高中物理:电磁感应中的导轨上的导体棒问题(1)
电磁感应导轨问题归纳(有答案).
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1. 模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变. 2. 常见模型类型 “电—动—电”型“动—电—动”型示意图已知量棒ab 长L ,质量m ,电阻R ;导轨光滑水平,电阻不计 棒ab 长L ,质量m ,电阻R ;导轨光滑,电阻不计过程分析S 闭合,棒ab 受安培力F =BLER,此时加速度a =BLEmR,棒ab 速度v↑→感应电动势E ′=BLv ↑→电流I ↓→安培力F =BIL ↓→加速度a ↓,当安培力F =0时,a =0,v 最大,最后匀速运动棒ab 释放后下滑,此时加速度a =gsin α,棒ab 速度v ↑→感应电动势E =BLv ↑→电流I =ER ↑→安培力F =BIL ↑→加速度a ↓,当安培力F =mgsin α时,a =0,v 最大,最后匀速运动能 量 转 化 通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动 形式 变加速运动 变加速运动 最终 状态匀速运动,vm =E ′BL匀速运动vm =mgRsin αB2L2一、单棒问题 1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv (2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动 (5)最终状态:匀速直线运动 (6)两个极值①v=0时,有最大加速度:Fm F mg a mμ-=②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为: (1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向; (2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况; (4)列出牛顿第二定律或平衡方程求解. (一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙(1)磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J解析 (1)金属棒在AB 段匀速运动,由题中图象乙得: v =Δx Δt =7 m/s I =BLv r +R,mg =BIL 解得B =0.1 T(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +RQ =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h时开始做匀速运动,在此过程中NM 22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-FB F( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。
高三物理总复习:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧归类例析
电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】: 【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv回路中的感应电流I =E R +R杆所受的安培力F =BIL 根据牛顿第二定律有mg sin θ-B 2L 2v2R =ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4。
【内化模型】题型一(v 0≠0) 题型二(v 0=0) 题型三(v 0=0) 题型四(v 0=0) 说明 杆cd 以一定初速度v 0在光滑水平轨道上滑动,质量为m ,电阻不计,两导轨间距为L 轨道水平光滑,杆cd质量为m ,电阻不计,两导轨间距为L ,拉力F 恒定倾斜轨道光滑,倾角为α,杆cd 质量为m ,两导轨间距为L 竖直轨道光滑,杆cd质量为m ,两导轨间距为L示意图力学观点 杆以速度v 切割磁感线产生感应电动势E =BLv ,电流I =BLvR ,安培力F =BIL =B 2L 2v R 。
高中物理:电磁感应中的导轨上的导体棒问题(1)
高中物理:电磁感应中的导轨上的导体棒问题电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决电磁感应中的导轨上的导体棒问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E 的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有BLv m=E。
解得v m=E/(BL)(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例2、如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。
专题:电磁感应导体棒问题资料
F1图专题:电磁感应导体棒问题电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。
分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。
主干知识一、发电式导轨的基本特点和规律如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
求:棒下滑的最大速度. 1、 电路特点导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点安培力为运动阻力,并随速度按正比规律增大。
F B =BI l =v rR vl B l r R Blv B∝+=+22 3、 加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动mr R v l B m g m g a )/(cos sin 22+--=θμθ 4、 两个极值的规律faR beBdc r当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有mgsin θ=μmgcos θ+)(22r R v l Bm +所以,最大速度为 :22))(cos (sin l B r R mg v m+-=θμθ5、 匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G =P F +P f ⎪⎪⎩⎪⎪⎨⎧=+=+====θμθcos )(sin 22m fm m m m m m F m G m gv P r R I r R E E I v F P m gv P当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。
专题:电磁感应导体棒问题
F1图专题:电磁感应导体棒问题电磁感应导体棒问题涉及力学、功能关系、电磁学等一系列基本概念、基本规律和科学思维方法。
分清不同性质的导轨,熟悉各种导轨中导体的运动性质、能量转化特点和极值规律,对于吃透基本概念,掌握基本规律,提高科学思维和综合分析能力,具有重要的意义。
主干知识一、发电式导轨的基本特点和规律如图1所示,间距为l 的平行导轨与电阻R 相 连,整个装置处在大小为B 、垂直导轨平面向上的匀强磁场中,质量为m 、电阻为r 的导体从静止 开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
求:棒下滑的最大速度. 1、 电路特点导体为发电边,与电源等效,当导体的速度为v 时,其中的电动势为 E=Blv 2、 安培力的特点安培力为运动阻力,并随速度按正比规律增大。
F B =BI l =v rR vl B l r R Blv B∝+=+22 3、 加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动mr R v l B mg mg a )/(cos sin 22+--=θμθ 4、 两个极值的规律faR beBdc r当v=0时,F B =0,加速度最大为a m =g (sin θ-μcos θ) 当a=0时,ΣF=0,速度最大,根据平衡条件有mgsin θ=μmgcos θ+)(22r R v l Bm +所以,最大速度为 :22))(cos (sin l B r R mg v m+-=θμθ5、 匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G =P F +P f ⎪⎪⎩⎪⎪⎨⎧=+=+====θμθcos )(sin 22m fm m m m m m F m G mgv P r R I r R E E I v F P mgv P当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这是发电导轨在匀速运动过程中,最基本的能量转化和守恒规律。
电磁感应中的导轨类问题
.动态分析导体棒与导轨问题1、一根导体棒在导轨上滑动(单导体问题)类“电—动—电”型“动—电—动”型型示M b意P图NaQ棒 ab 长为 L ,质量为 m,电阻为 R,棒 ab 长为 L ,质量为 m,电阻为 R,导轨光滑,电阻不计。
导轨光滑,电阻不计。
分开关闭合后,棒 ab 受安培力 F=BLE/R ,棒 ab 释放后下滑,此时a=gsin α,棒 ab 的析此时, a=BLE/mR, 棒 ab 的速度增加—速度 v增加——感应电动势E=BLv 增加感应电动势 BLv 增加—安培力 F=BIL 减——感应电流增加——安培力 F 增加——小—加速度 a 减小,当安培力 F=0 ( a=0)加速度 a 减小,当安培力F=mgsinα时, v 时, v 最大最大。
2、两根导体棒在导轨上滑动(双导体问题)初速度不为零,不受其他水平外力作用NQNQ V 0V 0示MP MP意图质量 =m 1=m 2电阻 =r1 =r2质量 =m 1=m 2电阻 =r1=r 2长度 =L 1=L 2长度 =L 1=L 2分杆 MN 做边减速运动,杆 PQ 做变稳定时,两杆的加速度为零,两杆的速度析加速运动,稳定时,两杆的加速度之比为 1: 2为零,以相等的速度匀速运动。
初速度为零,受其他水平外力的作用.N QNQ示F F意MP MP图质量 =m 1=m 2电阻 =r1=r2摩擦力 f 1=f 2,质量 =m 1=m 2长度 =L 1=L 2电阻 =r1=r2长度 =L 1=L 2分开始时,两杆做变加速运动;稳定时,稳定时,若 F≤2f,则 PQ 先变加速后匀析两杆以相同的加速度做匀变速直线运速运动;若 F>2f ,则 PQ 先变加速,之动。
后两杆匀加速运动。
一、“动—电—动”型1.(2007 山东济南)如图所示,水平放置的光滑平行金属导轨上有一质量为m 的金属棒 ab.导轨地一端连接电阻R,其他电阻均不计,磁感应强度为 B 的匀强磁场垂直于导轨平面向下,金属棒ab 在一水平恒力 F 作用下由静止起向右运动.则()A .随着 ab 运动速度的增大,其加速度也增大B .外力 F 对 ab 做的功等于电路中产生的电能C.当 ab 做匀速运动时,外力 F 做功的功率等于电路中的电功率D .无论 ab 做何种运动,它克服安培力做的功一定等于电路中产生的电能2、如图所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻 R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B,一根质量为 m 的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A .如果B 增大, v m将变大 B .如果变大, v m将变大C.如果 R 变大, v 将变大D.如果 m 变小, v将变大m m3.如图所示,一光滑平行金属轨道平面与水平面成θ角,两导轨上端用一电阻 R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上。
电磁感应导体棒
电磁感应中的导体棒问题电磁感应中的导轨上的导体棒问题是历年高考的考点。
该类问题是力学和电学的综合问题,通过它可以考查考生综合运用知识的能力。
解滑轨上导体棒的运动问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
一、滑轨上只有一根导体棒的问题滑轨上只有一个导体棒的问题,分三类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
第三种是含有电容器的问题。
(一)含电源闭合电路的导体棒问题例1 如图1所示,水平放置的光滑导轨MN 、PQ 上放有长为L 、电阻为R 、质量为m 的金属棒ab ,导轨左端接有内阻不计、电动势为E 的电源组成回路,整个装置放在竖直向上的匀强磁场B 中,导轨电阻不计且足够长,并与电键S 串联。
当闭合电键后,求金属棒可达到的最大速度。
(二)闭合电路中的导体棒在安培力之外的力作用下的问题 1. 导体棒在外力作用下从静止运动问题例2 如图所示,倾角θ=30º、宽度L =1m 的足够长的“U ”形平行光滑金属导轨固定在磁感应强度B =1T ,范围充分大的匀强磁场中,磁场方向垂直于斜面向下。
用平行于轨道的牵引力拉一根质量m =0.2㎏、电阻R =1Ω放在导轨上的金属棒a b ,使之由静止沿轨道向上移动,牵引力做功的功率恒为6W ,当金属棒移动2.8m 时,获得稳定速度,在此过程中金属棒产生的热量为5.8J ,不计导轨电阻及一切摩擦,取g =10m/s 2。
求:(1)金属棒达到稳定时速度是多大?(2)金属棒从静止达到稳定速度时所需的时间多长?2. 外力作用下有初速问题例3 如图4所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L ,右端接有电阻为R ,磁感应强度为B ,一根质量为m 、电阻不计的金属棒受到外力冲量后,以的初速度沿框架向左运动,棒与框架的动摩擦因数为,测得棒在整个运动过程中,通过任一截面的电量为q ,求:(1)棒能运动的距离?(2)R 上产生的热量? (三)含有电容器的问题例4 【2013新课标 25】(19分)如图.两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。
导体棒在磁场中运动问题-精品资料
导体棒在磁场中运动问题【问题概述】导体棒问题不纯属电磁学问题,它常涉及到力学和热学。
往往一道试题包含多个知识点的综合应用,处理这类问题必须熟练掌握相关的知识和规律,还要求有较高的分析能力、逻辑推断能力,以及综合运用知识解决问题的能力等。
导体棒问题既是高中物理教学的重要内容,又是高考的重点和热点问题。
1.通电导体棒在磁场中运动:通电导体棒在磁场中,只要导体棒与磁场不平行,磁场对导体棒就有安培力的作用,其安培力的方向可以用左手定则来判断,大小可运用公式F = BIL sin θ来计算,若导体棒所在处的磁感应强度不是恒定的,一般将其分成若干小段,先求每段所受的力再求它们的矢量和。
由于安培力具有力的共性,可以在空间和时间上进行积累,可以使物体产生加速度,可以和其它力相平衡。
说明基本图v – t 能量导体棒以初速度v 0向右开始运动,定值电阻为R ,其它电阻不计。
动能 → 焦耳热导体棒受向右的恒力F 从静止开始向右运动,定值电阻为R ,其它电阻不计。
外力机械能→ 动能+ 焦耳热导体棒1以初速度v 0向右开始运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
动能1变化→ 动能2变化 + 焦耳热导体棒1受恒力F 从静止开始向右运动,两棒电阻分别为R 1和R 2,质量分别为m 1和m 2,其它电阻不计。
外力机械能→ 动能1 + 动能2 + 焦耳热如图1所示,在竖直向下磁感强度为B 的匀强磁场中,有两根水平放置相距为L 且足够长的平行金属导轨AB 、CD ,导轨AC 端连接一阻值为R 的电阻,一根垂直于导轨放置的金属棒ab ,质量为m ,不计导轨和金属棒的电阻及它们间的摩擦。
若用恒力F 水平向右拉棒运动⑴.电路特点:金属棒ab 切割磁感线,产生感应电动势相当于电源,b 为电源正极。
当ab 棒速度为v 时,其产 生感应电动势E =BLv 。
⑵.ab 棒的受力及运动情况:棒ab 在恒力F 作用下向 右加速运动,切割磁感线,产生感应电动势,并形成感应电 流,电流方向由a →b ,从而使ab 棒受到向左的安培力F 安, 对ab 棒进行受力分析如图2所示:竖直方向:重力G 和支持力N 平衡。
电磁感应中的双导体棒和线框模型(解析版)-2024届新课标高中物理模型与方法
2024版新课标高中物理模型与方法电磁感应中的双导体棒和线框模型目录一.无外力等距双导体棒模型二.有外力等距双导体棒模型三.不等距导轨双导体棒模型四.线框模型一.无外力等距双导体棒模型【模型如图】1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点:I =Blv 2−BLv 1R 1+R 2=Bl (v 2−v 1)R 1+R 2随着棒2的减速、棒1的加速,两棒的相对速度v 2−v 1变小,回路中电流也变小。
v 1=0时:电流最大,I =Blv 0R 1+R 2。
v 1=v 2时:电流 I =03.两棒的运动情况安培力大小:F 安=BIl =B 2L 2(v 2−v 1)R 1+R 2两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动,棒2做加速度变小的减速运动,最终两棒具有共同速度。
4.两个规律(1)动量规律:两棒受到安培力大小相等方向相反,系统合外力为零,系统动量守恒.m 2v 0=(m 1+m 2)v 共(2)能量转化规律:系统机械能的减小量等于内能的增加量.(类似于完全非弹性碰撞)Q =12m 2v 20−12(m 1+m 2)v 2共两棒产生焦耳热之比:Q 1Q 2=R 1R 2;Q =Q 1+Q 25.几种变化:(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)两棒都有初速度(两棒动量守恒吗?)(4)两棒位于不同磁场中(两棒动量守恒吗?)1(2023春·江西赣州·高三兴国平川中学校联考阶段练习)如图所示,MN 、PQ 是相距为0.5m 的两平行光滑金属轨道,倾斜轨道MC 、PD 分别与足够长的水平直轨道CN 、DQ 平滑相接。
水平轨道CN 、DQ 处于方向竖直向下、磁感应强度大小为B =1T 的匀强磁场中。
质量m =0.1kg 、电阻R =1Ω、长度L =0.5m 的导体棒a 静置在水平轨道上,与a 完全相同的导体棒b 从距水平轨道高度h =0.2m 的倾斜轨道上由静止释放,最后恰好不与a 相撞,运动过程中导体棒a 、b 始终与导轨垂直且接触良好,导轨电阻不计,重力加速度g 取10m/s 2。
(物理)高中物理法拉第电磁感应-导轨问题全面总结
1 由动能定理: smg sin 0 - W -sJtmg cos 0=-mv 2 - 0
2
1
-mv
2
+W
s= 2
=2.Sm
mg(sin 0-µcos 0)
(3) 通过 ab 的电荷噩
q
=l.11t
=— BL—s , R
代入数据得 q=2
C
【例2】如图所示,质朵m10= l . kg, 电阻R1 =0.30 , 长 度l0= .m 4 的导体棒b a 横放在U型金属框架上。框架
当b a 运动到某处时,框架开始运动。设框架 与水平面间最大静陎擦力等于滑动摩擦力,g取Ol m/s2.
8
"
.\/'
.v
N'
(1)求框架开始运动时 b a 速度v的大小;
(2)从ab开始运动到框架开始运动的过程中,MN上产生的热垃Q=O. lJ, 求该过程ab位移x的大小。
【解析】: (1)ab对框架的压力F; = m 1g
p
b
【解析】(1)ab运动切割磁感线产生感应电动势E, 所以ab相当千电源,与外电阻R构成回路。
:• Uab= R BLV =-2 BLV
R+1/2
3
(2) 若无外力作用则ab在安培力作用下做减速运动,最终静止。动能全部转化为电热。Q =-mv2 . 2
由动址定理得:Ft =mv即BILt =mv,
架的其他部分电阻不计, 框架足够长垂直于框平面的方向存在向上的匀强磁场, 磁感应强度B=2Ta. b为金 属杆,其长度为L=04. m, 质址m=08. kg, 电阻r=0.50, 棒与框架的动脖擦因数µ = DS. . 由静止开始下滑, 直到速度达到最大的过程中,上端电阻R。产生的热品Oo=03. 75J(已知sin37° =06. , cos37 ° =08. ; g取10m / s2)求: (1) 杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离; (3) 在该过程
高中物理 电磁感应-单棒问题解析
电磁感应---单棒问题(一)★如图所示,水平面上有电阻不计的光滑金属导轨平行固定放置,间距d 为0.5m ,左端通过导线与阻值为2Ω的电阻R 连接,右端通过导线与阻值为4Ω的小灯泡L 连接,在CDEF 矩形区域内有竖直向上的匀强磁场, CE 长为2m ,区域内的磁场的磁感应强度B 随时间变化如图所示,在0t =时,一阻值为2Ω的金属棒在恒力F 作用下由静止开始从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流强度;(2)恒力F 的大小 (3)金属棒的质量解:(1)金属棒未进入磁场时,R 总=R L +R /2=5 Ω,E 1=∆ϕ∆t =S ∆B∆t=0.5 V , I L =E 1/R 总=0.1 A ,(2)因灯泡亮度不变,故4 s 末金属棒进入磁场时刚好匀速运动, I =I L +I R =I L +I L R LR=0.3 A ,F =F A =BId =0.3 N , (3)E 2=I (R +RR L R +R L )=1 V ,v =E 2Bd =1 m/s ,,a =v t =0.25 m/s 2,m =Fa =1.2 kg 。
★两根金属导轨平行放置在倾角为θ=30°的斜面上,导轨左端接有电阻R =10Ω,导轨自身电阻忽略不计。
匀强磁场垂直于斜面向上,磁感强度B =0.5T 。
质量为m =0.1kg ,电阻可不计的金属棒ab 静止释放,沿导轨下滑。
如图所示,设导轨足够长,导轨宽度L =2m ,金属棒ab 下滑过程中始终与导轨接触良好,当金属棒下滑h =3m 时,速度恰好达到最大值v =2m/s 。
求此过程中电阻中产生的热量。
解法1:当金属棒速度恰好达到最大速度时,受力分析, 则mg sin θ=F 安+f据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I=ER∴F 安=ILB =B 2L 2vR =0.2N ;∴f=mg sin θ-F 安=0.3N下滑过程据动能定理得:mgh -fh sin θ-W = 12mv 2解得W =1J ,∴此过程中电阻中产生的热量Q =W =1J解法2:当金属棒速度恰好达到最大速度时,受力分析,则sin 0.5mg N θ=据法拉第电磁感应定律:E =BLv ;据闭合电路欧姆定律:I =ER ∴F 安=BIL由以上各式解得F 安=0.2N ;所以导体受到的摩擦力为0.3f N =下滑过程据动能定理得:220mgh Q f h mv θ--=-; 解得1Q J =★(1999年上海)如图17-123所示,长为L 、电阻r =0.3Ω、质量m =0.1kg 的金属棒CD 垂直跨搁在位于水平面上的两条平行光滑金属导轨上,两导轨间距也是L ,棒与导轨间接触良好,导轨电阻不计,导轨左端接有R =0.5Ω的电阻,量程为0~3.0A 的电流表串接在一条导轨上,量程为0~1.0V 的电压表接在电阻R 的两端,垂直导轨平面的匀强磁场向下穿过平面.现以向右恒定外力F 使金属棒右移.当金属棒以v =2m/s 的速度在导轨平面上匀速滑动时,观察到电路中的一个电表正好满偏,而另一个电表未满偏.问:(1)此满偏的电表是什么表?说明理由: (2)拉动金属棒的外力F 多大?(3)此时撤去外力F ,金属棒将逐渐慢下来,最终停止在导轨上.求从撤去外力到金属棒停止运动的过程中通过电阻R 的电量.解析:(1)若电流表满偏,则I =3A ,U =IR =1.5V ,大于电压表量程.可知:电压表满偏. (2)由功能关系:2()Fv I R r =+ 而I U R =,22()F U R r R v ∴=+代入数据得221(0.50.3)2 1.6F N N =⨯+⨯= (3)由动量定理:BIL t m v ⋅∆=⋅∆两边求和121122............m v m v BI l t BI l t ⋅∆+⋅∆+=⋅∆+⋅∆+即BLq mv = 由电磁感应定律E BLv =,()E I R r =+解得2()q mv I R r =+代入数据得20.122(0.50.3)0.25q C =⨯⨯+=★如图所示,固定于水平桌面上足够长的两平行导轨PO 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m .P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B =0.2T 的匀强磁场中.电阻均为r =0.1Ω,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁在光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始做加速运动,试求:(1)当电压表的读数为U =0.2V 时,棒L 2的加速度多大? (2)棒L 2能达到的最大速度v m .(3)若在棒L 2达到最大速度v m 时撤去外力F ,并同时释放棒L 1,求棒L 2达到稳定时的速度值.(4)若固定棒L 1,当棒L 2的速度为v ,且离开棒L 1距离为S的同时,撤去恒力F ,为保持棒L 2做匀速运动,可以采用将B 从原值(B 0=0.2T )逐渐减小的方法,则磁感应强度B 应怎样随时间变化(写出B 与时间t 的关系式)? 解:(1)∵L 1与L 2串联∴流过L 2的电流为:A A r U I 21.02.0===① (2分) L 2所受安培力为:F ′=BdI=0.2N ② (2分) ∴222/2.1/5.02.08.0s m s m m F F a =-='-=③ (2分) (2)当L 2所受安培力F 安=F 时,棒有最大速度v m ,此时电路中电流为I m .则:F 安=BdI m ④ (1分) rBdv I mm 2=⑤ (1分) F 安=F ⑥ (1分) 由④⑤⑥得:s m dB Frv m /16222==⑦ (2分) (3)撤去F 后,棒L 2做减速运动,L 1做加速运动,当两棒达到共同速度v 共时,L 2有稳定速度,对此过程有:共v m m v m m )(212+= ⑧ (2分) ∴s m m m v m v m/10212=+=共 ⑨ (2分)(4)要使L 2保持匀速运动,回路中磁通量必须保持不变,设撤去恒力F 时磁感应强度为B 0,t 时刻磁感应强度为B t ,则:B 0dS =B t d (S +vt ) ⑩ (3分) ∴vtS SB B t +=0 (2分)★如图所示,两根相距为d 足够长的平行金属导轨位于水平的xOy 平面内,导轨与x 轴平行,一端接有阻值为R 的电阻.在x >0的一侧存在竖直向下的匀强磁场,一电阻为r 的金属直杆与金属导轨垂直放置,且接触良好,并可在导轨上滑动.开始时,金属直杆位于x =0处,现给金属杆一大小为v 0、方向沿x 轴正方向的初速度.在运动过程中有一大小可调节的平行于x 轴的外力F 作用在金属杆上,使金属杆保持Qx大小为a ,方向沿x 轴负方向的恒定加速度运动.金属导轨电阻可忽略不计.求:⑴金属杆减速过程中到达x 0的位置时,金属杆的感应电动势E ; ⑵回路中感应电流方向发生改变时,金属杆在轨道上的位置;⑶若金属杆质量为m ,请推导出外力F 随金属杆在x 轴上的位置(x )变化关系的表达式.答案:⑴E=Bd 0202ax v - ⑵x m =v 02/2a ⑶ rR axv d B ma F +-±=22022★如图所示,固定在水平桌面上的光滑金属框架cdef 处于竖直向下磁感应强度为B 0的匀强磁场中.金属杆ab 与金属框架接触良好.此时abed 构成一个边长为l 的正方形,金属杆的电阻为r ,其余部分电阻不计.⑴若从t =0时刻起,磁场的磁感应强度均匀增加,每秒钟增量为k ,施加一水平拉力保持金属杆静止不动,求金属杆中的感应电流.⑵在情况⑴中金属杆始终保持不动,当t = t 1秒末时,求水平拉力的大小.⑶若从t =0时刻起,磁感应强度逐渐减小,当金属杆在框架上以恒定速度v 向右做匀速运动时,可使回路中不产生感应电流.写出磁感应强度B 与时间t 的函数关系式.答案:⑴r kl I 2= ⑵()rkl kt B F 310+= ⑶vt l l B B +=0-------提示:产生感应电动势的原因。
(完整版)电磁感应中导体棒问题
1.如图,宽度为l的水平光滑导轨放在竖直向下的磁感应强度为B的匀强磁场中,质量为m的导体棒以初速度v0向右运动,导体棒和电阻的阻值分别为r和R.回答Array下列问题。
(1)导体棒的受力情况?(2)导体棒的加速度如何变化?导体棒最终会达到什么稳定状态?(3)能量有什么关系?求达到稳定状态的过程中R产生的焦耳热。
(4)动量有什么关系?求达到稳定状态的过程中通过R的电荷量。
(5)求从开始到稳定状态时导体棒的位移.(6)若不光滑再分析上述问题。
(选做)2.如图,宽度为l的水平光滑导轨放在竖直向下的磁感应强度为B的匀强磁场中,质量为m的导体棒在水平恒力F的作用下从静止开始向右运动,导体棒和电阻的阻值分别为r和R.回答下列问题。
(1)导体棒的受力情况?(2)导体棒的加速度如何变化?导体棒最终会达到什么稳定状态? (3)求导体棒最后的速度。
(4)能量有什么关系?若已知从静止到最后的稳定状态,导体棒走过的位移为S,求此过程中R 产生的焦耳热.(5)在上一问的基础上能否求出运动时间。
3.如图,宽度为l 的水平导轨放在竖直向下的磁感应强度为B 的匀强磁场中,把质量为m 的导体棒从静止释放,导体棒与导轨的摩擦因数为μ,导体棒和电阻的阻值分别为r 和R ,电源内阻不计。
回答下列问题。
(1)导体棒的受力情况?(2)导体棒的加速度如何变化?导体棒最终会达到什么稳定状态?(3)求导体棒最后的速度。
(4)动量有什么关系?若已知从静止到稳定状态导体棒的时间t,求该过程中流过R的电荷量。
(5)能量有什么关系?(电源消耗的电能为Eq,E为电源电动势)3.如图,宽度为l的水平光滑导轨放在竖直向上的磁感应强度为B的匀强磁场中,质量为m1的导体棒静止在导轨上,质量为m2的导体棒以初速度v0向右运动,两导体棒的电阻分别为R1和R2.回答下列问题.(1)哪根导体棒相当于电源?电流如何变化?(2)两导体棒分别做什么运动?(3)两导体棒最终会达到什么稳定状态?(4)动量有什么关系?12(5)能量有什么关系?求导体棒1产生的焦耳热。
高中物理:电磁感应中的导轨上的导体棒问题
公众号:2020押题 获取更多免费押题卷
解析:闭合电键后,金属棒在安培力的作用下向右运动。当金属棒 的速度为 v 时,产生的感应电动势,它与电源电动势为反接,从而导 致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做 的是一个加速度越来越小的加速运动。但当加速度为零时,导体棒的 速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路 中电流为零,此后导体棒将以这个最大的速度做匀速运动。 金属板速度最大时,有 BLvm=E。解得 vm=E/(BL) (二)闭合电路中的导体棒在安培力之外的力作用下的问题 1.导体棒在外力作用下从静止运动问题 例 2、如图 2,光滑导体棒 bc 固定在竖直放置的足够长的平行金属 导轨上,构成框架 abcd,其中 bc 棒电阻为 R,其余电阻不计。一质 量为 m 且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好 接触,能无摩擦地滑动。整个装置处在磁感应强度为 B 的匀强磁场中, 磁场方向垂直框面。若用恒力 F 向上拉 ef,则当 ef 匀速上升时,速 度多大?
可以运用力的观点和能量观点的任一种,但两种方法所研究的运动过
程却不同。力观点研究分析的是棒达到最大速度为止的以前的运动过
程,而能量观点研究的是从棒达到最大速度开始以后做匀速运动的一
公众号:2020押题 获取更多免费押题卷
段过程。要注意这两种观点所研究运动过程的不同。 解析:当导体棒 ef 以最大速度匀速运动以后,拉力做功消耗的能量 WF 等于棒重力势能的增加△EP 和 bc 部分产生的热量 Q 之和。设棒匀 速运动的时间为 t,则有 F vmt=mg vmt+Q Q=I2Rt=[(BLVm)/R]2Rt 由以上两式可得 vm=[(F-mg)R]/ B2L2 2.外力作用下有初速问题 例 3、如图 4 所示,匀强磁场竖直向上穿过水平放置的金属框架,框 架宽为 L,右端接有电阻为 R,磁感应强度为 B,一根质量为 m、电阻 不计的金属棒受到外力冲量后,以 的初速度沿框架向左运动,棒与 框架的动摩擦因数为 V0,测得棒在整个运动过程中,通过任一截面的 电量为 q,求:(1)棒能运动的距离?(2)R 上产生的热量?
电磁感应单、双棒问题
电磁感应单、双棒问题电磁感应单、双棒问题————————————————————————————————作者:————————————————————————————————⽇期:2012⾼考物理⼆轮专题复习:电磁感应中“单、双棒”问题归类例析王佃彬⼀、单棒问题:1.单棒与电阻连接构成回路:例1、如图所⽰,MN 、PQ 是间距为L 的平⾏⾦属导轨,置于磁感强度为B 、⽅向垂直导轨所在平⾯向⾥的匀强磁场中,M 、P 间接有⼀阻值为R 的电阻.⼀根与导轨接触良好、阻值为R /2的⾦属导线ab 垂直导轨放置(1)若在外⼒作⽤下以速度v 向右匀速滑动,试求ab 两点间的电势差。
(2)若⽆外⼒作⽤,以初速度v 向右滑动,试求运动过程中产⽣的热量、通过ab 电量以及ab 发⽣的位移x 。
2、杆与电容器连接组成回路例2、如图所⽰, 竖直放置的光滑平⾏⾦属导轨, 相距l , 导轨⼀端接有⼀个电容器, 电容量为C, 匀强磁场垂直纸⾯向⾥, 磁感应强度为B, 质量为m 的⾦属棒ab 可紧贴导轨⾃由滑动. 现让ab 由静⽌下滑, 不考虑空⽓阻⼒,也不考虑任何部分的电阻和⾃感作⽤. 问⾦属棒的做什么运动?棒落地时的速度为多⼤?3、杆与电源连接组成回路例3、如图所⽰,长平⾏导轨PQ 、MN 光滑,相距5.0 l m ,处在同⼀⽔平⾯中,磁感应强度B =0.8T 的匀强磁场竖直向下穿过导轨⾯.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、内电阻r =0.2Ω的电池接在M 、P 两端,试计算分析:(1)在开关S 刚闭合的初始时刻,导线ab 的加速度多⼤?随后ab 的加速度、速度如何变化?(2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明).⼆、双杆问题:1、双杆所在轨道宽度相同——常⽤动量守恒求稳定速度例4、两根⾜够长的固定的平⾏⾦属导轨位于同⼀⽔平⾯内,两导轨间的距离为L 。
专题65 电磁感应中的双棒问题(解析版)
2023届高三物理一轮复习多维度导学与分层专练专题65 电磁感应中的双棒问题导练目标导练内容目标1无外力等距式双棒问题目标2有外力等距式双棒问题目标3无外力不等距式双棒问题目标4有外力不等距式双棒问题模型规律无外力等距式(导轨光滑)1、电流大小:21211212Blv Blv Bl(v v)IR R R R--==++2、稳定条件:两棒达到共同速度3、动量关系:2012()m v m m v=+4、能量关系:2122211m v(m m)v Q22=+共+;1122Q RQ R=有外力等距式(导轨光滑)1、电流大小:1221Blv BlvIR R-=+2、力学关系:11AFam=;22AF Fam-=。
(任意时刻两棒加速度)3、稳定条件:当a2=a1时,v2-v1恒定;I恒定;F A恒定;两棒匀加速。
4、稳定时的物理关系: 12F (m m )a =+;1A F m a =;2112A Bl(v v )F BIlB lR R -==+;121212212(R R )m F v v B l (m m )+-=+无外力不等距式 (导轨光滑)1、动量关系:11110BL I t m v m v -∆=-;2220BL I t m v -∆=-2、稳定条件:1122BL v BL v =3、最终速度:21222122110m L v v m L m L =+;12122122120m L L v v m L m L =+4、能量关系:222101122111222Q m v m v m v =-- 5、电量关系:2202BL q m v =-有外力不等距式 (导轨光滑)F 为恒力,则:1、稳定条件:1122l a l a =,I 恒定,两棒做匀加速直线运动 2、常用关系:111A F F a m -=;222A F a m =;1122l a l a =;1122A A F l F l =3、常用结果:2121221221A l m F F l m l m =+;1222221221A l l m F F l m l m =+; 221221221l a F l m l m =+; 122221221l l a F l m l m =+; 此时回路中电流为:12221221l m F I l m l m B=⋅+与两棒电阻无关一、无外力等距式双棒问题【例1】如图,水平面内固定有两根平行的光滑长直金属导轨,导轨间距为l ,电阻不计。
磁场中的导体棒问题
磁场中的导体棒问题1、如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.2、如图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .3、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2)(1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?4、如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图1 5—2所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab的速度大小为v时,求此时ab杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值.5、如图所示,电阻不计的平行金属导轨MN和OP水平放置,MO间接有阻值为R的电阻,导轨相距为d,其间有竖直向下的匀强磁场,磁感强度为B.质量为m、电阻为r的导体棒CD垂直于导轨放置,并接触良好.用平行于MN的恒力F向右拉动CD,CD受恒定的摩擦阻力.f,已知F>f.问:(1)CD运动的最大速度是多少?(2)当CD达到最大速度后,电阻R消耗的电功率是多少?(3)当CD的速度是最大速度的1/3时,CD的加速度是多少?6、如图光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=1m,bc边的边l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框通过细线与重物相连,重物质量M=2kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B=0.5T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh 线的距离s=11.4m,(取g=10m/s2),求:⑴线框进入磁场时匀速运动的速度v;⑵ab边由静止开始运动到gh线所用的时间t;⑶t时间内产生的焦耳热.7、如图所示,足够长的平行金属导轨MN、PQ平行放置,间距为L,与水平面成 角,导轨与固定电阻R1和R2相连,且R1=R2=R.R1支路串联开关S,原来S闭合,匀强磁场垂直导轨平面斜向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理:电磁感应中的导轨上的导体棒问题电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决电磁感应中的导轨上的导体棒问题,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒ab,导轨左端接有内阻不计、电动势为E 的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有BLv m=E。
解得v m=E/(BL)(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例2、如图2,光滑导体棒bc固定在竖直放置的足够长的平行金属导轨上,构成框架abcd,其中bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒ef水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。
整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直框面。
若用恒力F向上拉ef,则当ef匀速上升时,速度多大?本题有两种解法。
方法一:力的观点。
分析:应用力学观点解导体棒问题的程度:(a)分析棒的受力情况,判断各力的变化情况;(b)分析棒的运动情况,判断加速度和速度的变化情况;(c)分析棒的最终运动情况,依平衡条件或牛顿第二定律列方程。
解析:当棒向上运动时,棒ef受力如图3所示。
当ef棒向上运动的速度变大时,ef棒产生的感应电动势变大,感应电流I=E/R变大,它受到的向下的安培力F安=BIL变大,因拉力F和重力mg都不变,故加速度a=(F-mg-F安)/m变小。
因此,棒ef做加速度越来越小的变加速运动。
当a=0时(稳定条件),棒达到最大速度,此后棒做匀速运动(达到稳定状态)。
当棒匀速运动时(设速度为v m),由物体的平衡条件有F= F安+mg F安=BIL=(B2L2v m)/R由以上二式解得v m=(F-mg)R/ B2L2方法二:能量观点。
分析:①ef棒的运动尽管在达到最大速度以前为变速运动,产生的感应电流及感应电动势都在变化,但达到最大速度以后,感应电流及感应电动势均恒定,故计算热量可以用计算。
②求导体棒的最大速度问题,要会抓住速度最大之后速度不变这一关键条件,运用能量观点处理,往往会使运算过程简洁。
③求导体棒的最大速度问题,可以运用力的观点和能量观点的任一种,但两种方法所研究的运动过程却不同。
力观点研究分析的是棒达到最大速度为止的以前的运动过程,而能量观点研究的是从棒达到最大速度开始以后做匀速运动的一段过程。
要注意这两种观点所研究运动过程的不同。
解析:当导体棒ef以最大速度匀速运动以后,拉力做功消耗的能量W F等于棒重力势能的增加△E P和bc部分产生的热量Q之和。
设棒匀速运动的时间为t,则有F v m t=mg v m t+Q Q=I2Rt=[(BLV m)/R]2Rt 由以上两式可得v m=[(F-mg)R]/ B2L22.外力作用下有初速问题例3、如图4所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻为R,磁感应强度为B,一根质量为m、电阻不计的金属棒受到外力冲量后,以的初速度沿框架向左运动,棒与框架的动摩擦因数为V0,测得棒在整个运动过程中,通过任一截面的电量为q,求:(1)棒能运动的距离?(2)R上产生的热量?分析:本题的棒与框架无论有无摩擦,棒的最终状态是静止。
不过,无摩擦时,原来棒的动能全部要转变成R上产生的热量。
解析:(1)在整个过程中,棒运动的距离为S,磁通量的变化通过棒的任一截面的电量解得(2)根据能的转化和守恒定律,金属棒的动能的一部分克服摩擦力做功,一部分转化为电能,电能又转化为热能Q,即有二、滑轨上有两个导体棒的运动问题滑轨上有两个导体棒的运动问题,还分为两种:一种是初速度不为零,无安培力之外的力作用下的问题,另一种是初速度为零,有安培力之外的力作用下的问题。
(一)初速度不为零,无安培力之外的力作用的问题1.两棒各以不同的初速度做匀速运动问题例4、如图5所示,相距d的平行光滑金属长导轨固定在同一水平面上处于竖直的匀强磁场中,磁场的磁感应强度为B,导轨上面横放着两条金属细杆ab、cd构成矩形回路,每条金属细杆的电阻为R,回路中其余部分的电阻可忽略不计。
已知ab、cd分别以2v、v的速度向右匀速运动,求两金属细杆运动t秒后,共产生多少热量?分析:本题的关键,是把两杆及导轨构成的回路作为研究对象,利用法拉第电磁感应定律求电动势E。
如果用E=BLv求每杆的电动势,再求回路总电动势,那就要涉及到中学阶段不要求的反电动势问题。
解析:以整个回路为研究对象,t秒后磁通量的变化回路中的感应电动势回路中的感应电流产生的热量2.两棒之一有初速度的运动问题例5、在例4中,两棒的质量均为m。
若开始用一水平冲击力使ab 获得一冲量I,使其沿轨道向右运动,而cd无初速度。
求ab棒在整个过程中产生的焦耳热?解析:ab棒获得速度V1=I/m,就开始向右切割磁感线,产生感应电流,从而ab棒在磁场力作用下做减速运动,cd棒做加速运动,当两棒速度相等时,两棒产生的感应电动势大小相等,在回路中方向相反,感应电流为零,磁场力也为零。
此后两棒以相同的速度v做匀速运动(达到稳定状态)。
在这个过程中,两棒组成的系统所受外力之和为零,系统动量守恒,有v=V1/2。
在上述过程中,系统损失的动能先转化为电能,电流通过电阻后又转化为焦耳热。
又因为两棒电阻相同,产生的焦耳热相等,故有故ab棒在整个过程中产生的焦耳热(二)初速度为零,有安培力之外的力作用下的问题1.初速度为零,有安培力之外的恒力作用下的问题例6、两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。
导轨间的距离L=0.20m。
两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行、大小为0.20N的恒力F作用于金属杆上,使金属杆在导轨上滑动。
(1)若经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?(2)若经过10s,电路中的电功率达到最大值。
问第10s末,①金属杆甲的加速度是多少?②两金属杆的速度各是多少?分析:本题必须先根据楞次定律,正确判出甲在F作用下运动时,乙也在其后同向运动。
解析:(1)设任一时刻t两金属杆甲、乙之间的距离为x,速度分别为V1和V2,经过很短的时间△t,杆甲移动距离V1△t,杆乙移动距离V2△t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势由闭合电路欧姆定律,回路中电流对甲由牛顿第二定律,有由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量联立以上各式解得代入数据得V1=8.15m/s V2=1.85m/s(2)①根据法拉第电磁感应定律可知,甲、乙两杆的速度差越大,感应电动势越大。
开始阶段,甲杆的加速度大于乙杆的加速度,甲杆的速度比乙杆的速度增加得快,因而速度差不断增大,直到两杆加速度相等,即a甲=a乙(稳定条件)时,两杆达到稳定状态——均做加速度相同的匀加速运动,此时△V=V甲-V乙达到最大值,从而E、I最大,电路中的电功率达最大由于故解得由牛顿第二定律,金属杆乙的加速度金属杆甲的加速度②流过金属杆的电流回路中的感应电动势又故由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量联立以上两式解得2.有安培力之外的变力作用下的运动问题例7、如图7,在水平面上有两条导电导轨MN、PQ,导轨间距为L,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B。
两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为。
两杆与导轨接触良好,与导轨间的动摩擦因数皆为。
已知:杆1被外力拖动,以恒定的速度沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动。
导轨的电阻可忽略。
求此时杆2克服摩擦力做功的功率。
解析:设杆2的运动速度为v,由于两杆运动时,两杆和导轨构成的回路中的磁通量发生变化,产生感应电动势感应电流杆2做匀速运动,它受到的安培力等于它受到的摩擦力导体杆2克服摩擦力做功的功率联立①②③④式得总之,通过以上的分析,可以看出:对导轨上的单导体棒问题,其稳定状态就是导体棒最后达到的匀速运动状态。
稳定条件是导体棒的加速度为零。
对导轨上的双导体棒运动问题,在无安培力之外的力作用下的运动情况,其稳定状态是两棒最后达到的匀速运动状态,稳定条件是两棒的速度相同;在有安培力之外的恒力作用下的运动情况,其稳定状态是两棒最后达到的匀变速运动状态,稳定条件是两棒的加速度相同,速度差恒定。