概率论与数理统计复习提纲
(完整版)概率论与数理统计复习提纲
1.基本思想: 用样本矩(原点矩或中心矩)代替相应的总体矩.
2.求总体X的分布中包含的m个未知参数 的矩估计步骤:
① 求出总体矩,即 ;② 用样本矩代替总体矩,列出矩估计方程:
③ 解上述方程(或方程组)得到 的矩估计量为:
④ 的矩估计值为:
3. 矩估计法的优缺点:
优点:直观、简单; 只须知道总体的矩,不须知道总体的分布形式.
(1) 分布的 分位点 (2) 分布的 分位点 其性质:
(3) 分布的 分位点 其性质
(4)N(0,1)分布的 分位点 有
第六章 参数估计
一、点估计:设 为来自总体X的样本, 为X中的未知参数, 为样本值,构造某个统计
量 作为参数 的估计,则称 为 的点估计量, 为 的估计值.
2.常用点估计的方法:矩估计法和最大似然估计法.
合概率函数(或联合密度函数) (或
称为似然函数.
3. 求最大似然估计的步骤:
(1)求似然函数:X离散: X连续:
(2)求 和似然方程:
(3)解似然方程,得到最大似然估计值:
(4)最后得到最大似然估计量:
4. 最大似然估计法是在各种参数估计方法中比较优良的方法,但是它需要知道总体X的分布形式.
四、估计量的评价标准
4.伯努利概型:
1.事件的对立与互不相容是等价的。(X)
2.若 则 。(X)
3. 。(X)
4.A,B,C三个事件恰有一个发生可表示为 。(∨)
5.n个事件若满足 ,则n个事件相互独立。(X)
6.当 时,有P(B-A)=P(B)-P(A)。(∨)
第二章 随机变量及其分布
一、随机变量的定义:设样本空间为 ,变量 为定义在 上的单值实值函数,则称 为随机变量,通常用大写英文字母,用小写英文字母表示其取值。
《概率论与数理统计》复习提纲
概率论与数理统计C复习提纲 清晰版
提纲第一部分 基本概念和基本定理【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:AB 与AB 是否相等?答:不一定相等.由对偶律可知,AB A B A B ==;而AB A B =.问题2:事件的相容性与独立性在逻辑上是否存在因果关系? 答:如下表所示,事件的相容性与独立性在逻辑上不存在因果关系.问题3:设()()()P AB P A P B =,()()()P AC P A P C =,()()()P BC P B P C =同时成立,能否推出()()()()P ABC P A P B P C =成立?答:不能(例如第2章课件中的伯恩斯坦反例),由此可以看出“两两独立”和“相互独立”并不等价.问题4:下列式子中的等号何时成立?()()()()()()()(|)()()()()()()P A B P A P B P AB P A P B P A P B A P A P B P A P B P A P B =+-=+-=+-=+答:第一个等号总成立;当()0P A >时,第二个等号成立;当,A B 独立时,第三个等号成立;当,A B 不相容时,第四个等号成立.问题5:不可能事件与零概率事件是否相等?必然事件与概率为1的事件是否相等? 答:不可能事件是零概率事件,但反之不然; 必然事件是概率为1的事件,但反之亦不然.第二部分 随机变量及其分布【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:离散型随机变量与连续型随机变量的联系与区别? 答: 2,,1ii p∞=∑一定成立.连续型随机变量还具有一个特殊性质:0, ()0C P C ξ∀>==,即任一基本事件发生的概率为零.从而可以推出下列结论:①不可能事件是零概率的事件,但反之不然;必然事件是概率为1的事件,但反之亦不然.②()()()()()baP a b P a b P a b P a b f x dx ξξξξ≤≤=<≤=≤<=<<=⎰.问题2:连续型随机变量的密度函数是否一定是连续函数? 答:不一定,均匀分布的密度函数并不连续.问题3:分布曲线(曲面)是分布函数的图像吗? 答:不是,分布曲线(曲面)是密度函数的图像.问题4:密度函数是否由分布函数唯一确定?()()dF x f x dx=何时成立? 答:不是,因为修改密度函数在个别点处的函数值对其积分的值(概率)没有影响. 对()f x 的连续点,有()()dF x f x dx=.问题5:联合分布、边缘分布、条件分布之间的联系与区别? 答:从分布函数的定义来看,分布函数几何意义联合分布(,)(,)F x y P x y ξη=≤≤边缘分布()(,)(,)F x P x F x ξξη=≤<+∞=+∞条件分布对使得()0f y η>的点y (这个条件不能少),|(,)(|)(|)()P x y F x y P x y P y ξηξηξηη≤==≤===从分布律的定义来看,分布律几何意义联合分布(,)i j ijP x y pξη===•边缘分布律体现为同一行概率求和.•条件分布律体现为ijp在同一行概率中所占的比重.注意:条件分布中“.ip>”的条件不能少!边缘分布.1()i ij ijP x p p ξ∞====∑条件分布当.ip>时,. (|)ijj iip P y xp ηξ===从密度函数的定义来看,密度函数几何意义联合分布(,) f x y边缘分布()(,) f x f x y dy ξ+∞-∞=⎰条件分布对使得()0f yη>的点y,|(,)(|)()f xf xyyyfξηη=注意:条件分布中“()0f yη>”的条件不能少!三种概率分布之间的相互转化关系是ξη,何时可以由ξ和η的边缘分布完全确定联合分布?问题6:给定二维随机变量(,)答:当ξ和η相互独立时,可以由边缘分布完全确定联合分布.ξη的边缘分布是正态分布,能否由此确定联合分布是二维正问题7:已知二维随机变量(,)态分布?答:不能,反例请参考P.146例19.第三部分随机变量的数字特征【内容提要】复习重点:期望、方差、协方差、相关系数的性质.1.期望和方差的定义、性质1,2,Eξ(要求积分绝对收敛)Eg(2.协方差和相关系数的定义、性质【释疑解惑】问题1:是否所有随机变量都存在数学期望?答:不是,反例请参考P.74例22及P.98例7.因为方差本质上是随机变量的函数的期望,所以并非所有随机变量都存在方差.问题2:随机变量的不相关性与独立性是否等价?答:“不相关”是指两个随机变量之间不存在线性函数的关系,“独立”是指两个随机变量不存在任何关系。
概率论与数理统计复习提纲
概率论与数理统计复习提纲Ch1一、事件的关系及运算二、古典概型求概率三、加法法则与乘法法则P(AB)P(A)P(B)P(AB)若A与B互不相容,则P(A+B)=P(A)+P(B)若A与B相互独立,则P(AB)P(A)P(B)P(A)P(B)P(AB)P(A)P(AB)也是常用式子;P(AB)P(A)P(B|A)P(B)P(A|B)四、事件的独立性对事件A与B,若P(AB)P(A)P(B)或PABPAPBAPB则称A与B相互独立。
AB也相互独立。
若A与B相互独立,则A与B,A与B,与五、全概率公式和贝叶斯公式P(B)P(Ai)P(B|Ai)——全概率公式i及P(Am|B)P(Am)P(B|Am),(m1,2,...)——贝叶斯公式(逆概公式)P(Ai)P(B|Ai)i其中,最常用的是:任给事件A,B有P(B)P(A)P(B|A)P(A)P(B|A)P(A|B)P(A)P(B|A)P(A)P(B|A)P(A)P(B|A)Ch2一、离散型随机变量的分布律P(某=某k)=pk(k=1,2,…)①性质:pk1(注:由此可确定分布律中的未知常数)k②如何求分布律:先确定r.v.的可能取值,再求取相应值的概率值;③根据分布律求分布函数及离散型r.v.落在某个区间的概率;二、连续型随机变量的概率密度函数f(某)①性质:f(某)d某1(注:由此可确定密度函数中的未知常数)某②由f(某)求分布函数:F(某)P(某某)f(t)dt(要注意对某的分段讨论)b③由f(某)求连续型r.v.落在某个区间的概率:P(a某b)f(某)d某;a(注:连续型r.v.取任一常值的概率等于0,即P(某某)0)三、分布函数F(某)①分布函数的性质:0F(某)1,F()0,F()1,(右)连续,单调不减(注:由此可确定分布函数中的未知常数)②分布函数与分布律、概率密度的关系:相互求解(注:F(某)f(某));③由F(某)求r.v.落在某个区间的概率:P(a某b)F(b)F(a)。
概率论与数理统计复习提纲
概率论与数理统计复习提纲第一章 概率论的基本概念一、事件间的关系及运算二、古典概型中概率的计算三、概率的公理化定义及性质-重点四、条件概率、乘法定理、全概率公式及贝叶斯公式-重点五、事件相互独立的定义及判断第二章 随机变量及其分布一、离散型随机变量及其分布律1. 分布律的定义2. 三种重要的离散型分布-重点:(0-1)分布,二项分布),(p n b ,泊松分布)(λπ.二、分布函数的定义及求解-重点:会求离散型或连续型随机变量的分布函数)(x F .三、连续型随机变量及其概率密度1. 概率密度的定义及性质-重点2. 三种重要的连续型分布-重点:均匀分布),(b a U ,指数分布,正态分布),(2σμN .注意:正态分布),(2σμN 与标准正态分布)1,0(N 的关系-引理;标准正态分布)1,0(N 的上α分位点αz 的定义。
第三章 多维随机变量及其分布一、二维随机变量的分布函数的定义及性质二、二维离散型随机变量的联合分布律及二维连续型随机变量的联合概率密度及性质-重点三、会求条件概率密度)/(/x y f X Y 和)/(/y x f Y X ;四、二维离散型随机变量的边缘分布律及二维连续型随机变量的边缘概率密度-重点五、相互独立的随机变量的判断方法-重点六、随机变量函数的分布1. 一维随机变量函数的分布-重点2. 二维随机变量函数的分布:Y X Z +=,{}Y X Z ,m ax =,{}Y X Z ,min =第四章 随机变量的数字特征一、会求随机变量及其函数的数学期望及方差、掌握期望和方差的性质-重点二、记住常见分布的数学期望及方差-重点三、协方差、相关系数、矩的概念及计算、不相关的定义第五章 大数定律及中心极限定理一、契比雪夫不等式及其等价形式二、中心极限定理:定理4、定理5、定理6第六章 样本及抽样分布一、统计量的定义及常用的统计量-重点二、)(2n χ分布、)(n t 分布、),(21n n F 分布的定义、构造及上α分位点的定义-重点三、来自正态总体的抽样分布(P158-P160):定理1、定理2、定理3为重点,了解定理4。
概率论与数理统计复习资料要点总结
《概率论与数理统计》复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk k nk k A P A P 11)()( (n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有(3) 全概率公式: ∑==ni i i B A P B P A P 1)|()()((4) Bayes 公式: ∑==ni i i k k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑ii p =1(3)对任意R D ⊂,∑∈=∈Dx i i i p D X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)( ,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i i i p x F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y gy gf y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计期末复习提纲
推论: P( B A) P( B) P( AB ) 4) P( A) 1 5) P( A) 1 P( A ) 6) P( A B) P( A) P( B) P( AB)
第二章 一维随机变量及其分布
一维随机变量
离散型随机变量
随机变量的分布函数 连续性随机变量 随机变量函数的分布
pij P{X xi , Y y j }, i, j 1, 2,
满足规范性条件 pij 1 ,则称 ( X , Y ) 为二维离散型
i , j 1
随机变量。
定义
设 ( X ,Y ) 为二维离散型随机变量,其所有可 能取值为 ( xi , yi )(i, j 1, 2,) ,则称 pij (i, j 1, 2,) 为 ( X , Y )的联合分布律。
3 x p ( x ) dx 1 ke dx 1 , 解:(1) , 0
ke 3 x , p( x ) 0,
x0
x 0,
1 3x k e 3
0
1,
k 3,
即
3e 3 x , p( x ) 0,
0
0
数学期望的性质
1. 设C是常数,则E(C)=C; 请注意: 2. 若k是常数,则E(kX)=kE(X); 由E(XY)=E(X)E(Y) 不一定能推出X,Y 3. E(X+Y) = E(X)+E(Y); 独立 n n 推广 : E[ X i ] EX i
i 1 i 1
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
0 1
0 1
x
1 2 x 2x 1 2
概率论与数理统计复习资料
概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。
概率论与数理统计复习提纲
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计总复习知识点归纳
D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
非常全面的概率论与数理统计复习材料
为 21 的倍数的概率 p2;
解:p1=错误!=错误!, p2= 错误!= 错误!
前提是如果在某一区域任取一 例 1 把长度为 a 的棒任意折成三段,求它们可以构成一个三角形的概率;
点,而所取的点落在中任意两 解:设折得的三段长度分别为 x,y 和 a-x-y,那么,样本空间,S={x,y|0xa,0ya,0a-x-ya};
A、A=
B、AB= C、A错误!=
D、B=错误!
运 A1,A2,…,An 构成的一个完备事件组或分斥指 A1,A2,…,An 两两互不相容,且错误!Ai=
算
交换律 A∪B=B∪A A∩B=B∩A 运
结合律 A∪B∪C=A∪B∪C A∩B∩C=A∩B∩C 算
分配律 A∪B∩C=AC∪BC A∩B∪C=A∪C∩B∪C 法
题 例 3 某物品成箱出售,每箱 20 件,假设各箱中含 0、1 件次品的概率分别为和,一顾客在购买时,他可以开箱,从箱中任取
三件检查,当这三件都是合格品时,顾客才买下该箱物品,否则退货;试求:1 顾客买下该箱的概率 ;
2 顾客买下该箱物品,问该箱确无次品的概率 ;
解:设事件 A0—箱中 0 件次品, A1—箱中 1 件次品,事件 B—买下该箱;由已知 PA0=, PA1=,
必然事件---每次试验中必定发生的事件; 不可能事件--每次试验中一定不发生的事件;
事 包含 AB 件 相等 A=B 之 对立事件,也称 A 的逆事件 间 互斥事件 AB=也称不相容事件 的 A,B 相互独立 PAB=PAPB 关
例 1 事件 A,B 互为对立事件等价于 D A、A,B 互不相容 B、A,B 相互独立 C、A∪B=Ω D、A,B 构成对样本空间的一个剖分 例 2 设 PA=0,B 为任一事件,则 C A、A= B、AB C、A 与 B 相互独立 D、A 与 B 互不相容
概率统计复习提纲(百度文库)讲解
《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为:,.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验F的所有可能结果组成的集合称为F的样本空间;记为Q;试验的每一个可能结果,即Q中的元素,称为样本点,记为「(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为「)和不可能事件(记为-).2、事件的关系与运算(1)包含关系与相等:“事件一发生必导致匸'发生”,记为二一「或丄-J ; A=B^AcB 且鸟匚乂.(2)互不相容性-互为对立事件1 :、「-门且一 :.(3)独立性:(i)设丄:'为事件,若有匸二-匸二y 口‘,则称事件-与F相互独立.等价于:若* 1 2 3 4(2)多个事件的独立:设一……;是n个事件,如果对任意的乂山二口匚,任意的1■\ ',具有等式,称;个事件…人相互独立.3、事件的运算(1)和事件(并):“事件一与匸'至少有一个发生”,记为」一丄.(2)积事件(交):“ 事件」与匸'同时发生”,记为』丄「或丄.(3)差事件、对立事件(余事件):“事件发生一而匸'不发生”,记为」「称为一与匚'的差事件;…二二称为T的对立事件;易知:二】匸.4、事件的运算法则1 交换律:亠二一二一 _」,二土;2结合律:』u0uO = (£u仍uC,(曲)0 =玫蜀;3分配律:(心―2此,的uC = (g(S;4 对偶()律:丸匸二丄,,一二二一1,十十u A=n n©u血可推广* ■'5、概率的概念(1)概率的公理化定义:i厂存v「J的f事件域.恥F隹义在F上的一个集值函数P(備足;1)菲负性:旳1)20;2)规范性:卩⑼訂3)可列可加性;设力岀,…是可列个互不相容事件,则则称P")为事件胡概率.(2)频率的定义:事件」在「次重复试验中出现11次,则比值」称为事件」在[次重复试验中出现的频率,记为 ,即— 」.即随旳的増大越来越韋近基个常数戸切丹斗审冲 n 称W 为事件一的(统计)概率在实际问题中,当「很大时,取f 一,“(4)古典概率:若试验的基本结果数为有限个, 且每个事件发生的可能性相等,则(试验对应古典概型)事件 」发生的概率为:—A 中所含样本点数」/(占) c 中样本点总数n(5)几何概率:若试验基本结果数无限,随机点落在某区域 g 的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域「中随机地取一点落在区域-中”这一事件二发生的概率为:1丿Q 的测度. (6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念6、概率的基本性质(3)统计概率: 频率具有稳定性, 9 QD(1)不可能事件概率零:= 0.(2)有限可加性:设\ \ -是n个两两互不相容的事件,即」•.=;,(;) 丄,12…j 则有= + 酗)+…+P⑷.(3)单调不减性:若事件口—上「」「—」,且冊卜附也).(4)互逆性:丿二】且H上-(5)加法公式:对任意两事件二:,有二二-匚—二二I-P匚.—厂扑;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件二:,有门上二:,且AAu3)<PU) + ?(3)7、条件概率与乘法公式(1)条件概率:设丄E是两个事件,即」.,则P(AB)称为事件一发生的条件下事件匸'发生的条件概率.(2)乘法公式:设丄H 且「一•〕「"」则W = P(^P(B| X) = P^)P(A13)称为事件二-的概率乘法公式.8全概率公式与贝叶斯()公式(1)全概率公式:设-…二是异的一个划分,且S,•厂亠,…,则对任何事件”」,有p(s)=^mwi4)2-1称为全概率公式(2)贝叶斯()公式:设是打的一个划分,且■ 1 ' 1 _'\ ,则对任何事件丄「一,有P(AAP(B\JL)mi月)=丨宀心=1,…⑻i-L称为贝叶斯公式或逆概率公式9、贝努里()概型(1)只有两个可能结果的试验称为贝努里试验,常记为丄.丄也叫做“成功—失败”试验,“成功”的概率常用/ " L:/表示,其中」成功”.(2)把匚重复独立地进行•.次,所得的试验称为!重贝努里试验,记为匸.(3)把::'重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为孑.以上三种贝努里试验统称为贝努里概型.(4)匸中成功卜次的概率是二」mi其中—1 1:--/--1.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件•它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件」与厂必有一个事件发生,且至多有一个事件发生,则J、'为互逆事件;如果两个事件」与1不能同时发生,则J、'为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形•作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个3、两事件独立与两事件互斥两事件」、T独立,则」与T中任一个事件的发生与另一个事件的发生无关,这时「'' ■:' 1;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时二一二二二.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1咖)二.P⑷丄F(B) 一、^ 亠、4 2 ,表示样本空间中两事件的独立关系,而在右边的正方形中,丄匸•,表示样本空间中两事件的互斥关系.4、条件概率''与积事件概率「卜是在样本空间「内,事件二的概率,而’'''是在试验丄增加了新条件发生后的缩减的样本空间中计算事件』的概率.虽然都发生,但两者是不同的,一般说来,当」、-同时发生时,常用「加,而在有包含关系或明确的主从关系时,用"八二.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率•问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯()公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件•贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设「是随机试验的样本空间,如果对于试验的每一个可能结果二一X,都有唯一的实数'与之对应,则称为定义在「上的随机变量,简记为.随机变量通常用大写字母二-■-等表示.设g,F*)是一t概率空间,若枷W R有珂紋是-个随腋氢离散型随机喪量(可能取值至多可列)随机变量连续型随机变量(可育諏值充满某个区间〉奇异型随机变量■-2、离散型随机变量及其分布列如果随机变量二只能取有限个或可列个可能值,贝淋二为离散型随机变量.如果」的一切可能值为〔1 ,并且負取:;的概率为X,则称儿":一:一】“:为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为匸:日,分布列为丄工卜;■'■-■'!5 P或(2)二项分布:记为'-,,概率函数尸区胡乂”(1-卩严北二0「也0<^<1(3)泊松分布,记为'-',概率函数iJtP&"}二斗,"Oh, 4 0<1泊松定理设“::是一常数,J是任意正整数,设’人',则对于任一固定的非负整数i,有八,■-.当〔很大且|很小时,二项分布可以用泊松分布近似代替,即切(1宀年,其中5(4) 超几何分布:记为概率函数(5) 几何分布:记为上•「心口,概率函数> ;< :匚 ‘ .;■..3、分布函数及其性质分布函数的定义:设"为随机变量,:为任意实数,函数阳=P{X <X)(-0O<X< +oo)称为随机变量負的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下 性质: (1) 有界性(-00 < X <松);⑵ 单调性 如果:'< ,则旳g(xj ;(3) 右连续, 即戸;7C(4) 极限性 血 F(i) = 0> 陀)二127 W-Hfi ;(5)完美性 Pg fXSxj =P{X “卜P{X 二F(xj-F(xj .4、连续型随机变量及其分布分布如果对于随机变量二的分布函数门「,存在非负函数「九,使对于任一实数:, 有宀'",则称;为连续型随机变量.函数—称为;的概率密度函数.P{X "}= pJtr k- 0丄…,min (丹,M) ,其中匚暑为正整数,且:二「- \n 当:「很大,且'1较小时,有马軒泌"(1十严概率密度函数具有以下 性质:(1)工沁〕;⑵二(3) - ' _、「 7 '■ ' ; ( 4)丄;二 11 ;(5) 如果在:处连续,则.常用连续型随机变量的分布:(1) 均匀分布:记为- ; ,概率密度为a①其它分布函数为Q,x <a-f a<x<bl, x(2) 指数分布:记为工- ,概率密度为分布函数为0, A<0(3) 正态分布:记为--,概率密度为p(x) = -=^ 2f2 ? -DO <z < +CO* ?相应的分布函数为di当"-"■■■-1时,即「时,称負服从标准正态分布.这时分别用」:和 _1表示二的密度函数和分布函数,即具有性质:①」:i .jPW = 加-X >Q0,其它②一般正态分布]」严丁的分布函数门与标准正态分布的分布函数■' 有关系:陀)二①¥5、随机变量函数的分布(1)离散型随机变量函数的分布设;为离散型随机变量,其分布列为(表2-2):则亠— if任为离散型随机变量,其分布列为(表2-3):表2-3h有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设;为离散型随机变量,概率密度为'-'1,贝L 「二的概率密度有两种方法可求.1)定理法:若f在丄的取值区间内有连续导数「,且:单调时,X⑷ 是连续型随机变量,其概率密度为11 / 27• ①其它其中二一匸「7二「代汕匚一二1二;I—]:门是]:的反函数.2)分布函数法:先求的分布函数F,(y) = P(Y<y^P(g(X)<y)=X[人何必 &止心)然后求疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间沐上,对试验的每一个可能结果:,都有唯一的实数•「与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数门「左连续,但大多数书籍定义分布函数「二为右连续.左连续与右连续的区别在于计算「二时,二二点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于 '負-^ ,则定义左连续或右连续时门值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布1、二维随机变量及其联合分布函数如果随机变量血(讥血(町…,血@)定义在同一概率空间(Q FQ上则称恥)心⑷兀(叭-北3)为n维(n元)随机变量或随机向量.当沪2时诽为二维随戕氢常记为工儿联合分布函数的定义设—-匸丄二一「赴随机变量,心"为随机向量1■的联合分布函数特别卄血称为二淼合分布函数即恥』)訂(淞汀幻)二维联合分布函数具有以下基本性质:(1)单调性是变量:或;的非减函数;(2)有界性一―]I:* ;(3)极限性” 7」,:',一,厂「.一(?」丨一■.- -」.-工-1「-工,亠二(3)连续性l I;.关于:右连续,关于^也右连续;(4)非负性对任意点 =.「_.「,若「;二,贝V式表示随机点二门落在区域内的概率为:二…2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称■'为二维离散型随机变量.设「「为二维离散型随机变量,它的所有可能取值为匸- 将f 一—°厂一」或表3.1称为「「的联合分布列.表3.1(1)「「';( 2)肴' 联合分布列具有下列性质:3、二维连续型随机变量及其概率密度函数如果存在一个非负函数和乩门,使得二维随机变量的分布函数‘八「对任意实数「有 'f,则称 — 是二维连续型随机变量,称u为的联合密度函数(或概率密度函数)联合密度函数具有下列性质:设…丄|为二维随机变量,则称F x (x ) = P (X<^<Y <+oo ) 的0)二 P 卜00 <X <4007<7) 分别为关于二和关于「的边缘(边际)分布函数当为离散型随机变量,则称(1) 非负性对一切实数",有■" 1;(3) *-ho在任意平面域-上,「厂 取值的概率F {(工二[“(砂)如y Q ;3细(兀刃=Xj 为如果小」在;’处连续,则 「八一八 规范性(4)4、二维随机变量的边缘分布P 广乞珂(八12…):-1分别为关于;和关于『的边缘分布列当为连续型随机变量,则称內A )二ph 』)必分别为关于二和关于「的边缘密度函数5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为P(X = ip/ = - p^,P(X= f P(Y -y^} = (ij = 12…),则当 j 固定P{f = ”} = Pj>Ci 时,称---------------------------------- 二——为'「条件下随机变量匚的条件分布律.同理,有吃讪|XrJ 二丝八12…Pi(2)连续型随机变量的条件分布设■= 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:心.则当’•时,在和门,的连续点处,-在条件’下,】的条件概率密度函数为曲力)=畔 Px Wp^\y)=p (兀力p^y) 同理,6、随机变量的独立性设;」’及匚:'1分别是的联合分布函数及边缘分布函数.如果对任何实数「有『上=则称随机变量;与「相互独立.设:;'|为二维离散型随机变量,..与『相互独立的充要条件是廿妝血=12…).设为二维连续型随机变量,二与[相互独立的充要条件是对几乎一切实数,有7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为」;」,「—“ —「是;'的函数,则匚的分布函数为马⑵二\\p(x t yyixdy.(1);'二的分布若.1;|为离散型随机变量,联合分布列为',则】的概率函数为:易仇)=£临耳-吗)&仇)=5>%巩-为);或>若丄八为连续型随机变量,概率密度函数为W,则匚的概率函数为:严r-Ko旳⑵二p^z-x)dx=\ p(z-y r y)dy的分布若I为连续型随机变量,概率密度函数为小乩门,则]的概率函数为:8.最大值与最小值的分布曲”冊勺)畝阿〔兀…兀)勺厂P©)畅)胡旳)*血吃…北)勺)4*(卜恥))9.数理统计中常用的分布(1)正态分布:设随机变劉諾厂也相互紐,肮广N仏口;),心谊…也则2也皿左的加巾其中用心…尼为常黏(2)宀 *:设随机变就“血…也相互從,且丫厂M(叮〉心12…”则(3)「• 卄:亡*……-厂\ L書让二I(4)「—--:亡「疑难分析1、事件=-丄二「表示事件梟•丄「与的积事件,为什么二计不一定等于'■■■'■ :■■■.■ ?如同仅当事件二f相互独立时,才有「二-1三匚二一样,这里依乘法原理只有事件一与1「■'/.相互独立时,才有P{X<x t Y<y) = P(X<^ P(Y<y\,因为P{Y<y\X<x} = P{Y <y).2、二维随机变量「厂的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由「丄丫二心」宀「7 r知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果二『相互独立,贝V「仁―t —:,即卩宀二;丄J •:'.说明当二『独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量二〕相互独立,是指组成二维随机变量•厂的两个分量二〕中一个分量的取值不受另一个分量取值的影响,满足儿」—匸-:匚-.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有「二—L匚.两者可以说不是一个问题.但是,组成二维随机变量I的两个分量二「是同一试验丄的样本空间上的两个一维随机变量,而丄f也是一个试验的样本空间的两个事件.因此,若把“匸土”、”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质1、随机变量的数学期望设离散型随机变量負的分布列为「工二:!亠,如果级数台"'绝对收敛,则称级数的和为随机变量J丄的数学期望.设连续型随机变量x的密度函数为p⑴,如果广义积分L腴R处绝对收敛,则f-HD称此积分值」为随机变量匚的数学期望•数学期望有如下性质:(1)设「是常数,则"'■;(2)设]'是常数,则和(3)若-1:'是随机变量,则-[丄:_:丄-';对任意〔个随机变量■ ' - ■ ',有(4)若-亠相互独立,贝U -七--'-.1 ;对任意「个相互独立的随机变量 u :•,有2、随机变量函数的数学期望设离散型随机变量 負的分布律为■"丄|丄,则」的函数一1 一的设连续型随机变量 負的密度函数为;;|,则負的函数'■_ ■的数学期望为i +®购恥讥讷,式中积分绝对收敛 3、随机变量的方差设匚是一个随机变量,贝V 丄一匸「L - - 称为匚的方差-一“称为;的标准差或均方差.计算方差也常用公式 方差具有如下性质:(1)设一1是常数,则\ '-; (2)设「是常数,则--------;(3)若分1、*2相互独立,则0区+托)=D(X])+°(為);对任意〔个相互独立的随机变量■' -■' ,有- ;(4) 的充要条件是:存在常数 「,使- - - -二八 4、几种常见分布的数学期望与方差 (1)匸;.「匸;二:.:;(2) 「——数学期望为亟(②卜另欽亦)久朮=12…jt-i 式中级数绝对收敛(3)(4)匸」已匸二2 1 ;(5)「一 -'■- :丫;(6)—「二 < 匚一,「I」门一:■汀匸⑺—:'二一;:.;;(8)八“血刊凤& = “23)=代5、矩设;是随机变量,贝y L 「2;* 4称为;的一阶原点矩.如果f存在,则■ ■ _ ' ' ■ '■■ - - - | "'-称为負的;阶中心矩.设「「是二维随机变量,贝y心亠;止【;;「工称为的I 阶混合原点矩;址=E ([X-E(Q*•[『-占(別),灯=1,2,…称为(x,y)的七+]阶混合中心矩.6、协方差与相关系数随机变量(XQ的协方差为^f Y^E{[X-E^Y-£(『)]).它是i+i阶混合中心矩,有计算公式:沏(工『)二E(沼)・E(x)E(y).随机变量■= 的相关系数为_ cov(xn呛二亦页相关系数具有如下性质:(1)卜冷」;(2)卜」存在常数•:',使";-汇+「=1,即二与1以概率1线性相关;(3)若;独立,则L •,即不相关.反之,不一定成立.(4)() 设()是二维随机变量,若X与Y的方差都存在,则[Cau(X r^<DX DY疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性•但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数1■二反映了随机变量二和「之间的什么关系?相关系数;I是用随机变量就和[的协方差和标准差来定义的,它反映了随机变量二和『之间的相关程度.当时,称二'与丁依概率1线性相关;当匚二I 时,称免与『不相关;当时,又分为强相关与弱相关.4、两个随机变量二与]相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则川;「厂小.,故心二-一,从而七j,所以J、r不相关.(2)若不相关,则门、「不一定独立.如:f —]"兀x2+y2 <}rPW= 1 o, 其它一因为TO = £(y)= 0,TO=1/4-1'1二•,知」、」不相关.但U ;1「’L,加y)二2尸加,瞼J)HP占)P0 ,知乂、『不独立.(3)若相关,则匚、[一定不独立.可由反证法说明.(4)若匚、)不相关,则二、不一定不相关.因为二、不独立,二—〕,但若汇-厂m时,可以有―,从而可以有」、不相关.但是,也有特殊情况,如服从二维正态分布时,不相关与;、J 独立是等价的第五块大数定律和中心极限定理内容提要基本内容:切比雪夫()不等式,切比雪夫大数定律,伯努里()大数定律,辛钦()大数定律,棣莫弗-拉普拉斯()定理,列维-林维德伯格()定理.1、切贝雪夫不等式设随机变量二的数学期望m—工,方差匸,则对任意正数「,有不等刊■心沪召或刊,小"-召成立2、大数定律(1)切贝雪夫大数定律:设…是相互独立的随机变量序列,数学期望J. 1和方差’二都存在,且「二」〔|,则对任意给定的I「,有1丄如列-乞凶-欧扎)]|<沪1“讯i-i .(2)贝努利大数定律:设L是「次重复独立试验中事件d发生的次数,:是事limP(|^-^|<F)=l件丿在一次试验中发生的概率,则对于任意给定的:'.■丨,有…贝努利大数定理给出了当[很大时,」发生的频率一=依概率收敛于d的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列且匸也〕卫(:=匚),则对任意给定的:,I,有3、中心极限定律(1) 林德贝格-勒维中心极限定理:设〔芒〕,…丄 是独立同分布的随机变量 序列,有有限的数学期望和方差,「二-「,「..「一、:.则对任意实数刀(血-“)刀疋厂冲“Y _ ____:,随机变量■■,'■--■的分布函数二-满足 Em 氏⑵二曲尸也<i} = fJ2/T(2) 李雅普诺夫定理:设是不同分布且相互独立的随机变量,它护—y 2 们分别有数学期望和方差:小1 一畀,■'■■'■■<;「厂-八-■-;亠文欧因-丛角TO正数$,,使得当心谕时,有盯口,则随机变量»X屋据F7 _ i-1 H _ J-1 X的分布函数对于任意的x ,满足当〔很大时,爲』㈣总拓』(也昭.(3)德莫佛一拉普拉斯定理:设随机变量'■. 1 " 1 1服从参数为匚时卩J 匸;的二项分布,则对于任意的:,恒有疑难分析D 乞逊!-1lim 坨(打=lira <>=r 加 J 十矩rlimP\%-® J 誓(D<x1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列J依概率收敛于,,说明对于任给的£>0,当"很大时,事件“”的概率接近于1•但正因为是概率,所以不排除小概率事件“ 1八_2卜6”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.。
《概率论与数理统计》复习大纲及参考答案(最新)
《概率论与数理统计》复习大纲与复习题07-08第一学期一、复习方法与要求学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成.学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目.如开学给出的学习建议中所讲:作为本科的一门课程,在课件中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.各章内容要求与所占分值如下:第一章介绍的随机事件的关系与运算,概率的基本概念与关系. 约占30分.第二章介绍的一维随机变量的分布. 约占25分.第三章二维随机变量的分布,主要要求掌握二维离散型随机变量的联合分布律、边缘分布律以及随机变量独立的判别. 约占10分.第四章介绍的随机变量的数字特征. 约占15分.第五、六、七、八章约占20分.内容为第五章的中心极限定理.分布);第六章介绍的总体、样本、统计量等术语;常用统计量的定义式与分布(t分布、2正态总体样本函数服从分布定理.第七章的矩估计与一个正态总体期望与方差的区间估计.第八章一个正态总体期望与方差的假设检验.对上述内容之外部分,不作要求.二、期终考试方式与题型本学期期终考试采取开卷形式,即允许带教材与参考资料.题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题占70分,每小题2分;选择题占30分,每小题3分.三、应熟练掌握的主要内容1.了解概率研究的对象——随机现象的特点;了解随机试验的条件.2. 理解概率这一指标的涵义.3. 理解统计推断依据的原理,会用其作出判断.4. 从发生的角度理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.5. 熟练掌握用简单事件的和、差、积、划分等表示复杂事件 掌握事件的常用变形:AB A B A -=- (使成包含关系的差),A B -=AB (独立时计算概率方便)A B A AB +=+(使成为两互斥事件的和)12n A AB AB AB =+++(n B B B 、、、其中 21是一个划分)(利用划分将A 转化为若干互斥事件的和)A AB AB =+(B B 与即一个划分)6. 掌握古典概型定义,熟悉其概率计算公式.掌握摸球、放盒子、排队等课件所举类型概率的计算.7. 熟练掌握事件的和、差、积、独立等基本概率公式,以及条件概率、全概、逆概公式,并利用它们计算概率.8. 掌握离散型随机变量分布律的定义、性质,会求简单离散型随机变量的分布律.9. 掌握(0-1)分布、泊松分布、二项分布的分布律 10. 掌握一个函数可以作为连续型随机变量的概率密度的充分必要条件11. 掌握随机变量的分布函数的定义、性质,一个函数可以作为连续型随机变量的分布函数的条件.12. 理解连续型随机变量的概率密度曲线、分布函数以及随机变量取值在某一区间上的概率的几何意义13. 掌握随机变量X 在区间(a ,b )内服从均匀分布的定义,会写出X 的概率密度. 14. 掌握正态分布2(,)N μσ概率密度曲线图形; 掌握一般正态分布与标准正态分布的关系定理; 会查正态分布函数表;理解服从正态分布μ(N ),2σ的随机变量X ,其概率{P |X-μ|<σ}与参数μ和σ的关系. 15. 离散型随机变量有分布律会求分布函数;有分布函数会求分布律.16. 连续型随机变量有概率密度会求分布函数;有分布函数,会求概率密度. 17. 有分布律或概率密度会求事件的概率.18. 理解当概率()0P A =时,事件A 不一定是不可能事件;理解当概率()1P A =时,事件A 不一定是必然事件. 19. 掌握二维离散型随机变量的联合分布律定义;会利用二维离散型随机变量的联合分布律计算有关事件的概率;有二维离散型随机变量的联合分布律会求边缘分布律以及判断是否独立; 会确定二维离散型随机变量函数的分布.20.掌握期望、方差、协方差、相关系数的定义式与性质,会计算上述数字;了解相关系数的意义,线性不相关与独立的关系.21. 掌握(0-1)分布、泊松分布、二项分布、均匀分布、正态分布、指数分布的参数 与期望、方差的关系.22. 会用中心极限定理计算概率.理解拉普拉斯中心极限定理的涵义是:设随机变量X 服从二项分布(,)B n p ,当n 较大时,~(,)X N np npq 近似,其中1q p =-23.了解样本与样本值的区别,掌握统计量,样本均值与样本方差的定义.24. 了解2χ分布、t 分布的背景、概率密度图象,会查两个分布的分布函数表,确定上α分位点.25. 了解正态总体2(,)N μσ中,样本容量为n 的样本均值X 与22)1(σS n -服从的分布.26. 掌握无偏估计量、有效估计量定义. 27. 会计算参数的矩估计.28. 会计算正态总体2(,)N μσ参数μ与2σ的区间估计.29. 掌握一个正态总体2(,)N μσ,当2σ已知或未知时,μ的假设检验,2σ的假设检验.30.了解假设检验的两类错误涵义四、复习题注 为了方便学员复习,提供复习题如下,这些题目都是课件作业题目的改造,二者相辅相成,希望帮助大家学懂基本知识点. 期终试卷中70分的题目抽自复习题.(一)判断题第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 一枚硬币掷三次,观察硬币字面朝上的次数,样本空间为S={}0,123,,. √ (2)袋中有编号为1、2、3的3个球,从中随机取2个,样本空间为{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}S = . ╳2. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)A B +=(取到1、1、2、3、3、5号球);╳ (2)\A B E ≠(取到2号球); ╳ (3)CD = (取到1、2、3、4、5号球); ╳ (4)\C D = (取到3号球); √ (5)A D +=(取到1、2、3、4、5号球); √ (6)AD =(取到1、2、3、4、5号球). ╳ 3. 甲、乙二人打靶,每人射击一次,设A ,B 分别为甲、乙命中目标,用A 、B 事件的关系式表示下列事件,则(1)(甲没命中目标)AB = ; ╳ (2)(甲没命中目标)A = ; √ (3)(甲、乙均命中目标)A B =+; ╳ (4)(甲、乙均命中目标)AB = . √ 4.一批产品中有3件次品,从这批产品中任取5件检查,设i A =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件,则(1)0A =(5件中恰有0件次品)=(5件中没有次品);√(2)0A =(5件中恰有1件次品); ╳(3)0A =(5件中至少有1件次品); √ (4)3A =(5件中最多有2件次品); ╳ (5)23A A + =(5件中至少有3件次品); ╳ (6)23A A + =(5件中至少有2件次品). √ 5.指出下列命题中哪些成立,哪些不成立?(1)B A A B A +≠+;╳(2)A B AB AB AB +=++ ;√(3)AB A B A -=-;√(4)A B AB -≠;╳ (5)ABC A B C =;╳ (6)ABC A B C =++ . √6. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)3()5P A =; √ (2)4()()()5P B E P B P E +=+= ; √(3)4()()()5P A E P A P E +=+= ;╳ (4)3()()5P A E P A +== ; √(5) ()()()P A B P A P B +=+; ╳ (6)4()5P A B += . √7.(1)设事件A 、B 互斥,2.0)(=A P , )(B P =0.3 ,则 5.0)(=+B A P . √ (2) 设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P =0.7 . ╳(3) 设()0.5P A =,()0.4P B =,()0.7P A B +=, 则()0.2P AB = . √ 8. 设事件,()0.5,A B P A ⊃=()0.2P B = ,则(1)(\)()()0.3P A B P A P B =-= ;√ (2)()()()0.7P A B P A P B +=+= ; ╳ (3)()()0.5P A B P A +== ;√ (4)()0.5P AB = ; ╳(5)()0.2P AB =; √ (6)(\)()()0.3P B A P B P A =-= . √ 9. 箱中有2件次品与3件正品,一次取出两个,则 (1)恰取出2件次品的概率为251C ;√ (2)恰取出2件次品的概率为251A ; ╳ (3)恰取出1件次品1件正品的概率为112325C C C ; √ (4)恰取出1件次品1件正品的概率为112325C C A . ╳ 10.上中下三本一套的书随机放在书架上,则 (1)恰好按上中下顺序放好的概率为3311321A =⨯⨯;√ (2)恰好按上中下顺序放好的概率为13; ╳ (3)上下两本放在一起的概率为3322A ⨯ ; √ (4)上下两本放在一起的概率为332A . ╳11. 若111(),(),()234P A P B P AB === 则 (1) 1()2P B A = √ (2) 2()3P B A = ╳(3) 3()4P A B = √ (4) ()()P A B P A = ╳12. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)(P 第一次取到正品8)10= √ (2)(P 第一次取到次品12110)C C = ╳(3)(P 第一次取到正品,第二次取到次品1182210)C C A = ; √ (4)(P 第一次取到正品,第二次取到次品1182210)C C C = ; ╳ (5)(P 第一次取到正品,第二次取到次品82)109=⨯ ; √ (6)(P 一次取到正品,一次取到次品82)109=⨯. ╳13.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则(1)两次都取到红球的概率为⨯681011;√ (2)两次都取到红球的概率为⨯671010; ╳ (3)已知从甲袋取到红球,从乙袋中取到红球的概率为710 ; ╳(4)已知从甲袋取到白球,从乙袋中取到红球的概率为⨯371011. ╳14.某人打靶,命中率为0.2,则下列事件的概率为(1)第一枪没打中的概率为0.8;√ (2)第二枪没打中的概率为0.8; √ (3)第二枪没打中的概率为0.16 ;╳(4)第一枪与第二枪全打中的概率为0.20.20.4+= . ╳ (5)第一枪与第二枪全打中的概率为0.20.20.04⨯= √ (6)第三枪第一次打中的概率为20.80.2⨯. √ 15 .几点概率思想(1)概率是刻画随机事件发生可能性大小的指标;√ (2)随机现象是没有规律的现象; ╳(3)随机现象的确定性指的是频率稳定性,也称统计规律性;√(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数;√ (5)实际推断原理为:一次试验小概率事件一般不会发生;√ (6)实际推断原理为:一次试验小概率事件一定不会发生. ╳第二章 随机变量及其分布16.随机变量X 的分布律为1231133p ⎛⎫⎪ ⎪ ⎪⎝⎭,则(1)13p = ;√ (2)23p = ╳17.在6只同类产品中有2只次品,4只正品.从中每次取一只,共取5次,每次取出产品立即放回,再取下一只,设X 为5次中取出的次品数,则(1)第3次取到次品的概率为0. ╳ (2)第3次取到次品的概率为13. √ (3)5次中恰取到2只次品的概率{}2522512233P X C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭√(4)5次中恰取到2只次品的概率{}25212233P X -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭╳(5)最少取到1只次品的概率{}0505121133P X C ⎛⎫⎛⎫≥=- ⎪ ⎪⎝⎭⎝⎭√(6)最少取到1只次品的概率{}141512133P X C ⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭╳ 18.某交通路口一个月内发生交通事故的次数X 服从参数为3的泊松分布(3)P ,则(1)该交通路口一个月内发生3次交通事故的概率{}31P X ==. ╳(2)该交通路口一个月内发生2次交通事故的概率{}23322!e P X -==. √(3)该交通路口一个月内最多发生1次交通事故的概率{}13311!e P X -==. ╳(4)该交通路口一个月内最多发生1次交通事故的概率为{}{}031333010!1!e e P X P X --=+==+. √19. 袋中有2个红球3个白球,从中随机取一个球,当取到红球令1X =,取到白球令0X =,则 (1)称X 为服从01-分布. √ (2)X 为连续型随机变量. ╳(3)X 的分布律为103255⎛⎫ ⎪ ⎪ ⎪⎝⎭. ╳ (4)X 的分布律为102355⎛⎫⎪⎪ ⎪⎝⎭. √ 20. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧=1310)(x F 1100≥<≤<x x x ,则 (1)X 的分布律为⎪⎪⎭⎫ ⎝⎛323110. √ (2)X 的分布律为012133⎛⎫⎪ ⎪⎝⎭ ╳ (3){0.5}0P X ≤= ╳ (4)1{0.5}3P X ≤=√ (5){0.5}0P X ==√ (6)1{0.5}3P X == ╳(7)2{0.5 1.5}3P X <≤= √ (8){0.5 1.5}1P X <≤= ╳21.设随机变量X 的概率密度01()0Ax x f x ≤≤⎧=⎨⎩其它 , 则(1)常数A =2 . √ (2)常数A =1 . ╳ (3)由积分201Ax dx =⎰可以计算常数A. ╳ (4)由积分1Ax dx +∞-∞=⎰可以计算常数A. ╳(5) 由积分11Axdx =⎰可以计算常数A. √22.设随机变量X 的概率密度⎩⎨⎧=02)(x x f 其它10≤≤x , 则(1)1{01}2P X xdx <<=⎰√ (2) 10.5{0.51}2P X xdx <<=⎰ √ (3)2{02}2P X xdx <<=⎰╳ (4) 0.5{0.5}2P X xdx +∞>=⎰ ╳23.设随机变量X 的分布函数200()0111x F x xx x <⎧⎪=≤≤⎨⎪>⎩,则X 的概率密度 (1)201()0xx f x <<⎧=⎨⎩其它 √ (2)201()0x x f x ⎧<<=⎨⎩其它╳(3)()2f x x x R =∈ ╳ (4)00()20111x f x xx x <⎧⎪=≤≤⎨⎪>⎩╳ 24.公共汽车站每隔10分钟有一辆汽车通过,乘客随机到车站等车,则 (1)乘客候车时间不超过5分钟的概率为12;√ (2)乘客候车时间超过5分钟的概率为12√ (3)乘客候车时间不超过3分钟的概率为310;√(4)乘客候车时间超过3分钟的概率为310. ╳25. 随机变量~(0,1)X N 则 (1){}102P X ≥=√ (2) {}102P X ≤= √ (3) {}{}00P X P X ≥=≤ √ (4){}{}00P X P X ≥≠≤ ╳ 26. 随机变量)2,3(~2N X 则(1){}52≤<X P =)2/1()1(Φ+Φ ╳ (2) {}104≤<-X P =2)5.3(Φ–1 √ 27. 设01~0.40.6X ⎛⎫⎪⎝⎭,则(1)2Y X =的分布律为020.40.6⎛⎫ ⎪⎝⎭ √ (2)21Y X =+的分布律为130.40.6⎛⎫ ⎪⎝⎭√ 28.设随机变量X 的概率密度为⎩⎨⎧=02)(xx f 其它10<<x ,则X e Y =的概率密度为(1)⎩⎨⎧<<=其它01ln )(e y y y f Y ╳ (2)2ln 1()0Y yy e yf y ⎧<<⎪=⎨⎪⎩其它√第三章多维随机变量及其分布29.设二维随机变量(X ,Y )的分布函数为F x y (,),则 (1){}2,1≤≤Y X P = F (1,2) √ (2){}1123131213P X Y F F F -<≤<≤=---,(,)(,)(,) ╳ 30. 设二维随机变量(X ,Y )的分布律为(1)Y 的边缘分布律为012020404...⎛⎫⎪⎝⎭╳ (2)X ,Y 不独立 ╳(3)(X ,Y )的分布函数在116(,.)点的值1610(.,)F = ╳(4)20016{,}.P X Y === √ (5)概率1012{}.P X Y +== ╳(6)Z X Y =-的分布律为101201203204016....-⎛⎫⎪⎝⎭√(7)072().E XY = √ (8)相关系数0XY ρ≠ ╳ 31. 设二维随机变量(X ,Y )的分布律为则 (1){}Y X M ,max =的分布律为⎪⎪⎭⎫ ⎝⎛167163166210 √(2){}Y X N ,min =的分布律为⎪⎪⎭⎫⎝⎛--167163166012√第四章 随机变量的数字特征32.设随机变量X 的分布律为⎪⎪⎭⎫ ⎝⎛-41212116121610311 则(1))(X E =31 √(2))(2X E = 4/55/]21)2/1(0)1[(22222=++++- ╳ (3)X 的方差D (X )=7297 √33.设随机变量X 的概率密度⎪⎩⎪⎨⎧-=02)(x xx f 其它2110≤<≤≤x x则(1) )(X E =1 √(2))(X E =⎰⎰-+211)2(dx x dx x ╳(3))()(22X E X E -=61 √ (4)X 的方差61)(≠X D ╳34.一批产品中有一、二、三等品,等外品及废品五种,分别占产品总数的70%,10%,10%,6%,4%。
《概率论与数理统计》(公共)复习提纲
概率论与数理统计(公共课)复习提纲 注:方框标示的内容为重点。
第1章 随机事件及其概率1. 样本点与样本空间、事件的关系与运算;2. 事件的运算规律;(1) 交换律 A ∪B =B ∪A , A ∩B =B ∩A ;(2) 结合律 (A ∪B )∪C =A ∪(B ∪C ), (A ∩B )∩C =A ∩(B ∩C );(3) 分配律 (A ∪B )∩C =(A ∩C )∪(B ∩C ), (A ∩B )∪C =(A ∪C )∩(B ∪C)3. 事件概率的定义及其性质、古典概型的概率计算;条件概率 P (B |A ) = P (AB ) / P (A );乘法公式 P (AB ) = P (A )P (B |A ) 或 P (AB ) = P (B )P (A |B )全概率公式 P (B ) = P (A 1)P (B |A 1) + … + P (A n )P (B |A n ) + …n = 2的情形(样本空间被对立事件划分) )|()()|()()(A B P A P A B P A P B P += n = 3的情形 )|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=贝叶斯公式(已知事件B 发生后,求其由A i 所引起的概率),...2,1,)|()()|()()()()|(===∑i A B P A P A B P A P B P B A P B A P jj j i i i i事件的独立性 P (AB ) = P (A )P (B );9.有限事件的两两独立与相互独立;伯努利概型及其概率计算;随机变量及其分布与数字特征1. 常用离散型概率分布两点分布(0-1分布) P { X = x 1 } = p , P { X = x 2 } = 1 – p (0 < p < 1) E (X ) = p , D (X ) = p (1 – p )二项分布 X ~ b (n , p ) n k p p C k X P k n k k n ,...,1,0,)1(}{=-==-E (X ) = np , D (X ) = np (1 – p )泊松分布 X ~ P (λ) ,...2,1,0,!}{===-k e k k X P k λλE (X ) = D (X ) = λ2. 二项分布的泊松近似100,10,!)1(><=≈---n np e k p p C kk n k kn λλλ 3. 随机变量的分布函数(1) 定义:F (x ) = P { X ≤ x };(2) 性质:a. 单调非减;b. F (-∞) = 0、F (+∞) = 1;c. 右连续;4. 常用连续型概率分布均匀分布 X ~ U (a , b )密度函数:b x a a b x f <<-=,1)(,分布函数:⎪⎪⎩⎪⎪⎨⎧≥<≤--<=bx b x a ab a x a x x F ,1,,0)( 2)(a b X E -=, 12)()(2a b X D -= 指数分布 X ~ e(λ)密度函数:0,)(>=-x ex f x λλ,分布函数:⎩⎨⎧>-=-其它,00,1)(x e x F x λ λ1)(=X E , 21)(λ=X D正态分布 X ~ N (μ, σ2) μ=)(X E , 2)(σ=X D标准正态分布 X ~ N (0, 1),E (X ) = 0, D (X ) = 1;5. 随机变量函数 Y = f ( X ) 的分布离散型:列出分布律;连续型:(1)用概率的方法求出函数 Y 的分布函数后,再求其密度函数;(2)如果函数 Y = f (X ) 满足严格单调,则可使用公式直接求 Y 的密度函数: 的反函数为其中)()(,|,)(|))(()(x f y y h y y h y h f y f X Y =<<'=βα6. 随机变量函数 Y = f ( X ) 的数学期望离散型:∑==ii i p x g X g E X E )()]([)(连续型:⎰+∞∞-==x x f x g X g E X E d )()()]([)( 7. 方差的计算D (X ) =E [ X – E (X ) ]2 = E (X 2) – [E (X )]28. 数学期望与方差的性质(E (X ), E (Y ), D (X ), D (Y )均存在)E (aX ± bY ) = aE (X ) ± bE (Y ) D (aX ± bY ) = a 2D (X ) + b 2D (Y )9. 中心极限定理定理3 设随机变量 X 1, X 2, …, X n , … 相互独立,服从同一分布,且 E (X i ) = μ, D (X i ) = σ2, ( i = 1, 2, …),则)(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→σμ或),(~2n n N X X n i i σμ ∑= 即n 个随机变量的和的极限分布是正态分布。
概率论与数理统计复习提纲
第一章随机事件及其概率一、随机事件及其运算1.样本空间、随机事件①样本点:随机试验的每一个可能结果,用表示;②样本空间:样本点的全集,用表示;注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,⋯表示;④必然事件就等于样本空间;不可能事件( )是不包含任何样本点的空集;⑤基本事件就是仅包含单个样本点的子集。
2.事件的四种关系①包含关系: A B,事件A发生必有事件B发生;②等价关系: A B,事件A发生必有事件B发生,且事件B发生必有事件A发生;③互不相容(互斥):AB ,事件A与事件B一定不会同时发生。
④对立关系(互逆):A,事件A发生事件A必不发生,反之也成立;AA 互逆满足AA注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。
)3.事件的三大运算①事件的并: A B,事件A与事件B至少有一个发生。
若AB ,则A B A B;②事件的交: A B或AB,事件A与事件B都发生;③事件的差: A-B,事件A发生且事件B不发生。
4.事件的运算规律①交换律: A B B A,AB BA②结合律:(A B) C A (B C),(A B) C A (B C)③分配律: A (B C) (A B) (A C),A (B C) (A B) (A C)n n④德摩根(DeMorgan)定律:二、随机事件的概率定义和性质A B AB,AB A BA i A i,对于n个事件,有i1i1n nA i A ii1 i11.公理化定义:设试验的样本空间为,对于任一随机事件A(A), 都有确定的实值P(A),满足下列性质:(1)非负性:P(A)0; (2)规范性:P( )1;(3)有限可加性(概率加法公式):对于k个互不相容事件A1,A2k k,Ak,有P( A i) P(A i).i 1i1则称P(A)为随机事件A的概率.2.概率的性质①P( )1,P()0 ②P(A) 1P(A)③若A B,则P(A) P(B),且P(B A) P(B)P(A)1④P(A B) P(A) P(B) P(AB)P(A B C) P(A) P(B)P(C) P(AB) P(BC) P(AC)P(ABC)注:性质的逆命题不一定成立的.如若P(A) P(B),则A B 。
《概率论与数理统计》复习资料要点总结
《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》复习提纲
Chap1:
1.样本空间、随机事件的定义;事件的关系与运算;
2.概率P(.)的常用九大公式;
3.等可能概型的判断及计算;
4.条件概率的定义及常用九大公式;乘法定理;全概率公式
和贝叶斯公式;
5.独立性。
Chap2:
1.分布函数、分布率和概率密度的定义,以及如何利用这三
个工具计算概率;
2.掌握常用六大分布的分布率或者概率密度,并会计算相关
概率,正态随机变量的性质;
3.随机变量函数的分布。
Chap3:
1.二维随机变量的联合分布(联合分布函数,联合分布率,
联合概率密度),并根据此计算概率;
2.由联合分布会导出边缘分布;
3.会计算条件分布率或者条件概率密度;
4.随机变量相互独立的定义及等价定义;
5.和的分布,最大最小随机变量
Chap4:
1.会算随机变量的数学期望,以及随机变量函数的数学期
望,掌握期望的常用性质;
2.会算随机变量的方差,并掌握方差的常用性质和切比雪夫
不等式;
3.记住常用六大分布的期望和方差;
4.会计算两个随机变量的相关系数和协方差,掌握不相关的
含义及相关系数绝对值等于1的含义。
5.掌握随机变量各种矩的定义
Chap5:
1.了解大数定律的内容;
2.会利用中心极限定理作概率的近似计算
Chap6:
1.简单随机样本的特性以及常用统计量
2.统计学三大分布的构造原理和密度图像。
3.正态总体样本均值和样本方差的分布规律;
Chap7:
1.矩估计和最大似然估计
2.估计量的评选标准(无偏性和有效性);
3.单个正态总体参数的区间估计;
Chap8:
1.单个正态总体参数的假设检验(双边和单边)。