专题13 三角函数定义-2021年高考数学一轮复习专题讲义附真题及解析
2021版新高考数学一轮复习讲义:第三章第一讲任意角和弧度制及任意角的三角函数(含解析)
(2)(2020 甘·肃会宁一中高三上第二次月考 形所在圆的半径不可能等于 ( B )
)若一个扇形的周长与面积的数值相等,则该扇
A.5
B.2
C. 3
D.4
1
2
[解析 ] (1) ∵2Rsin 1=2,∴R=sin 1 ,∴l= |α|R= sin 1.故选 C.
1
(2)设扇形所在圆的半径为 R.扇形弧长为 l,因为扇形的周长与面积的数值相等,所以
α终边相同的角时,
双基自测
题组一 走出误区
1.(多选题 )下列结论不正确的是 ( ABCD )
A .小于 90°的角是锐角
B.将表的分针拨快 5 分钟,则分针转过的角度是
π C.角 a=kπ+ 3(k∈ Z )是第一象限角
D .若
sin α= sin
π7,则
α=
π 7
30 °
[解析 ] 根据任意角的概念知 ABCD 均是错误的.
2lR
4R = 2R+ l ,所以 lR= 4R+ 2l,所以 l = ,因为 l>0 ,所以 R>2. 故选 B .
R- 2
考点三 角度 1 定义的直接应用
三角函数的定义 —— 多维探究
例 3 (1)(2020 ·北京海淀期中 )在平面直角坐标系 xOy 中,点 A 的纵坐标为 2,点 C
在 x 轴的正半轴上.在△ AOC 中,若 cos∠ AOC =- 35,则点 A 的横坐标为 ( A )
考点一 角的基本概念 —— 自主练透
例
1 (1)已知
α1=-
350
°,
α2=
860
°,
β=
25 6
π .
将 α1 用弧度制表示为- 3158π,它是第一象限角;
2021届新高考版高考数学一轮复习课件:三角函数的概念、同角三角函数的基本关系及诱导公式(讲解部分)
即3sin2x-5sin
x-2=0,解得sin
x=-
1 3
(sin
x=2舍去).这时cos2x=1-
-
1 3
2
=
8 9
,tan2x=
sin2x = 1 ,
cos2 x 8
故6sin
x+4tan2x-3cos2(π-x)=6sin
x+4tan2x-3cos2x=6×
-
1 3
+4×
1-3×
8
8=-
1.平方关系: sin2α+cos2α=1 .
2.商数关系:tan
α=
sin α cos α
α
π 2
kπ,k
Z
.
三、诱导公式
函数 角
正弦
余弦
正切
-α
-sin α
cos α
-tan α
π-α
sin α
-cos α
-tan α
π+α
-sin α
-cos α
tan α
2π-α
-sin α
cos α
-tan α
考点清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式
一、三角函数的概念 1.任意角的概念 (1)我们把角的概念推广到任意角,任意角包括正角、负角、零角.正角:按 ① 逆时针 方向旋转形成的角;负角:按② 顺时针 方向旋转形成的角; 零角:如果一条射线③ 没有作任何旋转 ,我们称它形成了一个零角. (2)终边相同的角:与α终边相同的角可表示为④ {β|β=α+2kπ,k∈Z} . 2.弧度与角度的互化 (1)1弧度的角:长度等于⑤ 半径长 的弧所对的圆心角.
2021新高考数学新课程一轮复习课件-三角函数与解三角形
解题思路 (1)化为 f(x)=Asin(ωx+φ)+b 的形式→由 x∈[0,π]推出 ωx
+φ
的取值范围→利用正弦函数图象确定,为使值域为-
23,1,ω
要满足
的不等式,求出 ω 的取值范围.
(2)①f(x)在0,3π上单调→周期满足的不等式,确定 ω 的取值范围. ②f(0)+fπ3=0→π6,0是 f(x)图象的对称中心→求 ω 的可能取值. ③综合①②确定 ω 的值.
当 k=1 时,g(x)的单调递减区间为76π,53π. ∴函数 g(x)在[0,2π]上的单调递减区间是π6,23π,76π,53π.
解题思路 (1)利用三角恒等变换将函数化为 f(x)=Asin(ωx+φ)+b 的形 式,再根据图象上相邻最高点与最低点的距离求出函数周期,从而确定 ω.
(2)由(1)写出函数 y=f(x+φ)的解析式.由奇函数确定 φ,从而确定函数 g(x)的解析式,进一步确定函数 g(x)的单调区间.
∴AD2+16AD-80=0,解得 AD=4 或 AD=-20(舍去),故 AD=4.
(2)设∠BDC=α,∠CBD=β,求 sin(2α+β)的值.
规范解答 (2)如图,连接 AC,则∠BDC=∠BAC=∠ADB=∠ACB=α, ∠CBD=∠CAD=β,
则 2π=∠BCD+∠CDA+∠BAD+∠CBA,即 2π=4α+2β+2∠ABD, 故 2α+β+∠ABD=π,
本课结束
第三章 三角函数、解三角形
解答题专项突破(二) 三角函数与解三角形
从近几年高考情况来看,高考对本部分内容的考查主要有:①三角恒等 变换与三角函数的图象、性质相结合;②三角恒等变换与解三角形相结合.难 度一般不大,属中档题型.
备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余 弦定理,在此基础上掌握一些三角恒等变换的技巧,如角的变换、函数名称 的变换等.此外,还要注意题目中隐含的各种限制条件,选择合理的解决方 法,灵活实现问质
2021新高考数学新课程一轮复习:第三章 第3讲 三角函数的图象与性质含解析
第3讲 三角函数的图象与性质组 基础关1.函数y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数答案 A解析 因为y =cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x ,故选A.2.设a =cos π12,b =sin 41π6,c =cos 7π4,则( ) A .a >c >b B .c >b >a C .c >a >b D .b >c >a答案 A解析 sin 41π6=sin ⎝ ⎛⎭⎪⎫8π-7π6=-sin 7π6=sin π6=cos π3,cos 7π4=cos ⎝ ⎛⎭⎪⎫2π-π4=cos ⎝ ⎛⎭⎪⎫-π4=cos π4,因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,所以cos π12>cos π4>cos π3,即a >c >b . 3.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )答案 D解析 y =tan x +sin x -|tan x -sin x | =⎩⎪⎨⎪⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝ ⎛⎭⎪⎫π,3π2.结合选项图形知,D 正确.4.已知函数f (x )=tan2x ,则下列说法不正确的是( ) A .y =f (x )的最小正周期是π B .y =f (x )在⎝ ⎛⎭⎪⎫-π4,π4上单调递增C .y =f (x )是奇函数D .y =f (x )的对称中心是⎝ ⎛⎭⎪⎫k π4,0(k ∈Z )答案 A解析 函数y =f (x )的最小正周期是π2,故A 错误.当x ∈⎝ ⎛⎭⎪⎫-π4,π4时,2x ∈⎝ ⎛⎭⎪⎫-π2,π2,此时函数f (x )=tan2x 为增函数,故B 正确.因为f (-x )=tan2(-x )=-tan2x =-f (x ),所以f (x )=tan2x 是奇函数,故C 正确.由2x =k π2,k ∈Z ,得x =k π4,k ∈Z ,所以f (x )=tan2x 的对称中心是⎝ ⎛⎭⎪⎫k π4,0,k ∈Z ,故D 正确.5.(2019·福建六校联考)若函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π3+x =f (-x ),则f ⎝ ⎛⎭⎪⎫π6=( )A .2或0B .0C .-2或0D .-2或2答案 D解析 因为f ⎝ ⎛⎭⎪⎫π3+x =f (-x )对任意x ∈R 都成立,所以函数f (x )的图象的一个对称轴是直线x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2.6.已知函数f (x )=cos(x +φ)⎝ ⎛⎭⎪⎫0<|φ|<π2,f ⎝ ⎛⎭⎪⎫x +π4是奇函数,则( )A .f (x )在⎝ ⎛⎭⎪⎫π4,π上单调递减B .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减C .f (x )在⎝ ⎛⎭⎪⎫π4,π上单调递增D .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增答案 B解析 因为f (x )=cos(x +φ),所以f ⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫x +π4+φ,又因为f ⎝ ⎛⎭⎪⎫x +π4是奇函数,所以π4+φ=k π+π2,k ∈Z ,所以φ=k π+π4,k ∈Z ,又0<|φ|<π2,所以φ=π4,f (x )=cos ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝ ⎛⎭⎪⎫0,π4时,x +π4∈⎝ ⎛⎭⎪⎫π4,π2,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫π4,π时,x +π4∈⎝ ⎛⎭⎪⎫π2,5π4,f (x )先减后增,故选B. 7.(2019·衡水联考)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-13在区间(0,π)内的所有零点之和为( )A.π6B.π3C.7π6D.4π3 答案 C解析 设t =2x +π3,则由x ∈(0,π),得t ∈⎝ ⎛⎭⎪⎫π3,7π3.由f (x )=0得sin t =13,结合函数y =sin t 的图象可知此方程有两个实根t 1和t 2,且t 1+t 2=3π,所以函数f (x )在(0,π)内有两个零点x 1和x 2,且2x 1+π3+2x 2+π3=3π,所以x 1+x 2=7π6.8.函数f (x )=1+log 12x +tan ⎝ ⎛⎭⎪⎫x +π4的定义域是________.答案⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤2,且x ≠π4 解析由⎩⎪⎨⎪⎧1+log 12 x ≥0,x +π4≠k π+π2,k ∈Z ,得⎩⎪⎨⎪⎧0<x ≤2,x ≠k π+π4,k ∈Z ,所以0<x ≤2且x ≠π4,所以函数f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤2,且x ≠π4.9.若函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3=________.答案32解析 由题设及周期公式得T =πω=π,所以ω=1, 即f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3,所以f ⎝ ⎛⎭⎪⎫π3=⎪⎪⎪⎪⎪⎪sin 2π3=32.10.函数f (x )=2020sin ⎝ ⎛⎭⎪⎫13x +π6(0≤x ≤2π)的值域是________.答案 [1010,2020]解析 因为0≤x ≤2π,所以π6≤13x +π6≤5π6. 所以12≤sin ⎝ ⎛⎭⎪⎫13x +π6≤1,所以函数f (x )=2020sin ⎝ ⎛⎭⎪⎫13x +π6的值域为[1010,2020].组 能力关A.⎣⎢⎡⎦⎥⎤-22,22B .[-1,1] C.⎣⎢⎡⎦⎥⎤22,1 D.⎣⎢⎡⎦⎥⎤-1,22答案 D解析 画出函数f (x )=⎩⎨⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x 的图象(如图中实线所示).根据三角函数的周期性,只看一个最小正周期(即2π)的情况即可. 观察图象可知函数f (x )的值域为⎣⎢⎡⎦⎥⎤-1,22.2.(多选)已知函数f (x )=cos 2x +sin x ,那么下列命题中的真命题是( ) A .f (x )既不是奇函数也不是偶函数 B .f (x )在[-π,0]上恰有一个零点 C .f (x )是周期函数D .f (x )在⎝ ⎛⎭⎪⎫π2,5π6上是增函数答案 ACD解析 因为f (x )=cos 2x +sin x ,所以f (-x )=cos 2x -sin x .故f (x )既不是奇函数也不是偶函数.所以A 是真命题;令f (x )=cos 2x +sin x =0,得1-sin 2x +sin x =0,解得sin x =1-52.此时x 有两个值.所以f (x )在[-π,0]内恰有两个零点.所以B 是假命题;因为f (x )=cos 2x +sin x =1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54.显然f (x )是周期函数,所以C 是真命题;对于f (x )=-⎝ ⎛⎭⎪⎫sin x -122+54,令u =sin x 在⎝ ⎛⎭⎪⎫π2,5π6上单调递减,则y =-⎝ ⎛⎭⎪⎫u -122+54在⎝ ⎛⎭⎪⎫12,1上单调递减,所以D 是真命题.3.(2020·赣州摸底)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+12,ω>0,x ∈R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则f ⎝ ⎛⎭⎪⎫3π4=________,函数f (x )的单调递增区间为________.答案3+12 ⎣⎢⎡⎦⎥⎤-π2+3k π,π+3k π,k ∈Z 解析 函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+12,ω>0,x ∈R ,由f (α)=-12,f (β)=12,且|α-β|的最小值为3π4, 得T 4=3π4,即T =3π=2πω,所以ω=23.所以f (x )=sin ⎝ ⎛⎭⎪⎫23x -π6+12.则f ⎝ ⎛⎭⎪⎫3π4=sin π3+12=3+12.由-π2+2k π≤23x -π6≤π2+2k π,k ∈Z , 得-π2+3k π≤x ≤π+3k π,k ∈Z ,即函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+3k π,π+3k π,k ∈Z .4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.解 (1)f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6, 所以sin ⎝ ⎛⎭⎪⎫2x +π3≥sin ⎝ ⎛⎭⎪⎫-π6=-12,所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.组 素养关1.已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 (1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫ωx -π4的最小正周期为π,∴ω=2,f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8(k ∈Z ),令k =0,得f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2. 2.已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x -1,x ∈R .(1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称,且t ∈(0,π),求t 的值;(3)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.解(1)因为f (x )=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos2x =sin2x -3cos2x =2⎝ ⎛⎭⎪⎫12sin2x -32cos2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,故f (x )的最小正周期为π.(2)由(1)知h (x )=2sin ⎝ ⎛⎭⎪⎫2x +2t -π3.令2×⎝ ⎛⎭⎪⎫-π6+2t -π3=k π(k ∈Z ),得t =k π2+π3(k ∈Z ), 又t ∈(0,π),故t =π3或5π6.(3)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,所以f (x )∈[1,2].又|f (x )-m |<3,即f (x )-3<m <f (x )+3, 所以2-3<m <1+3,即-1<m <4.故实数m的取值范围是(-1,4).。
高考一轮复习专题三角函数(全)详解
高考一轮复习专题——三角函数第1讲 任意角、弧度制及任意角的三角函数基础梳理1.任意角 (1)角的概念的推广①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=yr ,cos α=x r,tan α=y x,它们都是以角为自变量,以比值为函数值的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT为正切线一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. (2)终边落在x 轴上的角的集合{β|β=k π,k ∈Z };终边落在y 轴上的角的集合⎭⎬⎫⎩⎨⎧∈+=Z k k ,2ππββ;终边落在坐标轴上的角的集合可以表示为⎭⎬⎫⎩⎨⎧∈=Z k k ,2πββ.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 三个注意(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)注意熟记0°~360°间特殊角的弧度表示,以方便解题.双基自测1.(人教A版教材习题改编)下列与9π4的终边相同的角的表达式是( ).A.2kπ+45°(k∈Z) B.k·360°+94π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+5π4(k∈Z)2.若α=k·180°+45°(k∈Z),则α在( ).A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限3.若sin α<0且tan α>0,则α是( ).A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知角α的终边过点(-1,2),则cos α的值为( ).A.-55B.255C.-255D.-125.(2011·江西)已知角θ的顶点为坐标原点,始边为x轴非负半轴,若P(4,y)是角θ终边上一点,且sin θ=-255,则y=________.考向一角的集合表示及象限角的判定【例1】►(1)写出终边在直线y=3x上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】角α与角β的终边互为反向延长线,则( ).A.α=-βB.α=180°+βC.α=k·360°+β(k∈Z)D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】(2011·课标全国)已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ). A .-45 B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】求下列函数的定义域:(1)y =2cos x -1; (2)y =lg(3-4sin 2x ). 解 (1)∵2cos x -1≥0,∴cos x ≥12.重点突破——如何利用三角函数的定义求三角函数值【问题研究】三角函数的定义:设α是任意角,其终边上任一点P (不与原点重合)的坐标为(x ,y ),它到原点的距离是r (r =x 2+y 2>0),则sin α=yr、cos α=x r 、tan α=y x分别是α的正弦、余弦、正切,它们都是以角为自变量,以比值为函数值的函数,这样的函数称为三角函数,这里x ,y 的符号由α终边所在象限确定,r 的符号始终为正,应用定义法解题时,要注意符号,防止出现错误.三角函数的定义在解决问题中应用广泛,并且有时可以简化解题过程.【解决方案】利用三角函数的定义求三角函数值时,首先要根据定义正确地求得x ,y ,r 的值;然后对于含参数问题要注意分类讨论.【示例】►(本题满分12分)(2011·龙岩月考)已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x ,求sin α、tan α的值.【试一试】已知角α的终边在直线3x +4y =0上,求sin α+cos α+45tan α.第2讲 同角三角函数的基本关系与诱导公式基础梳理1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos α,其中k ∈Z .公式二:sin(π+α)=-sin α,cos(π+α)=-cos α, tan(π+α)=tan α.公式三:sin(-α)=-sin α,cos(-α)=cos α. 公式四:sin(π-α)=sin α,cos(π-α)=-cos α.公式五:sin )2(απ-=cos α,cos )2(απ-=sin α.公式六:sin )2(απ+=cos α,cos )2(απ+=-sin α.诱导公式可概括为k ·π2±α的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称变为相应的余名函数;若是偶数倍,则函数名称不变,符号看象限是指把α看成锐角时原函数值的符号作为结果的符号.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有: (1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐. 特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. (3)注意求值与化简后的结果一般要尽可能有理化、整式化.双基自测1.(人教A 版教材习题改编)已知sin(π+α)=12,则cos α的值为( ).A .±12 B.12 C.32 D .±322.(2012·杭州调研)点A (sin 2 011°,cos 2 011°)在直角坐标平面上位于( ). A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知cos α=45,α∈(0,π),则tan α的值等于( ).A.43B.34 C .±43 D .±344.cos )417(π--sin )417(π-的值是( ). A. 2 B .- 2 C .0 D.225.已知α是第二象限角,tan α=-12,则cos α=________.考向一 利用诱导公式化简、求值【例1】►已知)tan()2sin()2cos()sin()(απαπαπαπα++--=f ,求【训练1】已知角α终边上一点P (-4,3),则的值为________.考向二 同角三角函数关系的应用)3(πf )29sin()211cos()sin()2cos(απαπαπαπ+---+【例2】►(2011·长沙调研)已知tan α=2. 求:(1)2sin α-3cos α4sin α-9cos α;(2)4sin 2α-3sin αcos α-5cos 2α.【训练2】已知sin α+3cos α3cos α-sin α=5.则sin 2α-sin αcos α=________.考向三 三角形中的诱导公式【例3】►在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B ),求△ABC 的三个内角.【训练3】若将例3的已知条件“sin A +cos A =2”改为“sin(2π-A )=-2sin(π-B )”其余条件不变,求△ABC 的三个内角.重点突破——忽视题设的隐含条件致误【问题诊断】涉及到角的终边、函数符号和同角函数关系问题时,应深挖隐含条件,处理好开方、平方关系,避免出现增解与漏解的错误.,【防范措施】一要考虑题设中的角的范围;二要考虑题设中的隐含条件 【示例】►若sin θ,cos θ是关于x 的方程5x 2-x +a =0(a 是常数)的两根, θ∈(0,π),求cos 2θ的值.【试一试】已知sin θ+cos θ=713,θ∈(0,π),求tan θ.第3讲 三角函数的图象与性质基础梳理1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质y =sin x y =cos x y =tan x定义域R R {x|x≠kπ+π2,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:x=kπ+π2(k∈Z)对称中心:(kπ,0)(k∈Z)对称轴:x=kπ(k∈Z)对称中心:错误!无对称轴对称中心:)0,2(πk(k∈Z)周期2π2ππ单调性单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππkk(k∈Z);单调减区间⎥⎦⎤⎢⎣⎡++ππππ232,22kk(k∈Z)单调增区间[2kπ-π,2kπ](k∈Z);单调减区间[2kπ,2kπ+π](k∈Z)单调增区间)2,2(ππππ+-kk(k∈Z)奇偶性奇偶奇两条性质(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx ,而偶函数一般可化为y =A cos ωx +b 的形式.三种方法求三角函数值域(最值)的方法: (1)利用sin x 、cos x 的有界性;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.(人教A 版教材习题改编)函数y =cos )3(π+x ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数 2.函数y =tan )4(x -π的定义域为( ). A.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,4ππB.⎭⎬⎫⎩⎨⎧∈-≠Z k k x x ,42ππC.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,4ππD.⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,42ππ3.(2011·全国新课标)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(20πϕω<,>)的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在)2,0(π单调递减B .f (x )在)43,4(ππ单调递减C .f (x )在)2,0(π单调递增D .f (x )在)43,4(ππ单调递增4.y =sin )4(π-x 的图象的一个对称中心是( ). A .(-π,0) B.)0,43(π-C.)0,23(π D.)0,2(π5.(2011·合肥三模)函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的定义域与值域【例1】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x (4π≤x )的最大值与最小值.【训练1】(1)求函数y =sin x -cos x 的定义域. (2)已知函数f (x )=cos )32(π-x +2sin )4(π-x ·sin )4(π+x ,求函数f (x )在区间⎥⎦⎤⎢⎣⎡-2,12ππ上的最大值与最小值.考向二 三角函数的奇偶性与周期性【例2】►(2011·大同模拟)函数y =2cos 2)4(π-x -1是( ). A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 【训练2】已知函数f (x )=(sin x -cos x )sin x ,x ∈R ,则f (x )的最小正周期是________.考向三 三角函数的单调性【例3】►已知f (x )=sin x +sin )2(x -π,x ∈[0,π],求f (x )的单调递增区间.【训练3】函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12【训练4】(1)函数y =2sin(3x +φ)(2πϕ<)的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.重点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析. 一、根据三角函数的单调性求解参数【示例】►(2011·镇江三校模拟)已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为⎥⎦⎤⎢⎣⎡+-12,125ππππk k (k ∈Z ),单调递减区间为⎥⎦⎤⎢⎣⎡++127,12ππππk k (k ∈Z ),则ω的值为________.二、根据三角函数的奇偶性求解参数【示例】► (2011·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( ). A.π6 B.π3 C .-π6 D .-π3▲根据三角函数的周期性求解参数【示例】► (2011·合肥模拟)若函数y =sin ωx ·sin )2(πω+x (ω>0)的最小正周期为π7,则ω=________.▲根据三角函数的最值求参数【示例】► (2011·洛阳模拟)若函数f(x)=a sin x-b cos x在x=π3处有最小值-2,则常数a、b的值是( ).A.a=-1,b= 3 B.a=1,b=- 3C.a=3,b=-1 D.a=-3,b=1第4讲正弦型函数y=A sin(ωx+φ)的图象及应用基础梳理1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示x 0-φωπ2-φω错误!错误!错误!ωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0 2.函数y=sin x的图象变换得到y=A sin(ωx+φ)的图象的步骤3.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin )42(π-x 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4 C .2,1π,-π8D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)(2πϕ<)的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ). A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin )3(πω+x +2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .35.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)(02-0<<,>ϕπω)的最小正周期为π,且)4(πf =32.(1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】已知函数f (x )=3sin )421(π-x ,x ∈R .(1)画出函数f (x )在长度为一个周期的闭区间上的简图; (2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示. (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M )2,32(-π. (1)求f (x )的解析式;(2)当x ∈⎥⎦⎤⎢⎣⎡2,12ππ时,求f (x )的值域.【训练3】(2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P )0,12(π,图象上与点P 最近的一个最高点是Q )5,3(π. (1)求函数的解析式; (2)求函数f (x )的递增区间.重点突破——怎样求解三角函数的最值问题【问题研究】(1)求三角函数的最值是高考的一个热点.在求解中,一定要注意其定义域,否则容易产生错误.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题.【解决方案】①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角 Φ(2222sin ,cos b a b b a a +=+=φφ),将原式化为y =a 2+b 2·sin(x +φ)+c 的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【示例】►(本题满分12分)(2011·北京)已知函数f (x )=4cos x sin )6(π+x -1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.【试一试】是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎥⎦⎤⎢⎣⎡2,0π上的最大值是1?若存在,求出对应的a 值?若不存在,试说明理由.第5讲 两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)C (α+β):cos(α+β)=cos αcos β-sin αsin β; (3)S (α+β):sin(α+β)=sin αcos β+cos_αsin β; (4)S (α-β):sin(α-β)=sin αcos β-cos αsin β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=)2(βα+-)2(βα+.(2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ).A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15° 2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ).A .2B .3C .4D .6 3.已知sin α=23,则cos(π-2α)等于( ).A .-53 B .-19 C.19 D.534.(2011·辽宁)设sin )4(θπ+=13,则sin 2θ=( ).A .-79B .-19 C.19 D.795.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ.【训练1】化简:ααααα2sin )1cos )(sin 1cos (sin +--+.考向二 三角函数式的求值【例2】►已知0<β<π2<α<π,且cos )2(βα-=-19,sin )2(βα-=23,求cos(α+β)的值.【训练2】已知α,β∈)2,0(π,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.【训练3】已知α,β∈)2,2(ππ-,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f )3(π的值;(2)求f (x )的最大值和最小值.【训练4】已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎥⎦⎤⎢⎣⎡-2,6ππ上的最大值和最小值.重点突破——三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan )4(π+x =2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈)2,0(π.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.第6讲正弦定理和余弦定理基础梳理1.正弦定理:asin A =bsin B=csin C=2R,其中R是三角形外接圆的半径.由正弦定理可以变形为:(1)a∶b∶c=sin A∶sin B∶sin C;(2)a=2R sin_A,b=2R sin_B,c=2R sin_C;(3)sin A=a2R,sin B=b2R,sin C=c2R等形式,以解决不同的三角形问题.2.余弦定理:a2=b2+c2-2bc cos A,b2=a2+c2-2ac cos B,c2=a2+b2-2ab cos C.余弦定理可以变形为:cos A=b2+c2-a22bc,cos B=a2+c2-b22ac,cos C=a2+b2-c22ab.3.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r.4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a,b,A,则A为锐角A为钝角或直角图形关系式a<b sin A a=b sin Ab sin A<a<ba≥b a>b a≤b解的个数无解一解两解一解一解无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔sin A>sin B.两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A版教材习题改编)在△ABC中,A=60°,B=75°,a=10,则c等于( ).A.5 2 B.10 2C.1063D.5 62.在△ABC中,若sin Aa=cos Bb,则B的值为( ).A.30° B.45° C.60° D.90°3.(2011·郑州联考)在△ABC中,a=3,b=1,c=2,则A等于( ). A.30° B.45° C.60° D.75°4.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为( ).A.3 3 B.2 3 C.4 3 D. 35.已知△ABC三边满足a2+b2=c2-3ab,则此三角形的最大内角为________.考向一利用正弦定理解三角形【例1】►在△ABC中,a=3,b=2,B=45°.求角A,C和边c.【训练1】(2011·北京)在△ABC中,若b=5,∠B=π4,tan A=2,则sin A=________;a=________.考向二利用余弦定理解三角形【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且cos Bcos C=-b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.【训练2】(2011·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2A2+cos A=0.(1)求角A的值;(2)若a=23,b+c=4,求△ABC的面积.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状.【训练3】在△ABC 中,若a cos A =b cos B =c cos C ;则△ABC 是( ). A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形考向四 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.【训练4】(2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b,c,且cos B=45,b=2.(1)当A=30°时,求a的值;(2)当△ABC的面积为3时,求a+c的值.重点突破——忽视三角形中的边角条件致错【问题诊断】考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件., 【防范措施】解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=3,b=2,1+2cos(B+C)=0,求边BC上的高.【试一试】(2011·辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,a sin A sin B+b cos2A=2a.(1)求b a ;(2)若c2=b2+3a2,求B.第7讲正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( ).A.50 2 m B.50 3 m C.25 2 m D.2522m2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为( ). A.α>β B.α=βC.α+β=90° D.α+β=180°3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A 在点B的( ).A.北偏东15° B.北偏西15°C.北偏东10°D.北偏西10°4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A.5海里B.53海里C.10海里D.103海里5.海上有A,B,C三个小岛,测得A,B两岛相距10海里,∠BAC=60°,∠ABC =75°,则B,C间的距离是________海里.考向一测量距离问题【例1】►如图所示,为了测量河对岸A,B两点间的距离,在这岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.【训练1】如图,A,B,C,D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶,测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B、D间距离与另外哪两点间距离相等,然后求B,D的距离.考向二测量高度问题【例2】►如图,山脚下有一小塔AB,在塔底B测得山顶C的仰角为60°,在山顶C测得塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.【训练2】如图所示,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.考向三正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.【训练3】如图,在△ABC中,已知∠B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.重点突破——如何运用解三角形知识解决实际问【问题研究】1.解三角形实际应用问题的一般步骤是:审题————求解——检验作答;2.三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?【试一试】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,求cos θ.。
2021版江苏高考数学复习讲义:三角函数的图象与性质含答案
2.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是 .π [T =2π2=π.]3.y =sin ⎝⎛⎭⎪⎫2x -π4的单调减区间是 .⎣⎢⎡⎦⎥⎤3π8+kπ,7π8+kπ(k ∈Z ) [由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z 得3π8+k π≤x ≤7π8+k π,k ∈Z .] 4.y =3sin ⎝⎛⎭⎪⎫2x -π6在区间上的值域是 .考点1 三角函数的定义域和值域D [由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z , 即x ≠kπ2+π6(k ∈Z ),故选D.] 2.(20xx·全国卷Ⅰ)函数f (x )=sin⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为 . -4 [f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令cos x =t ,则t ∈[-1,1].f (t )=-2t 2-3t +1=-2⎝⎛⎭⎪⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.] 3.已知函数f (x )=2a sin ⎝⎛⎭⎪⎫2x +π6+a +b (a <0)的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],则a +b = .-1 [因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.]4.函数y =sin x -cos x +sin x cos x 的值域为 .[设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sinx ·cos x ,sin x cos x =1-t22,且-2≤t ≤2. ∴y =-t22+t +12=-12(t -1)2+1,t ∈[-2,2]. 当t =1时,y max =1;当t =-2时,y min =-12-2.∴函数的值域为.]求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值.考点2 三角函数的单调性(1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )(2)(20xx·大连模拟)函数y =12sin x +32cos x 的单调递增区间是 .(1)B (2) [(1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得kπ2-π12<x <kπ2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫kπ2-π12,kπ2+5π12(k ∈Z ),故选B.(2)∵y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2kπ-5π6≤x≤2kπ+π6(k∈Z).∴函数的单调递增区间为 (k∈Z),又x∈,∴单调递增区间为.]本例(2) 在整体求得函数y=1 2sin x+32cos x的增区间后,采用对k赋值的方式求得x∈上的区间.根据函数的单调性求参数1.若函数f (x )=sinωx (ω>0)在区间上单调递增,在区间上单调递减,则ω= .32 [由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.] 2.函数f (x )=sin ⎝⎛⎭⎪⎫-2x+π3的单调减区间为 .[由已知,得函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为(k ∈Z ).]考点3 三角函数的周期性、奇偶性、对称性。
考点13 三角函数定义——2021年高考数学专题复习讲义附解析
考点13 三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为 。
【答案】180135,k k Z ⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈, 角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是 。
A .2k π与()2k k Z ππ+∈ B .3±k ππ与()3k k Z π∈ C .()21+k π与 ()()41k k Z π±∈ D .6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍, 所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,则3±k ππ与()3k k Z π∈的终边不一定相同; 对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=-,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与 ()()41k k Z π±∈的终边相同; 对于D 选项,显然,,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是 。
高考数学一轮复习三角函数与解三角形多选题(讲义及答案)及答案
高考数学一轮复习三角函数与解三角形多选题(讲义及答案)及答案一、三角函数与解三角形多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +的最大值为312B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为223+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 的面积为313- 【答案】ACD 【分析】利用三角形面积公式,余弦定理基本不等式,以及三角换元,数形结合等即可判断选项A ;利用勾股定理的逆定理即可判断选项B ;利用正弦定理和三角恒等变换公式即可判断选项C ;由已知条件可得ABC 是直角三角形,从而可以求出其内切圆的半径,即可得AOB 的面积即可判断选项D. 【详解】 对于选项A :2221sin 1sin 222cos 2222cos bc AS A b c a bc b c bc A bc Ac b==⨯++-+++- 1sin 4cos 2A A ≤-⨯-(当且仅当b c =时取等号).令sin A y =,cos A x =,故21242S ya bc x ≤-⨯+-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-上,表示圆弧上一点到点()2,0A 点的斜率,数形结合可知,当且仅当目标函数过点12H ⎛ ⎝⎭,即60A =时,取得最小值-故可得,023yz x ⎡⎫=∈-⎪⎢⎪-⎣⎭,又21242S yx bc x ≤-⨯+-,故可得2124S a bc ⎛≤-⨯= +⎝⎭, 当且仅当60A =,b c =,即三角形为等边三角形时,取得最大值,故选项A 正确; 对于选项B :因为sin 2sin B C =,所以由正弦定理得2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得c =,故选项B 错误; 对于选项C ,由2A C =,可得π3B C =-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b c B C=,即()2sin π3sin c c C C =-, 所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =,因为2b c =,所以B C >,所以cos C =,则1sin 2C =,所以sin 2sin 1B C ==,所以π2B =,π6C =,π3A =,因为2a =,所以3c =,b =,所以ABC 的周长为2+,故选项C 正确; 对于选项D ,由C 可知,ABC 为直角三角形,且π2B =,π6C =,π3A =,3c =,b =,所以ABC 的内切圆半径为1212333r ⎛⎫=+-=- ⎪ ⎪⎝⎭,所以ABC 的面积为11122cr ⎛== ⎝⎭所以选项D 正确, 故选:ACD 【点睛】关键点点睛:本题的关键点是正余弦定理以及面积公式,对于A 利用面积公式和余弦定理,结合不等式得21sin 1sin 224cos 222cos S A Ab c a bc A A c b=⨯≤-⨯+-++-,再利用三角换元、数形结合即可得证,综合性较强,属于难题.3.设函数()sin 6f x M x πω⎛⎫=+ ⎪⎝⎭(0,0)M ω>>的周期是π,则下列叙述正确的有( )A .()f x 的图象过点10,2⎛⎫ ⎪⎝⎭B .()f x 的最大值为MC .()f x 在区间2,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心 【答案】BCD 【分析】已知只有周期的条件,只能求出ω,其中M 未知;A 选项代值判定;B 选项由解析式可知;C 选项由()f x 的单调递减区间在32,2,22k k k Z ππππ⎛⎫++∈ ⎪⎝⎭上化简可得;D 选项由()f x 的对称中心为(),0,k k Z π∈化简可得. 【详解】 由题可知2T ππω==,解得2ω=,即()sin 26f x M x π⎛⎫=+ ⎪⎝⎭当0x =时,()0sin 20sin 662Mf M M ππ⎛⎫=⨯+== ⎪⎝⎭,故选项A 错误; 因为()sin 26f x M x π⎛⎫=+⎪⎝⎭,所以最大值为M ,故选项B 正确; 由解析式可知()f x 在3222,262k x k k Z πππππ+≤+≤+∈ 即2,63x k k ππππ⎡⎤∈++⎢⎥⎣⎦上单调递减,当0k =时,选项C 正确; 由解析式可知()f x 的对称中心的横坐标满足26x k ππ+=,即212k x ππ=- 当1k =时,512x π=,对称中心为5,012π⎛⎫⎪⎝⎭,故选项D 正确. 故选:BCD 【点睛】本题考查()()sin f x A x =+ωϕ型三角函数的性质,其中涉及最值、对称轴、对称中心,属于较难题.4.已知2π-<θ2π<,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .﹣3 B .13C .13-D .12-【答案】CD 【分析】先由已知条件判断cos 0θ>,sin 0θ<,得到sin 1tan 0cos θθθ-<=<,对照四个选项得到正确答案. 【详解】∵sin θ+cos θ=a ,其中a ∈(0,1),∴两边平方得:1+22sin cos =a θθ,∴21sin cos =02a θθ-<,∵22ππθ-<<,∴可得cos 0θ>,sin 0θ<,∴sin tan 0cos θθθ=<, 又sin θ+cos θ=a 0>,所以cos θ>﹣sin θ,所以sin tan 1cos θθθ=>- 所以sin 1tan 0cos θθθ-<=<, 所以tan θ的值可能是13-,12-.故选:CD 【点睛】关键点点睛:求出tan θ的取值范围是本题解题关键.5.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫⎪⎝⎭上单调递增 【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =, 设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭. 令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确; 由()02cos 36f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y 3B 正确; 由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.对于函数()sin cos 2sin cos f x x x x x =++,下列结论正确的是( ) A .把函数f (x )的图象上的各点的横坐标变为原来的12倍,纵坐标不变,得到函数g (x )的图象,则π是函数y =g (x )的一个周期 B .对123,,2x x ππ⎛⎫∀∈ ⎪⎝⎭,若12x x <,则()()12f x f x < C .对,44x f x f x ππ⎛⎫⎛⎫∀∈-=+ ⎪ ⎪⎝⎭⎝⎭R 成立D .当且仅当,4x k k Z ππ=+∈时,f (x )1【答案】AC 【分析】根据三角函数的变换规则化简即可判断A ;令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,()21f t t t =+-,判断函数的单调性,即可判断B ;代入直接利用诱导公式化简即可;首先求出()f t 的最大值,从而得到x 的取值; 【详解】解:因为()2()sin cos 2sin cos sin cos sin cos 1f x x x x x x x x x =++=+++-,令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,所以t ⎡∈⎣,所以()21f t t t =+-, 对于A :将()sin cos 2sin cos f x x x x x =++图象上的各点的横坐标变为原来的12倍,则()sin 2cos 22sin 2cos 2g x x x x x =++,所以()()()()()sin 2cos22sin 2cos2g x x x x x πππππ+=++++++()sin 2cos22sin 2cos2x x x x g x =++=,所以π是函数y =g (x )的一个周期,故A 正确;对于B :因为3,2x ππ⎛⎫∈ ⎪⎝⎭,所以57,444x πππ⎛⎫+∈ ⎪⎝⎭,则)14t x π⎛⎫⎡=+∈- ⎪⎣⎝⎭在5,4ππ⎛⎫ ⎪⎝⎭上单调递减,在53,42ππ⎛⎫⎪⎝⎭上单调递增, 又()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,对称轴为12t =-,开口向上,函数()21f t t t =+-在)1⎡-⎣上单调递减, 所以函数()f x 在5,4ππ⎛⎫ ⎪⎝⎭上单调递增,在53,42ππ⎛⎫⎪⎝⎭上单调递减, 故B 错误; 对于C :sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=----⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭sin c 4os 2sin cos 4444f x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝+⎝⎭⎝⎭⎭⎝⎭+⎝⎭c 2424242sin os 2sin cos 4x x x x ππππππππ⎥++⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-------- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦4444sin cos 2sin cos 4x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----=- ⎪ ⎪ ⎪ ⎪ ⎪=⎝⎭⎝⎭⎝⎭⎝⎭⎝+⎭+,故C 正确;因为()2215124f t t t t ⎛⎫=+-=+- ⎪⎝⎭,t ⎡∈⎣,当t =时()f t 取得最大值()max 1f t =,令4t x π⎛⎫=+= ⎪⎝⎭sin 14x π⎛⎫+= ⎪⎝⎭,所以2,42x k k Z πππ+=+∈,解得2,4x k k Z ππ=+∈,即当2,4x k k Z ππ=+∈时,函数()f x1,故D 错误;故选:AC 【点睛】本题考查三角函数的综合应用,解答的关键是换元令sin cos t x x =+,将函数转化为二次函数;7.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫-⎪⎝⎭D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD 【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫ ⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确. 【详解】由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫⎪⎝⎭, 最小正周期414433T ⎛⎫=-=⎪⎝⎭,B 正确; 选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD. 【点睛】 思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.8.设函数()()1sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD 【分析】化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误. 【详解】()11sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+>⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确; 对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误; 对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<,此时,函数()f x 在区间0,2π⎛⎫⎪⎝⎭上不单调,C 选项错误. 故选:AD. 【点睛】关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.二、数列多选题9.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212x f x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.10.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=, 所以()()()212342122n n n n T b b b b b b -=++++++=, 当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=- ⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.。
2021版新高考数学一轮复习讲义:第三章第四讲三角函数的图象与性质(含解析)
6.(2019 ·全国卷Ⅰ, 5 分 )关于函数 f(x)= sin |x|+ |sin x|有下述四个结论: ①f (x)是偶函数 ②f (x)在区间 (π2, π)上单调递增 ③f (x)在 [- π, π有] 4 个零点 ④f (x)的最大值为 2 其中所有正确的结论的编号是 ( C )
A .①②④ C.①④
单调递减,故 B 不正确; C 中,函数 f( x)= cos |x|= cos x 的周期为 2 π,故 C 不正确; D 中, f(x)
sin x, x≥ 0, = sin |x|=
- sin x, x<0,
由正弦函数图象知,在
x≥ 0 和 x<0 时, f(x)均以 2 π为周期,但在
整个定义域上 f(x) 不是周期函数,故 D 不正确,故选 A .
__2π__
(k2π, 0), k∈ Z 无对称轴 __π__
重要结论
1.函数 y= sin x, x∈ [0,2 π的]五点作图法的五个关键点是 0)__、 __(32π,- 1)__、 __(2 π,0)__.
__(0,0)__、
__(
π, 2
1)__
、
__(
π,
函数 y= cos x,x∈ [0,2 π的]五点作图法的五个关健点是 __(0,1)__ 、 __(π, 0)__、 __( π,- 2
Z)__.
π
π
3π
[解析 ] 函数 y= 3- 2cos (x+ 4)的最大值为 3+ 2=5,此时 x+ 4= π+2kπ,k∈ Z ,即 x= 4
+ 2kπ(k∈ Z).
题组三 考题再现
5.(2019 ·全国卷Ⅱ, 5 分 )下列函数中,以 π2为周期且在区间 (π4,π2)上单调递增的是 ( A )
2021高考数学一轮复习统考第4章三角函数、解三角形第1讲任意角和弧度制及任意角的三角函数课件北师大版
度制不能混用,所以只有答案 C 正确.
解析 答案
4.若 sinθcosθ<0,则角 θ 是( A.第一或第二象限角 C.第三或第四象限角
) B.第二或第三象限角 D.第二或第四象限角
sinθ>0, sinθ<0,
解析 因为 sinθcosθ<0,所以
或
所以角 θ 是第二
cosθ<0
cosθ>0.
或第四象限角.故选 D.
(2)终边相同的角:所有与角 α 终边相同的角,连同角 α 在内,可构成
一个集合 S={β|β=α+k·360°,k∈Z}.
2.弧度的定义和公式 (1)定义:长度等于 06 __半__径__长___的弧所对的圆心角叫做 1 弧度的角, 弧度记作 rad. (2)公式:①弧度与角度的换算:360°= 07 _2_π__弧度;180°= 08 _π_弧度;
解法二:在集合 M 中,x=2k·180°+45°=k·90°+45°=45°·(2k+1),2k +1 是奇数;在集合 N 中,x=4k·180°+45°=k·45°+45°=(k+1)·45°,k+1 是整数,因此必有 M N.故选 B.
解析
(2)已知角 α 的终边在第二象限,则α2的终边在第__一_或__三___象限.
解析 答案
5.单位圆中,200°的圆心角所对的弧长为( )
A.10π
B.9π
9π C.10
D.109π
解析 单位圆的半径 r=1,200°的弧度数是 200×1π80=109π,由弧度数
的定义得190π=rl,所以 l=190π.
解析 答案
6.(2019·三明模拟)若 420°角的终边所在直线上有一点(-4,a),则 a 的值为_-__4___3__.
2021高考数学一轮总复习课件(北师大版):第四章 三角函数、三角恒等变形、解三角形-3.ppt
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[答案] 1.(0,0) 2π,1 (π,0) 32π,-1 (2π,0)
2
.
x
=
kπ
+
π 2
(k
∈
Z)
(kπ , 0)(k ∈ Z)
x = kπ(k ∈ Z)
kπ+π2,0(k∈Z) k2π,0(k∈Z) 2kπ-π2 , 2kπ+π2(k∈Z)
第四章 第三节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
课前自主导学
第
知识梳理 1.“五点法”作图原理 在确定正弦函数 y=sinx 在[0,2π]上的图像形状时,起关 键作用的五个点是______、______、______、______、______.
A.y=sinx
B.y=cosx
C.y=sin2x D.y=cos2x
[答案] D
第四章 第三节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] y=sinx 和 y=cosx 在[2π,π]上是减少的,y=sin2x 在[2π,π]上不单调,y=cos2x 在[π2,π]上是增加的.
第四章 第三节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
3.函数 y=cos(2x+2π)的图像的一条对称轴方程是( )
A.x=-π2
B.x=-π4
C.x=8π
D.x=π
[答案] B
第四章 第三节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
[解析] 令 2x+π2=kπ(k∈Z). 即 x=k2π-4π(k∈Z),检验知,x=-π4.故选 B.
第四章 第三节
走向高考 ·高考一轮总复习 ·北师大版 ·数学
2021届新高考数学一轮课件:第三章+第1讲+弧度制与任意角的三角函数
(2)给出下列四个命题:
四象限角;④-315°是第一象限角.
其中正确命题的个数有( )
A.1 个
B.2 个
C.3 个
D.4 个
三象限角,故②正确.-400°=-360°-40°,故③正确.-315° =-360°+45°,从而④正确.故选 C.
答案:C
【规律方法】在0°到360°范围内找与任意一个角终边相 同的角时,可根据实数的带余除法进行.因为任意一个角α均可写
图 3-1-1 ③确定区域:找出与角α所在象限标号一致的区域,即为 所求.
①画出区域:将坐标系每个象限三等分,得到 12 个区域; ②标号:自 x 轴正向逆时针方向把每个区域依次标上一, 二,三,四(如图 3-1-2):
图 3-1-2 ③确定区域:找出与角α所在象限标号一致的区域,即为所 求.
【跟踪训练】 1.(多选)下列各式中,计算结果为负数的是( )
3.(2016 年江西模拟)下列说法中,正确的是( )
B.第一象限的角不可能是负角 C.终边相同的两个角的差是 360°的整数倍 D.若α是第一象限角,则 点 1 角的概念 例 1:(1)①写出与-1840°终边相同的角的集合 M; ②把-1840°的角写成 k·360°+α(0°≤α<360°)的形式; ③若角α∈M,且α∈[-360°,360°],求角α.
答案:C
(3)(2018年东北三省四校模拟)已知角α的终边经过点 P(4a,3a)(a<0),则 25sin α-7tan 2α的值为________.
答案:-39
【规律方法】任意角的三角函数值,只与角的终边位置有 关,而与角的终边上点的位置无关.当角α的终边上的点的坐标 以参数形式给出时,由于参数 t 的符号不确定,故用分类讨论 的思想,将t 分为t>0 和t<0 两种情况,这是解决本题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点13 三角函数定义【思维导图】
【常见考法】
考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。
2.下列各组角中,终边相同的角是 。
A .
2k π与()2
k k Z π
π+∈ B .3
±
k π
π与
()3
k k Z π
∈ C .()21+k π与 ()()41k k Z π±∈ D .6
k ππ+与()6k k Z π
π±∈
3.已知集合|22,4
2k k k Z π
π
απαπ⎧⎫
+
≤≤+
∈⎨⎬⎩
⎭
则角α的终边落在阴影处(包括边界)的区域是 。
A . B .
C .
D .
4.集合M={|,24k x x k ππ=+∈Z},N={|,4
k x x k π
=∈Z},则 。
A .M ⊆N
B .N ⊆M
C .M N=ϕ
D .M
N=R
考点二:三角函数定义
1.角α的终边经过点(2,﹣1),则2sinα+3cosα的值为 。
2.已知角θ的终边经过点P (4,m ),且sinθ=3
5
,则m 等于 。
3.若点(),P x y 是330角终边上异于原点的任意一点,则y
x
的值是 。
4.在平面直角坐标系中,点()1,2A 是角α终边上的一点,点()1,1B -是角β终边上的一点,则()cos αβ-的值是 。
5如图,在平面直角坐标系xOy 中,第一象限内的点11(,)A x y 和第二象限内的点22(,)B x y 都在单位圆O 上,
AOx α∠=,3
AOB π
∠=
.若212
13
y =
,则1x 的值为 。
6.0,t <设点2,12t P t ⎛⎫
+ ⎪⎝
⎭是角α终边上一点,当OP 最小时,cos α的值是 。
7.已知β为锐角,角α的终边过点(3,4),sin (α+β)=
2
,则cosβ= 。
考点三:三角函数值的正负(或象限)判断
1.若sin tan 0θθ⋅>,则θ所在的象限是( ) A .二、四 B .一、二
C .一、四
D .二、三
2.若α是第二象限角,则点()sin ,cos P αα在 ( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.若cos 0θ<且tan 0θ<,则2
θ
终边在( ) A .第一象限 B .第二象限
C .第一或第三象限
D .第三或第四象限
4.若α是第三象限角,则y =sin
2sin 2α
α+cos
2cos
2
α
α的值为( ) A .0 B .2
C .-2
D .2或-2
5.如果sinα<0,tanα>0,那么角
2
α
的终边在( ) A .第一或第三象限 B .第二或第四象限 C .第一或第二象限 D .第三或第四象限
6.如果θ是第二象限角,
且cos sin
2
2
θ
θ
-=那么2θ
所在象限为第几象限
A .一
B .二
C .三
D .四
考点四:三角函数线
1.若MP 和OM 分别是角76
π
的正弦线和余弦线,则( ) A .0MP OM << B .0OM MP >>
C .0OM MP <<
D .0MP OM >>
2.在()0,2π内,使sin cos x x >成立的x 的取值范围为( ) A .(,)4
π
π
B .5(
,)44
ππ C .5(,)424ππ
ππ⎛⎫
⋃ ⎪⎝
⎭
, D .53(
,)444
π
πππ⎛⎫
⋃ ⎪⎝⎭
,
3.若点(),P sin cos tan ααα-在第一象限, 则在[0,2)π内α的取值范围是( ). A .5,,
424ππππ⎛⎫⎛⎫
⎪ ⎪⎝⎭⎝
⎭ B .35,,244
ππππ⎛⎫⎛⎫ ⎪
⎪⎝⎭
⎝⎭
C .353,,2442ππππ⎛⎫⎛⎫ ⎪
⎪⎝⎭
⎝⎭
D .33,,244ππππ⎛⎫⎛⎫
⋃
⎪
⎪⎝⎭⎝⎭
4.比较大小,正确的是( ). A .sin(5)sin3sin5-<< B .sin(5)sin3sin5->> C .sin3sin(5)sin5<-< D .sin3sin(5)>sin5>-
5.函数
y =
的定义域为____________.。