最新华东师大版八年级数学上册《立方根》同步练习题及答案解析.docx

合集下载

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。

(完整版)八年级数学上册同步练习题及答案

(完整版)八年级数学上册同步练习题及答案

12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。

八年级上册华东师大版数学新课程课堂同步练习册答案

八年级上册华东师大版数学新课程课堂同步练习册答案

《新课程课堂同步练习册·数学(华东版八年级上)》参考答案 第12章 数的开方§12.1平方根与立方根(一) 一、 1.B 2.A 3.B二、1. ±7 2. ±2, 3.-1; 4.0三、1.从左至右依次为: ±3,±4,±5, ±6,±7,±8,±9,±10,±11,±12,±13,±14,±15.2.(1)±25 (2)±0.01 (3)45± (4)29± (5)±100 (6) ±23.(1)±0.2 (2)±3 (3)79±(4) 17±4.(1)a >-2 (2)a =-2 (3)a <-2. §12.1平方根与立方根(二) 一、1.D 2.A 3.C二、1. 14±,142.(1)25.53 (2)4.11 4. 0或1.三、1.(1)80 (2)1.5 (3)114 (4)3;2.(1)-9 (2) 12± (3)4 (4)-53.(1)2.83 (2)28.09(3)-5.34 (4)±0.47.4. 正方形铁皮原边长为5cm . §12.1平方根与立方根(三) 一、1.D 2.A 3.C二、,-3 2. 6,-343 3.-4 4. 0,1,-1.三、1.(1)0.4 (2)-8 (3)56( 4)112- (5)-2 (6)100;2.(1)19.09(2)2.652(3)-2.098(4)-0.9016;3. 63.0cm 2;4.计算得:0.5151,5.151,51.51,515.1,得出规律:当被开方数的小数点向左(右)每移动2位,它的平方根的小数点就向左(右)移动1位.5151.§12.2实数(一) 一、1.B 2.C二、1. 略 2. ≥12-.三、1.(1)√(2)×(3)√(4)×(5)×(6)×(7)√(8)×;2.有理数集合中的数是:13,3.1415,2-5,0,⋅⋅43.6,0.8π,0.1010010001…; 3.A 点对应的数是-3,B 点对应的数是-1.5,C D E 点对应的数是π. §12.2实数(二) 一、 1.C 2.B 3.B二、1. (11(2)2三、1.(1)(2)--(3)12.(1)7.01 (2)-1.41 (3)2.743.略4. 7第13章 整式的乘除§13.1幂的运算 (一)一、1.C 2.B 3.D 二、1.1010 2. 6 ,8 3. 9三、1.(1)10a (2)9a (3)6a (4)10()x y + (5)82x (6)51n b+2.可进行1410次运算 3. 2 §13.1幂的运算(二) 一、1.D 2.B 3.C二、1.10m ,18x 2.14x 3.62y ;4. 2三、1.(1)9a (2)21x (3)215a (4)123a (5)0 (6) 23n a + 2.b >a >c§13.1幂的运算(三) 一、1. C 2.D 3.A二、1. 4109x y ,96318a b c 2. 44m ,54a b 3. 216三、1.(1) 3327x y (2)464x y (3) 85a (4)927a2. (1) 1- (2) 3 3.x =5 4.52 §13.1幂的运算(四) 一、1.C 2.A 3.B二、1.8a ,2a 2. y ,5y 3.22x y ,5x -三、1.(1)3a (2)3m (3) 5x - (4) 4x (5)1 (6) 4y 2. 12x y == §13.2 整式的乘法(一) 一、1.B 2.D 二、1.232x y 2.-5412x y z 3.5312x y - 三、1.(1)1254a b (2)-23x y (3)-4044a b (4)-18628a b c (5)10()x y - (6)3.6⨯1710 2.2.37⨯710 3. 11,,23a b c ==-=-§13.2整式的乘法(二)一、1.B 2.C二、1.263m n mn -,4362x x -+ 2.1832a b -2723a b ,33a b +3. 3223122a b a b ab -+,32232212812x y x y x y -- 三、1.(1)2155x xy - (2)3222612a b a b -+ (3) 3223423x y x y xy -+(4) 42241827m n m n - (5)222322a b a b - (6)222x y xy + 2. 12x =-3.提示:n (2n +1)-2n (n -1)=2n ²+n -2n ²+2n =3n . §13.2整式的乘法(三) 一、1.B 2.D 3.C二、1.22124m mn n -- 2.22276x xy y -+ 3.-6三、 1.(1)221x x +- (2)249x - (3)2456x x -- (4)22672m mn n -+-(5)48x + (6)2278x y + 2. -3§13.2整式的乘法(四) 一、1.D 2.B 3.C二、1.-2 2. 2 3.2(123)x cm - ,233cm 三、1. 化简得252x x --,多项式的值为14- 2.(1)x =5 (2)6x <3.(1)①2710x x ++②2710x x -+③2310x x --④2310x x +- (2)2()x a b x ab +++ (3)①21128x x ++ ②26m m +-§13.3 乘法公式(一) 一、1.C 2.B二、1.22925a b -,229x y -; 2.2249b a -,224x y -; 3. 22()()a b a b a b +-=- 三、1.(1)229a b - (2)22161y x -(3) x 2-9y 2 (4) x 2-4 (5) 2mn (6) 5x -9 2.(1) 44a -, 8 (2)25x -, -26 §13.3乘法公式(二)一、1.A 2.D 3.C 二、1. 5 2. 1 ,89993.3x y + 三、1.(1)2125y - (2)29y (3)2121a a +- (4)81x - (5)9999 (6)8359992.1282§13.3乘法公式(三) 一、1.A 2.D 3.A二、1.2244m mn n -+,2244x xy y -+ 2.224493a ab b ++,2214a ab b -+ 3.222()2a b a ab b -=-+三、1.(1)2961m m ++ (2)21424x x -+(3)229124x xy y ++(4) 224129x xy y --- (5)9604 (6) 121042.(1) 23x -,6 (2) 22a b -,21 3.1528 §13.3乘法公式(四) 一、1.B 2.C二、1.924x -,2441a a ++;2.6±;3. 6x ±或4814x 三、1.(1)42242x x y y -+ (2)31x -+ (3)2319a a -+ (4)8xy 2(1)2 (2)3 §13.4整式的除法(一) 一、1.D 2.B 3.B二、1.42x ,5xy - 2. 34mn ,25()x y - 3. 4 ,3 三、1.(1) 2x (2)4m - (3) 224x y (4) 54ab 2.225a b -,-1 ;3. 45.410⨯倍 §13.4整式的除法(二) 一、1.C 2.C 3.C二、1.32a b - 2.24x -+ 3. 4m -2n 三、1.(1)2322x xy -(2)222m n mn - (3)2351m m -+ (4)23212ab b -+- 2.(1)2ab -,1 (2) xy -,5 3.2,4x y ==- ,-24 §13.4整式的除法(三)一、1.B 2.C二、1.27510⋅⨯ 2.221510x y xy - 3.(464)a b ab ++cm 三、1.(1) 23()x y + (2) -b (3)5463x y - (4)22x - 2.14x ≤- 3. 429156x x x -+ §13.4整式的除法(四) 一、1.C 2.B 3.A二、1.2233ab b -+- 2.-5 3.18,4 三、1.(1)422a b a b +(2)2322x x --+ (3)123y x - (4) 261a b -2.(1) 任一单项式与它前面的单项式的商都为2x - (2)10512x - §13.5因式分解(一)一、1.D 2.B二、1. ab 2.a (a -2) ,3xy (4x -1) 3.-12三、1.(1)a (a +2b ) (2)3ab(b-2a-3) (3)(x -2) (6-x ) (4)3x (a +b )(a +b -2y )(5)2x 2(x -5)(6)x (x +4) 2. (1)220 (2) 2.732 §13.5因式分解(二)一、1.A 2.A 3.D二、1.-(x -2y )2,3 (a -4)2 ;2.②③④⑤; 3.(x -3) 三、1.(1)(x +2y )(x -2y ) (2)(9+m)(9-m) (3)(m -5)2 (4)(3a+4b)2(5)3(x +4)(x -4) (6)(x +y )2(x -y )2 (7)(x -2)2 (8)(2a -3b )2 2. (1)2000 (2) 59853.∵4x 2-4x +2= 4x 2-4x +1+1=(2x-1)2+1>0, ∴ 4x 2-4x +2的值恒为正数.第14章 勾股定理§14.1 勾股定理(一)一、1.B 2.D 二、1.(1)13 (2)12 (3)24 (4)63 2. 2 3. 1三、1.30cm 2 2.28米 3.AB=§14.1 勾股定理(二) 一、1.B 2.D 3.D 二、1. a ²+c ²=b ² 2.13603.5 三、1. 略 2. 169 cm 2 3.36 §14.1 勾股定理(三)一、1.C 2.B 3.C 二、1. 6.93 2. 3.2 3. 5三、1. 1米 2. 2.2米 3.(略) §14.1 勾股定理(四)一、1.B 2.C 3.B二、1.22`1 2. 10三、1. 提示:利用勾股定理的逆定理检验2.(1)面积为12.5,周长为1851320+++ (2)∠BCD 不是直角 3.∵a 2+b 2=(n 2-1)2+(2n)2 =n 4-2n 2+1+4n 2 =n 4+2n 2+1=(n 2+1)2 ∴ a 2+b 2=c 2 ∴ △ABC 是直角三角形 §14.2 勾股定理的应用(一) 一、1.A 2.D二、三、1. BF=12,AD=13,ED=2.6 2.略; 3. 10. §14.2 勾股定理的应用(二) 一、1. 12≤a ≤13 2.8153. 150 二、1. 34海里 2. 因为小汽车的速度为72千米/时 ,所以小汽车超速 3.996.9m 2第15章 平移与旋转§15.1平移(一)一、1.D 2.C 3.B二、1.B B '的方向 线段B B '的距离(答案不唯一) 2.形状 大小 位置 3.2cm 三、1.略 2.图略 §15.1平移(二)一、1.D 2.D 3.C二、1.A , Q 2. 72° 3. 7,7三、1.CF=4cm CD=3cm DF=3 cm EF=2 cm 2.图略3.(1)图略(2)重叠部分的面积与原长方形ABCD 面积的41§15.1平移(三) 一、1.D 2.C二、1. 13㎝ 2.B B ' ,C C ',D D ';B A '',D C '' ,CD ,不能 3.相等,相等三、1.图略 ;2.(1)相等,理由如下:由题意可知,AB ∥CD ,AD ∥BC ,所以∠DAC=∠BCA ,∠BAC=∠ACD ,所以∠B=∠D 3.4个 ,9个 §15.2旋转(一) 一、1.D 2.C二、1.中心 ,方向 ,角度 2.180°3.点C,∠ACD(答案不唯一)的度数,D 、E ,EC ,∠DCE三、1.(1)点A , 60° (2)AC 边上的中点(3)等边三角形2.能 ,点A , 120°3.(1)垂直 (2)13㎝2§15.2旋转(二) 一、1.C 2.D 3.B二、1.中心,角度,距离 2.点B ,点C ,BC 边的中点3. 4,△ABO 与△CDO 、△ADO 与△CBO 、△ABC 与△CDA 、△ABD 与△CDB4.60三、1.略 2.略§15.2旋转(三)一、1.C 2.D 3.B 二、1.略 2.120 3.2π三、1.(1)点D (2)正方形 , 64 (3)30C DC '∠=,CDA '∠=60° 2.略§15.2旋转(四) 一、1.B 2.C二、1.轴对称,平移,旋转 2.B , D ,旋转3.线段的中点 , 180°,对角线的交点, 90°,180°,270°,圆心 ,任何度数4. 4.5 三、1.图略 2.CG=CE ,理由如下:由题意可知,DE=BF=BG ,∵四边形ABCD 是正方形,∴BC=CD=AD=AB ,∵CG=BC-BG ,CE=CD-DE ,∴CG=CE §15.3中心对称(一) 一、1.B 2.D二、1. A ,B 2.略 3. HINOXZ, BCHIMOUX , HIOX三、1.图略 2.能,对称中心是点C ,对应线段有:DC 与CE ,AD 与EF ,AB 与GF ,BC 与GC ;对应角有:∠D 与∠E ,∠A 与∠F ,∠B 与∠G ,∠DCB 与∠GCB 3.图略 4.图略 §15.3中心对称(二) 一、1.A 2.B二、1.OA=OD ,OB=OC 2.2㎝ , 1.5㎝ 3.关于点O 成中心对称 三、1.图略; 2.图略; 3.图略 , 成中心对称 ; 4. 图略 §15.4图形的全等 一、1.C 2.B二、1.12; 2.55; 3.120 , 4 ; 4.①②③④三、1.(1)△ADE ≌△ABC ,对应边有:AB 与AD , BC 与DE , AC 与AE ,对应角有:∠BAC 与∠DAE ,∠B与∠D ,∠C 与∠E (2)∠C=30° ∠B=110° ∠BAE=100°2.(1)AC=BD AO=OB OC=OD (2)∠D=32° (3)AC ∥BD ,∵AO=OB ,CO=OD , ∴ △AOC 与△BOD 是关于点O 成中心对称的, ∵AC ∥BD.3.CD=3㎝第16章 平行四边形§16.1平行四边形的性质(一) 一、1.D 2.B 3.B二、1.110,70,110 2.120,60 3.115°三、1. ∠A=50°,∠B=130°,∠C=50°,∠D=130°;2. ∠ADE=30°,∠EDF=60°,∠FDC=30°.3. AE⊥BE,∵∠DAB+∠ABC=180°,∴12∠DAB+12∠ABC=90°,即∠EAB+∠ABE=90,∴∠AEB=90°,即AE⊥BE§16.1平行四边形的性质(二)一、1.D 2.C二、1.2cm 2.16 3.5,7三、1. 21cm 2. 8cm;3.8cm§16.1平行四边形的性质(三)一、1.B 2.D二、1.10 2.40° 3.7.三、1. 24cm; 2. 略; 3.略§16.1平行四边形的性质(四)一、1.B 2.B二、1.55 2.3 3.100°,80°三、1.16 2. 略§16.2矩形、菱形与正方形的性质(一)一、1.C 2.A 3.B二、1.7 2.28 3.90,45三、1. 2cm; 2. 5cm 3.45°§16.2矩形、菱形与正方形的性质(二)一、1.A 2.B二、1.32 cm 2.60°,120°, 60°,120° 3.30 4.5三、1. 8cm;2. 面积24cm2,周长20cm3.60°,120°,60°,120°.§16.2矩形、菱形与正方形的性质(三)一、1.C 2.B二、1.22.5° 2.67.5三、1.15°;2. 提示:因为四边形EFOG为矩形,所以EF=OG,只要说明EG=GB即可. §16.2矩形、菱形与正方形的性质(四)一、1.D 2.B二、1.4cm 2.5cm 3.1 4.12三、1.20cm 2.150° 3.(1)提示:∠FBC=∠BCE=45°(2)AE=DF ,理由略. §16.3 梯形的性质(一) 一、1.D 2.C二、1. 60 2.10 3. 26 4.110 三、1. 60°,120°, 60°,120° ;2. 24cm §16.3 梯形的性质(二) 一、1.B 2.B二、1.6 2.9 3. 5<a <13三、1.(1)等边三角形,理由略 (2)25; 2. 108°,72°,108°,72° ; 3.(1)略 (2)∠A=108°,∠B=72°,∠C=72°,∠ADC=108°4.∵CE ∥BD ,AE ∥DC ,∴四边形BECD 是平行四边形,∴DB=CE ,又∵梯形ABCD 是等腰梯形,∴AC=BD ,∴AC=CE ,即三角形CAE 是等腰三角形5.2(10cm。

2022-2023学年北师大版八年级数学上册《2-3立方根》同步达标测试题(附答案)

2022-2023学年北师大版八年级数学上册《2-3立方根》同步达标测试题(附答案)

2022-2023学年北师大版八年级数学上册《2.3立方根》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列结论正确的是()A.9的平方根是3B.没有立方根C.立方根等于本身的数是0D.2.﹣64的立方根与的平方根之和是()A.﹣7B.5C.﹣13或5D.﹣1或﹣73.的平方根是x,﹣27的立方根是y,则2x﹣y的值为()A.7B.11C.﹣1或7D.11或﹣54.下列各式中,正确的是()A.=±6B.±=4C.D.5.若实数a满足=a,则的值为()A.0B.1C.0或1D.0或±16.一个正方体的体积是5m3,则这个正方体的棱长是()A.m B.m C.25m D.125m7.若a2=36,b3=8,则a+b的值是()A.8或﹣4B.8或﹣8C.﹣8或﹣4D.4或﹣48.若≈0.6694,≈1.442,则下列各式中正确的是()A.≈14.42B.≈6.694C.≈144.2D.≈66.94二.填空题(共8小题,满分40分)9.化简:=.10.已知:,则x的立方根是.11.的平方根是.12.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积488cm3,则截去的每小正方体的棱长是.13.若,则x=.14.方程的根是.15.49的平方根是,的算术平方根是,﹣8的立方根是.16.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.则a+b的值为.三.解答题(共5小题,满分40分)17.解方程:(1)4x2﹣9=0;(2)8(x﹣1)3=.18.已知a+1的算术平方根是3,﹣27的立方根是b﹣12,c﹣3的平方根是±2.求:(1)a,b,c的值;(2)a+4b﹣4c的平方根.19.已知一个正数m的平方根分别为4n+3和2﹣5n.(1)求m的值;(2)若,则a+b+c的立方根是多少?20.(1)填空:=0.01,=,=1,=10,=,…(2)观察上述求算术平方根的规律,并利用这个规律解决下列问题:①已知≈3.16,则≈;②已知≈1.918,≈191.8,则a=.(3)根据上述探究过程类比一个数的立方根:已知≈1.26,≈12.6,则m=.21.如图,这是由8个同样大小的立方体组成的魔方,体积为64cm3.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.参考答案一.选择题(共8小题,满分40分)1.解:A、9的立方根是,故A不符合题意.B、的立方根是,故B不符合题意.C、立方根等于本身的数是0、±1,故C不符合题意.D、=﹣4,故D符合题意.故选:D.2.解:﹣64的立方根是﹣4,的平方根,即9的平方根为±3,﹣4+3=﹣1,﹣4+(﹣3)=﹣7,所以结果为﹣1或﹣7,故选:D.3.解:=4,4的平方根为±2,即x=±2,y==﹣3,当x=2,y=﹣3时,2x﹣y=4+3=7,当x=﹣2,y=﹣3时,2x﹣y=﹣4+3=﹣1,故选:C.4.解:A.=6,因此选项A不符合题意;B.=±4,因此选项B不符合题意;C.由于(﹣3)3=﹣27,所以=﹣3,因此选项C符合题意;D.=4,因此选项D不符合题意;故选:C.5.解:∵.∴a=0或1.∴的值为0或1.故选:C.6.解:设这个正方体的棱长为am,由题意得,a3=5,∴a=(m),故选:B.7.解:∵a2=36,b3=8,∴a=±6,b=2,当a=6,b=2时,a+b=6+2=8,当a=﹣6,b=2时,a+b=﹣6+2=﹣4,∴a+b的值为8或﹣4,故选:A.8.解:∵被开立方数的小数点向右移动3位,则其立方根的小数点向右移动1位,∴≈0.6694×10=6.694,故选:B.二.填空题(共8小题,满分40分)9.解:∵23=8∴=2.故填2.10.解:∵,∴5x+32=﹣8,解得x=﹣8,∴﹣8的立方根为=﹣2,故答案为:﹣2.11.解:原式===,的平方根为±.故答案为:±.12.解:设截去的每小正方体的棱长是xcm,根据题意得:1000﹣8x3=488,∴8x3=512,∴x3=64,∴x=4.故答案为:4cm.13.解:∵,∴2x﹣1=4x+1,解得x=﹣1.故答案为:﹣1.14.解:,,.故答案为:.15.解:49的平方根是±7,∵=6,6的算术平方根是,∴的算术平方根是,﹣8的立方根是﹣2.故答案为:±7;;﹣2.16.解:∵a+b﹣5的平方根是±3,∴a+b﹣5=(±3)2=9,∴a+b=14,故答案为:14.三.解答题(共5小题,满分40分)17.解:(1)移项得,4x2=9,两边都除以4得,x2=,由平方根的定义得,x=;(2)两边都除以8得,(x﹣1)3=,由立方根的定义得,x﹣1=,即x=.18.解:(1)∵a+1的算术平方根是3,∴a+1=9,∴a=8;∵﹣27的立方根是b﹣12,∴b﹣12=﹣3,∴b=9;∵c﹣3的平方根是±2,∴c﹣3=4,∴c=7;即a,b,c的值分别为8,9,7;(2)由(1)知,a+4b﹣4c=8+4×9﹣4×7=16,∴a+4b﹣4c的平方根是±4.19.解:(1)正数m的平方根互为相反数,∴4n+3+2﹣5n=0,∴n=5,∴4n+3=23,∴m=529;(2)∵,∴a=3,b=0,c=n=5,∴a+b+c=3+0+5=8,∴a+b+c的立方根是2.20.解:(1)=10×0.01=0.1,=10×10=100.故答案为:0.1,100.(2)①∵≈3.16,∴≈≈≈≈10×3.16≈31.6.故答案为:31.6.②∵≈1.918,≈191.8,1.918×100=191.8,∴.∴.∴a=36800.故答案为:36800.(3)∵≈1.26,≈12.6,1.26×10=12.6,∴.∴.∴m=2000.故答案为:2000.21.解:(1)(cm).(2)∵魔方的棱长为4cm,∴小立方体的棱长为2cm,∴阴影部分面积为:×2×2×4=8(cm2),边长为:=(cm).。

八年级数学上册第11章数的开方练习题新版华东师大版(含答案)

八年级数学上册第11章数的开方练习题新版华东师大版(含答案)

八年级数学上册:第11章 数的开方类型之一 平方根、立方根的概念和性质 1.[2020·桂林] 若√x -1=0,则x 的值是( ) A .-1B .0C .1D .22.[2019·通辽] √16的平方根是( ) A .±4B .4C .±2D .23.[2019·济宁] 下列计算正确的是( ) A .√(-3)2=-3 B .√-53=√53C .√36=±6D .-√0.36=-0.64.已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值. 类型之二 算术平方根的性质与应用5.a 2的算术平方根一定是( ) A .aB .|a|C .√aD .-a6.下列计算正确的是( ) A .√22=2 B .√22=±2 C .√42=2D .√42=±27.[2019·杭州西湖区月考] 若实数x 满足√x -2·|x+1|≤0,则x 的值为( ) A .2或-1 B .2≥x ≥-1 C .2D .-18.[2019·资中月考] 若(2x+8)2与√y -2的值互为相反数,则√x y = . 类型之三 实数的分类、大小比较及运算 9.[2019·日照] 在实数√83,π3,√12,43中,有理数有( ) A .1个B .2个C .3个D .4个10.下面四个选项中,结果比-5小的是( ) A .-8的绝对值 B .√2的相反数 C .-5的倒数D .-4与-3的和11.[2019·绵阳] 已知x 是整数,当|x-√30|取最小值时,x 的值是( )A.5B.6C.7D.83-√(-2)2+|1-√3|.12.计算:√9+√813.(1)计算:①2的平方根;②-27的立方根;③√16的算术平方根.(2)将(1)中求出的各个数表示在图1中的数轴上;(3)将(1)中求出的各个数按从小到大的顺序排列,并用“<”号连接.图114.已知√8+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与√5的大小.类型之四数轴上的点与实数的一一对应关系15.[2020·福建]如图2,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.3图2 图316.[2019·济南]实数a,b在数轴上的对应点的位置如图3所示,下列关系式不成立的是()A.a-5>b-5B.6a>6bC.-a>-bD.a-b>017.[2019·南京]实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()图418.如图5,在一条不完整的数轴上,从左向右有两个点A,B,其中点A表示的数为m,点B表示的数为4,C也为数轴上一点,且AB=2AC.(1)若m为整数,求m的最大值;(2)若点C表示的数为-2,求m的值.图5类型之五 数学活动19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚非常迅速地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚有条理地讲述了计算过程:①因为103=1000,1003=1000000,1000<59319<1000000,所以10<√593193<100,所以√593193是两位数;②因为59319的个位上的数字是9,只有个位上的数字是9的数的立方的个位上的数字依然是9,所以√593193的个位上的数字是9;③如果划去59319后三位只剩下59,因为33=27,43=64,而27<59<64,所以30<√593193<40,所以√593193的十位上的数字是3,所以59319的立方根是39. 根据上面的材料,请你解答问题: 求50653的立方根.20.对非负实数x 四舍五入到个位的值记为[x ],即当n 为非负整数时,若n-12≤x<n+12,则[x ]=n.如:[2.9]=3;[2.4]=2;…. 根据以上材料,解决下列问题:(1)填空:[1.8]= ,[√5]= ; (2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x ]=32x-1的所有非负实数x 的值.答案1.C [解析] 因为√x -1=0, 所以x-1=0, 解得x=1, 则x 的值是1. 故选C .2.C [解析] 因为√16=4,±√4=±2,所以√16的平方根是±2,故选C .3.D [解析] A .√(-3)2=√9=3,故A 项错误;B .√-53=-√53,故B 项错误; C .√36=6,故C 项错误; D .-√0.36=-0.6,故D 项正确. 故选D .4.解:根据题意,得2a=4,3a+b=27, 解得a=2,b=21, 则a-2b=2-42=-40.5.B6.A [解析] √22=2,故A 项正确,B 项错误; √42=4,故C 项,D 项均错误. 故选A .7.C [解析] 根据算术平方根的性质,得√x -2≥0,x-2≥0,所以x ≥2,所以|x+1|>0.又因为√x -2·|x+1|≤0,所以√x -2=0,所以x=2.故选C . 8.4 [解析] 由题意,得(2x+8)2+√y -2=0,则2x+8=0,y-2=0,解得x=-4,y=2,则√x y =√(-4)2=4. 故答案为4.9.B [解析] 在实数√83,π3,√12,43中,√83=2,有理数有√83,43,共2个.故选B . 10.D [解析] -8的绝对值是8,8>-5,故A 选项不符合题意; √2的相反数是-√2,-√2>-5,故B 选项不符合题意; -5的倒数是-15=-0.2,-0.2>-5,故C 选项不符合题意; -4+(-3)=-7,-7<-5,故D 选项符合题意.故选D .11.A [解析] 因为√25<√30<√36,所以5<√30<6,且与√30最接近的整数是5,所以当|x-√30|取最小值时,整数x 的值是5.故选A . 12.解:原式=3+2-2+√3-1=2+√3. 13.解:(1)①2的平方根是±√2;②-27的立方根是-3;③√16=4,4的算术平方根是2.(2)如图所示:(3)-3<-√2<√2<2.14.解:(1)因为4<8<9,所以2<√8<3.又因为√8+1在两个连续的自然数a 和a+1之间,所以a=3. 因为1是b 的一个平方根,所以b=1. (2)由(1)知,a=3,b=1,所以a+b=3+1=4, 所以a+b 的算术平方根是2. 因为4<5,所以2<√5.15.C [解析] 因为M ,N 所对应的实数分别为m ,n ,所以-2<n<-1<0<m<1, 所以m-n 的结果可能是2.故选C .16.C [解析] 由图可知,b<0<a ,且|b|<|a|,所以a-5>b-5,6a>6b ,-a<-b ,a-b>0,所以关系式不成立的是选项C .故选C .17.A [解析] 因为a>b 且ac<bc ,所以c<0.选项A 符合a>b ,c<0的条件,故满足条件的对应点位置可以是A .选项B,C 不满足a>b ,选项C,D 不满足c<0,故满足条件的对应点位置不可以是B,C,D .故选A .18.解:(1)由题意可得m<4.因为m 为整数,所以m 的最大值为3. (2)因为点C 表示的数为-2,点B 表示的数为4, 所以点C 在点B 的左侧.①当点C 在线段AB 上时,因为AB=2AC ,所以4-m=2(-2-m ),解得m=-8.②当点C 在线段BA 的延长线上时,因为AB=2AC ,所以4-m=2(m+2),解得m=0. 综上所述,m 的值是-8或0.19.解:因为103=1000,1003=1000000,1000<50653<1000000, 所以10<√506533<100,所以√506533是两位数.因为50653的个位上的数字是3,只有个位上的数字是7的数的立方的个位上的数字是3, 所以√506533的个位上的数字是7. 如果划去50653后三位只剩下50,因为33=27,43=64,而27<50<64, 所以30<√506533<40,所以√506533的十位上的数字是3, 所以50653的立方根是37. 20.解:(1)2 2(2)因为[2x+1]=4,所以72≤2x+1<92,所以54≤x<74.故答案为54≤x<74. (3)设32x-1=m ,则x=2m+23,所以2m+23=m ,所以m-12≤2m+23<m+12,解得12<m ≤72.因为m 为整数,所以m=1或m=2或m=3, 所以x=43或x=2或x=83.。

2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx

2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx

《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算:+= .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时,= .21.若|a|=,=2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算:+= 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:+=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵=4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时,= ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=,=2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵=2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为:+.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S= 告诉我们一种求三角形面积的方法,其中p 表示三角形周长的一半,a 、b 、c 分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm ,b=4cm ,c=5cm ,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC 、AC 、AB 的长求出P ,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm ,b=4cm ,c=5cm ,∴p===6,∴S===6(cm 2), ∴△ABC 的面积6cm 2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。

2020年华东师大新版八年级(上)《第11章+数的开方》名校试题套卷(1)【附答案】

2020年华东师大新版八年级(上)《第11章+数的开方》名校试题套卷(1)【附答案】

2020年华东师大新版八年级(上)《第11章数的开方》名校试题套卷(1)一、选择题(共10小题)1.已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣12.下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个3.估计+的运算结果应在哪两个连续自然数之间()A.2和3B.3和4C.4和5D.5和64.计算3×()2﹣2018×()+1的结果等于()A.﹣2017B.﹣2018C.﹣2019D.20195.下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D.与互为相反数6.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.17.在下列结论中,正确的是()A.B.x2的算术平方根是xC.﹣x2一定没有平方根D.的平方根是8.下列各数中,无理数是()A.0B.C.D.﹣3.149.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应10.已知min{a,b,c}表示取三个数中最小的那个数﹒例如:当x=﹣2时,min{|﹣2|,(﹣2)2,(﹣2)3}=﹣8,当时,则x的值为()A.B.C.D.二、填空题(共10小题)11.的平方根是.12.已知a、b为两个连续整数,且a<<b,则a+b=.13.﹣的相反数是.14.已知|a|=5,=7,且|a+b|=a+b,则a﹣b=.15.如果一个正数的平方根是a+3和2a﹣15,则这个数为.16.在实数﹣,﹣,0,,中,无理数有.17.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根是.18.6.(比较大小)19.如果+=0,那么xy的值为.20.已知一个正数x的两个平方根分别是2a﹣2和a﹣4,则a=,x=.三、解答题(共10小题)21.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.22.已知+|8b﹣3|=0,求8ab﹣2的值.23.已知a、b分别是6﹣的整数部分和小数部分.(1)分别写出a、b的值;(2)求3a﹣b2的值.24.计算:(1)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2];(2)+|2﹣|+﹣.25.有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.26.喜欢探索数学知识的小明遇到一个新的定义:对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例:1,4,9这三个数,=2,=3,=6,其结果分别为2,3,6,都是整数,所以1,4,9三个数称为“和谐组合”,其中最小算术平方根是2,最大算术平方根是6.(1)请证明2,18,8这三个数是“和谐组合”,并求出最小算术平方根和最大算术平方根.(2)已知9,a,25三个数是“和谐组合”,且最大算术平方根是最小算术平方根的3倍,求a的值.27.分别求出下列各数平方根.①81②③(﹣4)2.28.先填写表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=,y=;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈;②已知=8.973,若=897.3,用含m的代数式表示b,则b=;(3)试比较与a的大小.29.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是,若|AB|=3,那么x为.(3)当x是时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).30.求下列各式中的x的值:(1)8x3=125(2)(3﹣x)2=196.2020年华东师大新版八年级(上)《第11章数的开方》名校试题套卷(1)参考答案与试题解析一、选择题(共10小题)1.已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣1【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选:A.2.下列说法中,正确的个数有()①不带根号的数一定是有理数;②任意一个实数都可以用数轴上的点表示;③无限小数都是无理数;④是17的平方根;A.1个B.2个C.3个D.4个【解答】解:①π不带根号的数,是无理数,原来的说法错误;②任意一个实数都可以用数轴上的点表示是正确的;③无限小数0.是有理数,原来的说法错误;④是17的平方根是正确的.故选:B.3.估计+的运算结果应在哪两个连续自然数之间()A.2和3B.3和4C.4和5D.5和6【解答】解:(+)2=3+5+2=8+2.∵3.5<<4,∴9<15<(+)2=16,∴3<+<4.故选:B.4.计算3×()2﹣2018×()+1的结果等于()A.﹣2017B.﹣2018C.﹣2019D.2019【解答】解:3×()2﹣2018×()+1=×(3×﹣2018)+1=﹣×+1=﹣+1=﹣2019+1=﹣2018故选:B.5.下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根比这个数平方根小C.如果一个数有立方根,那么它一定有平方根D.与互为相反数【解答】解:A、0的平方根是0,0的相反数是0,原说法错误,故此选项不符合题意;B、0的立方根和平方根都是0,原说法错误,故此选项不符合题意;C、如果一个数有立方根,不一定有平方根,例如﹣1的立方根为﹣1,﹣1没有平方根,原说法错误,故此选项不符合题意;D、=﹣,与互为相反数,原说法正确,故此选项符合题意,故选:D.6.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.1【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.7.在下列结论中,正确的是()A.B.x2的算术平方根是xC.﹣x2一定没有平方根D.的平方根是【解答】解:A.,故错误;B.x2的算术平方根是|x|,故错误;C.﹣x2,当x=0时,平方根为0,故错误;D.的平方根为±,正确.故选:D.8.下列各数中,无理数是()A.0B.C.D.﹣3.14【解答】解:A、是整数,是有理数,故选项错误;B、是无理数,选项正确;C、是分数,是有理数,故选项错误;D、是分数,是有理数,故选项错误.故选:B.9.下列说法正确的是()A.实数与数轴上的点一一对应B.无理数与数轴上的点一一对应C.整数与数轴上的点一一对应D.有理数与数轴上的点一一对应【解答】解:数轴不仅表示有理数,也可以表示无理数,例如:如图,矩形OABC,OA =1,OC=2,则OB=,以O为圆心,OB为半径画弧交数轴于点D,则点D所表示的数为:,同理,可以在数轴上表示其它的无理数,因此数轴上的点与实数一一对应,故选:A.10.已知min{a,b,c}表示取三个数中最小的那个数﹒例如:当x=﹣2时,min{|﹣2|,(﹣2)2,(﹣2)3}=﹣8,当时,则x的值为()A.B.C.D.【解答】解:当时,x=,x<,不合题意;当时,x=,当x=﹣时,x<x2,不合题意;当x=时,,x2<x <,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.二、填空题(共10小题)11.的平方根是±.【解答】解:∵,∴的平方根是±.故答案为:±.12.已知a、b为两个连续整数,且a<<b,则a+b=9.【解答】解:∵4<<5,∴a=4,b=5,∴a+b=9.故答案为:9.13.﹣的相反数是.【解答】解:∵﹣的相反数是,故答案为.14.已知|a|=5,=7,且|a+b|=a+b,则a﹣b=﹣2或﹣12.【解答】解:∵|a|=5,=7,∴a=±5,b=±7;又∵|a+b|=a+b,∴a=5,b=7,或a=﹣5,b=7.当a=5,b=7时,a﹣b=﹣2;当a=﹣5,b=7,a﹣b=﹣12.故答案为:﹣2或﹣12.15.如果一个正数的平方根是a+3和2a﹣15,则这个数为49.【解答】解:∵一个正数的平方根是a+3和2a﹣15,∴a+3和2a﹣15互为相反数,即(a+3)+(2a﹣15)=0;解得a=4,则a+3=﹣(2a﹣15)=7;则这个数为72=49;故答案为49.16.在实数﹣,﹣,0,,中,无理数有,.【解答】解:﹣=﹣2是有理数,﹣是有理数,0是有理数,是无理数,是无理数,故答案为:,.17.正数x的两个平方根分别为3﹣a和2a+7,则44﹣x的立方根是﹣5.【解答】解:由题意可知:3﹣a+2a+7=0,∴a=﹣10,∴3﹣a=13,∴x=132=169,∴44﹣x=﹣125,∴﹣125的立方根为﹣5,故答案为:﹣518.<6.(比较大小)【解答】解:∵6=>,∴<6,故答案为:<.19.如果+=0,那么xy的值为﹣6.【解答】解:由题意得,x﹣3=0,y+2=0,解得,x=3,y=﹣2,则xy=﹣6,故答案为:﹣6.20.已知一个正数x的两个平方根分别是2a﹣2和a﹣4,则a=2,x=4.【解答】解:根据题意得:2a﹣2+a﹣4=0,解得:a=2,则x=(2﹣4)2=4.故答案为:2;4.三、解答题(共10小题)21.已知a2=(﹣3)2,与互为相反数,求代数式2a2﹣b的值.【解答】解:∵a2=(﹣3)2=9,∴a=±3.当a=3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=4×3=12.此时2a2﹣b=2×9﹣12=6.当a=﹣3时,由与互为相反数得到3a﹣2b+a+b=0,即b=4a=﹣3×4=﹣12.此时2a2﹣b=2×9+12=30.综上所述,代数式2a2﹣b的值是6或30.22.已知+|8b﹣3|=0,求8ab﹣2的值.【解答】解:∵+|8b﹣3|=0,∴1﹣3a=0且8b﹣3=0,则a=、b=,∴8ab﹣2=8××﹣2=1﹣2=﹣1.23.已知a、b分别是6﹣的整数部分和小数部分.(1)分别写出a、b的值;(2)求3a﹣b2的值.【解答】解:(1)∵2<<3,∴﹣3<﹣<﹣2,∴3<6﹣<4,∴a=3,b=6﹣﹣3=3﹣;(2)3a﹣b2=3×3﹣(3﹣)2=9﹣9+6﹣5=6﹣5.24.计算:(1)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2];(2)+|2﹣|+﹣.【解答】解:(1)原式=﹣5﹣(﹣﹣÷4)=﹣5﹣(﹣﹣)=﹣5+=﹣4;(2)原式=2+2﹣+2﹣2=+2.25.有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.【解答】解:﹣,,﹣是无理数,所有无理数的和:﹣++(﹣)=﹣+2﹣=.26.喜欢探索数学知识的小明遇到一个新的定义:对于三个正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“和谐组合”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例:1,4,9这三个数,=2,=3,=6,其结果分别为2,3,6,都是整数,所以1,4,9三个数称为“和谐组合”,其中最小算术平方根是2,最大算术平方根是6.(1)请证明2,18,8这三个数是“和谐组合”,并求出最小算术平方根和最大算术平方根.(2)已知9,a,25三个数是“和谐组合”,且最大算术平方根是最小算术平方根的3倍,求a的值.【解答】解:(1)∵=6,=4,=12,∴2,18,8这三个数是“和谐组合”,∴最小算术平方根是4,最大算术平方根是12.(2)分三种情况讨论:①当9≤a≤25时,=3,解得a=0(不合题意);②当a≤9<25时,=3,解得a=(不合题意);③当9<25≤a时,=3,解得a=81,综上所述,a的值为81.27.分别求出下列各数平方根.①81②③(﹣4)2.【解答】解:(1)81的平方根是±9;(2),的平方根是±;(3)(﹣4)2=16,16的平方根是±4.28.先填写表,通过观察后再回答问题:a…0.00010.01110010000……0.01x1y100…(1)表格中x=0.1,y=10;(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:①已知≈3.16,则≈31.6;②已知=8.973,若=897.3,用含m的代数式表示b,则b=10000m;(3)试比较与a的大小.【解答】解:(1)x=0.1,y=10;(2)①根据题意得:≈31.6;②根据题意得:b=10000m;(3)当a=0或1时,=a;当0<a<1时,>a;当a>1时,<a,故答案为:(1)0.1;10;(2)①31.6;②10000m29.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是5数轴上表示2和﹣3的两点之间的距离是5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,那么x为﹣1或7.(3)当x是﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).【解答】解:(1)数轴上表示1和6的两点之间的距离是|6﹣1|=5,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,则|x+4|=3,解得x=﹣1或﹣7.(3)当x>1时,|x+2|+|x﹣1|=x+2+x﹣1=7,2x=6,x=3,当x<﹣2时,|x+2|+|x﹣1|=﹣x﹣2+1﹣x=7,﹣2x=8,x=﹣4,当﹣2≤x≤1时,|x+2|+|x﹣1|=x+2+1﹣x=3≠7,∴当x=﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)设运动t秒后,有一点恰好是另两点所连线段的中点,由题意,得①点B为线段PQ中点时,,解得,②点P为线段BQ中点时,,解得,③点Q为线段BP中点时,,解得t=5.答:运动或或5秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点.30.求下列各式中的x的值:(1)8x3=125(2)(3﹣x)2=196.【解答】解:(1)8x3=125解得:x=;(2))(3﹣x)2=196,解得:x=17或x=﹣11.。

华东师大版数学八年级上册《平方根》练习题(含答案及解析)

华东师大版数学八年级上册《平方根》练习题(含答案及解析)

华东师大版数学八年级上册《平方根》练习题(含答案及解析)一、选择题1.()20.7- 的平方根是( )A .-0.7 B.±0.7 C.0.7 D.0.49答案:B知识点:平方根解析:解答:∵(-0.7)2=(±0.7)2,∴(-0.7)2的平方根是±0.7.故答案为:B .分析:本题根据平方根的定义解答即可.注意一个正数有两个平方根,它们互为相反数.2. 若 -3a =387,则a 的值是( ) A.87 B.-87 C.±87 D.-512343 答案:B知识点:立方根解析:分析:本题根据立方根的定义,可将根号外的符号移入根号内,结合题意即可求出,属于基础题.3.有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A.1B.2C.3D.4答案:B知识点:平方根解析:解答::(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B.分析:此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.4. 若2a=25,b=3,则a+b=()()29±A.-8B.±8C.±2D. ±8或±2答案:D知识点:平方根;绝对值解析:解答:∵a2=25,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=5+3=8,当a=5,b=-3时,a+b=5-3=2,当a=-5,b=3时,a+b=-5+3=-2,当a=-5,b=-3时,a+b=-5-3=-8,综上所述,a+b=±8或±2.故答案为:D.分析:本题根据有理数的乘方和绝对值的性质分别求出a、b,然后分类讨论.难点在于分情况讨论.5. 81的平方根是()A.±3B.±9C.3D.9答案:B知识点:平方根解析:±9=81,解答:∵()2∴81的平方根是±9.故选B.分析:本题根据平方根的定义进行解答即可,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.6.若2m-4与3m-1是同一个数的平方根,则m为()A.-3B.1C.-1D.-3或1答案:D知识点:平方根解析:解答:依题意得:2m-4=-(3m-1)或2m-4=3m-1,解得m=1或-3;∴m的值为1或-3.故答案为D.分析:由于同一个数的两个平方根互为相反数,由此可以得到2m-4=-(3m-1),解方程即可求解.7. 下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身答案:D知识点:平方根解析:解答:A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选:D.分析:本题根据平方根的定义即可解答.用排除法作答,考查了考生对正负数的立方根理解.)A.6B.±6C.D.答案:D知识点:平方根解析:故选D.分析:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,一A.1B.2C.3D.4答案:D知识点:平方根解析:根据平方根的被开方数是非负数,可得答案.注意开平方的被开方数是非负数.故选:D.分析:A.±2B.2C.4D.±4答案:A知识点:平方的非负性;绝对值的非负性;平方根解析:解答:根据题意得,b-4=0,a-1=0,解得a=1,b=4,所以14 ab=,1 4的平方根是12±,故选A.根的定义解答即可.几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.11. 一个数的平方等于16,则这个数是()A.+4 B.-4 C.±4 D.±8答案:C知识点:平方根解析:解答:∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.故选C.分析:此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12.()25-的平方根是()A.-5B.±5C.5D.25答案:B知识点:有理数的乘方;平方根解析:解答:∵(-5)2=(±5)2,∴(-5)2的平方根是±5.故选B.分析:本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.下列说法中错误的是( )B.36的平方根为±6C.=5D.-4的算术平方根是-2答案:D知识点:平方根;算术平方根解析:解答:A、0的算术平方根是0,说法正确,故本选项错误;B、36的平方根为±6,说法正确,故本选项错误;C、=5,说法正确,故本选项错误;D、-4没有算术平方根,说法错误,故本选项正确.故选D.分析:根据平方根、算术平方根的定义,结合选项即可得出答案.14.下列语句中正确的是( )A.的平方根是9B.的平方根是±9C.的算术平方根是±3D.9的算术平方根是3答案:D知识点:平方根;算术平方根解析:解答:A、的平方根是±3,故本选项错误;B、的平方根是±3,故本选项错误;C、的算术平方根是3,故本选项错误;D、9的算术平方根是3,故本选项正确;故选D.分析:求出=9,再求出9的平方根和算术平方根,即可得出选项.15.下面说法正确的是( )A.4是2的平方根C.0的算术平方根不存在D.-1的平方的算术平方根是-1答案:B知识点:平方根;算术平方根解析:解答:A、4不是2的平方根,故本选项错误;B、2是4的算术平方根,故本选项正确;C、0的算术平方根是0,故本选项错误;D、-1的平方为1,1的算术平方根为1,故本选项错误.故选B.分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.二.填空题答案:4知识点:平方根解析:解答:设正方形的边长是x平方厘米,则x2=16,∵x>0,∴x=4,故答案为:4.分析:17.若一个数的算术平方根是8,则这个数是_____.答案:64知识点:算术平方根解析:解答:∵一个数的算术平方根是8,∴这个数是28=64.故答案为:64.分析:根据算术平方根的定义可以得到这个数就是8的平方,由此即可得到答案.18. 81的平方根是_____;的算术平方根是_____.答案:±9;2知识点:平方根;算术平方根解析:解答:81的平方根是=±9;的算术平方根是4,4的算术平方根即为2;故填±9;2.分析:前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简,然后即可求出其结果的算术平方根.19. 一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是_____.答案:知识点:算术平方跟解析:解答:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.分析:首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.20.已知:若≈1.910,≈6.042,则≈_____.答案:604.2知识点:算术平方根解析:解答:根据被开方数扩大100倍,算术平方根扩大10倍,可得答案.解:若≈1.910,≈6.042,则≈604.2,故答案为:604.2.分析:三.解答题.21. 已知3a-2的算术平方根是4,2a+b-2的算术平方根是3,求a、b的值.答案:a=6,b=-1.知识点:算术平方根解析:解答:∵16的算术平方根是4,∴3a-2=16,解得:a=6,∵9的算术平方根是3,a=6,∴2×6+b-2=9,解得:b=-1,可得:a=6,b=-1.分析:根据算术平方根的定义得出3a-2=16,以及2a+b-2=9进而求出a,b的值即可.22.我家客厅的面积为21.6m2,要想用240块相同的正方形地砖铺设,问每块地砖的边长应为多少?答案:0.3m知识点:算术平方根解析:解答:一块地砖的面积为:21.6÷240=0.09m2,∴每块地砖的边长应为=0.3m.分析:先求出一块地砖的面积,再根据算术平方根的定义解答.23. 判断下列各数是否有平方根?并说明理由.(1)(﹣3)2;(2)0;(3)﹣0.01;(4)﹣52;(5)﹣a2;(6)a2﹣2a+2.答案:略知识点:平方根解析:解答:(1)有平方根,﹣3的平方是9;(2)有平方根,0是非负数;(3)没有平方根,负数没有平方根;(4)没有平方根,负数没有平方根;(5)a等于零时,有平方根,a≠0时没有平方根,负数没有平方根;(6)有平方根,被开方数是大或等于1的数.分析:本题考查了平方根,根据被开方是非负数可得答案.注意被开方数是非负数.24. 求下列各数的平方根:(1)121;(2)0.01;(3)2;(4)(﹣13)2;(5)﹣(﹣4)3.答案:(1)±11;(2)±0.1;(3);(4)±13(5)±8.知识点:平方根解析:解答:(1)=±11;(2)=±0.1;(3)==;(4)=±13;(5)==±8.分析:本题考查了平方根,开方运算是解题关键,注意正数的平方根有两个,它们互为相反数.25. 已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.答案:13知识点:平方根;代数式求值解析:解答:∵2m+2的平方根是±4,3m+n+1的平方根是±5,∴2m+2=16,3m+n+1=25,联立解得,m=7,n=3,∴m+2n=7+2×3=13.分析:根据开方与平方是互逆运算,求出2m+2的值,与3m+n+1的值,然后两式联立求出m、n的值,再代入进行计算即可求解.。

初二数学上册立方根练习题及答案

初二数学上册立方根练习题及答案

初二数学上册立方根练习题及答案初二数学上册立方根练习题及答案练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

下面是店铺为大家收集的初二数学上册立方根练习题及答案,希望能够帮助到大家。

1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。

答案:29解析:前12个数,每四个一组,每组之和都是0.所以总和为14+15=29。

2.若P=a2+3ab+b2,Q=a2-3ab+b2,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______。

答案:12ab。

解析:因为P-[Q-2P-(-P-Q)]=P-Q+2P+(-P-Q)=P-Q+2P-P-Q=2P-2Q=2(P-Q)以P=a2+3ab+b2,Q=a2-3ab+b2代入,原式=2(P-Q)=2[(a2+3ab+b2)-(a2-3ab+b2)]=2(6ab)=12ab。

3.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的'乘积等于______。

答案:-1728。

解析:设这四个有理数为a、b、c、d,则有3(a+b+c+d)=15,即a+b+c+d=5。

分别减去每三数之和后可得这四个有理数依次为3,-12,6,8,所以,这四个有理数的乘积=3×(-12)×6×8=-1728。

4.一种小麦磨成面粉后,重量要减少15%,为了得到4250公斤面粉,至少需要______公斤的小麦。

答案:5000解析:设需要x公斤的小麦,则有x(x-15%)=4250x=5000下载全文。

新华师大版数学八年级上《11.2实数》同步练习含答案解析

新华师大版数学八年级上《11.2实数》同步练习含答案解析

新华师大版数学八年级上册第十一章第二节11.2实数同步练习一、选择题1、在实数0、π、、、中,无理数的个数有()A、1个B、2个C、3个D、4个2、估计的值在()A、在1和2之间B、在2和3之间C、在3和4之间D、在4和5之间3、﹣64的立方根与的平方根之和是()A、﹣7B、﹣1或﹣7C、﹣13或5D、54、如图,数轴上A ,B两点表示的数分别为﹣1和,点B关于点A的对称点为C ,则点C所表示的数为()A、B、C、D、5、化简| ﹣π|﹣π得()A、B、﹣C、2π﹣D、﹣2π6、有下列说法:①被开方数开方开不尽的数是无理数;②无理数是无限不循环小数;③无理数包括正无理数、零、负无理数;④无理数都可以用数轴上的点来表示.其中正确的说法的个数是()A、1B、2C、3D、47、若0<x<1,则x ,x2,,中,最小的数是()A、xB、C、D、x28、若的整数部分为a ,小数部分为b ,则a﹣b的值为()A、B、2C、2﹣D、2+9、的值为()A、5B、C、1D、10、如图,数轴上的A、B、C、D四点中,与数表示的点最接近的是()A、点AB、点BC、点CD、点D11、已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A、①②B、②③C、③④D、②③④12、有一个数值转换器原理如图,当输入的x的值为256时,输出的y的值为()A、16B、C、D、13、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A、B、C、D、2.514、任意实数a ,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1,现对72进行如下操作:72→[ ]=8→[ ]=2→[ ]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A、3B、4C、5D、615、将1、、、按如图方式排列,若规定(m,n)表示第m排从左向右第n个数,则(6,5)与(13,6)表示的两数之积是()A、B、6C、D、二、填空题16、写出一个到2之间的无理数________.17、下列各数:,,,1.414,,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.18、在数轴上表示的点离原点的距离是________;的相反数是________,绝对值是________.19、若a1=1,a2= ,a3= ,a4=2,…,按此规律在a1到a2014中,共有无理数________个.20、有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有,,,这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的有________(填序号).三、解答题21、计算:(1).(2)(结果精确到0.01. ).22、有一组实数:2,,0,π,,,,0.1010010001…(两个1之间依次多个0);(1)将他们分类,填在相应括号内;有理数{________}无理数{________}(2)选出2个有理数和2个无理数,用+,﹣,x,÷中三个不同的运算符号列成一个算式,(可以添括号),使得运算结果为正整数.23、已知实数x和﹣1.41分别与数轴上的A、B两点对应.(1)直接写出A、B两点之间的距离________(用含x的代数式表示).(2)求出当x= ﹣1.41时,A、B两点之间的距离(结果精确到0.01).(3)若x= ,请你写出大于﹣1.41,且小于x的所有整数,以及2个无理数?24、如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图1中正方形ABCD的面积及边长;(2)在图2的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.25、阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a ,的整数部分为b ,求a+b的值;(2)已知:10+ =x+y ,其中x是整数,且0<y<1,求x﹣y的相反数.答案解析部分一、<h3 >选择题</h3>1、【答案】B【考点】无理数【解析】解答:π、是无理数了.分析:根据无理数的定义去判断:无限不循环小数叫做无理数.2、【答案】C【考点】估算无理数的大小【解析】解答:∵9<11<16,∴<<,从而有3<<4.分析:估算一个整数的算术平方根(无理数)的大小的一般方法是:找出与该无理数的平方相近的两个整数,其中这两个数的算术平方根是整数的,如此题中的9和16,从而可估算该无理数的大小.3、【答案】B【考点】实数的运算【解析】解答:﹣64的立方根为﹣4,的平方根±3,则﹣64的立方根与的平方根之和为﹣1或﹣7.分析:根据平方根和立方根的定义可分别求出相应的立方根和平方根;需要注意的是:=9的平方根,即求9的平方根.4、【答案】A【考点】实数与数轴【解析】解答:设点C表示的数是x ,∵A ,B两点表示的数分别为﹣1和,C ,B两点关于点A对称,∴,解得x= .分析:本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.5、【答案】B【考点】实数的运算【解析】解答:∵﹣π<0,∴| ﹣π|﹣π=π﹣﹣π=﹣.分析:在此运算中,应先化简绝对值,则要比较和π的大小.6、【答案】C【考点】无理数【解析】【解答】①被开方数开方开不尽的数是无理数,正确;②无理数是无限不循环小数,正确;③0是有理数,不是无理数,则命题错误;④无理数都可以用数轴上的点来表示,正确.【分析】此题主要考查了无理数的定义.7、【答案】B【考点】实数【解析】解答:可采用特殊值,令,0<<1,则x2= ,= ,=4,则x2<x<<.分析:此题宜采用特殊法去做更简便.8、【答案】C【考点】估算无理数的大小【解析】解答:∵0<<1,,∴,,则.分析:此题的难点就在于如何去表示的小数部分:首先,应估算的大小,在1和2之间,则1是的整数部分,小数部分= 减去整数部分.9、【答案】C【考点】估算无理数的大小,实数的运算【解析】解答:原式=3﹣+ ﹣2=1.分析:先去绝对值,然后合并即可.10、【答案】B【考点】实数与数轴,估算无理数的大小【解析】解答∵≈1.732,∴≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数表示的点最接近的是点B.分析:先估算出≈1.732,所以≈﹣1.732,易得与﹣2最接近.11、【答案】B【考点】实数【解析】【解答】①数轴上的点既能表示无理数,又能表示有理数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数无限个,故④错误.【分析】本题考查了实数,利用了实数与数轴的关系,有理数、无理数的定义,注意数轴上的点与实数一一对应.12、【答案】A【考点】算术平方根,无理数【解析】解答:x=256,第一次运算,=16,第二次运算,=4,第三次运算,=2,第四次运算,,输出.分析:此题求无理数的同时,要判断其结果是否是无理数.13、【答案】C【考点】实数与数轴【解析】解答:2<<2.5<,2与离的最近,故选C.分析:由图可知这个点与2离的最近,而其中四个选项中的数与2离的最近且大于1的数是.14、【答案】C【考点】估算无理数的大小【解析】解答:900→第一次[ ]=30→第二次[ ]=5→第三次[ ]=2→第四次[ ]=1,即对数字900进行了4次操作后变为1.分析:根据[a]表示不超过a的最大整数计算,即求出a的整数部分.15、【答案】B【考点】实数的运算【解析】解答:6,5)表示第6排从左向右第5个数是,(13,6)表示第13排从左向右第6个数,可以看出奇数排最中间的一个数都是1,第13排是奇数排,最中间的也就是这排的第7个数是1,那么第6个就是,则(6,5)与(13,6)表示的两数之积是6.分析:根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m ﹣1排有(m﹣1)个数,从第一排到(m﹣1)排共有:1+2+3+4+…+(m﹣1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第n个数到底是哪个数后再计算.二、<h3 >填空题</h3>16、【答案】【考点】无理数【解析】【解答】设此无理数为x ,∵此无理数在到2之间,∴<x<2,∴2<x2<4,∴符合条件的无理数可以为:,(答案不唯一).【分析】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分.本题属开放性题目,答案不唯一.17、【答案】3;5;4;2【考点】实数【解析】【解答】无理数有:,,3.161661666…;有理数有:,,1.414,3.12122,;负数有:,,,;整数有:,.【分析】根据无理数、有理数、负数和整数的定义判断.18、【答案】;;【考点】实数与数轴【解析】【解答】在数轴上表示的点离原点的距离是,的相反数是= ,∵>2,∴.【分析】根据相反数的概念求出相反数,比较和2的大小,确定的符号,根据绝对值的性质求出的绝对值.19、【答案】1970【考点】无理数【解析】【解答】∵12=1,22=4,32=9,42=16,…,442=1936,452=2025,∴a1到a2014中,共有44个有理数,则无理数有2014﹣44=1970.【分析】12=1,22=4,32=9,42=16,…,442=1936,452=2025,可知a1到a2014中,共有44个有理数,继而可求出无理数的个数.20、【答案】①⑤【考点】实数与数轴,近似数,无理数【解析】【解答】①任何无理数都是无限小数,正确;②实数与数轴上的点一一对应,错误;③在1和3之间的无理数有无数个,错误;④是分数,它是无理数,错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,正确.【分析】此题主要考查了数轴、有理数近似数与有效数字、无理数等定义,解答本题要熟记有理数、无理数的定义以及实数与数轴的一一对应关系.三、<h3 >解答题</h3>21、【答案】(1)解答:原式;(2)解答:原式.【考点】实数的运算【解析】【分析】根据实数的运算法则运算即可.22、【答案】(1)2,0,,;,π,,0.1010010001…(两个1之间依次多个0)(2)解:选出2个有理数为:2,0;选出2个无理数为:π,;则π× ﹣0+2=4.(本题答案不唯一).【考点】有理数,实数的运算,无理数【解析】【解答】(1)将他们分类,填在相应括号内,如下:有理数{2,0,,}无理数{ ,π,,0.1010010001…(两个1之间依次多个0)}【分析】本题主要考查了实数的分类.实数分为:有理数和无理数.有理数分为:整数和分数;无理数分为:正无理数、负无理数(无限不循环小数).23、【答案】(1)|x+1.41|(2)解:当x= ﹣1.41时,A、B两点之间的距离为:|x+1.41|=| ﹣1.41+1.41|= ≈1.73.(3)±4解:∵x= ≈1.73,∴大于﹣1.41且小于的整数有﹣1,0,1.无理数:,1﹣等.【考点】实数与数轴【解析】【解答】(1)∵实数x和﹣1.41分别与数轴上的A、B两点对应,∴A、B两点之间的距离为:|x+1.41|.【分析】此题主要考查了实数与数轴,利用数形结合得出是解题关键.24、【答案】(1)解:四边形ABCD的面积是5 ,其边长为.(2)解:如图:在数轴上表示实数,【考点】算术平方根,实数与数轴【解析】【分析】在求正方形的面积时,可用大的正方形的面积减去三角形的面积可得正方形ABCD的面积;按照(1)的方法,同样可解得该图的面积为8,则其边长为.word版数学25、【答案】(1)解:根据题意得:a=2,b=3,则a+b=2+3=5.(2)解:∵x为整数,10+ =x+y ,且0<y<1,∴x=11,y= ﹣1,则x﹣y的相反数为﹣(x﹣y)=﹣x+y= ﹣12.【考点】估算无理数的大小【解析】【分析】此题考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.11 / 11。

华东师大初中数学八年级上册《数的开方》全章复习与巩固--巩固练习(提高)【推荐】.doc

华东师大初中数学八年级上册《数的开方》全章复习与巩固--巩固练习(提高)【推荐】.doc

【巩固练习】一.选择题1.已知a 、b 是实数,下列命题结论正确的是( )A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2bD .若3a >3b ,则2a >2b2.下列式子表示算术平方根的是 ( )3= 5= ③34=-④ 5= ⑤ 0.1=± ⑥()0a a =≥A .①②④B .①④⑥C .①⑤⑥D .①②⑥3. 下列说法正确的有( )①无限小数不一定是无理数; ②无理数一定是无限小数;③带根号的数不一定是无理数; ④不带根号的数一定是有理数.A. ①②③B. ②③④C. ①③④D. ①②④4. 下列语句、式子中 ① 4是16的算术平方根,即.416=±②4是16的算术平方根,即.416=③-7是49的算术平方根,即.7)7(2=-④7是2(7)-的算术平方根,即.7)7(2=-其中正确的是( )A. ①③B. ②③C. ②④D. ①④5. (2016•泰安)如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n +q=0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )A .pB .qC .mD .n6.(2015•衡阳模拟)若+(y+2)2=0,则(x+y )2015等于( )A .﹣1B . 1C . 32014D . ﹣320147. 已知:a a 则,且,68.2868.82.62333=-==( )A. 2360B. -2360C. 23600D. -236008. -27 )A .0B .6C .6或-12D .0或6二.填空题9. 下列命题中正确的有 (填序号)(1)若,b a >那么b a 22>; (2)两数的和大于等于这两数的差;(3)若,b a >那么22b a >; (4)若,b a > c b >则c a >;(5))()(c b a c b a ++=++(6)一个数越大,这个数的倒数越小;(7)有理数加有理数一定是有理数;(8)无理数加无理数一定是无理数;(9)无理数乘无理数一定是无理数;10. 我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:.小明按键输入显示结果为4,则他按键输入显示结果应为______.11. 若22)3(-=a ,则a = ,若23)3(-=a ,则a = . 12. 已知 :===00236.0,536.136.2,858.46.23则 .13.(2016春•长兴县月考)已知a 、b 、c 是△ABC 三边的长,则化简﹣|a +b ﹣c |的结果为 .14.若1.1001.102=,则=±0201.1 .15.16. 数轴上A 、B和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为_________.三.解答题17.(2015春•北京校级期中)计算:+.18. 如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A,设点B 所表示的数为m ,求m 的值.19. 求下列各式中的x .(1)23610;x -= (2)()21289x +=;20.细心观察下图,认真分析各式,然后解答问题: O.....S 5S 4S 3S 2S 1111111A 6A 5A 4A 3A 2A 1 ()()212211122===+,S ; ()()223312222===+,S ; ()()234413322===+,S ; ……,……; (1)请用含n(n 为正整数)的等式表示上述变化规律;(2)利用上面的结论及规律,请作出等于7的长度;(3)你能计算出210232221S S S S ++++ 的值吗?【答案与解析】一.选择题1. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b .2. 【答案】D ;”根号前没有“-”或“±”号.3. 【答案】A ;4. 【答案】C ;【解析】算术平方根是平方根中符号为正的那个.5. 【答案】A ;【解析】∵n +q=0,∴n 和q 互为相反数,0在线段NQ 的中点处,∴绝对值最大的点P 表示的数p ,故选A.6. 【答案】A ; 【解析】解:∵+(y+2)2=0,∴x=1,y=﹣2,∴(x+y )2015=(1﹣2)2015=﹣1,故选A . 7. 【答案】D ;【解析】2.868向右移动1位,23.6应向右移动3位得23600,考虑到符号,a =-23600.8. 【答案】A ;9=,9的算术平方根是3,故选A. 二.填空题9. 【答案】(1),(4),(5),(7);10.【答案】40;11.【答案】3±【解析】正数的平方根有2个,实数有一个与它符号相同的立方根.12.【答案】0.04858【解析】23.6向左移动4位,4.858向左移动2位得0.04858.13.【答案】2c ﹣2a ;【解析】∵a 、b 、c 是△ABC 三边的长,∴a ﹣b ﹣c <0,a +b ﹣c >0, ∴﹣|a +b ﹣c |=﹣a +b +c ﹣a ﹣b +c =2c ﹣2a .14.【答案】01.1±;【解析】被开方数的小数点向左移动2位,平方根的小数点向左移动1位.15.【答案】-2;16.【答案】4;【解析】设点A 关于点B 的对称点为点C 为x ,则22x -=解得x=4三.解答题17.【解析】解:原式=7﹣3+﹣1+ =3+.18.【解析】向右直爬2+2,∴m=2.19.【解析】解:(1)∵23610x -=∴2361x =∴19x ==±(2)∵()21289x +=∴1x +=∴x +1=±17x =16或x =-18.20.【解析】解:(1)()2,112n S n n n =+=+.(2是6S 这个直角三角形最长边所表示的值.作图略.(3).。

八年级数学上11.1.2立方根同步练习(华师大含答案和解释)

八年级数学上11.1.2立方根同步练习(华师大含答案和解释)

八年级数学上11.1.2立方根同步练习(华师大含答案和解释)新华师大版数学八年级上册第十一1112 立方根同步练习一、选择题1、64的立方根是()A、4B、±4、8D、±82、若a是的平方根,则=()A、﹣3B、、或D、3或﹣33、如果一个有理数的平方根和立方根相同,那么这个数是()A、±1B、0、1D、0和14、用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A、43B、34、D、、下列语句正确的是()A、如果一个数的立方根是这个数的本身,那么这个数一定是零B、一个数的立方根不是正数就是负数、负数没有立方根D、一个数的立方根与这个数同号,零的立方根是零6、下列命题中正确的是()①0027的立方根是03;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A、①③B、②④、①④D、③④7、已知x没有平方根,且|x|=12,则x的立方根为()A、2B、﹣2、±D、﹣8、下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±3,其中正确的个数是()A、1个B、2个、3个D、4个9、若,则x和的关系是()A、x==0B、x和互为相反数、x和相等D、不能确定10、下列说法中,正确的是()A、一个数的立方根有两个,它们互为相反数B、负数没有立方根、如果一个数有立方根,那么它一定有平方根D、一个数的立方根的符号与被开方数的符号相同11、若a2=36,b3=8,则a+b的值是()A、8或﹣4B、+8或﹣8、﹣8或﹣4D、+4或﹣412、﹣a2的立方根的值一定为()A、非正数B、负数、正数D、非负数13、下列说法正确的是()A、﹣0064的立方根是04B、﹣9的平方根是±3、16的立方根是D、001的立方根是000000114、将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A、216B、343、2D、641、若是+n+3的算术平方根,是+2n的立方根,则B-A的立方根是()A、1B、-1、0D、无法确定二、填空题16、若一个数的立方根就是它本身,则这个数是________17、已知13=337,则=________.18、若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.19、在数集上定义运算a﹡b ,规则是:当a≥b时,a﹡b=b3;当a <b时,a﹡b=b2 .根据这个规则,方程4﹡x=64的解是________.三、解答题20、求下列各式的值:(1) .(2)(3)21、某居民生活小区需要建一个大型的球形储水罐,需储水13立方米,那么这个球罐的半径r为多少米(球的体积V= ,π取314,结果精确到01米)?22、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.23、我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子判断上述猜测结论是否成立;(2)若与互为相反数,求的值.24、数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求9319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定9319的立方根是几位数吗?答:________位数.(2)由9319的个位数是9,你能确定9319的立方根的个位数是几吗?答:________(3)如果划去9319后面的三位319得到数9,而33=27,43=64,由此你能确定9319的立方根的十位数是几吗?答:________.因此9319的立方根是________.(4)现在换一个数18193,你能按这种方法说出它的立方根吗?答:①它的立方根是________位数,②它的立方根的个位数是________,③它的立方根的十位数是________,④18193的立方根是________.答案解析部分一、&lt;h3 &gt;选择题&lt;/h3&gt;1、【答案】A【考点】立方根【解析】【解答】∵43=64,∴64的立方根等于4.【分析】如果一个数x的立方等于a ,那么x是a的立方根,根据此定义求解即可.2、【答案】【考点】平方根,立方根【解析】解答:∵,∴a=±3,∴= ,或= .分析:本题考查平方根和立方根的定义,记住一个正数的平方根有两个;一个数的立方根只有一个.3、【答案】B【考点】立方根【解析】【解答】0的平方根和立方根相同.【分析】根据平方根和立方根的概念可知,一个有理数的平方根和立方根相同,那么这个数是0.4、【答案】【考点】立方根,计算器—数的开方【解析】解答:根据符号可知,求的是4的立方根,选分析:此题考查对计算器的使用、【答案】D【考点】立方根【解析】【解答】A:0,-1,1的立方根都是它们本身;B:0的立方根是0;:负数有立方根;D正确【分析】此题考查立方根的定义及性质判定;注意区别立方根与平方根.6、【答案】A【考点】平方根,立方根【解析】解答:①033=0027,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,a ,b同号,∴ab≥0,故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确分析:根据立方根和平方根的定义7、【答案】D【考点】立方根【解析】【解答】由题意得,x为负数,又∵|x|=12,∴x=﹣12,故可得x的立方根为:﹣【分析】根据x没有平方根可得出x为负数,再由|x|=12,可得出x 的值,继而可求出其立方根.8、【答案】B【考点】立方根【解析】解答:∵33=27,,∴3是27的立方根,①错误;②=a正确,表示a3的立方根是a ,正确;③的立方根是,错误;④=±3,正确;故②④正确分析:根据立方根的定义和性质去判断.9、【答案】B【考点】立方根,等式的性质【解析】解答:∵,∴,等式两同时立方得,x=﹣,即x、互为相反数,故选B.分析:运用等式的性质,先进行移项,再立方即可得到x与之间的关系.10、【答案】D【考点】立方根【解析】解答:A.一个数的立方根只有1个,故选项错误;B.负数有立方根,故选项错误;.一个负数有立方根,负数没有平方根,故选项错误;D.一个数的立方根的符号与被开方数的符号相同是正确的,故选项正确分析:立方根的定义:如果一个数的立方等于a ,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a ,那么x叫做a的立方根.记作:.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.依此即可求解.11、【答案】A【考点】平方根,立方根【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..12、【答案】A【考点】立方根【解析】【解答】﹣a2是一个非正数,则它的立方根的值一定为非正数,故选A【分析】利用立方根的性质:一个数的立方根与它本身同号.13、【答案】【考点】立方根【解析】解答:A、﹣0064的立方根是﹣04,故本选项错误;B、﹣9没有平方根,故本选项错误;、16的立方根是,故本选项正确;D、0000000000000000001的立方根是0000001,故本选项错误;故选.分析:根据立方根、平方根的定义逐个进行判断即可.14、【答案】【考点】立方根【解析】解答:,,不是整数,,不可能是.分析:求出每个数字的立方根是解题的关键.1、【答案】B【考点】算术平方根,立方根,二元一次方程组【解析】解答:∵是+n+3的算术平方根,∴-n=2,∵是+2n的立方根,∴-2n+3=3∴解得∴,,∴B-A=-1分析:根据算术平方根和立方根的定义,可知-n=2和-2n+3=3,从而解出,n .二、&lt;h3 &gt;填空题&lt;/h3&gt;16、【答案】±1,0【考点】立方根【解析】【解答】∵立方根是它本身有3个,分别是±1,0.【分析】如果一个数x的立方等于a ,那么x是a的立方根,所以根据立方根的对应即可求解.18、【答案】﹣10【考点】立方根【解析】【解答】∵13=337,∴(10)3=337000,∴=-10.【分析】根据立方根的定义,被开方数小数点移动三位,立方根的小数点移动一位解答.19、【答案】10,12,14【考点】平方根,立方根【解析】【解答】∵2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14.【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题.20、【答案】4或8【考点】平方根,立方根【解析】【解答】∵当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2 .∴4﹡x=64,当4≥x ,∴x3=64,∴x=4,当4<x ,∴x2=64,∴x=8.故答案为:4或8.【分析】根据已知当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2 .运用规律求出4﹡x=64即可.三、&lt;h3 &gt;解答题&lt;/h3&gt;21、【答案】(1)解:;(2)解:;(3)解:【考点】立方根【解析】【分析】根据立方根的定义求解即可.22、【答案】解:根据球的体积公式,得=13,解得r≈1.故这个球罐的半径r为1米.【考点】立方根【解析】【分析】利用球体的体积公式和立方根的定义计算即可23、【答案】解:由已知得,2a﹣1=9解得:a=,又3a+b+9=27,b=3,2(a+b)=2×(3+)=16,∴2(a+b)的平方根是:± =±4.【考点】平方根,立方根【解析】【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答24、【答案】(1)解:∵3+(﹣3)=0,而且33=27,(﹣3)3=﹣27,有27﹣27=0,∴结论成立;∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)解:由(1)验证的结果知,1﹣2x+3x﹣=0,∴x=4,∴=1﹣2=﹣1.【考点】平方根,立方根,解一元一次方程【解析】【分析】(1)题是一个开放题,举一个符合题意的即可;(2)运用(1)的结论可得1﹣2x与3x﹣互为相反数,即而算出x的值即可.2、【答案】(1)2(2)9(3)3;39(4)2;7;;7【考点】立方根【解析】【解答】(1)103=1000,1003=1000000,则9319的立方根是2位数;(2)由9319的个位数是9,因为93=729,则9319的立方根的个位数是9.(3)如果划去9319后面的三位319得到数9,而33=27,43=64,由此你能确定9319的立方根的十位数是几3.因此9319的立方根是39.(4)∵103=1000,1003=1000000,1000<18193<1000000,∴18193的立方根是一个两位数,∵18193的最后一位是3,∴它的立方根的个位数是7,18193去掉后3位,得到18,∵3<18<63 ,∴立方根的十位数是,则立方根一定是:7.【分析】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.。

2022-2023学年北师大版八年级数学上册《2-3立方根》同步练习题(附答案)

2022-2023学年北师大版八年级数学上册《2-3立方根》同步练习题(附答案)

2022-2023学年北师大版八年级数学上册《2.3立方根》同步练习题(附答案)一.选择题1.立方根与它本身相同的数是()A.0或±1B.0或1C.0或﹣1D.02.下列计算正确的是()A.=﹣3B.C.=±6D.﹣3.若,则的值为()A.5B.15C.25D.﹣54.的立方根为()A.B.C.D.5.下列等式成立的是()A.B.C.D.6.下列说法中:①3的平方根是;②﹣3是9的一个平方根;③的平方根是±;④0.01的算术平方根是0.1;⑤=±2;⑥﹣8的立方根是2;其中正确的有()A.1个B.2个C.3个D.4个7.下列说法中,不正确的是()A.的立方根是±2B.的立方根是2C.的立方根是2D.的立方根是﹣2二.填空题8.若a3=8,则a等于.9.计算﹣的结果是.10.的立方根是.11.+(b﹣1)2=0,则3a+2b的立方根为.12.计算的结果是,4的平方根是,8的立方根是.13.如果和互为相反数,那么x2﹣y立方根是.三.解答题14.求下列各式中x的值:(1)3(5x+1)2﹣48=0;(2).15.已知2a+1的平方根是±3,3a+2b+4的立方根是﹣2,求4a﹣5b+5的算术平方根.16.求下列各式中的x:(1)4x2﹣49=0;(2);(3)25x2﹣64=0;(4)343(x+3)3+27=0.17.已知x的平方根是±3,y的立方根是2,求x+2y的算术平方根.18.已知a﹣1的立方根是2,3a+b﹣1的平方根是±4.(1)求a、b的值.(2)求a﹣3b﹣3的平方根.19.求下列各式中的x:(1)4x2﹣49=0;(2)8(x﹣1)3=﹣.20.已知2a﹣1的算术平方根是5,3a+b﹣1的立方根是4,求a+2b+35的平方根.参考答案一.选择题1.解:立方根与它本身相同的数是0或±1,故选:A.2.解:A、=3,故A不符合题意;B、=﹣,故B符合题意;C、=6,故C不符合题意;D、﹣≠,无意义,故D不符合题意;故选:B.3.解:由题意可知:x﹣5=0,y+25=0,∴x=5,y=﹣25,∴==﹣5,故选:D.4.解:∵(﹣)3=,∴的立方根是.故选:A.5.解:A、=9,故此选项不合题意;B、=﹣3,故此选项符合题意;C、=±5,故此选项不合题意;D、=2,故此选项不合题意;故选:B.6.解:①3的平方根是±;②﹣3是9的一个平方根;③的平方根是±;④0.01的算术平方根是0.1;⑤=2;⑥﹣8的立方根是﹣2;综上:说法正确的有②③④,故选:C.7.解:A.的平方根是±2,此选项错误,符合题意;B.的立方根是2,此选项正确,不符合题意;C.的立方根是2,此选项正确,不符合题意;D.﹣的立方根是﹣2,此选项正确,不符合题意;故选:A.二.填空题8.解:∵a3=8,∴a===2,故答案为:2.9.解:原式=﹣3.故答案为:﹣3.10.解:∵,∴的立方根,就是的立方根,即.故答案为:.11.解:∵+(b﹣1)2=0,≥0,(b﹣1)2≥0,∴a+1=0,b﹣1=0,∴a=﹣1,b=1.∴3a+2b=3×(﹣1)+2×1=﹣1.∵﹣1的立方根为﹣1,∴3a+2b的立方根为﹣1.故答案为:﹣1.12.解:,,.故答案为:2,±2,2.13.解:∵和互为相反数,∴+=0,∴3+x=0,2y﹣2=0,解得:x=﹣3,y=1,∴x2﹣y=9﹣1=8,则8的立方根是2.故答案为:2.三.解答题14.解:(1)3(5x+1)2﹣48=0,(5x+1)2=16,5x+1=±4,5x=3或5x=﹣5,x=或x=﹣1.(2),(x﹣1)3=﹣,x﹣1=,x=﹣.15.解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵3a+2b+4的立方根是﹣2,∴3a+2b+4=﹣8,∴12+2b﹣4=﹣8,解得b=﹣12,当a=4,b=﹣12时,4a﹣5b+5=16+60+5=81,∴4a﹣5b+5的算术平方根为9.16.解:(1)4x2﹣49=0,∴4x2=49,即:,∴;(2),∴,∴,解得:;(3)25x2﹣64=0,∴25x2=64,即:,解得:;(4)343(x+3)3+27=0,∴343(x+3)3=﹣27,即:,∴,解得:.17.解:∵(±3)2=x,23=y,∴x=9,y=8,∴x+2y=9+2×8=25.18.解:(1)∵a﹣1的立方根是2,3a+b﹣1的平方根是±4,∴,解得:a=9,b=﹣10;(2)当a=9,b=﹣10时,a﹣3b﹣3=9+30﹣3=36,则36的平方根是±6.19.解:(1)4x2﹣49=0,4x2=49,x2=,x=;(2)8(x﹣1)3=﹣,(x﹣1)3=﹣,x﹣1=﹣,x=﹣.20.解:∵2a﹣1的算术平方根是5,3a+b﹣1的立方根是4,∴2a﹣1=25,3a+b﹣1=64.解得:a=13,b=26.∴a+2b+35=13+52+35=100.∴a+2b+35的平方根为±10.。

2022-2023学年华东师大版八年级数学上册《11-1-2立方根》同步达标测试题(附答案)

2022-2023学年华东师大版八年级数学上册《11-1-2立方根》同步达标测试题(附答案)

2022-2023学年华东师大版八年级数学上册《11.1.2立方根》同步达标测试题(附答案)一.选择题(共10小题,满分40分)1.的立方根是()A.B.C.D.2.下列运算正确的是()A.=±2B.(﹣3)3=27C.=3D.=23.﹣27的立方根为()A.±3B.±9C.﹣3D.﹣94.下列说法正确的是()A.4的算术平方根是2B.0.16的平方根是0.4C.0没有立方根D.1的立方根是±15.面积为9的正方形的边长是()A.9的算术平方根B.9的平方根C.9的立方根D.9开平方的结果6.下列说法错误的是()A.﹣1的立方根是﹣1B.3的平方根是C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和17.下列说法:①±3都是27的立方根;②的算术平方根是±;③﹣=2;④的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个8.若≈0.6694,≈1.442,则下列各式中正确的是()A.≈14.42B.≈6.694C.≈144.2D.≈66.94 9.()2的平方根是x,64的立方根是y,则x+y的值为()A.3B.7C.3或7D.1或710.有一个数值转换器,原理如图所示,当输入x为64时,输出y的值是()A.4B.C.D.二.填空题(共8小题,满分40分)11.64的立方根是.12.16的平方根是;16的立方根是.13.一个球形容器的容积为36π立方米,则它的半径R=米.(球的体积:V球=πR3,其中R为球的半径)14.的平方根是,﹣的立方根是.15.已知≈0.6993,≈1.507,则≈.16.如果与(2x﹣4)2互为相反数,那么2x﹣y的立方根是.17.若取1.817,则计算的结果是.18.已知x﹣2的平方根是±4,2x+y﹣1的算术平方根是5,则x﹣y﹣1的立方根是.三.解答题(共6小题,满分40分)19.求下列各式中x的值:(1)(x﹣5)2﹣9=0;(2)64(x﹣1)3=27.20.解方程:(1)(x﹣1)2﹣64=0;(2).21.已知2a﹣1的平方根是±3,3a+b+1的立方根是3.(1)求a,b的值;(2)求a+b的算术平方根.22.已知某正数的两个不同的平方根是3a﹣14和a﹣2;b﹣15的立方根为﹣3.(1)求a、b的值;(2)求4a+b的平方根.23.已知x﹣1的算术平方根是2,y﹣1的立方根是﹣1,求代数式x+y的平方根.24.观察求算术平方根的规律,并利用这个规律解决下列问题:=0.01,=0.1,=1,=10,=100,……(1)已知≈4.47,求的值;(2)已知≈1.918,≈191.8,求a的值;(3)根据上述探究方法,尝试解决问题:已知≈1.26,≈12.6,用含n的代数式表示m.参考答案一.选择题(共10小题,满分40分)1.解:∵=,∴的立方根是.故选:C.2.解:A.根据算术平方根的定义,,那么A错误,故A不符合题意.B.根据有理数的乘方,(﹣3)3=﹣27,那么B错误,故B不符合题意.C.根据立方根的定义,,那么C错误,故C不符合题意.D.根据算术平方根的定义,,那么D正确,故D符合题意.故选:D.3.解:=﹣3.故选:C.4.解:A:4的算术平方根是2,∴符合题意;B:0.16的平方根是±0.4,∴不符合题意;C:0有立方根,∴不符合题意;D:1的立方根是1,∴不符合题意;故选:A.5.解:设正方形边长为x,根据面积公式得:x2=9,解得x=±3,﹣3不合题意,舍去,故选:A.6.解:A、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;B、3的平方根是±,原说法错误,故此选项符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:B.7.解:①3是27的立方根,原来的说法错误;②的算术平方根是,原来的说法错误;③﹣=2是正确的;④=4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.8.解:∵被开立方数的小数点向右移动3位,则其立方根的小数点向右移动1位,∴≈0.6694×10=6.694,故选:B.9.解:∵(﹣)2=9,∴()2的平方根是±3,即x=±3,∵64的立方根是y,∴y=4,当x=3时,x+y=7,当x=﹣3时,x+y=1.故选:D.10.解:64的立方根是4,4的立方根是:.故选:B.二.填空题(共8小题,满分40分)11.解:∵43=64,∴64的立方根为4,即=4,故答案为:4.12.解:16的平方根是±4,16的立方根是.故答案为:±4,.13.解:∵V球=πR3,∴πR3=36π,解得R=3;故答案为:3.14.解:∵=4,∴的平方根是±2;∵=8,∴﹣的立方根是﹣2.故答案为:±2;﹣2.15.解:∵≈0.6993,∴≈0.06993,故答案为:0.06993.16.解:∵与(2x﹣4)2互为相反数,∴+(2x﹣4)2=0,∴y﹣7=0,2x﹣4=0,解得:y=7,x=2,∴2x﹣y=4﹣7=﹣3,∴2x﹣y的立方根是﹣.故答案为:﹣.17.解:原式=﹣100,∵=1.817,∴原式=﹣100×1.817=﹣181.7.故答案为:﹣181.7.18.解:∵x﹣2的平方根是±4,2x+y﹣1的算术平方根是5,∴x﹣2=16,2x+y﹣1=25,解得:x=18,y=﹣10,∴x﹣y﹣1=18﹣(﹣10)﹣1=18+10﹣1=27,∴x﹣y﹣1的立方根是3,故答案为:3.三.解答题(共6小题,满分40分)19.解:(1)(x﹣5)2=9,x﹣5==±3,x﹣5=3,x﹣5=﹣3,x=8或x=2;(2)(x﹣1)3=,x﹣1=,x﹣1=,x=.20.解:(1)(x﹣1)2﹣64=0,x﹣1=±8,x=1±8,∴x1=9,x2=﹣7;(2),(2x+3)3=125,2x+3=5,∴x=1.21.解:(1)由题意得,∴;(2)由(1)可得a+b=16,所以,a+b的算术平方根为4.22.解:(1)∵正数的两个不同的平方根是3a﹣14和a﹣2,∴3a﹣14+a﹣2=0,解得a=4,∵b﹣15的立方根为﹣3,∴b﹣15=﹣27,解得b=﹣12∴a=4、b=﹣12;(2)a=4、b=﹣12代入4a+b得4×4+(﹣12)=4,∴4a+b的平方根是±2.23.解:∵x﹣1的算术平方根是2,y﹣1的立方根是﹣1,∴x﹣1=4,y﹣1=﹣1,∴x=5,y=0,∴x+y=5,∴x+y的平方根为±.答:x+y的平方根为±.24.解:(1)∵≈4.47,∴=≈4.47×10=44.7.(2)∵191.8=1.918×100,∴===.∴a=36800.(3)∵1.26×10=12.6,∴.∴.∴1000n=m,即m=1000n.。

2.3《立方根》一课一练 2021-2022学年北师大版 八年级数学上册 (含答案)

2.3《立方根》一课一练   2021-2022学年北师大版 八年级数学上册 (含答案)

2.3 《立方根》习题2一、填空题1.已知,m n 为两个连续的整数,且m n <<,则m n +=_____.2.若a ,b 为连续整数,且1a b <<,则a b +=__________.3.比2大比3小的无理数是______.4.方程3640x +=的实数根是__________.5.若一个数的立方根为13-,则这个数为_______. 6.方程x 3﹣8=0的根是 .7.互为相反数,则a b =_____.8.________.9.已知a-2b 的平方根是3±,a+3b 的立方根是-1,则a+b=__________. 10.36的算术平方根是________;_______的立方根是2-.11.已知4a 1+的算术平方根是3,则a 10-的立方根是______ .12.a ,-8的立方根是b ,则+a b 的值是______.的平方根为_____.14.8-的立方根是__________.15.如果a 是4的平方根,b 是27的立方根,则a+b=______._____.二、选择题1.下列式子正确的是( )A 4=±B 13=-C 23=D 3=-2.下列运算正确的是( )A 3=±B 5=-C 3=-D .4=3.下列各式中正确的是( )A3= =±B2=±C2=-D54.下列说法正确的是( )A.√(−2)2等于-2 B.±√9等于3C.﹙-5﹚³的立方根是5 D.√16平方根是±25.下列说法正确的是( )A.9的立方根是3 B.算术平方根等于它本身的数一定是1C.﹣2是4的一个平方根D 2b a+b的值是( )6.若aA.4 B.4或0 C.6或2 D.67.的值最接近的整数是( )A.2 B.3 C.4 D.58.( )A.1与2之间B.2与3之间C.3与4之间D.4与5之间9.的说法中,错误的是( )A是无理数B.34<C.10D是10的算术平方根10.( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间11.如图,M、N、P、Q1的点是( )A.点M B.点N C.点P D.点Q三、计算题1.解方程:(1)()34125x += (2)()216149x += (3)3()81125x ﹣=四、解答题1.已知41a +的平方根是3±,1b -的算术平方根为2(1)求a 与b 的值;(2)求21a b +-的立方根.2.已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.3.已知3既是x-1的平方根,又是x-2y+1的立方根,求x 2-y 2的平方根.4.已知:2a ﹣7和a+4是某正数的平方根,b ﹣7的立方根为﹣2.(1)求:a 、b 的值;(2)求a+b 的算术平方根.-的值.5.已知:实数a b是9的平方根,求式子2b aa b的值.6.已知a b-答案一、填空题4.x =−4.5.127-. 6.2. 7.23. 8.7.94. 9.3. 10.6;-8.11.﹣2.12.0或-4.13.±2.14.﹣2.15.5或116.-2二、选择题1.C 2.C 3.D 4.D 5.C 6.C .7.B .8.D 9.C 10.B 11.D三、计算1.解:(1)(x+4)3=125,则45x +=,解得:1x =.(2)216(1)49x249(1)16x 714x , ∴12311,44x x ==-. (3)38(1)125x3125(1)8x 512x 32x =-.四、解答题1.(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2;∵b-1的算术平方根为2,∴b-1=4,解得b=5.(2)∵a=2,b=5,∴2a+b-1=2×2+5-1=8,∴2a+b-12 ==.2.∵2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×(-8)+8=64,∴4a-5b+8的立方根是4.3.解:根据题意得192127xx y-⎧⎨-+⎩=①=②,由①得:x=10,把x=10代入②得:y=-8,∴108xy⎧⎨-⎩==,∴x2-y2=102-(-8)2=36,∵36的平方根是±6,∴x2-y2的平方根是±6.4.(1) ∵2a-7和a+4是正数M的平方根,∴2a-7+a+4=0,即a=1,∵b-7的立方根为-2,∴b-7=-8,∴b=-1;(2)a+b=0, 0的算术平方根为0,即a+b 的算术平方根是0.5.解:∵91316<<∴34<<3即3a =∵b 是9的平方根∴3b =±①当3a =,3b = 时)2233b a -=⨯-=63=9②当3a =,3b =- 时())2233b a -=⨯--=63-=3-∴2b a -的值为9或3-方法或规律点拨本题主要考查的是估算无理数的大小,求得a 、b 的值是解题的关键.6.∵25<26<36,∴56<<,∴5a =,5b =,∴)555510a b -=-==。

2022-2023学年华东师大版八年级数学上册《第11章数的开方》解答专项练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第11章数的开方》解答专项练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第11章数的开方》解答专项练习题(附答案)1.求x的值:(1)4x2﹣121=0;(2)(x﹣3)3+27=0.2.求下列各式中的x.(1)49x2﹣16=0;(2)(x+2)2=16;(3).3.已知一个正数m的两个平方根分别为2a﹣4和3﹣a,求﹣2m的立方根.4.已知2a+b+7的立方根是3,16的算术平方根是2a﹣b,求:(1)a,b的值;(2)a2+b2的平方根.5.已知x+1的平方根是±2,2x+y﹣2的立方根是2,求x2+y2的算术平方根.6.已知某正数的两个不同的平方根是3a﹣14和a+2;b+11的立方根为﹣3;c是的整数部分.(1)求a+b+c的值.(2)求3a﹣b+c的平方根.7.解答.(1)已知2a﹣1的平方根是±3,3a+b﹣9的立方根是2,c是的整数部分,求a+2b+c 的算术平方根.(2)已知实数a,b,c在数轴上的对应点如图所示,化简﹣|c﹣a|+.8.(1)计算:;(2)若4(x﹣1)2﹣9=0,求x的值.9.计算:(1)﹣+()2;(2)+﹣(﹣)2.10.计算:.11.阅读下面的文字,解答问题.现规定:分别用[x]和〈x〉表示实数x的整数部分和小数部分,如实数3.14的整数部分是[3.14]=3,小数部分是〈 3.14〉=0.14;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即﹣2就是的小数部分,所以〈〉=﹣2.(1)=,〈〉=;=,〈〉=.(2)如果〈〉=a,,求a+b﹣的立方根.12.计算:13.如图所示,数轴上表示1和的对应点分别为A、B,点B关于点A的对称点是C,O 为原点.(1)分别求出线段AB、AC、OC长度;(2)设C点表示的数为x,试求|x﹣|+x的值.14.如图,一只蚂蚁从点A沿数轴向右爬2个单位长度后到达点B,点A表示的数是﹣,设点B所表示的数为m.(1)求m的值;(2)求|m﹣2|+|2m﹣|的值.15.已知m+8的算术平方根是3,m﹣n+4的立方根是﹣2,试求的值.16.已知(2m﹣1)2=9,(n+1)3=27.求出2m+n的算术平方根.17.已知2a﹣1的算术平方根是3,a﹣b+2的立方根是2,求a﹣4b的平方根.18.已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.19.计算:﹣1.20.阅读下面的文字,解答问题:大家知道是无理数,且无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但我们可以用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为﹣2.请解答:(1)的整数部分是,小数部分是;(2)如果的小数部分为a,的整数部分为b,求a﹣b﹣的值.参考答案1.解:(1)∵4x2﹣121=0,∴4x2=121,∴x2=,∴x1=或x2=﹣;(2)∵(x﹣3)3+27=0,∴(x﹣3)3=﹣27,∴x﹣3=﹣3,∴x=0.2.解:(1)49x2﹣16=0,49x2=16,x2=,x=±,即x=±;(2)(x+2)2=16,x+2=±4,即x+2=4或x+2=﹣4,解得x=2或x=﹣6;(3),(2x﹣1)3=﹣8,2x﹣1=﹣2,解得x=﹣.3.解:由题意,得2a﹣4+3﹣a=0,解得a=1,所以m=(3﹣a)2=4,所以.4.解:(1)由题意得:2a+b+7=27,2a﹣b=4,∴,解得:,∴a的值为6,b的值为8;(2)当a=6,b=8时,a2+b2=100,∴100的平方根是±10,∴a2+b2的平方根是±10.5.解:∵x+1的平方根是±2,∴x+1=4,∴x=3,∵2x+y﹣2的立方根是2,∴2x+y﹣2=8,把x的值代入解得:y=4,∴x2+y2=25,∴x2+y2的算术平方根为5.6.解:(1)由题意得:3a﹣14+a+2=0,b+11=﹣27,∴a=3,b=﹣38,∵4<7<9,∴2<<3,∵c是的整数部分,∴c=2,∴a+b+c=3+(﹣38)+2=﹣33;(2)当a=3,b=﹣38,c=2时,3a﹣b+c=9+38+2=49,∵49的平方根是±7,∴3a﹣b+c的平方根是±7.7.解:(1)由题意得,2a﹣1=9,3a+b﹣9=8,解得a=5;b=2,∵,c是的整数部分,∴c=4,∴a+2b+c=5+4+4=13,∴a+2b+c的算术平方根为;(2)由数轴可知:a<b<0<c.∴a<0,c﹣a>0,b﹣c<0.∴原式=|a|﹣|c﹣a|+|b﹣c|=﹣a﹣(c﹣a)﹣(b﹣c)=﹣a﹣c+a﹣b+c=﹣b.8.解:(1)原式=4﹣3+=;(2)∵4(x﹣1)2﹣9=0,∴(x﹣1)2=,∴x﹣1=±.∴x=1±.∴x1=,x2=﹣.9.解:(1)原式=3﹣3+2=2;(2)原式=|﹣6|+(﹣2)﹣4=6﹣2﹣4=0.10.解:=5﹣2+1+(﹣1)=3+.11.解:(1)∵1<<2,∴的整数部分为1,小数部分为﹣1,即[]=1,{}=﹣1,∵3<<4,∴的整数部分为3,小数部分为﹣3,即[]=3,{}=﹣3,故答案为:1,,3,;(2)∵的整数部分是2,的整数部分是10,∴,,∴,又∵8的立方根为2,∴的立方根是2.12.解:原式=﹣2﹣+﹣2+4=﹣+.13.解:(1)由数轴可得,AB=﹣1,∵点B关于点A的对称点是C,∴AC=AB=﹣1,∴OC=1﹣(﹣1)=2﹣;答:AB=﹣1,AC=﹣1,OC=2﹣;(2)由(1)得,x=<,∴原式=﹣x+x=.14.解:(1)由题意得:m=﹣+=,∴m的值为;(2)|m﹣2|+|2m﹣|=|﹣2|+|2﹣|=|﹣|+||=.15.解:∵m+8的算术平方根是3,∴m+8=32=9,解得,m=1,∵m﹣n+4的立方根是﹣2,∴m﹣n+4=(﹣2)3=﹣8,解得,n=13,∴===4.16.解:∵(2m﹣1)2=9,2m﹣1=±3,2m﹣1=3或2m﹣1=﹣3,∴m1=﹣1,m2=2,∵(n+1)3=27,n+1=3,∴n=2,∴2m+n=0或6,∴2m+n的算术平方根为0或.17.解:∵2a﹣1=32,∴a=5,∵a﹣b+2=23,∴b=﹣1,∴±=±=±=±3.18.解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.19.解:原式=﹣1﹣8×﹣3×=﹣3.20.解:(1)∵,∴,∴的整数部分是3,小数部分是;故答案为:3,;(2)∵,∴的小数部分为,又∵,∴的整数部分为b=7,∴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新华师大版数学八年级上册第十一章11.1.2 立方根同步练习一、选择题1、64的立方根是()A、4B、±4C、8D、±82、若a是的平方根,则=()A、﹣3B、C、或D、3或﹣33、如果一个有理数的平方根和立方根相同,那么这个数是()A、±1B、0C、1D、0和14、用计算器计算某个运算式,若正确的按键顺序是,则此运算式应是()A、43B、34C、5、下列语句正确的是()A、如果一个数的立方根是这个数的本身,那么这个数一定是零B、一个数的立方根不是正数就是负数C、负数没有立方根D、一个数的立方根与这个数同号,零的立方根是零6、下列命题中正确的是()①0.027的立方根是0.3;②不可能是负数;③如果a是b的立方根,那么ab≥0;④一个数的平方根与其立方根相同,则这个数是1.A、①③B、②④C、①④D、③④7、已知x没有平方根,且|x|=125,则x的立方根为()A、25B、﹣25C、±5D、﹣58、下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±3,其中正确的个数是()A、1个B、2个D、4个9、若,则x和y的关系是()A、x=y=0B、x和y互为相反数C、x和y相等D、不能确定10、下列说法中,正确的是()A、一个数的立方根有两个,它们互为相反数B、负数没有立方根C、如果一个数有立方根,那么它一定有平方根D、一个数的立方根的符号与被开方数的符号相同11、若a2=36,b3=8,则a+b的值是()A、8或﹣4B、+8或﹣8C、﹣8或﹣4D、+4或﹣412、﹣a2的立方根的值一定为()A、非正数B、负数C、正数D、非负数13、下列说法正确的是()A、﹣0.064的立方根是0.4B、﹣9的平方根是±3C、16的立方根是D、0.01的立方根是0.00000114、将一个大的正方体木块锯成n个同样大小的小正方体木块,其中n的取值不可能的是()A、216B、343C、25D、6415、若是m+n+3的算术平方根,是m+2n的立方根,则B-A的立方根是()A、1B、-1C、0D、无法确定二、填空题16、若一个数的立方根就是它本身,则这个数是________.17、已知1.53=3.375,则=________.18、若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.19、在数集上定义运算a﹡b ,规则是:当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.根据这个规则,方程4﹡x=64的解是________.三、解答题20、求下列各式的值:(1).(2)(3)21、某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r为多少米(球的体积V= ,π取3.14,结果精确到0.1米)?22、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.23、我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求的值.24、数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:________(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:________.因此59319的立方根是________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是________位数,②它的立方根的个位数是________,③它的立方根的十位数是________,④185193的立方根是________.答案解析部分一、<h3 >选择题</h3>1、【答案】A【考点】立方根【解析】【解答】∵43=64,∴64的立方根等于4.【分析】如果一个数x的立方等于a ,那么x是a的立方根,根据此定义求解即可.2、【答案】C【考点】平方根,立方根【解析】解答:∵,∴a=±3,∴= ,或= .分析:本题考查平方根和立方根的定义,记住一个正数的平方根有两个;一个数的立方根只有一个.3、【答案】B【考点】立方根【解析】【解答】0的平方根和立方根相同.【分析】根据平方根和立方根的概念可知,一个有理数的平方根和立方根相同,那么这个数是0.4、【答案】C【考点】立方根,计算器—数的开方【解析】解答:根据符号可知,求的是4的立方根,选C.分析:此题考查对计算器的使用.5、【答案】D【考点】立方根【解析】【解答】A:0,-1,1的立方根都是它们本身;B:0的立方根是0;C:负数有立方根;D正确. 【分析】此题考查立方根的定义及性质判定;注意区别立方根与平方根.6、【答案】A【考点】平方根,立方根【解析】解答:①0.33=0.027,故说法正确;②当a<0时,是负数,故说法错误;③如果a是b的立方根,a ,b同号,∴ab≥0,故说法正确;④一个数的平方根与其立方根相同,则这个数是0,故说法错误.所以①③正确.分析:根据立方根和平方根的定义.7、【答案】D【考点】立方根【解析】【解答】由题意得,x为负数,又∵|x|=125,∴x=﹣125,故可得x的立方根为:﹣5.【分析】根据x没有平方根可得出x为负数,再由|x|=125,可得出x的值,继而可求出其立方根.8、【答案】B【考点】立方根【解析】解答:∵33=27,,∴3是27的立方根,①错误;②=a正确,表示a3的立方根是a ,正确;③的立方根是,错误;④=±3,正确;故②④正确.分析:根据立方根的定义和性质去判断.9、【答案】B【考点】立方根,等式的性质【解析】解答:∵,∴,等式两同时立方得,x=﹣y ,即x、y互为相反数,故选B.分析:运用等式的性质,先进行移项,再立方即可得到x与y之间的关系.10、【答案】D【考点】立方根【解析】解答:A.一个数的立方根只有1个,故选项错误;B.负数有立方根,故选项错误;C.一个负数有立方根,负数没有平方根,故选项错误;D.一个数的立方根的符号与被开方数的符号相同是正确的,故选项正确.分析:立方根的定义:如果一个数的立方等于a ,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a ,那么x叫做a的立方根.记作:.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.依此即可求解.11、【答案】A【考点】平方根,立方根【解析】【解答】a2=36,得a=6或a=﹣6;b3=8,得b=2;故a+b=8或﹣4.【分析】根据已知可得a=6或﹣6,b=2,所以a+b=8或﹣4..12、【答案】A【考点】立方根【解析】【解答】﹣a2是一个非正数,则它的立方根的值一定为非正数,故选A.【分析】利用立方根的性质:一个数的立方根与它本身同号.13、【答案】C【考点】立方根【解析】解答:A、﹣0.064的立方根是﹣0.4,故本选项错误;B、﹣9没有平方根,故本选项错误;C、16的立方根是,故本选项正确;D、0.000000000000000001的立方根是0.000001,故本选项错误;故选C.分析:根据立方根、平方根的定义逐个进行判断即可.14、【答案】C【考点】立方根【解析】解答:,,不是整数,,不可能是C.分析:求出每个数字的立方根是解题的关键.15、【答案】B【考点】算术平方根,立方根,二元一次方程组【解析】解答:∵是m+n+3的算术平方根,∴m-n=2,∵是m+2n的立方根,∴m-2n+3=3.∴解得∴,,∴B-A=-1.分析:根据算术平方根和立方根的定义,可知m-n=2和m-2n+3=3,从而解出m ,n .二、<h3 >填空题</h3>16、【答案】±1,0【考点】立方根【解析】【解答】∵立方根是它本身有3个,分别是±1,0.【分析】如果一个数x的立方等于a ,那么x是a的立方根,所以根据立方根的对应即可求解.18、【答案】﹣150【考点】立方根【解析】【解答】∵1.53=3.375,∴(150)3=3375000,∴=-150.【分析】根据立方根的定义,被开方数小数点移动三位,立方根的小数点移动一位解答.19、【答案】10,12,14【考点】平方根,立方根【解析】【解答】∵2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14.【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题.20、【答案】4或8【考点】平方根,立方根【解析】【解答】∵当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.∴4﹡x=64,当4≥x ,∴x3=64,∴x=4,当4<x ,∴x2=64,∴x=8.故答案为:4或8.【分析】根据已知当a≥b时,a﹡b=b3;当a<b时,a﹡b=b2.运用规律求出4﹡x=64即可.三、<h3 >解答题</h3>21、【答案】(1)解:;(2)解:;(3)解:.【考点】立方根【解析】【分析】根据立方根的定义求解即可.22、【答案】解:根据球的体积公式,得=13.5,解得r≈1.5.故这个球罐的半径r为1.5米.【考点】立方根【解析】【分析】利用球体的体积公式和立方根的定义计算即可.23、【答案】解:由已知得,2a﹣1=9解得:a=5,又3a+b+9=27,b=3,2(a+b)=2×(3+5)=16,∴2(a+b)的平方根是:±=±4.【考点】平方根,立方根【解析】【分析】根据平方根的定义求出a的值,再根据立方根的定义求出b的值,最后计算2(a+b)的值,即可解答.24、【答案】(1)解:∵3+(﹣3)=0,而且33=27,(﹣3)3=﹣27,有27﹣27=0,∴结论成立;∴“若两个数的立方根互为相反数,则这两个数也互为相反数”是成立的.(2)解:由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴=1﹣2=﹣1.【考点】平方根,立方根,解一元一次方程【解析】【分析】(1)题是一个开放题,举一个符合题意的即可;(2)运用(1)的结论可得1﹣2x与3x ﹣5互为相反数,即而算出x的值即可.25、【答案】(1)2(2)9(3)3;39(4)2;7;5;57【考点】立方根【解析】【解答】(1)103=1000,1003=1000000,则59319的立方根是2位数;(2)由59319的个位数是9,因为93=729,则59319的立方根的个位数是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几3.因此59319的立方根是39.(4)∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.【分析】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.。

相关文档
最新文档