年级12个班中分别各抽取4名学生; ④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°.②估计全年级A、B类学生大约一共有432名;成绩(单位:分)频数频率A类(80~100)0.5B类(60~79)0.25C类(40~59)8D类(0~39)4(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和第一中学71524320.75第二中学71804970.82你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.【解答】解:(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有:②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;①④都比较片面,故答案为:②③;(2)①C类和D类部分的圆心角度数分别为:8×360°=60°,48448×360°=30°.②估计全年级A、B类学生大约一共有:12×48×(0.5+0.25)=432(名);故答案为:60°,30°,432;(3)第一中学的教学效果较好,因为第一中学的极差小,两极分化不严重,方差小,学生总体成绩波动不大.24.(7分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套280元,430元,且每种型号健身器材必须整套购买.若购买A,B两种型号的健身器材共50套,且支出不超过16000元,求A 种型号健身器材至少要购买多少套?【解答】解:设购进x套A种型号健身器材,则购进(50﹣x)套B种型号健身器材,依题意,得:280x+430(50﹣x)≤16000,解得:x≥110 3.又∵x为正整数,∴x的最小值为37.答:A种型号健身器材至少要购买37套.25.(7分)【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB 重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为(﹣6,﹣2).(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为2.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)【解答】解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);【模型应用】:(2)如图1,过点C作CE⊥y轴于E,∵直线l:y=kx﹣4k经过点(2,﹣3),∴2k﹣4k=﹣3,∴k=3 2,∴直线l的解析式为y=32x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=32x﹣6,∴x=4,∴A(4,0),∴OA=4,同(1)的方法得,△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=4,∴OE=OB﹣BE=6﹣4=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为:(﹣6,﹣2);(3)如图2,针对于直线l:y=kx﹣4k,令x=0,则y=﹣4k,∴B(0,﹣4k),∴OB=4k,令y=0,则kx﹣4k=0,∴x=4,∴A(4,0),∴OA=4,过点C作CF⊥y轴于F,同【基础模型】的方法得,△OAB≌△FBC(AAS),∴BF=OA=4,CF=OB=4k,∴OF=OB+BF=4k+4,∵点C在第四象限,∴C(4k,﹣4k﹣4),∵B(0,﹣4k),∵BD∥x轴,且点D在直线y=x上,∴D(﹣4k,﹣4k),∴BD=4k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=12BF=2,故答案为:2;(4)当点C在第四象限时,由(3)知,C(4k,﹣4k﹣4),∵C(a,b),∴a=4k,b=﹣4k﹣4,∴b=﹣a﹣4,当点C在第三象限时,由(2)知,B(0,﹣4k),A(4,0),∴OB=4k,OA=4,如图1,由(2)知,△OAB≌△FBC(AAS),∴CE=OB=4k,BE=OA=4,∴OE=OB﹣BE=4k﹣4,∴C(﹣4k,4﹣4k),∵C(a,b),∴a=﹣4k,b=4﹣4k,∴b=a+4,即:b=a+4或b=﹣a﹣4.26.(7分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+12∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.四.解答题(共2小题)27.已知等腰三角形ABC.(1)若其两边长分别为2和3,求△ABC的周长;(2)若一腰上的中线将此三角形的周长分为9和18,求△ABC的周长.【解答】解:(1)当2为底时,三角形的三边为3,2,3,可以构成三角形,周长为:3+2+3=8;当3为底时,三角形的三边为3,2,2,可以构成三角形,周长为:3+2+2=7.△ABC的周长为8或7.(2)设三角形的腰为x,如图:△ABC是等腰三角形,AB=AC,BD是AC边上的中线,则有AB+AD=9或AB+AD=18,分下面两种情况解.a:x+12x=9,∴x=6,∵三角形的周长为9+18=27cm,∴三边长分别为6,6,15,∵6+6<15,不符合三角形的三边关系,∴舍去;b:x+12x=18,∴x=12,∵三角形的周长为27,∴三边长分别为12,12,3.综上可知:这个等腰三角形的周长为27.28.在小学四年级我们学过三角形的内角和等于180°;科学实验又证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等(例如:∠1=∠4).利用上述知识进行下面的探究活动:(一)探究:(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被平面镜b反射.若被平面镜b反射出的光线n平行于m,且1=50°,则∠2=100°,∠3=90°;(2)在(1)中,若∠1=40°,则∠3=90°,若∠1=55°,则∠3=90°;(二)猜想:由(1)(2)请你猜想:当∠3=90°时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的.(三)证明:请证明你的上述猜想.【解答】解:(一)探究:(1)如图,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∠1=50°,∴∠4=∠1=50°,∠5=∠7,∴∠6=180°﹣50°﹣50°=80°,∵m∥n,∴∠2+∠6=180°,∴∠2=100°,∴∠5=∠7=40°,∴∠3=180°﹣50°﹣40°=90°,故答案为:100°,90°;(2)∵∠1=40°,射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠4=∠1=40°,∠5=∠7,∴∠6=180°﹣40°﹣40°=100°,∵m∥n,∴∠2+∠6=180°,∴∠2=80°,∴∠5=∠7=50°,∴∠3=180°﹣50°﹣40°=90°;∵∠1=55°,∴∠4=∠1=55°,∴∠6=180°﹣55°﹣55°=70°,∵m∥n,∴∠2+∠6=180°,∴∠2=110°,∵射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等,∴∠5=∠7=35°,∴∠3=180°﹣55°﹣35°=90°;故答案为:90°,90°;(二)猜想:当∠3=90°时,m∥n,故答案为:90°;(三)证明:∵∠3=90°,∴∠4+∠5=180°﹣90°=90°,∵∠1=∠4,∠7=∠5,∴∠1+∠4+∠5+∠7=2×90°=180°,∴∠6+∠2=180°﹣(∠1+∠4)+180°﹣(∠5+∠7)=180°,∴m∥n.五.解答题(共1小题)29.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?【解答】解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.。

2020—2021年人教版七年级数学下册期末考试卷及答案

2020—2021年人教版七年级数学下册期末考试卷及答案

2020—2021年人教版七年级数学下册期末考试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共6小题,共72分)
1.解方程
(1)2(1)25(2)x x -=-+ (2)
3171124
x x ++-=
2.已知关于x 的方程
23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.
3.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.
4.如图,∠1=∠ACB ,∠2=∠3,求证:∠BDC +∠DGF =180°.
6.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:
(1)求小明原计划购买文具袋多少个?
(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
二、填空题(本大题共6小题,每小题3分,共18分)
三、解答题(本大题共6小题,共72分)
17、(1)
6
7
x=-
;(2)3
x=-
18、3 5
19、4.
20、略
22、(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.。

最新人教版数学七年级下册《期末考试题》含答案解析

最新人教版数学七年级下册《期末考试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题(每小题只有一个选项符合题意,请将正确的选项字母填入下表相应空格内,每小题3分,共30分)1. 在3π,0,2,-3.14,27,38-六个数中,无理数的个数为( ) A . 2 B . 3 C . 4 D . 52. 如图,根据下列条件能得到//AD BC 的是( )A . 1B ∠=∠B . 1180∠+∠=︒BCDC . 23∠∠=D . 180BAD B ∠+∠=︒ 3. 下列变形错误的是( )A . 若510->x ,则2x <-B . 若x y >,则22x y >C . 若30x -<,则3x >D . 若a b <,则2211a b c c <++ 4. 下列问题适合做抽样调查是( ) A . 为了了解七(1)班男同学对篮球运动喜欢情况B . 审核某书稿上的错别字C . 调查全国中小学生课外阅读情况D . 飞机起飞前对零部件安全性的检查5. 273-的结果应在下列哪两个连续整数之间( )A . 2和3B . 3和4C . 4和5D . 5和6 6. 下列命题是假命题的是( )A . 在同一平面内,过一点有且只有一条直线与已知直线垂直;B . 负数没有立方根;C . 在同一平面内,若a b ⊥,b c ⊥,则//a cD . 同旁内角互补,两直线平行7. 圆周率π是一个无限不循环小数,即是一个无理数,到目前为止,专家利用超级计算机已将圆周率算到小数点后约100万兆位,世界上第一个将圆周率π计算到小数点后第七位的数学家是( )A . 华罗庚B . 笛卡儿C . 商高D . 祖冲之8. 在平面直角坐标系中,点()24,1--P m m 为y 轴上一点,则点(),3-Q m 关于x 轴的对称点的坐标为( )A . ()2,3-B . ()2,3C . ()1,3D . ()1,3- 9. 如图,直线//m n ,将一直角三角尺的直角顶点放在直线m 上,已知135∠=︒,则2∠的度数为( ) A . 135° B . 145° C . 120° D . 125°10. 我国古代数学著作《孙子算经》中有一道题:”今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:”用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”设绳子长x 尺,木条长y 尺,则根据题意所列方程组正确是( ) A . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y y x +=⎧⎪⎨-=⎪⎩ D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩二、填空题(每小题3分,共15分)11. 34=a ,则数a 的平方根是__________.12. 在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为4,到y 轴的距离为3,则点M 的坐标是______.13. 将一张长方形纸片按如图所示的方式折叠,已知50ADE ∠=︒,则EFD ∠的度数为__________.14. 已知|345|56210+-+--=x y x y ,则式子4x y -的值为__________.15. 若关于x 的不等式0x a -≥有2个负整数解,则a 的取值范围为__________.三、解答题(8个小题,共75分)16. 计算:23(3)|12|8---+-17. (1)解方程组:25528x y x y -=⎧⎨+=⎩(2)解不等式组:475(1)2432x x x x -<-⎧⎪-⎨≤-⎪⎩,并将其解集表示在数轴上. 18. 已知42++a b b 是2b +的算术平方根,1--a b a 是1a -的立方根.求323-a b 的值.19. 如图,在平面直角坐标系中,已知点33A-(,),41B --(,),(21)C -,,点(,)P a b 为三角形的边AC 上任意一点,三角形ABC 经过平移后得到三角形111A B C ,点P 的对应点为1(5,2)+-P a b .(1)直接写出点1A ,1B ,1C 的坐标;(2)在图中画出平移后的三角形111A B C ;(3)连接OA 、1OA ,1AA ,求三角形1AOA 的面积。

【人教版】数学七年级下册《期末考试卷》有答案解析

【人教版】数学七年级下册《期末考试卷》有答案解析
A.19CmB.19Cm或14CmC.11CmD.10Cm
7.如图, , ,下列哪个条件不能判定 ≌
A. B. C. D.
8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为 .小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次B.能中奖两次
9.若(x-2y)2=(x+2y)2+M,则M= ( )
A.4xyB.- 4xyC.8xyD.-8xy
【答案】D
【解析】
【分析】
根据完全平方公式的运算法则即可求解.
【详解】∵(x-2y)2=(x+2y)2+M
∴M=(x-2y)2-(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy
故选D.
【详解】∵他慢跑离家到江边,
∴随着时间的增加离家的距离越来越远,
∵休息了一会,
∴他离家的距离不变,
又∵后快跑回家,
∴他离家越来越近,直至为0,
∵去时快跑,回时慢跑,
∴小明离家的距离y与时间x的函数关系的大致图象是A.
故选A.
【点睛】考查了函数的图象问题,在解题时要根据实际情况确定出函数的图象是解题的关键.
摸球 次数n
100
150
200
500
800
1000
摸到白球的次数m
58
96
116
295
484
601
摸到白球的频率
0.58
0.64
0.58
0.59
0.605
0.601
(1)请你估计,当n很大时,摸到白球的频率将会接近(精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.

巴中市南江县学年初中七年级的下期末数学试卷习题包括答案解析

巴中市南江县学年初中七年级的下期末数学试卷习题包括答案解析

巴中市南江县2021-2021学年七年级下期末数学试卷含答案解析2021-2021学年四川省巴中市南江县七年级〔下〕期末数学试卷一、选择题〔每题3分〕.在以下方程中①2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+1是一元一次方程的有〔〕个.A.1 B.2 C.3 D.42.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是〔〕A.0 B.2 C.5 D.83.如果a<b<0,以下不等式中错误的选项是〔〕A.ab>0 B.a+b<0C.<1 D.a﹣b<04.三角形的两边长分别为 5cm和7cm,以下长度的四条线段中能作为第三边的是〔〕A.14cmB.13cm C.8cmD.2cm5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的选项是〔〕A.B.C.D.6.|2x﹣y﹣3|+〔2x y11〕2=0,那么〔〕++A.B.C.D.7.在三角形的三个外角中,锐角最多只有〔〕个.A.0 B.1 C.2 D.38.以下列图形中,既是轴对称图形,又是中心对称图形的是〔〕A.B.C.D.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,那么四边形ABFD的周长为〔〕A.8 B.9 C.10 D.1110.以下几种组合中,恰不能密铺的是〔〕A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形二、填空题〔每题3分〕11.方程y+=的解为.12.由3x﹣y=5,假设用含有x的代数式表示y,那么.13.是方程的解,那么m=.14.一个多边形的内角和等于2340°,它的边数是.15.等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为.16.三元一次方程组的解是.17.是方程组的解,那么a=,b=.18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,那么△ABE的周长等于cm.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,假设∠1=50°,那么∠2=.20.我知道分数写小数即0.,反之,无限循小数0.写成分数即一般地,任何一个无限循小数都可以写成分数形式.以0.例行:0.=x,由0. ⋯,得⋯,由于⋯⋯因此10x=7+x,解方程得x=.于是得0.=.仿照上述方法把无限循小数0.化成分数得.三、解答21.解方程〔〕:x=2.22.解方程.23.解不等式≥1〔把解集在数上表示出来〕(24.解不等式.((25.如所示的正方形网格中,每个小正方形的均1个位,△ABC的(三个点都在格点上.(1〕在网格中画出△ABC向下平移3个位得到的△A1B1C1;(2〕在网格中画出△ABC关于直m称的△A2B2C2;(3〕在直m上画一点P,使得C1P+C2P的最小.(26.如图,∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.((((((((((27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并(给出证明.(((((((((((28.假设关于x的不等式组的整数解恰有5个,求a的范围.((29.某协会组织会员旅游,如果单独租用45座客车假设干辆,那么刚好坐满;如果单独租用60座客车,那么可少租2辆,并且剩余15个座位.(1〕求参加旅游的人数;(2〕假设采用混租两种客车,使每辆车都不空位,有几种租车方案.30.如图,一副直角三角板△ABC和△DEF,BC=DF,EF=2DE.(1〕直接写出∠B,∠C,∠E,∠F的度数的度数;(2〕将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点(A在DE上,△ABC固定不动,将△DEF绕点D逆时针旋转至EF∥CB〔如图2〕,求△DEF旋转的度数;并通过计算判断点A是否在EF上;(3〕在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?假设存在直接写出旋转的角度和平行关系,假设不存在,请说明理由.2021-2021学年四川省巴中市南江县七年级〔下〕期末数学试卷参考答案与试题解析一、选择题〔每题3分〕22x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y 1.在以下方程中①x++是一元一次方程的有〔〕个.A.1 B.2 C.3 D.4【考点】一元一次方程的定义.【分析】根据一元一次方程的定义,即可解答.【解答】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;x=0,是一元一次方程;④3﹣=2,是等式;=y+是一元一次方程;一元一次方程的有2个,应选:B.〕2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是〔A.0B.2C.5【考点】D.8代数式求值.【分析】将a﹣3b=﹣3整体代入即可求出所求的结果.【解答】解:∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣〔a﹣3b〕=5+3=8.应选:D.3.如果a<b<0,以下不等式中错误的选项是〔〕A.ab>0 B.a+b<0C.<1D.a﹣b<0【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、如果a<b<0,那么a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,那么|a|>|b|,那>1,也可以设a=﹣2,b=﹣1代入检验得到<么1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;应选:C.4.三角形的两边长分别为5cm和7cm,以下长度的四条线段中能作为第三边的是〔〕A.14cm B.13cm C.8cmD.2cm【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,2cm<第三边<12cm,14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.应选C.〕5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的选项是〔A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】不等式移项,再两边同时除以2,即可求解.【解答】解:不等式得:x≥﹣2,其数轴上表示为:应选B6.|2x﹣y﹣3|+〔2x y11〕2=0,那么〔〕++A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质列出方程组,求出方程组的解即可.【解答】解:∵|2x﹣y﹣3|+〔2x+y+11〕2=0,∴,+②得:4x=﹣8,即x=﹣2,②﹣①得:2y=﹣14,即y=﹣7,那么方程组的解为,应选D.7.在三角形的三个外角中,锐角最多只有〔〕个.A.0 B.1 C.2 D.3【考点】三角形的外角性质.【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有 1个钝角,所以在三角形的三个外角中,锐角最多只有1个.应选:B.8.以下列图形中,既是轴对称图形,又是中心对称图形的是〔〕A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.应选:C.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,那么四边形ABFD的周长为〔〕A.8 B.9 C.10 D.11【考点】平移的性质.【分析】根据平移的根本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.应选B.10.以下几种组合中,恰不能密铺的是〔〕A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形【考点】平面镶嵌〔密铺〕.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,结合选项即可作出判断.【解答】A、同样大小的任意四边形可以密铺的,故本选项错误;B、边长相同的正三角形、正方形、正十二边形可以密铺,故本选项错误;C、边长相同的正十边形和正五角形可以密铺,故本选项错误;D、边长相同的正八边形和正三角形不可以密铺,故本选项正确.应选D.二、填空题〔每题3分〕11.方程y+ =的解为y=.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程y+ =的解,此题得以解决.【解答】解:y+ =去分母,得6y+3=4﹣2y移项及合并同类项,得8y=1系数化为1,得y=,故答案为:.12.由3x﹣y=5,假设用含有x的代数式表示y,那么 y=3x﹣5.【考点】列代数式.【分析】因为3x﹣y=5,移项即可求出用x表示y的代数式.【解答】解:∵3x﹣y=5,移项可得:y=3x﹣5.13.是方程的解,那么m=.【考点】一元一次方程的解.【分析】把x=代入方程即可得到一个关于m的方程,即可求得m的值.【解答】解:把x=代入方程,得:3〔m﹣〕+1=5m,解得:m=﹣.故答案是:﹣.14.一个多边形的内角和等于2340°,它的边数是15.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成〔n﹣2〕?180°,依此列方程可求解.【解答】解:设多边形边数为n.2340°=〔n﹣2〕?180°,解得n=15.故答案为:15.15.等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为60°或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.16.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,+②+③得:2〔x+y+z〕=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,那么方程组的解为.故答案为:17.是方程组的解,那么a=1,b=1.【考点】二元一次方程组的解.【分析】根据方程组的解的定义,只需把解代入方程组得到关于a,b的方程组,即可求解.【解答】解:把代入方程组,得,解得.故答案为1,1.18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,那么△ABE的周长等于7 cm.【考点】翻折变换〔折叠问题〕.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,假设∠1=50°,那么∠2=30°.【考点】翻折变换〔折叠问题〕.【分析】先由折叠性质得:∠C=∠C′=40°,根据三角形内角和求出∠CEC′+∠CFC′=280,°由平角定义可知:∠1+∠2+∠CFC′+∠CEC′=360,°从而得出∠2=30°.【解答】解:∵∠A=63°,∠B=77°,∴∠C=180°﹣∠A﹣∠B=180°﹣63°﹣77°=40°,由折叠得:∠C=∠C′=40,°∠CEF=∠C′EF,∠CFE=∠C′FE,∴∠CEC′+∠CFC′=180°+180°﹣40°﹣40°=280°,∵∠1+∠CFC′=180°,∠2+∠CEC′=180°,∴∠1+∠2+∠CFC′+∠CEC′=360°,∴∠1+∠2=360°﹣280°=80°,∵∠1=50°,∴∠2=30°,故答案为:30°.20.我知道分数写小数即0.,反之,无限循小数0.写成分数即一般地,任何一个无限循小数都可以写成分数形式.以0.例行:0.=x,由0. ⋯,得⋯,由于⋯⋯因此10x=7+x,解方程得x=.于是得0.=.仿照上述方法把无限循小数0.化成分数得.【考点】解一元一次方程.【分析】0.=x,找出律,列出方程100x x=37,解方程即可.【解答】解:0.=x,⋯,得⋯.可知,⋯⋯=37,即100x x=37,解得:x=,故答案:.三、解答21.解方程〔〕:x=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移合并,把x系数化1,即可求出解.【解答】解:去分母得:6x 3x+3=12 2x 4,移合并得:5x=5,解得:x=1.22.解方程.【考点】解二元一次方程.【分析】方程利用加减消元法求出解即可.【解答】解:,①×3﹣②得:2a=﹣6,即a=﹣3,a=﹣3代入①得:b=6,那么方程组的解为.23.解不等式﹣≥﹣1〔把解集在数轴上表示出来〕【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】通过解一元一次不等式,得出不等式的解决,再将解集在数轴上表示出来即可.【解答】解:﹣≥﹣1,去分母,得:6x﹣3﹣4x﹣8≥﹣12,移项、合并同类项,得:2x≥﹣1,不等式两边同时÷2,得:x≥﹣.把解集在数轴上表示出来,如下列图.24.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣4,由②得,x>﹣1,故不等式组的解集为:x>﹣1.25.如下列图的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.〔1〕在网格中画出△ABC向下平移3个单位得到的△A1B1C1;2〕在网格中画出△ABC关于直线m对称的△A2B2C2;3〕在直线m上画一点P,使得C1P+C2P的值最小.(【考点】作图-轴对称变换;轴对称-最短路线问题;作图-平移变换.(【分析】〔1〕根据图形平移的性质画出△A1B1C1即可;(2〕根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3〕连接C1C2交直线m于点P,那么点P即为所求点.(【解答】解:〔1〕如图,△A1B1C1即为所求;(((2〕如图,△A2B2C2即为所求;(((3〕连接连接C1C2交直线m于点P,那么点P即为所求点.26.如图,∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】利用三角形外角性质,得∠1=∠A+∠APE,只需求∠APE,由AC⊥DE,得∠APE=90°;由三角形内角和定理得出∠D的度数.【解答】解:∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=37°,∴∠D=180°﹣110°﹣37°=33°.27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.【考点】等腰三角形的判定;平行线的性质.【分析】根据平行线的性质和“等角对等边〞推知AE=AF,易得△AEF是等腰三角形.【解答】解:△AEF是等腰三角形.理由如下:AD平分∠BAC,∴∠BAD=∠CAD.又∵EG∥AD,∴∠E=∠CAD,∠EFA=∠BAD,∴∠E=∠EFA,AE=AF,∴△AEF是等腰三角形.28.假设关于x的不等式组的整数解恰有5个,求a的范围.【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据不等式组的解集可求得整数解恰有推a的取值范围即可.5个,逆【解答】解:由①得由②得x≥a,x<2,∵关于x的不等式组的整数解恰有5个,a≤x<2,其整数解为﹣3,﹣2,﹣1,0,1a的取范围是﹣4<a≤﹣3.29.某协会组织会员旅游,如果单独租用45座客车假设干辆,那么刚好坐满;如果单独租用60座客车,那么可少租2辆,并且剩余15个座位.1〕求参加旅游的人数;2〕假设采用混租两种客车,使每辆车都不空位,有几种租车方案.【考点】二元一次方程的应用;一元一次方程的应用.【分析】〔1〕设参加旅游的人数为x人,根据旅游总人数不变,分别表示出不同车辆乘坐人数,进而列出方程;2〕首先列出二元一次方程,根据题意得到正整数的解即可.【解答】解:〔1〕设参加旅游的人数为x 人,根据题意,得﹣2=,解得x=405人,答:参加旅游的人数为405人.2〕设租45座a辆,60座b辆,那么有45a+60b=405,根据题意有正整数解为,,即方案1,租45座1辆,60座6辆;方案2,租45座5辆,60座3辆.30.如图,一副直角三角板△EF=2DE ABC和△DEF,BC=DF,.1〕直接写出∠B,∠C,∠E,∠F的度数的度数;2〕将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点A在DE上,△ABC固定不动,将△DEF绕点D逆时针旋转至EF∥CB〔如图2〕,求△DEF旋转的度数;并通过计算判断点A是否在EF上;3〕在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?假设存在直接写出旋转的角度和平行关系,假设不存在,请说明理由.【考点】几何变换综合题.【分析】〔1〕根据直角三角板的直接可求得答案;2〕由EF∥BC,可求得∠FDC的角度,可求得旋转角;过D作DG⊥EF于点G,可求得DG= DF,AD= BC,可得到DG=AD,可得出结论;3〕分DF∥AB、DE∥AC和EF∥AB三种情况,可分别求得相应的旋转角.【解答】解:1〕∵△ABC为等腰直角三角形,∴∠B=∠C=45°,由题可知△DEF为含30°角的三角板,EF=2DE,∴∠E=60°,∠F=30°;2〕旋转的角度为30°,理由如下:如图1,△ABC中,AB=AC,AD⊥BC,AD=BC,在△DEF中,过D作DG⊥EF,垂足为G,在Rt△DFG中,∠F=30°,DG=DF,BC=DF,∴DG=AD,∴当EF∥BC时,点A在EF上;〔3〕存在.如图2,当DF∥AB时,那么∠FDC=∠B=45°,∵∠EDF=90°,∴∠EDB=45°=∠C,∴此时DE∥AC;如图3,当EF∥AB时,那么∠AHD=∠E=60°,∴∠EDB=∠AHD﹣∠B=60°﹣45°=15°,∵∠EDF=90°,∴∠FDC=75°,综上可知当旋转角为45°时有DE∥AC和DF∥AB,当旋转角为75°时,有EF∥AB.2021年2月17日。

【精品】人教版数学七年级下学期《期末测试题》含答案解析

【精品】人教版数学七年级下学期《期末测试题》含答案解析

2020-2021学年第二学期期末测试人教版数学七年级试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列是二元一次方程的是( )A . 3x ﹣6=xB . 3x =2yC . x ﹣1y =0D . 2x ﹣3y =xy 2. 下列交通标志中,是轴对称图形但不是中心对称图形的是()A .B .C .D . 3. 若关于x 的方程x ﹣2+3k=3x k +的解是正数,则k 的取值范围是( ) A . k >34 B . k≥34 C . k < 34 D . k≤344. 某商场将一种商品A 按标价的9折出售,依然可获利10%,若商品A 的标价为33元,那么该商品的进货价为 ( )A . 31元B . 30.2元C . 29.7元D . 27元 5. 根据不等式的性质,下列变形正确的是( )A . 由A >B 得AC 2>B C 2B . 由AC 2>B C 2得A >B C . 由-12A >2得A <2 D . 由2x+1>x 得x >1 6. 已知等腰三角形的两边长分别为A 、B ,且A 、B 满足235a b -++(2A +3B -13) 2=0,则此等腰三角形的周长为( )A . 7或8B . 6或10C . 6或7D . 7或10 7. 我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为()A .B .C .D . 8. 已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有()A . 6个B . 5个C . 4个D . 3个9. 选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的( )A . 正方形B . 任意三角形C . 正六边形D . 正八边形10. 关于x 的不等式组的整数解共有5个,则A 的取值范围( ) A . A =﹣3B . ﹣4<A <﹣3C . ﹣4≤A <﹣3D .﹣4<A ≤﹣3二、填空题11. 若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k x +=________12. 方程3x ﹣y =4中,有一组解x 与y 互相反数,则3x+y =_____. 13. 已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是_________.14. 一个三角形有两条边相等,周长为18C m ,三角形的一边长为4C m ,则其他两边长分别为_____C m ,_____C m .15. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__________元.三、解答题16. 10.3x -﹣20.5x + =1.2. 17. 解方程组:. 18. 解不等式组:把解集表示在数轴上并求出它的整数解的和.19. 如图,已知△A B C ≌△D EF ,∠A =30°,∠B =50°,B F=2,求∠D FE 的度数和EC 的长.20. 如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△A B C 向下平移5格得△A 1B 1C 1,画出平移后的△A 1B 1C 1;(2)画出△A B C 关于点B 成中心对称的图形;(3)在直线l上找一点P,使△A B P的周长最小.21. 如图,在△A B C 中,点D 是B C 边上的一点,∠B =50°,∠B A D =30°,将△A B D 沿A D 折叠得到△A ED ,A E与B C 交于点F.(1)填空:∠A FC =______度;(2)求∠ED F 的度数.22. 某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,,且购买4套A 型和6套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳的,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?23. 如图,取一副三角板按图1拼接,固定三角板A D E(含30°),将三角板A B C (含45°)绕点A 顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:AB DE;(1)当∠α=_____度时,能使图2中的//(2)当旋转到A B 与A E重叠时(如图3),则∠α=_____度;(3)当△A D E的一边与△A B C 的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接B D (如图4),探求∠D B C +∠C A E+∠B D E值的大小变化情况,并说明理由.参考答案一、选择题1. 下列是二元一次方程的是( )A . 3x ﹣6=xB . 3x =2yC . x ﹣1y =0D . 2x ﹣3y =xy【答案】B【解析】A 、3x-6=x 是一元一次方程;B 、32x y =是二元一次方程;C 、2x+是分式方程;D 、23x y xy -=是二元二次方程.故选B .2. 下列交通标志中,是轴对称图形但不是中心对称图形的是()A .B .C .D .【答案】A 【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A 、是轴对称图形,不是中心对称图形,符合题意;B 、不是轴对称图形,也不是中心对称图形,不符合题意;C 、不是轴对称图形,也不是中心对称图形,不符合题意;D 、是轴对称图形,也是中心对称图形,不符合题意. 考点:(1) 中心对称图形;(2) 轴对称图形3. 若关于x 的方程x ﹣2+3k=3x k +的解是正数,则k 的取值范围是( ) A . k >34 B . k≥34 C . k < 34 D . k≤34【答案】C【解析】解方程x ﹣2+3k=3x k +得:x=-4k+3,∵方程得解为正数,∴-4k+3>0,解得:k<3 4 .故选C .4. 某商场将一种商品A 按标价的9折出售,依然可获利10%,若商品A 的标价为33元,那么该商品的进货价为()A .31元 B . 30.2元 C . 29.7元 D . 27元【答案】D 【解析】设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选D .5. 根据不等式的性质,下列变形正确的是()A . 由A >B 得A C 2>B C 2 B . 由A C 2>B C 2得A >B C . 由-12A >2得A <2 D . 由2x+1>x得x>1 【答案】B 【解析】【分析】【详解】解:根据不等式的基本性质可知:A . 由A >B ,当C =0时,A C 2>B C 2不成立,故此选项错误;B . 由A C 2>B C 2得A >B ,正确;C . 由-12A >2得A <-4,故此选项错误;D . 由2x+1>x得x>-1,故此选项错误;选项A 、C 、D 错误;故选B .【点睛】本题考查不等式基本性质.6. 已知等腰三角形的两边长分别为A 、B ,且A 、B(2A +3B -13)2=0,则此等腰三角形的周长为()A . 7或8B . 6或10C . 6或7D . 7或10【答案】A【解析】【分析】【详解】试题分析:先根据非负数的性质求出A ,B 的值,再分两种情况确定第三边的长,从而得出三角形的周长. ∵235a b -++(2A +3B ﹣13) 2=0, ∴235023130a b a b -+=⎧⎨+-=⎩,解得23a b =⎧⎨=⎩, 当A 为底时,三角形的三边长为2,3,3,则周长为8; 当B 为底时,三角形的三边长为2,2,3,则周长为7; 综上所述此等腰三角形的周长为7或8.考点:(1)、等腰三角形的性质;(2)、非负数的性质:偶次方;(3)、非负数的性质:算术平方根;(4)、解二元一次方程组;(5)、三角形三边关系.7. 我国古代数学名著《孙子算经》中记载了一道题,大意是:求100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为()A .B .C .D .【答案】C【解析】 试题分析:设有x 匹大马,y 匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可. 解:由题意可知,总共100匹马,因此100x y +=.总共100片瓦,则131003x y +=,联立方程即得二元一次方程组.考点:由实际问题抽象出二元一次方程组8. 已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有()A . 6个B . 5个C . 4个D . 3个【答案】D【解析】【分析】 已知两边时,两边的差<三角形第三边<两边的和,这样就可以确定x 的范围,从而确定x 的值.【详解】解:根据题意得:5<x <11.又∵x 是偶数,∴可以取6,8,10这三个数.故选D .【点睛】本题主要考查三角形中如何已知两边来确定第三边的范围.9. 选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的( )A . 正方形B . 任意三角形C . 正六边形D . 正八边形【答案】D【解析】A 选项:正方形的每个内角是90°,能整除360°,能密铺;B 选项:任意三角形的内角和是180°,能整除360°,能密铺;C 选项:正六边形每个内角是120°,能整除360°,能密铺;D 选项:正八边形每个内角是135°,不能整除360°,不能密铺;故选D .【点睛】一种正多边形的镶嵌应符合一个内角度数能整除360°. 10. 关于x 的不等式组的整数解共有5个,则A 的取值范围( ) A . A =﹣3B . ﹣4<A <﹣3C . ﹣4≤A <﹣3D . ﹣4<A ≤﹣3 【答案】D【解析】不等式组解得:A ≤x<2,∵不等式组的整数解有5个为1,0,-1,-2,-3∴-4<A ≤-3.故选D .【点睛】此题考查了一元一次不等式组的整数解,弄清题意是解本题的关键. 二、填空题11. 若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k x +=________ 【答案】12【解析】根据题意得:k-2≠0且|k-1|=1,解得:k=0.把k=0代入方程得-2x+1=0,解得:x=1 2∴k+x=1 2 .故答案是: 1 2 .12. 方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y=_____.【答案】2【解析】【分析】【详解】依题意得:x=-y.∴3x-y=3x+x=4x=4,∴x=1,则y=-1.∴3x+y=2.故答案是:2.13. 已知一个多边形的每一个外角都等于72 ,则这个多边形的边数是_________.【答案】5【解析】【分析】【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.14. 一个三角形有两条边相等,周长为18C m,三角形的一边长为4C m,则其他两边长分别为_____C m,_____C m.【答案】(1). 7(2). 7【解析】(1)若4C m为底边,则另外两边均为12(18-4) =7厘米;(2)若4C m为腰长,则另一腰为4厘米,底边为18-4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7C m、7C m.故答案是:7,7.【点睛】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__________元.【答案】248或296【解析】试题分析:设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296.综上可知:小丽这两次购书原价的总和是248或296元考点:一元一次方程的应用三、解答题16.10.3x-﹣20.5x+=1.2.【答案】6.4【解析】试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题解析:12 1.20.30.5x x -+-= 10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.417. 解方程组:.【答案】21x y =⎧⎨=⎩【解析】试题分析:先对方程组进行化简后,再用代入消元法解.试题解析:解:()8)3133423x y x y x y x y ⎧--+=-⎨+-+=⎩( 511153x y y x -=-⎧⎨-=⎩由④得: x=5y -3代入③得: 25y -15 -11y =-114y =14y=1则:x =5-3 =2综上: 21x y =⎧⎨=⎩18. 解不等式组:把解集表示在数轴上并求出它的整数解的和.【答案】-7【解析】试题分析:先求两个不等式的解集,再求公共解,并数轴上表示,写出整数解和求整数解的和.试题解析:不等式①,得x<3,解不等式②,得x≥﹣4.在同一数轴上表示不等式①②的解集,得∴这个不等式组的解集是﹣4≤x<3,∴这个不等式组的整数解的和是﹣4﹣3﹣2﹣1+0+1+2=﹣7.19. 如图,已知△A B C ≌△D EF,∠A =30°,∠B =50°,B F=2,求∠D FE的度数和EC 的长.【答案】∠A C B =100°;EC =2.【解析】试题分析:根据三角形的内角和等于180°求出∠A C B 的度数,然后根据全等三角形对应角相等即可求出∠D FE,全等三角形对应边相等可得EF=B C ,然后推出EC =B F.试题解析::∵∠A =30°,∠B =50°,∴∠A C B =180°-∠A -∠B =180°-30°-50°=100°,∵△A B C ≌△D EF,∴∠D FE=∠A C B =100°,EF=B C ,∴EF-C F=B C -C F,即EC =B F,∵B F=2,∴EC =2.考点:全等三角形的性质.20. 如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△A B C 向下平移5格得△A 1B 1C 1,画出平移后的△A 1B 1C 1;(2)画出△A B C 关于点B 成中心对称的图形;(3)在直线l上找一点P,使△A B P的周长最小.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【解析】试题分析: (1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.试题解析:(1)如图所示: △A 1B 1C 1即为所求(2) 如图所示: △D EF即所求(3) 如图所示: P点位置,使△A B P的周长最小.21. 如图,在△A B C 中,点D 是B C 边上的一点,∠B =50°,∠B A D =30°,将△A B D 沿A D 折叠得到△A ED ,A E与B C 交于点F.(1)填空:∠A FC =______度;(2)求∠ED F的度数.【答案】(1)1100;(2)200【解析】分析】(1)根据折叠的特点得出∠B A D =∠D A F,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠A D B 的值,再根据△A B D 沿A D 折叠得到△A ED ,得出∠A D E=∠A D B ,最后根据∠ED F=∠ED A +∠B D A ﹣∠B D F,即可得出答案.【详解】解:(1)∵△A B D 沿A D 折叠得到△A ED ,∴∠B A D =∠D A F,∵∠B =50°∠B A D =30°,∴∠A FC =∠B +∠B A D +∠D A F=110°;故答案为110.(2) ∵∠B =50°,∠B A D =30°,∴∠A D B =180°﹣50°﹣30°=100°,∵△A B D 沿A D 折叠得到△A ED ,∴∠A D E=∠A D B =100°,∴∠ED F=∠ED A +∠B D A ﹣∠B D F=100°+100°﹣180°=20°.【点睛】本题考查的三角形内角和定理;三角形的外角性质;翻折变换(折叠问题) ,解答的关键是灵活运用外角与内角的联系.22. 某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,,且购买4套A 型和6套B 型课桌凳共需1820元.(1) 求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2) 学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳的,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?【答案】(1) 购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元.(2) 总费用最低方案是购买A 型80套,购买B 型120套.【解析】(1) 设A 型每套x 元,B 型每套(40x +) 元∴45(40)1820x x ++=∴180,40220x x =+=即购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元.(2) 设A 型课桌凳a 套,则购买B 型课桌凳(200a -) 套2(200){3180220(200)40880a a a a ≤-+-≤ 解得7880a ≤≤∵a 为整数,所以a =78,79,80所以共有3种方案.设购买课桌凳总费用为y 元,则180220(200)4044000y a a a =+-=-+∵-40<0,y 随a 的增大而减小∴当a=80时,总费用最低,此时200-a=120即总费用最低方案是购买A 型80套,购买B 型120套.23. 如图,取一副三角板按图1拼接,固定三角板A D E(含30°),将三角板A B C (含45°)绕点A 顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:AB DE;(1)当∠α=_____度时,能使图2中的//(2)当旋转到A B 与A E重叠时(如图3),则∠α=_____度;(3)当△A D E的一边与△A B C 的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接B D (如图4),探求∠D B C +∠C A E+∠B D E的值的大小变化情况,并说明理由.【答案】(1)15°;(2)45°;(3)15°,45°;(4)保持不变;理由见解析【解析】【分析】(1)根据平行线的性质,可得∠B A E=∠E=30°,再根据∠B A C =45°,即可得出∠C A E=45°-30°=15°;(2)根据当旋转到A B 与A E重叠时,∠α=∠B A C 即可得到结果;(3)要分5种情况进行讨论:A D ∥B C 、D E∥A B 、D E∥B C 、D E∥A C 、A E∥B C ,分别画出图形,计算出度数即可;(4)先设B D 分别交A E、A C 于点M、N,依据三角形内角和定理以及三角形外角性质,即可得出∠B D E+∠C A E+∠D B C 的度数.【详解】解:(1)如图2,当A B ∥D E时,∠B A E=∠E=30°,∵∠B A C =45°,∴∠C A E=45°-30°=15°,即∠α=15°,故答案为:15;(2)当旋转到A B 与A E重叠时,∠α=∠B A C =45°,故答案为:45;(3)当△A D E的一边与△A B C 的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°.①当A B ∥D E时,α=15°;②当A D ∥C B 时,α=45°;③当D E∥B C 时,α=105°;④当A E∥B C 时,α=135°;⑤当A C ∥D E时,α=150°.又∵0°<α≤45°,∴旋转角α的所有可能的度数为15°,45°.(4)如图4,当0°<α≤45°时,∠D B C +∠C A E+∠B D E=105°,保持不变;理由:设B D 分别交A E、A C 于点M、N,在△A MN中,∠A MN+∠C A E+∠A NM=180°,∵∠A NM=∠C +∠D B C ,∠A MN=∠E+∠B D E,∴∠E+∠B D E+∠C A E+∠C +∠D B C =180°,∵∠E=30°,∠C =45°,∴∠D B C +∠C A E+∠B D E=180°-75°=105°.【点睛】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.。

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年人教版七年级下学期期末数学试卷及答案解析

2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。

巴中市南江县2020—2021学年七年级下期末数学试卷

巴中市南江县2020—2021学年七年级下期末数学试卷

巴中市南江县2020—2021学年七年级下期末数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),同时未知数的指数是1(次)的方程叫做一元一次方程.它的一样形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题要紧考查了一元一次方程的一样形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是依照等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】依照等式的差不多性质逐个判定即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的差不多型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】依照n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题要紧考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和差不多上360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8【分析】依照平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据运算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的差不多性质:①平移不改变图形的形状和大小;②通过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:① a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判定①,不等式a<b两边都除以b判定②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判定③,a<b两边都除以ab可判定④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题要紧考查不等式的差不多性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】依照平面镶嵌的条件,先求出正n边形的一个内角的度数,再依照内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的把握情形,表达了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,确实是,类似地,图2所示的算筹图我们能够表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,因此可列方程组为:【点评】此题要紧考查了由实际问题列二元一次方程组;关键是读明白图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】依照三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判定即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题要紧考查了三角形的三边关系,当三条线段成比例时能够设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,依照条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,依照题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先依照多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并依照四边形的内角和求出那个角的度数,然后依照周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,因此正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵差不多有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出那个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】运算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】运算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】运算题.【分析】若一个整式方程通过化简变形后,只含有一个未知数,同时未知数的次数差不多上1,系数不为0,则那个方程是一元一次方程.据此可依照未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是依照一元一次方程的未知数x的次数是1那个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题要紧考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】依照c2为非负数,利用不等式的差不多性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的差不多性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则那个多边形的边数为.【专题】常规题型.【分析】依照已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,依照轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据运算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需依照旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.依照旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题要紧考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】依照两直线平行,同旁内角互补求出∠1的同旁内角,再依照翻折的性质以及平角等于180°列式进行运算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=.【专题】三角形.【分析】依照等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2021=22020.故答案为:22020.【点评】此题要紧考查了等边三角形的性质以及等腰三角形的性质,依照已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发觉规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】运算题;一元一次不等式(组)及应用.【分析】(1)依照解一元一次方程的步骤依次运算可得;(2)利用加减消元法求解可得;(3)依照解一元一次不等式的步骤依次运算可得;(4)先分别解两个不等式得到x≤1和x>-2,再依照大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,因此不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后依照“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题要紧考查了图形的平移和旋转以及轴对称图形的性质等知识,依照题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再依照角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范畴.【分析】先求出不等式组的解集,依照已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能依照不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试运算a2020+(﹣0.1b)2021的值.【专题】运算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2020+(-0.1b)2021=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情形下,购买A、B两种门票共15张,要求A种门票的数量许多于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)依照运算判定哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)依照题意能够列出相应的不等式组,从而能够解答本题;(2)依照(1)中的结果能够运算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再依照角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,依照∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题要紧考查角平分线和外角的性质,熟练把握三角形的外角性质和角平分线的性质是解题的关键.。

2020年四川省巴中市七年级第二学期期末学业质量监测数学试题含解析

2020年四川省巴中市七年级第二学期期末学业质量监测数学试题含解析

2020年四川省巴中市七年级第二学期期末学业质量监测数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题只有一个答案正确)1.若关于x,y的二元一次方程组33224x y mx y+=-+⎧⎨+=⎩的解满足x+y>﹣32,满足条件的m的所有正整数值为()A.1,2,3,4,5 B.0,1,2,3,4 C.1,2,3,4 D.1,2,3 【答案】A【解析】【分析】先解二元一次方程组求得x和y,再由x+y>﹣32列出关于m的不等式,求解即可.【详解】解:33224x y mx y+=-+⎧⎨+=⎩①②,①×2-②得,65x m =-,将65x m=-代入②得,y=2+35m,∵x+y>﹣32,∴6332552m m-++>-,解得,m<35 6,∴满足条件的m的所有正整数为:1,2,3,4,5.故选:A.【点睛】本题考查了解含参的二元一次方程组和解一元一次不等式,正确用参量m表示方程组的解是解题关键. 2.不等式组的解集是x<3,那么m的取值范围是()A.m>3 B.m≥3 C.m<2 D.m≤2【答案】B【解析】【分析】由已知不等式组的解集确定出m的范围即可.【详解】不等式组整理得:,由解集为x<3,得到m的范围为m≥3,故选:B.【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.江苏淮安与新疆奎屯两地之间的距离约为3780000m,用科学记数法把3780000m可以写成()A.8⨯D.43.7810m⨯3.7810m3.7810m⨯B.73.7810m⨯C.6【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:3780000,用科学记数法表示为3.78×106,故选:C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若是关于的方的解,则关于的不等式的最大整数解为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】把x=-3代入方程x=m+1,即可求得m的值,然后把m的值代入2(1-2x)≥-6+m求解即可.【详解】把x=−3代入方程x=m+1得:m+1=−3,解得:m=−4.则2(1−2x)⩾−6+m 即2−4x ⩾−10,解得:x ⩽3.所以最大整数解为3,故选:C.【点睛】此题考查不等式的整数解,解题关键在于求得m 的值.5.方程(m -2 016)x |m|-2 015+(n +4)y |n|-3=2 018是关于x 、y 的二元一次方程,则( )A .m =±2 016;n =±4B .m =2 016,n =4C .m =-2 016,n =-4D .m =-2 016,n =4 【答案】D【解析】【分析】根据二元一次方程的定义可得m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】∵()()20153201642018m n m x n y ---++=是关于x 、y 的二元一次方程,∴m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解得:m=-2016,n=4,故选D .【点睛】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.6.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)【答案】D【解析】【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.7.已知21xy=⎧⎨=-⎩是二元一次方程21x my+=的一个解,则m的值为()A.3 B.-5 C.-3 D.5 【答案】A【解析】【分析】把21xy=⎧⎨=-⎩代入方程,即可得出关于m的方程,求出方程的解即可.【详解】解:∵21xy=⎧⎨=-⎩是关于x的二元一次方程21x my+=的一个解,∴代入得:4- m =1,解得:m=3,故选A.【点睛】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于m的方程是解此题的关键.8.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD(不包括∠FCD)相等的角有( )A.5个B.2个C.3个D.4个【答案】D【解析】分析:如下图,根据“三角形内角和为180°”结合“垂直的定义”和已知条件进行分析解答即可.详解:如下图,∵AB⊥EF,CD⊥EF,∴∠ABE=∠ABF=∠CDF=90°,∵∠1=∠F=45°,∴∠FCD=180°-90°-45°=45°,∠A=180°-90°-45°=45°,∠2=90°-45°=45°,∴∠FCD=∠F=∠1=∠A=∠2=45°,即和∠FCD 相等的角有4个.故选D.点睛:“根据三角形内角和为180°结合垂直的定义及已知条件证得∠FCD=∠A=∠2=45°”是解答本题的关键.9.在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A .90°B .95°C .100°D .120°【答案】B【解析】 分析:依据CO=AO ,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.详解:∵CO=AO ,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B .点睛:本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.10.把22a a -分解因式,正确的是( )A .()2a a -B .()2a a +C .()222a -D .()2a a -【答案】A【解析】【分析】提取公因式a 即可.【详解】解:22=(2)a a a a --,故选:A.【点睛】本题考查了分解因式,熟练掌握提取公因式法和公式法分解因式是解题关键.二、填空题11.一个长方形的长减少3cm ,同时宽增加2cm ,就成为一个正方形,并且这两个图形的面积相等,则原长方形的长是_____,宽是_____.【答案】9cm 4cm【解析】【分析】设这个长方形的长为xcm ,宽为ycm ,根据长方形的长减少5cm ,宽增加2cm ,组成正方形,且面积相等,列方程组求解.【详解】解:设这个长方形的长为xcm ,宽为ycm , 由题意得,32(3)(2)x y xy x y -=+⎧⎨=-+⎩, 解得:94x y =⎧⎨=⎩. 故答案为:9cm ,4cm .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.12.如图,如果AB BC ⊥垂足为B ,5AB =,4BC =,那么点C 到AB 的距离为_______.【答案】4【解析】【分析】根据AB ⊥BC ,BC=1,可知点C 到AB 的距离为1.【详解】∵AB⊥BC,BC=1,∴可知点C到AB的距离为1,故答案是:1.【点睛】本题运用了点到直线的距离定义,关键是理解好定义.13.方程|x+1|+|2x-1|=6的解为:______.【答案】x=±1【解析】【分析】分三种情况去掉绝对值符号:当x≤-1时,|x+1|+|1x-1|=-x-1-1x+1=-3x=6;当-1<x<12时,|x+1|+|1x-1|=x+1-1x+1=-x+1=6;当12≤x时,|x+1|+|1x-1|=x+1+1x-1=3x=6;【详解】解:当x≤-1时,|x+1|+|1x-1|=-x-1-1x+1=-3x=6,∴x=-1;当-1<x<12时,|x+1|+|1x-1|=x+1-1x+1=-x+1=6,∴x=-4(舍);当12≤x时,|x+1|+|1x-1|=x+1+1x-1=3x=6,∴x=1;综上所述,x=±1,故答案为:x=±1.【点睛】本题考查绝对值与一元一次方程;能够根据绝对值的意义,分情况去掉绝对值符号,将方程转化为一元一次方程是解题的关键.14.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.【答案】4 9【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个,则从中任摸一球,恰为红球的概率为49. 故答案为:49. 【点睛】此题考查概率公式,解题关键在于掌握公式运算法则.15.某校七年级学生中,团员与非团员的人数比为1:4,若用扇形统计图表示这一结果,则对应团员和非团员的圆心角分别为_____.【答案】72°、288°.【解析】【分析】根据题意根据按比例可以计算出对应团员和非团员的圆心角的度数即可.【详解】由题意可得,对应团员的圆心角是:360°×114+=72°, 对应非团员的圆心角是:360°-72°=288°,故答案是:72°、288°.【点睛】考查扇形统计图,解答本题的关键是明确题意,按比分配求出相应的圆心角的度数.16.如图,直线//AB CD ,BC 平分ABD ∠,若165∠=,则2∠=__________.【答案】50°.【解析】【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC 平分∠ABD ,得到∠ABD=2∠ABC=130°,于是得到结论.【详解】∵AB//CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC 平分∠ABD ,∴∠ABD=2∠ABC=130°,∴∠BDC=180°−∠ABD=50°,∴∠2=∠BDC=50°.【点睛】本题考查平行线的性质和角平分线的性质,解决本题的关键是利用平行线的性质和角平分线的性质,建立未知角和已知角之间的联系,从而解决问题.17.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m ∥n ,那么∠1=_____(度).【答案】1【解析】【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=1°.故答案为1.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题18.王勇和李华一起做风筝,选用细木棒做成如图所示的“筝形”框架,要求AB AD =,BC CD =,AB BC >.(1)观察此图,是否是轴对称图形,若是,指出对称轴;(2)ABC ∠和ADC ∠相等吗?为什么?(3)判断BD 是否被AC 垂直平分,并说明你的理由.【答案】(1)是轴对称图形,对称轴是AC 所在直线;(2)ABC ADC ∠=∠;(3)BD 被AC 垂直平分【解析】【分析】(1)是轴对称图形.对称轴是AC 所在的直线.(2)∠ABC =∠ADC .理由:△ABC △ADC(SSS),∴∠ABC =∠ADC .(3)BD 被AC 垂直平分.理由多方面:比如B 、D 关于AC 所在直线对称,∴BD 被AC 垂直平分;或者:BC =CD 知△BCD 是等腰三角形,又CA 平分∠BCD ,所以AC 垂直平分BD ;或者:证△BCO ≌△DCO ,∴BO =DO .又∠BOC =∠DOC ,∴AC ⊥BD .【详解】解:(1)是轴对称图形,对称轴是AC 所在直线(2)ABC ADC ∠=∠,理由:因为AB AD =,BC CD =,AC AC =,所以ABC ADC ∆≅∆,因此ABC ADC ∠=∠.(或者:因为AB AD =,BC CD =,所以ABD ADB ∠=∠,CBD CDB ∠=∠,因此,ABC ADC ∠=∠)(3)BD 被AC 垂直平分,理由:因为BC CD =,所以,BCD ∆是等腰三角形,由(2)知:ABC ADC ∆≅∆,可得ACB ACD ∠=∠,由等腰三角形的“三线合一”,所以AC 垂直平分BD .【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.19.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)﹣2x+4>3x+24(2)3(2)8143x x x x ++⎧⎪-⎨≥⎪⎩>【答案】(1) x<-4 (2)1<x≤4【解析】【分析】(1)利用不等式的性质即可求解,再在数轴上表示解集即可;(2)先分别解出各不等式的解集再求出公共解集,再数轴上表示即可.【详解】(1)﹣2x+4>3x+24-5x>20x<-4把解集在数轴上表示为:(2)3(2)8143x xx x>①②++⎧⎪⎨-≥⎪⎩解不等式①得x>1解不等式②得x≤4∴不等式组的解集为1<x≤4在数轴上表示为:【点睛】此题主要考查不等式的求解,解题的关键是数轴不等式的性质及在数轴上的表示方法.20.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别 A B C D E F月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户) 6 12 m 10 4 2(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【答案】(1)抽样调查;(2)50、16;(3)160户【解析】【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C级别户数m的值;(3)利用样本估计总体思想求解可得.【详解】解:(1)由于是随机调查了该小区部分家庭,所以本次调查采用的方式是抽样调查,故答案为:抽样调查;(2)本次调查的样本容量是10÷72360=50,m=50﹣(6+12+10+4+2)=16,补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t的家庭大约有500×104250++=160(户).【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.21.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果只选择一种购买门票的方式,并且计划在一年中用不多于80元花在该园林的门票上,试通过计算,找出可进入该园林次数最多的购票方式,(2)一年中进入该园林至少超过______________次时,购买A类年票最合算.【答案】(1) 购买C类年票可进入该园林的次数最多;(2)1.【解析】【分析】(1)根据题意分别求出直接购买门票、购买A类年票、购买B类年票、购买C类年票的次数,比较即可(2)设一年中进入该园林至少超过x次时,购买A类年票比较合算,根据题意列出不等式60+2x≥120,解答;解不等式即可求解.【详解】(1)解:①若直接购买门票,设可进入x次,根据题意,得10x≤80解得x≤8最多可进入该园林8次②若购买A类年票∵120>80∴不能购买A类年票③若购买B类年票,设可进入y次,根据题意,得60+2y≤80解得y≤10∴最多可进入该园林10次.④若购买C类年票,设可进入m次,根据题意,得40+3m≤80解得m≤∵m是整数,所以m最大取13∴最多可进入该园林13次综上:∵8<10<13∴购买C 类年票可进入该园林的次数最多(2) 设一年中进入该园林至少超过x 次时,购买A 类年票比较合算,根据题意得,60+2x ≥120,解得x ≥1.∴一年中进入该园林至少超过1次时,购买A 类年票比较合算.故答案为:1.【点睛】本题考查了一元一次不等式的应用,解决本题时注意运用分类讨论的数学思想.22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如12=2242-,20=2264-,28=2286-,……,因此12,20,28这三个数都是奇巧数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年四川省巴中市南江县七年级(下)期末数学试卷
一、选择题(每题3分)
1.在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.
A.1 B.2 C.3 D.4
2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()
A.0 B.2 C.5 D.8
3.如果a<b<0,下列不等式中错误的是()
A.ab>0 B.a+b<0 C.<1 D.a﹣b<0
4.三角形的两边长分别为5cm和7cm,下列长度的四条线段中能作为第三边的是()
A.14cm B.13cm C.8cm D.2cm
5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是() A.B.C.
D.
6.已知|2x﹣y﹣3|+(2x+y+11)2=0,则()
A.B.C.D.
7.在三角形的三个外角中,锐角最多只有()个.
A.0 B.1 C.2 D.3
8.下列图形中,既是轴对称图形,又是中心对称图形的是() A.B.C.D.
9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD 的周长为()
A.8 B.9 C.10 D.11
10.下列几种组合中,恰不能密铺的是()
A.同样大小的任意四边形
B.边长相同的正三角形、正方形、正十二边形
C.边长相同的正十边形和正五角形
D.边长相同的正八边形和正三角形
二、填空题(每题3分)
11.方程y+=的解为.
12.由3x﹣y=5,若用含有x的代数式表示y,则.
13.已知是方程的解,则m=.
14.一个多边形的内角和等于2340°,它的边数是.
15.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.16.三元一次方程组的解是.
17.已知是方程组的解,则a=,b=.
18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于cm.
19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C 落在△ABC内,如图,若∠1=50°,则∠2=.
2021们知道分数写为小数即0.,反之,无限循环小数0.写成分数即一般地,任何一个无限循环小数都可以写成分数形式.现以0.为例进行讨论:设0. =x,由0.=0.777…,得10x=7.777…,由于7.777…=7+0.777…因此10x=7+x,解方程得x=.于是得0.=.仿照上述方法把无限循环小数0.化成分数得.
三、解答题
21.解方程(组):x﹣=2﹣.
22.解方程组.
23.解不等式﹣≥﹣1(把解集在数轴上表示出来)
24.解不等式组.
25.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.
(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1;
(2)在网格中画出△ABC关于直线m对称的△A2B2C2;
(3)在直线m上画一点P,使得C1P+C2P的值最小.
26.如图,已知∠A=2021∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.
27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.
28.若关于x的不等式组的整数解恰有5个,求a的范围.
29.某协会组织会员旅游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15个座位.
(1)求参加旅游的人数;
(2)若采用混租两种客车,使每辆车都不空位,有几种租车方案.
30.如图,一副直角三角板△ABC和△DEF,已知BC=DF,EF=2DE.
(1)直接写出∠B,∠C,∠E,∠F的度数的度数;
(2)将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点A在DE上,△ABC固定不动,将△DEF绕点D逆时针旋转至EF∥CB(如图2),求△DEF 旋转的度数;并通过计算判断点A是否在EF上;
(3)在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?若存在直接写出旋转的角度和平行关系,若不存在,请说明理由.
2020-2021学年四川省巴中市南江县七年级(下)期末数学
试卷
参考答案与试题解析
一、选择题(每题3分)
1.在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.
A.1 B.2 C.3 D.4
【考点】一元一次方程的定义.
【分析】根据一元一次方程的定义,即可解答.
【解答】解:①x2+2x=1,是一元二次方程;
②﹣3x=9,是分式方程;
③x=0,是一元一次方程;
④3﹣=2,是等式;
⑤=y+是一元一次方程;
一元一次方程的有2个,故选:B.
2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是()
A.0 B.2 C.5 D.8
【考点】代数式求值.
【分析】将a﹣3b=﹣3整体代入即可求出所求的结果.
【解答】解:∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣(a﹣3b)=5+3=8.
故选:D.
3.如果a<b<0,下列不等式中错误的是()
A.ab>0 B.a+b<0 C.<1 D.a﹣b<0。

相关文档
最新文档