2019春八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用导学案新人教版

合集下载

17.1勾股定理第二课时

17.1勾股定理第二课时

AC上,这时AC的距离为2.4m.如果梯子顶端A
沿墙下滑0.4m,那么梯子底端B也外移0。4m
吗?
A
解:在Rt△ABC中,
D
∵∠ACB=90°
∴ AC2+ BC2=AB2
2.42+ BC2=2.52
∴BC=0.7m 由题意得:DE=AB=2.5m
DC=AC-AD=2.4-0.4=2m
C
B
E
在Rt△DCE中,
D
15
A xE
C
10
B
25-x
BC2+BE2=CE2 又 ∵ DE=CE
∴ AD2+AE2= BC2+BE2 即:152+x2=102+(25-x)2
∴ X=10
答:E站应建在离A站10km处。
3:在我国古代数学著作《九章算术》中记载了一道有趣的问题这
个问题意思是:有一个水池,水面是一个边长为10米的正方形,在
水池的中央有一根新生的芦苇,它高出水面1米,如果把这根芦苇
拉向岸边,它的顶端恰好到达岸边的水面,问这个水池的深度和
这根芦苇的长度各是多少?
D
解:设水池的深度AC为X米,
C
B
则芦苇高AD为 (X+1)米.
根据题意得: BC2+AC2=AB2
∴52+X2 =(X+1)2
25+X2=X2+2X+1
A
X=12
17.1勾股定理第二课时
变式练习:如图,一个3米长的梯子AB,斜着 靠在竖直的墙AO上,这时AO的距离为2.5 米.
①求梯子的底端B距墙角O多少米?
②如果梯子的顶端A沿墙角下滑0.5米至C, 请同学们:

人教版八年级数学下册《勾股定理》PPT精品教学课件

人教版八年级数学下册《勾股定理》PPT精品教学课件
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2

3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了

人教版八年级数学下册《勾股定理》PPT课件

人教版八年级数学下册《勾股定理》PPT课件

b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用
(2)构造直角三角形; 25 推论1 三个角都相等的三角形是等边三角形
第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。
(3)利用勾股定理等列方程; 本章的难点是解一元二次方程。
4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接 、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。
小技巧 化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
归纳小结
1、勾股定理: 如__果__直_角__三__角__形_的__两__直__角_边__长__分__别_为__a_,_b_,_斜_边__为__c.
那__么____________________________ 2、勾股定理有广泛的应用.
第十七章 勾股定理
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
教学目标 1.会用勾股定理解决简单的实际问题. 2.树立数形结合的思想.
勾股定理的应用
例1:一个门框的尺寸如图所示,一块长3m, 宽2.2m的长方形薄木板能否从门框内通过? 为什么?
已知条件有哪些?
C
2m
A 1m B
1.木板能横着或竖着从门框通过吗? 2.这个门框能通过的最大长度是多少? 3.怎样判定这块木板能否通过木框?
3、学习反思:
____________________________ __________________ ____B
拓展迁移
在数轴上作出表示 20的点. 一个门框的尺寸如图所示,一块长3m,宽的长方形薄木板能否从门框内通过?为什么?

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版

2024八年级数学下册第十七章勾股定理17.1勾股定理第2课时应用勾股定理解实际问题课件新版新人教版



【解】(1)如图,过点A作AE⊥CD于点E,
则∠AEC=∠AED=90°.
∵∠ACD=60°,∴∠CAE=90°-60°=30°.


∴CE= AC=

DE=



km.∴AE=


km,
km.
∴AE=DE.∴△ADE是等腰直角三角形.∴AD=
+ = = AE= ×
度为x尺,则可列方程为( D )
A.x2-3=(10-x)2
B.x2-32=(10-x)2
C.x2+3=(10-x)2
D.x2+32=(10-x)2
【点拨】
如图,已知折断处离地面的高度为x尺,即AC=x尺,
则AB=(10-x)尺,BC=3尺.在Rt△ABC中,AC2+BC2=
AB2,即x2+32=(10-x)2.故选D.
2.[2023·岳阳 新考向·传承数学文化]我国古代数学名著《九章
算术》中有这样一道题:“今有圆材,径二尺五寸,欲为
方版,令厚七寸,问广几何?”结合如图,其大意是:今
有圆形材质,直径BD为25寸,要做成方形板材,使其厚
度CD达到7寸,则BC的长是( C )
A. 寸
B.25寸
C.24寸
D.7寸
选B.
4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙
时,梯子底端到左墙脚的距离为0.7 m,顶端距离地面2.4
m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶
端距离地面2 m,那么小巷的宽度为( C )
A.0.7 m
B.1.5 m
C.2.2 m
D.2.4 m
【点拨】
如图,BC=2.4 m,AC=0.7 m,DE=

部编版八年级数学下册第十七章第一节《勾股定理(第2课时)》课件

部编版八年级数学下册第十七章第一节《勾股定理(第2课时)》课件

答案:2.5
第1题图
第2题图
例1 在正方形网格中,每个小方格的边长都是1, △ABC的位置如图所示,回答下列问题: (1)求△ABC的周长; (2)画出BC边上的高,并求△ABC的面积; (3)画出AB边上的高,并求出高.
例1 在正方形网格中,每个小方格的边长都是1, △ABC的位置如图所示,回答下列问题: (1)求△ABC的周长; (2)画出BC边上的高,并求△ABC的面积;k
.
例2 在△ABC中,AB=15 cm,
AC=13 cm,高AD=12 cm,求BC的长.
A
A
15 12 13
15 13 12
B
D
C B CD
高在BC边上
高在BC延长线上
答案:14 cm或4 cm.
练习
直角三角形的两边长分别是3和5, 求第三条边长.
哪两条边呢?直 角边还是斜边? 看来要分类讨论
3. 已知Rt△ABC中,∠C=90°,
若a=1,c=3,则b= 2 2 .
4. 已知Rt△ABC中,∠A=90°, ∠B=30°, 若a=4,则c= 2 3 . 5. 已知Rt△ABC中,∠B=90°, ∠A=45°, 若b=7 2 ,则c= 7 .
探究 小明家装修时需要一块薄
木板,已知小明家的门框尺寸 是宽1 m,高2 m,如图所示, 那么长3 m,宽2.2 m的薄木板 能否顺利通过门框呢?
A
C
B
7. 直角三角形的两条边长分别是1和2,则第三边 长是多少?
本课我们学习了哪些知识? 用了哪些方法? 你有哪些体会?
则a的长为( )
A.5 B. 10 C. 5 2 D. 5
4. 等边三角形的边长为2,则该三角形的面积为

人教版八年级下册 课件 17.1 勾股定理(共46张PPT)

人教版八年级下册 课件 17.1 勾股定理(共46张PPT)

b c b c b cb c
a
a
a
a
勾股定理的证明方法很多,这里重点的介绍面积 证法。
勾股定理的证法(一)
∵( a+b)2=c2+4 ab a2+b2=c2
勾股定理的证法(二)
∵4× ab= c2-(b-a)2 a2+b2=c2
• 学习目标: 1.能运用勾股定理求线段的长度,并解决一些简单的实 际问题; 2.在利用勾股定理解决实际生活问题的过程中,能 从实际问题中抽象出直角三角形这一几何模型, 利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长.
以直角三角形的两条直角边a、b为边作两个正方形, 把两个正方形如图(左)连在一起,通过剪、拼把它拼成 图(右)的样子。你能做到吗?试试看。
b
a
练习1 求图中字母所代表的正方形的面积.
225 A
144
80 A
24 B
A 8
17
练习2 求下列直角三角形中未知边的长度.
C
A
4
x
5
A
10
C
6
B
x
B
通过这种方法,可以把一个正方形的面积分成若干 个小正方形的面积的和,不断地分下去,就可以得到一 棵美丽的勾股树.
通过解方程可得.
B
C
A
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何?
利用勾股定理解决实际问题 的一般思路:
(1)重视对实际问题题意的 正确理解;
(2)建立对应的数学模型, 运用相应的数学知识;
(3)方程思想在本题中的运 用.
B
C
A
如图,一棵树被台风吹折断后,树顶端落在离底端 3米处,测得折断后长的一截比短的一截长1米,你能计 算树折断前的高度吗?

八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7

八年级数学下册第十七章勾股定理17.1勾股定理第2课时勾股定理在实际生活中的应用7

第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。

八年级下 - 第17章勾股定理

八年级下 - 第17章勾股定理

初中数学第17章勾股定理 努力学习,改变自己,从easy 精英学习网开始第十七章 勾股定理17.1 勾股定理:a ²+b ²=c ²应用:①已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c ,b ,a )②已知直角三角形的一边与另两边的关系,求直角三角形的另两边。

17.2 勾股定理的逆定理(1)逆定理:如果三角形的三边长a 、b 、c 满足,a ²+b ²=c ²,那这个三角形是直角三角形。

应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。

(2)勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②常见勾股数,如3,4,5;6,8,10;5,12,13;7,24,25等(3)直角三角形的性质①直角三角形的两个锐角互余。

可表示如下:∠C=90°⇒∠A+∠B=90° ②在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°+∠C=90°⇒BC=21AB ③直角三角形斜边上的中线等于斜边的一半∠ACB=90°+D 为AB 的中点⇒CD=21AB=BD=AD (4)经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)(5)证明判断一个命题的正确性的推理过程叫做证明。

(6)证明的一般步骤①根据题意,画出图形。

②根据题设、结论、结合图形,写出已知、求证。

③经过分析,找出由已知推出求证的途径,写出证明过程。

勾股定理的实际应用听课手册

勾股定理的实际应用听课手册

图 17-1-8
第2课时 勾股定理在实际生活中的应用
解:(1)在 Rt△AOB 中,∠AOB=90°. 由勾股定理,得 OB2=AB2-AO2=252-242=49,所以 OB= 49=7(m). 即这个梯子的底端 B 与墙之间的距离是 7 m. (2)由题意,得 OD=OB+BD=7+8=15(m),CD=25 m. 在 Rt△COD 中,∠COD=90°, 由勾股定理, 得 OC =CD -OD =25 -15 =400, 所以 OC= 400=20(m), 所以 AC=AO-OC=24-20=4(m). (3)由题意及勾股定理,得此时梯子的顶端离地面的距离为 252-52= 10 6(m),所以梯子的顶端向上滑动的距离为(10 6-24)m.
目标三 利用勾股定理确定立体图形表面上两点间的最短路径
例 4 教材补充例题 如图 17-1-10 所示,长方体的长为 15,宽 为 10,高为 20,点 B 到点 C 的距离为 5,一只蚂蚁如果要沿着长方体 的表面从点 A 爬到点 B,求这只蚂蚁要爬行的最短路程.
图 17-1-10
第2课时 勾股定理在实际生活中的应用
第2课时 勾股定理在实际生活中的应用
解:如图,作点 A 关于距 A 较近一侧河岸 MN 的对称点 A′,连接 A′B 交 MN 于点 P,连接 AP,则折线 APB 就是最短路径,AP+BP=A′B. 在 Rt△A′DB 中,由题意,得 BD=8 km,A′D=7+4+4=15(km).由 勾股定理求得 A′B= BD2+A′D2=17 km. 答:他要完成这件事情所走的最短路程是 17 km.
2.利用勾股定理,结合“两点之间,线段最短”,会求平面
上两点间的最短路径长.
3.在掌握立体图形展开图的前提下,利用勾股定理求立体图

17.1勾股定理第2课时(课件)八年级数学下册(人教版)

17.1勾股定理第2课时(课件)八年级数学下册(人教版)

B 10
6
C8 A
2
1 C
30° A
3
17
A
8 C
C
2
2
2 45° A
典例精析
人教版数学八年级下册
例1 一个门框的尺寸如图所示,一块长3 m,宽2.2 m 的长方形薄木板能否从门框内通过?为什么?
分析: 1、由题干内容可知,门的高是2米,宽1米,木板 横着 或
竖着 都不能通过,只能试试 斜着 能否通过. 2、门框对角线DB是斜着的最大长度,只要计算出 AC 的 长度,再与木板的 宽 比较,只要__A_C_>_2_._2,就知道能否 通过.
C
人教版数学八年级下册
A′
B C′
B′
互动新授
人教版数学八年级下册
探究 我们知道数轴上的点有的表示有理数,有的表示
无理数,你能在数轴上画出表示 13 的点吗?
步骤: 1.在数轴上找到点A,使OA=3;
13
2
2.作直线l⊥OA,在l上取一点B,使AB=2;
l3 B
3.以原点O为圆心,以OB为半径作弧,弧学八年级下册
1.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8
米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少
飞行多少? B
解:如图,过点A作AC⊥BC于点C.
由题意得AC=8米,BC=8-2=6(米), C
A
AB AC2 BC2 10米.
答:小鸟至少飞行10米.
与数轴交于C点,则点C即为表示 13 的点.
O 0
1
2 A•3 C4
互动新授
人教版数学八年级下册
类似地,利用勾股定理可以作出长为 2, 3, 5 线段.

人教版初中数学八年级下册17.1.2《利用勾股定理解决简单的实际问题》课件(共15张PPT)

人教版初中数学八年级下册17.1.2《利用勾股定理解决简单的实际问题》课件(共15张PPT)

落在离大树底端2米处,折断处离地面的高度
是多少?
分析:解:设AB= x m,则AC= (8-x) m ∵在Rt△ABC中,∠ABC=90° A
∴AB2+BC2=AC2

x=3.75
∴折断处离地面的高度是3.75 m. B C
小结:1、方程思想.
2、勾股定理是此题的等量关系.
探究2:
一个3m长的梯子AB,斜靠在一竖直的墙AO上,
三边的长
B
10 6
C
A
A C
2 30°
45° 2
二、创设情境,应用定理
古代笑话
截竿进城
某人拿一根竹竿想进城,可是竹竿太长了,横竖都进不了城。这时,一位老 人给他出了个主意,把竹竿截成两半……
探究1、小明家装修时需要一块薄木板,已知小明家的门框尺寸0如图所
示:
(1) 若有一块长3米,宽0.8米的薄木板,能否从门框内通过?
(2) 若有一块长3米,宽1.5米的薄木板,能否从门框内通过?
(3) 若有一块长3米,宽2.2米的薄木板,能否从门框内通过?
分析:(3) 木板的宽2.2米大于1米,所以横着不能从门框内通过.
木板的宽2.2米大于2米,所以竖着不能从门框内通过.
因为对角线AC的长度最大,所以只能试试斜着能否通过.
所以将实际问题转化为数学问题.
人教版八年级下册
教学目标:
1.运用勾股定理进行简单的计算. 2.运用勾股定理解决生活中的实际问 题. 3、通过从实际问题中抽象出直角三角 形这一几何模型,初步掌握转化和数形 结合的思想方法.
教学重点:
勾股定理的应用
教学难点:
将实际问题转化成数学问题的 过程
一实实实验、验观观察温察 故知新

人教版勾股定理在实际生活中的应用

人教版勾股定理在实际生活中的应用
1和2的直角三角形的斜边等.
(2)以原点O为圆心,以无理数斜边长为半径画弧与数 轴存在交点,在原点左边的点表示是负无理数,在原点 右边的点表示是正无理数.
17
例2 如图,以数轴上的单位线段长为边作一个正方形, 以原点为圆心,以正方形的对角线长为半径,画弧交数轴于 点A,则A点表示的数是( )
18
课堂小结
探究思路:把握题意——找 关键字词——连接相关知 识——建立数学模型(建模)
01 2 3 4
13
问题2 我们知道数轴上的点有的表示有理数,
有的表示无理数,你能在数轴上画出表示 13 的点 吗?解:LB2
0
1
2
A3•
•C
134
14
类比迁移
利用勾股定理作出长为 2, 3, 5的线段.
用同样的方法,你能 否在数轴上画出表 示 , 12
6
例1 在一次台风的袭击中,小明家房前的一棵 大树在离地面6米处断裂,树的顶部落在离树根底部 8米处.你能告诉小明这棵树折断之前有多高吗?
6 米
7
8米
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
8
A
6

B
C
8米
解:在Rt△ABC中,AC=6,BC=8,
由勾股定理得
AB AC2 BC2
3 4 ,5…
1
12
3 45
“数学海螺”
15
• 用同样的方法,你能
否在数轴上画出表示

1
4
2
,5 …
3
1 0 1 2 32 5 3 4 5
16
知识要点
利用勾股定理表示无理数的方法
(1)利用勾股定理把一个无理数表示成直角边是两个正 整数的直角三角形的斜边.如本题中的 13 看成直角边分

《17.1 勾股定理》课件(含习题)

《17.1 勾股定理》课件(含习题)

某学习小组经过合作交流,给出了下面的解题思路,
请你按照他们的解题思路完成解答过程.
A
作AD⊥BC于D, 设BD=x,用含x的 代数式表示CD
根据勾股定理, 利用AD作为“桥 梁”建立方程模 型求出x
B
DC
利用勾股定理求 出AD的长,再计 算三角形面积
解:如图,在△ABC中,AB=15,BC=14,AC=13, 设BD=x,则CD=14-x,
在Rt△COD中,根据勾股定理,
OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15
OD 3.15 1.77,
BD OD OB 1.77 1 0.77 .
A C
O
BD
所以梯子的顶端沿墙下滑0.5m时,梯子底端并不是也外 移0.5m,而是外移约0.77m.
归纳总结
利用勾股定理解决实际问题的一般步骤:
a
c
b
二 勾股定理的验证
拼一拼 请同学们准备四个完全相同的直角三 角形,跟着我国汉代数学家赵爽拼图.
赵爽
b
a
c
b
a
a2 + b2
这种用拼图的验
=证勾c股2 定理的方
法叫做弦图法
c
a
b
证一证
证明: S大正方形=c2
c b
a
b-a
赵爽弦图
S小正方形=(b-a)2
S大正方形=4·S三角形+S小正方形
当堂练习
1.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米
.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行
( B )A. 8米 B.10米
C.12米 D.14米
A
B
第1题图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章勾股定理
2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;
(2)他们仅仅少走了几步(假设2步为1米)?
探究点2:利用勾股定理求两点距离及验证“HL ”
思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?
证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.
求证:△ABC ≌△A ’ B ’ C ’ .
证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,
根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________).
例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.
探究点3:利用勾股定理求最短距离
想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?
处放上了点儿火腿肠粒,你
的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. m
2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
3.已知点(2,5),(-4,-3),
则这两点的距离为_______.
4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?
5.如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?
能力提升
6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?。

相关文档
最新文档