人教版初中数学二次函数知识点总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学二次函数知识点总复习
一、选择题
1.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )
A .5
B .52-
C .52
D .-5
【答案】A
【解析】
【分析】
根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.
【详解】
∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,
∴函数25y ax bx =++(0)a ≠的对称轴为:1742
x +==, ∴8x =与0x =的函数值相等,
∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,
即8x =时,函数值等于5,
故选:A .
【点睛】
本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.
2.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )
A .原数与对应新数的差不可能等于零
B .原数与对应新数的差,随着原数的增大而增大
C .当原数与对应新数的差等于21时,原数等于30
D .当原数取50时,原数与对应新数的差最大
【答案】D
【解析】
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m ,则新数为
21100
m , 设新数与原数的差为y
则2211100100y m
m m m =-
=-+, 易得,当m =0时,y =0,则A 错误 ∵10100
-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭
时,y 有最大值.则B 错误,D 正确. 当y =21时,21100
m m -+=21 解得1m =30,2m =70,则C 错误.
故答案选:D .
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
3.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )
A .m 1≥
B .0m ≤
C .01m ≤≤
D .m 1≥或0m ≤
【答案】C
【解析】
【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.
【详解】
解:如图1所示,当t 等于0时,
∵2
(1)4y x =--,
∴顶点坐标为(1,4)-,
当0x =时,3y =-,
∴(0,3)A -,
当4x =时,5y =,
∴(4,5)C ,
∴当0m =时,
(4,5)D -,
∴此时最大值为0,最小值为5-;
如图2所示,当1m =时,
此时最小值为4-,最大值为1.
综上所述:01m ≤≤,
故选:C .
【点睛】
此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.
4.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )
A .②④
B .①③④
C .①②④
D .②③④
【答案】C
【解析】
【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a
=-
=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.
【详解】
解:Q 抛物线开口向上, 0a ∴>,
Q 对称轴在y 轴的右侧,
a ∴和
b 异号,
0b ∴<,
Q 抛物线与y 轴的交点在x 轴下方,
0c ∴<,
0bc ∴>,所以①错误;
Q 当1x =时,0y <,
0a b c ∴++<,所以②错误;
Q 抛物线经过点(1,0)-和点(3,0),
∴抛物线的对称轴为直线1x =, 即12b a
-=, 20a b ∴+=,所以③正确;
Q 抛物线与x 轴有2个交点,
∴△240b ac =->,
即24ac b <,所以④错误.
综上所述:③正确;①②④错误.
故选:C .
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.
5.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )
A .﹣1<x <1
B .﹣3<x <﹣1
C .x <1
D .﹣3<x <1
【答案】D
【解析】
【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.
【详解】
解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,
∴抛物线与x 轴的另一交点坐标是(﹣3,0),
∴当y >0时,x 的取值范围是﹣3<x <1.