机械振动学复习试题

合集下载

机械振动学试题库

机械振动学试题库

《机械振动学》课程习题库第一章1.1 何谓机械振动?表示物体运动特征的物理量有哪些? 1.2 按产生振动的原因分为几类?按振动的规律分为几类? 1.3 何谓线性系统、机械系统和等效系统?1.4 如何理解瞬态振动、稳态振动、自由振动、强迫振动、纵向振动。

横向振动、扭转振动、参数振动和非线性振动?1.5 写出频率、角频率、相位、幅值、有阻尼固有频率,并说明意义,注明单位值。

1.6 如何理解粘性阻尼系数、等效阻尼、临界阻尼系数、欠阻尼和过阻尼? 1.7 振动对机械产品有哪些影响?1.8 利用振动原理而工作的机电设备有哪些?试举例说明。

1.9 重温非简谐的周期性振动傅里叶级数,时间函数为f(t),其周期为T ,表达式为:)s i n c o s ()(10t n b t n an a t f n n ωω++=⎰∞=式中:⎰=Tdt t f Ta 00)(1⎰=Tn tdt n t f T a 0cos )(2ω⎰=Tn tdt n t f T b 0sin )(2ω 注:《手册》P91.10将下图所示的f(t)展成傅立叶级数。

参考答案:()∑∞===5.2.1sin 1440t np t f n pb n b n n n ωππ傅氏级数为奇数时,,当为偶数时,当 f(t)P 0 -Pπ/ω2π/ω 3π/ω 4π/ωt1.11今有一简谐位移x(t)(mm),其表达式为:()=8sin(24 -),3x t t π求:1. 振动的频率和周期;2. 最大位移、最大速度和最大加速度;3. t=0时的位移、速度和加速度;4. t=1.5s 时的位移、速度和加速度。

参考答案:24rad/s ,3.82Hz ,0.2618s ;192mm/s ,4608mm/s 2;-6.9282mm ,96mm/s ,3990.65 mm/s 2 ;-3.253mm ,175.4mm/s ,1874 mm/s 21.12一振动体作频率为50Hz 的简谐振动,测得其加速度为80 m/s 2 ,求它的位移幅值和速度幅值。

机械振动考试题和答案

机械振动考试题和答案

机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。

A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。

A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。

A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。

B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。

A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。

机械振动期末考试题及答案

机械振动期末考试题及答案

机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。

答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。

答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。

大学机械振动考试题目及答案

大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。

A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。

A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。

A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。

A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。

答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。

答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。

答案:线性9. 振动系统的动态响应可以通过______分析法求解。

答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。

答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。

答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。

在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。

12. 解释什么是阻尼振动,并说明其特点。

答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。

其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。

13. 描述什么是受迫振动,并给出其稳态响应的条件。

答案:受迫振动是指系统在周期性外力作用下的振动。

当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。

机械行业振动力学期末考试试题

机械行业振动力学期末考试试题

机械行业振动力学期末考试试题第一大题:单自由度振动1.无阻尼自由振动系统,在初始时刻位移为A,速度为0,求解该振动系统的解析解。

2.阻尼比为0.2的单自由度振动系统受到正弦激励力,激励力的频率为系统固有频率的两倍,求解该振动系统的响应。

3.阻尼比为0.5的单自由度振动系统受到冲击激励力,激励力的持续时间为0.1秒,求解该振动系统的响应。

第二大题:多自由度振动1.有两个自由度的系统,求解其固有频率和模态振型。

2.有三个自由度的系统,求解其固有频率和模态振型。

3.给定一个多自由度振动系统的质量矩阵和刚度矩阵,求解其特征值和特征向量,进而得到固有频率和模态振型。

第三大题:振动测量与分析1.请列举常用的振动测量仪器,并对其原理进行简要说明。

2.振动信号的采样频率应该如何选择?请解释原因。

3.请说明振动信号的功率谱密度函数,并给出其计算公式。

4.请解释振动传感器的灵敏度是什么意思,并给出其计算公式。

第四大题:振动控制1.请说明主动振动控制和被动振动控制的区别。

2.请解释模态分析在振动控制中的作用。

3.请列举常用的振动控制方法,并对其原理进行简要说明。

第五大题:振动摆1.请列举用振动摆进行的实验,并对其原理进行简要说明。

2.请解释摇摆周期与摆长的关系,并给出相关公式。

3.一个摆长为1m的振动摆,其重力加速度为9.8m/s^2,求解其摇摆周期。

本文档由Markdown格式输出。

Markdown是一种轻量级的标记语言,常用于编写文档和博客。

可通过Markdown编辑器进行编辑和输出。

以上是机械行业振动力学期末考试试题的内容。

希望对您的学习有所帮助!。

机械振动试题及答案

机械振动试题及答案

机械振动试题及答案⼀、填空题1、机械振动按不同情况进⾏分类⼤致可分成(线性振动)和⾮线性振动;确定性振动和(随机振动);(⾃由振动)和强迫振动,连续振动和离散系统。

2、(弹性元件)元件、(惯性元件)元件、(阻尼元件)元件是离散振动系统的三个最基本元素。

3、在振动系统中,弹性元件存储(势能)、惯性元件存储(动能)、(阻尼元件)元件耗散能量。

4、系统固有频率主要与系统的(质量)和(刚度)有关,与系统受到的激励⽆关。

5、研究随机振动的⽅法是(数理统计),⼯程上常见的随机过程的数字特征有:(均值)(⽅差)(⾃相关函数)和(互相关函数)。

6、周期运动的最简单形式是(简谐运动),它是时间的单⼀(正弦)或(余弦)函数。

7、单⾃由度系统⽆阻尼⾃由振动的频率只与(质量)和(刚度)有关,与系统受到的激励⽆关。

8、简谐激励下单⾃由度系统的响应由(瞬态响应)和(稳态响应)组成。

9、⼯程上分析随机振动⽤(数学统计)⽅法,描述随机过程的最基本的数字特征包括均值、⽅差、(⾃相关函数)和(互相关函数)。

10、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

11、单位脉冲⼒激励下,系统的脉冲响应函数和系统的(频响函数)函数是⼀对傅⾥叶变换对,和系统的(传递函数)函数是⼀对拉普拉斯变换对。

12、叠加原理是分析(线性振动系统)和(振动性质)的基础。

⼆、简答题1、什么是机械振动?振动发⽣的内在原因是什么?外在原因是什么?答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。

振动发⽣的内在原因是机械或结构具有在振动时储存动能和势能,⽽且释放动能和势能并能使动能和势能相互转换的能⼒。

外在原因是由于外界对系统的激励或者作⽤。

2、机械振动系统的固有频率与哪些因素有关?关系如何?答:机械振动系统的固有频率与系统的质量矩阵、刚度矩阵和阻尼有关。

质量越⼤,固有频率越低;刚度越⼤,固有频率越⾼;阻尼越⼤,固有频率越低。

3、从能量、运动、共振等⾓度简述阻尼对单⾃由度系统振动的影响。

机械振动期末试题及答案

机械振动期末试题及答案

机械振动期末试题及答案1. 选择题1.1 哪种情况下,系统的振动是简谐振动?A. 有耗尽能量的情况B. 存在非线性的力恢复系统中C. 无外部干扰D. 系统的振幅随时间而增长答案:C1.2 振动系统达到稳态的条件是:A. 初始位移为零B. 扰动力为零C. 初始速度为零D. 振幅随时间减小答案:B1.3 一个简谐振动的周期与振幅的关系是:A. 周期与振幅无关B. 周期与振幅成正比C. 周期与振幅成反比D. 周期与振幅正弦相关答案:A2. 判断题2.1 简谐振动的周期和角频率之间满足正比关系。

A. 对B. 错答案:B2.2 简谐振动的中心力是恒力。

A. 对B. 错答案:A2.3 当振动系统有阻尼情况时,振幅会随时间增大。

A. 对B. 错答案:B3. 简答题3.1 什么是简谐振动?它的特点是什么?答案:简谐振动是指振动系统在没有外力干扰的情况下,其平衡位置附近以某一频率固定幅度上下振动的现象。

它的特点包括振动周期与振幅无关,且系统的振动可由正弦或余弦函数进行描述。

3.2 请简要说明受迫振动的原理。

答案:受迫振动是指振动系统在外力作用下的振动。

外力的频率与系统的固有频率相近或相等时,会发生共振现象。

在共振时,外力的能量会以最大幅度传递给振动系统,导致振动幅度增大。

4. 计算题4.1 一个弹簧振子平衡位置附近的势能函数为U(x) = 4x^2 + 3,求振子的振动周期。

答案:根据简谐振动的势能函数表达式,势能函数为U(x) =1/2kx^2,其中k为弹簧的劲度系数。

将已知的势能函数与标准表达式进行比较,可得4x^2 = 1/2kx^2,解得k = 8。

由振动周期公式T =2π√(m/k),代入m和k的值,可计算出振子的振动周期。

5. 算法题设计一个程序,计算一个简谐振动系统的振动频率和振幅,并将结果打印输出。

// 输入参数float k; // 弹簧的劲度系数float m; // 系统的质量// 计算振动频率float omega = sqrt(k / m);// 计算振幅float A = 1; // 假设振幅为1// 打印输出结果print("振动频率:", omega);print("振幅:", A);经过以上计算,我们可以得到一个简谐振动系统的振动频率和振幅。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、单项选择题(每题3分,共30分)1. 简谐运动的振动周期与振幅无关,与以下哪个因素有关?A. 质量B. 弹簧常数C. 初始位移D. 初始速度答案:B2. 阻尼振动中,振幅逐渐减小的原因是:A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:A3. 以下哪个量描述了简谐运动的振动快慢?A. 振幅B. 周期C. 频率D. 相位答案:C4. 两个简谐运动的合成,以下哪个条件可以产生拍现象?A. 频率相同B. 频率不同C. 振幅相同D. 相位相反答案:B5. 以下哪个量是矢量?A. 位移B. 速度C. 加速度D. 以上都是答案:D6. 单摆的周期与以下哪个因素无关?A. 摆长B. 摆球质量C. 重力加速度D. 摆角答案:B7. 以下哪个量描述了简谐运动的能量?A. 振幅C. 频率D. 相位答案:A8. 以下哪个因素会影响单摆的周期?A. 摆长B. 摆球质量C. 摆角D. 重力加速度答案:A9. 阻尼振动中,振幅减小到原来的1/e时,经过的时间为:A. 1/2TB. TC. 2T答案:C10. 以下哪个现象不是简谐运动?A. 弹簧振子B. 单摆C. 弹簧振子的振幅逐渐减小D. 单摆的振幅逐渐减小答案:C二、填空题(每题4分,共20分)11. 简谐运动的周期公式为:T = 2π√(____/k),其中m为质量,k为弹簧常数。

答案:m12. 单摆的周期公式为:T = 2π√(L/g),其中L为摆长,g为重力加速度。

答案:L13. 阻尼振动的振幅公式为:A(t) = A0 * e^(-γt),其中A0为初始振幅,γ为阻尼系数,t为时间。

答案:A014. 简谐运动的频率公式为:f = 1/T,其中T为周期。

答案:1/T15. 简谐运动的相位公式为:φ = ωt + φ0,其中ω为角频率,t 为时间,φ0为初始相位。

答案:ωt + φ0三、计算题(每题10分,共50分)16. 一个质量为2kg的物体,通过弹簧连接在墙上,弹簧的弹簧常数为100N/m。

机械振动试题

机械振动试题

机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。

它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。

2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。

周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。

3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。

受迫振动是指机械振动系统受到外力周期性激励后产生的振动。

4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。

在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。

5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。

机械振动学(参考答案).docx

机械振动学(参考答案).docx

机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。

(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。

(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。

(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。

(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。

(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。

(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。

(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。

(X )9、隔振系统的阻尼愈大,则隔振效果愈好。

(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。

(J)二、计算题:1、一台面以f频率做垂直正弦运动。

如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。

所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。

的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。

试验装置如图1所示,记录其振动周期。

机械振动基础期末考试卷

机械振动基础期末考试卷

机械振动基础期末考试卷题目:机械振动基础期末考试卷一、选择题1. 机械振动的定义是什么?a. 物体在响亮的声音中发生摆动b. 物体在倾斜的表面上运动c. 物体在平衡位置附近的来回运动d. 物体围绕一个固定点旋转答案:c. 物体在平衡位置附近的来回运动2. 什么是自由振动?a. 机械振动源自外力的作用b. 物体在空气中飘浮运动c. 没有外界干扰下的振动d. 物体受到弹簧的牵引答案:c. 没有外界干扰下的振动3. 以下哪个量不是描述振动速度的?a. 频率b. 振幅c. 距离d. 波长答案:c. 距离4. 当一个物体受到周期性外力作用时,发生受迫振动,这类振动的特点是?a. 振幅不固定b. 振动频率与外力频率一致c. 没有固定的平衡位置d. 振动不受外力干扰答案:b. 振动频率与外力频率一致5. 振幅越大,振动的能量越大,对吗?a. 对b. 错答案:a. 对二、简答题1. 什么是简谐振动?简谐振动的特点是什么?答案:简谐振动是指物体受到恢复力作用,并且恢复力与位移成正比的振动。

简谐振动的特点包括振幅恒定、周期固定、频率稳定、能量守恒等。

2. 请简要说明自由振动和受迫振动的区别?答案:自由振动是物体在没有外界干扰下的振动,由初始位移和初速度决定。

受迫振动是物体受到外界周期性力作用导致的振动,振动频率与外力频率一致。

三、计算题1. 一个简谐振动的物体质量为2kg,弹簧劲度系数为100N/m,振幅为0.1m,求振动的周期。

答案:振动周期T = 2 * π * sqrt(m / k)其中,m = 2kgk = 100N/mT = 2 * π * sqrt(2 / 100)T ≈ 0.89s2. 一根弹簧的振动频率为10Hz,质量为0.5kg,求弹簧的劲度系数是多少?答案:振动频率f = 1 / 2π * sqrt(k / m)其中,f = 10Hzm = 0.5kgk = ?k = (2πf)^2 * mk = (2π*10)^2 * 0.5k = 628N/m以上为机械振动基础期末考试卷的答案,请同学们核对自己的答案,祝顺利通过考试!。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.如图所示,一根不计质量的弹簧竖直悬吊铁块M ,在其下方吸引了一磁铁m ,已知弹簧的劲度系数为k ,磁铁对铁块的最大吸引力等于3m g ,不计磁铁对其它物体的作用并忽略阻力,为了使M 和m 能够共同沿竖直方向作简谐运动,那么 ( )A .它处于平衡位置时弹簧的伸长量等于()2M m gk+B .振幅的最大值是()2M m gk+C .弹簧弹性势能最大时,弹力的大小等于()2M m g +D .弹簧运动到最高点时,弹簧的弹力等于02.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m 的A 、B 两物体,平衡后剪断A 、B 间细线,此后A 将做简谐运动。

已知弹簧的劲度系数为k ,则下列说法中正确的是( )A .细线剪断瞬间A 的加速度为0B .A 运动到最高点时弹簧弹力为mgC .A 运动到最高点时,A 的加速度为gD .A 振动的振幅为2mgk3.如图所示为甲、乙两等质量的质点做简谐运动的图像,以下说法正确的是()A .甲、乙的振幅各为 2 m 和 1 mB .若甲、乙为两个弹簧振子,则所受回复力最大值之比为F 甲∶F 乙=2∶1C .乙振动的表达式为x= sin4πt (cm ) D .t =2s 时,甲的速度为零,乙的加速度达到最大值 4.下列叙述中符合物理学史实的是( ) A .伽利略发现了单摆的周期公式B .奥斯特发现了电流的磁效应C .库仑通过扭秤实验得出了万有引力定律D .牛顿通过斜面理想实验得出了维持运动不需要力的结论5.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA6.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

最新机械振动学复习试题

最新机械振动学复习试题

(一)一、填空题(本题15分,每空1分)1、不同情况进行分类,振动(系统)大致可分成,( )和非线性振动;确定振动和( );( )和强迫振动;周期振动和( );( )和离散系统。

2、在离散系统中,弹性元件储存( ),惯性元件储存( ),( )元件耗散能量。

3、周期运动的最简单形式是( ),它是时间的单一( )或( )函数。

4、叠加原理是分析( )的振动性质的基础。

5、系统的固有频率是系统( )的频率,它只与系统的( )和( )有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、 简述机械振动的定义和系统发生振动的原因。

(10分)2、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(10分)4、 多自由系统振动的振型指的是什么?(10分) 三、计算题(本题30分) 1、 求图1系统固有频率。

(10分)2、 图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设1234t t t t k k k k k ====,123/5I I I I ===,求系统固有频率(10分)。

解:1)以静平衡位置为原点,设123,,I I I 的位移123,,θθθ为广义坐标,画出123,,I I I 隔离体,根据牛顿第二定律得到运动微分方程:1111212222213233333243()0()()0()0θθθθθθθθθθθθθ⎧++-=⎪+-+-=⎨⎪+-+=⎩t t t t t t I k k I k k I k k 图1图2所以:[][]12312222333340010000050;0000102101210012⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦t t t t t t t t t t I M I I I k k k K k k k k k k k k系统运动微分方程可写为:[][]1122330θθθθθθ⎧⎫⎧⎫⎪⎪⎪⎪+=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭M K ………… (a)或者采用能量法:系统的动能和势能分别为222112233111222T E I I I θθθ=++ 222211212323431111()()2222t t t t U k k k k θθθθθθ=+-+-+222121232343212323111()()()222t t t t t t t t k k k k k k k k θθθθθθθ=+++++--求偏导也可以得到[][],M K 。

机械振动复习题及解答

机械振动复习题及解答

1、某测量低频振动用的测振仪(倒置摆)如下图所示。

试根据能量原理推导系统静平衡稳定条件。

若已知整个系统的转动惯量23010725.1m kg I ⋅⨯=-,弹簧刚度m N k /5.24=,小球质量kg m 0856.0=,直角折杆的一边cm l 4=。

另一边cm b 5=。

试求固有频率。

kblθθI 0m解:弹性势能 2)(21θb k U k =,重力势能)cos (θl l mg U g --=总势能 m g l m g l kb U U U g k -+=+=θθcos 2122 代入0==ix x dxdU 可得0sin 2=-=θθθmgl kb d dU可求得0=θ满足上式。

再根据公式022>=ix x dx Ud 判别0=θ位置是否稳定及其条件:0)cos (202022>-=-===mgl kb mgl kb d U d θθθθ即满足mgl kb>2条件时,振动系统方可在0=θ位置附近作微幅振动。

系统的动能为 2210θ∙=I T代入0)(=+dtU T d 可得 0sin 20=-+∙∙θθθmgl kb I由0=θ为稳定位置,则在微振动时0sin ≈θ,可得线性振动方程为:0)(20=-+∙∙θθmgl kb I固有频率2I mglkb p -=代入已知数据,可得)/(410725.104.081.90856.005.05.2432s rad p =⨯⨯⨯-⨯=-2、用能量法解此题:一个质量为均匀半圆柱体在水平面上做无滑动的往复滚动,如上图所示,设圆柱体半径为R ,重心在c 点,oc=r,,物体对重心的回转体半径为L,试导出运动微分方程。

解:如图所示,在任意角度θ(t )时,重心c 的升高量为∆=r (1-cos θ)=2rsin 22θ取重心c 的最低位置为势能零点,并进行线性化处理,则柱体势能为 V=mg ∆=2mg r sin22θ ≈21mgr 2θ (a )I b =I c +m bc 2=m(L 2+bc 2) (b )bc 2=r 2+R 2-2rRcos θ(t) (c )而柱体的动能为 T=21I b ∙θ2把(b )式,(c )式两式代入,并线性化有T=21m[L 2+(R -r )2]∙θ2(d )根据能量守恒定理,有21m[L 2+(R -r )2]∙θ2+21mgr 2θ=E=const 对上式求导并化简,得运动微分方程为[L 2+(R -r )2]∙∙θ+gr θ=0 (e )3、一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。

7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。

8. 共振现象中,振子的振动频率等于系统的________频率。

9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。

10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。

三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。

答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。

2025届高考一轮复习练:专题07 机械振动 机械波(学生)

2025届高考一轮复习练:专题07 机械振动 机械波(学生)

专题07 机械振动 机械波航天技术(2023学年一模调研卷二5)从东方红一号到天宫空间站,我国的航天技术经过五十多年的发展,已达到了世界领先水平。

1. 航天员在空间站做了一系列实验。

(2)(多选)若航天员用弹簧振子做振动实验,得到振子的振动图线如图所示。

在 0 ~ 1.0 s 内,振子速度大小不断增大的时间段是 A .0 ~ 0.25 s B .0.25 ~ 0.5 s C .0.5 ~ 0.75 sD .0.75 ~ 1.0 s游泳(2023学年宝山二模二4)游泳是人凭借浮力,通过肢体有规律的运动使身体在水中运动的技能。

2. 一游客静止地漂浮在海滨浴场的水面上,发现一列水波平稳地向他传来,从第 1 个波峰通过他身体开始计时,到第 10 个波峰通过时恰好为 15 s 。

若该水波为简谐横波,则水波的频率为________Hz ,第 12 s 末时游客浮动的速度方向为________。

光波和机械波(2023学年崇明一模一3)光和机械波一样,都具有波的性质,他们不仅能够产生反射、折射,还能产生干涉和衍射,能够传递能量,携带信息。

3. 一列机械横波向右传播,在 t = 0 时的波形如图所示,A 、B 两质点间距为 8m ,B 、C 两质点在平衡位置的间距为 3 m ,当 t = 1 s 时,质点 C 恰好通过平衡位置,该波的波速可能为( ) A .13 m/sB .3 m/sC .13 m/sD .27 m/s0 t /sy /m0.2 1.0 0.5−0.2ABC v钟摆力学原理(2023学年崇明二模二6、7)摆钟是最早能够精确计时的一种工具。

十七世纪意大利天文学家伽利略研究了教堂里吊灯的运动,发现单摆运动具有等时性,后人根据这一原理制成了摆钟,其诞生三百多年来,至今还有很多地方在使用。

4. 把摆钟的钟摆简化成一个单摆。

如果一个摆钟,每小时走慢 1 分钟,可以通过调整钟摆来校准时间,则应该( ) A .增加摆长 B .增加摆锤质量 C .缩短摆长D .减小摆锤质量5. 如图,一单摆的摆长为 L ,摆球质量 m ,用力将摆球从最低点 A 在竖直平面内向右缓慢拉开一个偏角 θ(θ < 5°),到达 B 点后从静止开始释放。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。

图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。

已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。

(完整版)机械振动试题(参考答案)

(完整版)机械振动试题(参考答案)

机械振动基础试卷一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析( )系统的基础。

5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。

7、机械振动是指机械或结构在平衡位置附近的( )运动。

二、简答题(本题40分,每小题10分)1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)2、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程? (10分)3、 简述刚度矩阵[K]中元素k ij 的意义。

(10分)4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

(10分)三、计算题(45分) 3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m I 1和r 2、m 2、I 2。

轮2的轮缘上连接一刚度为k 的弹簧,轮1上有软绳悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。

3.2、(16分)如图所示扭转系统。

设转动惯量I 1=I 2,扭转刚度K r1=K r2。

1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分)3)求出系统的固有频率; (4分)4)求出系统振型矩阵,画出振型图。

(4分)3.3、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5分)2)求出固有频率; (5分)3)求系统的振型,并做图。

(5分)参考答案及评分细则:填空题(本题15分,每空1分)1、线性振动;随机振动;自由振动;2、势能;动能;阻尼图2图33、简谐运动;正弦;余弦4、线性5、刚度;质量6、频响函数;传递函数7、往复弹性简答题(本题40分,每小题10分)5、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

机械振动学机械振动学试卷(练习题库)(2023版)

机械振动学机械振动学试卷(练习题库)(2023版)

机械振动学机械振动学试卷(练习题库)1、机械振动系统的固有频率与哪些因素有关?关系如何?2、简述无阻尼单自由度系统共振的能量集聚过程。

3、什么是共振,并从能量角度简述共振的形成过程。

4、简述线性系统在振动过程中动能和势能之间的关系。

5、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?6、简述线性多自由度系统动力响应分析方法。

7、简述确定性振动和随机振动的区别,并说明工程上常见的随机过程的数字特征有哪些;各态遍历随机过程的主要8、简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

9、简述确定性振动和随机振动的区别,并举例说明。

10、离散振动系统的三个最基本元素是什么?简述它们在线性振动条件下的基本特征。

11、简述非周期强迫振动的处理方法。

12、用数学变换方法求解振动问题的方法包括哪几种?有什么区别?13、简述动力响应分析中采用振型叠加方法的基本过程。

14、简述线性系统在振动过程中动能和势能之间的关系。

15、当振动系统受到周期激励作用时,简述系统响应的求解方法。

16、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

17、在离散系统中,弹性元件储存(),惯性元件储存(),()元件耗散能量。

18、周期运动的最简单形式是(),它是时间的单一()或()函数。

19、叠加原理是分析O系统的基础。

20、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

21、系统的脉冲响应函数和O函数是一对傅里叶变换对,和O函数是一对拉普拉斯变换对。

22、机械振动是指机械或结构在平衡位置附近的()运动。

23、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

24、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?25、把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振26、如图所示,SKS2是两个相干波源,它们振动同步且振幅相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)一、填空题(本题15分,每空1分)1、不同情况进行分类,振动(系统)大致可分成,( )和非线性振动;确定振动和( );( )和强迫振动;周期振动和( );( )和离散系统。

2、在离散系统中,弹性元件储存( ),惯性元件储存( ),( )元件耗散能量。

3、周期运动的最简单形式是( ),它是时间的单一( )或( )函数。

4、叠加原理是分析( )的振动性质的基础。

5、系统的固有频率是系统( )的频率,它只与系统的( )和( )有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、 简述机械振动的定义和系统发生振动的原因。

(10分)2、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(10分)4、 多自由系统振动的振型指的是什么?(10分) 三、计算题(本题30分) 1、 求图1系统固有频率。

(10分)2、 图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设1234t t t t k k k k k ====,123/5I I I I ===,求系统固有频率(10分)。

解:1)以静平衡位置为原点,设123,,I I I 的位移123,,θθθ为广义坐标,画出123,,I I I 隔离体,根据牛顿第二定律得到运动微分方程:1111212222213233333243()0()()0()0θθθθθθθθθθθθθ⎧++-=⎪+-+-=⎨⎪+-+=⎩t t t t t t I k k I k k I k k 图1图2所以:[][]12312222333340010000050;0000102101210012⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦t t t t t t t t t t I M I I I k k k K k k k k k k k k系统运动微分方程可写为:[][]1122330θθθθθθ⎧⎫⎧⎫⎪⎪⎪⎪+=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭M K ………… (a)或者采用能量法:系统的动能和势能分别为222112233111222T E I I I θθθ=++ 222211212323431111()()2222t t t t U k k k k θθθθθθ=+-+-+222121232343212323111()()()222t t t t t t t t k k k k k k k k θθθθθθθ=+++++--求偏导也可以得到[][],M K 。

2)设系统固有振动的解为: 112233cos θθωθ⎧⎫⎧⎫⎪⎪⎪⎪=⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭u u t u ,代入(a )可得:[][]1223()0u K M u u ω⎧⎫⎪⎪-=⎨⎬⎪⎪⎩⎭………… (b)得到频率方程:222220()25002ωωωω--=---=--k Ik k k I k kk I即:222422()(2)(5122)0ωωωω=--+=k I I kI k解得:2ω=kI和22ω=k I所以:123ωωω=<=<= ………… (c)将(c )代入(b )可得:1 0-1 -0.22111.82111232025002⎡⎤--⎢⎥⎢⎥⎧⎫⎢⎥⎪⎪---=⎢⎥⎨⎬⎢⎥⎪⎪⎩⎭⎢⎥--⎢⎥⎢⎥⎣⎦k k I kI u kk k I k u I u k kk I I和1232202250022⎡⎤--⎢⎥⎧⎫⎢⎥⎪⎪⎢⎥---=⎨⎬⎢⎥⎪⎪⎢⎥⎩⎭⎢⎥--⎢⎥⎣⎦k k I k I u kk k I ku Iu k kk II 解得: 112131::1:1.82:1≈u u u ;122232::1:0:1u u u ≈-;132333::1:0.22:1≈-u u u ;令31u =,得到系统的三阶振型如图:四、证明题(本题15分)对振动系统的任一位移{}x ,证明Rayleigh 商{}[]{}(){}[]{}T T x K x R x x M x =满足221()nR x ωω≤≤。

这里,[]K 和[]M 分别是系统的刚度矩阵和质量矩阵,1ω和n ω分别是系统的最低和最高固有频率。

(提示:用展开定理1122{}{}{}......{}n n x y u y u y u =+++)‘ 证明:对系统的任一位移{x },Rayleigh 商}]{[}{}]{[}{)(x M x x K x x R TT = 满足221)(nx R ωω≤≤这里,[K ]和[M ]分别是系统的刚度矩阵和质量矩阵,1ω和n ω分别为系统的最低和最高固有频率。

证明:对振动系统的任意位移{x},由展开定理,{x}可按n 个彼此正交的正规化固有振型展开: ()1{}{}[]{}ni i i x y uu y ===∑其中:[u]为振型矩阵,{c}为展开系数构成的列向量:12{}{,,...,}T n y y y y =所以:{}[]{}{}[][][]{}(){}[]{}{}[][][]{}T T T T T Tx K x y u K u y R x x M x y u M u y ==由于:212100[][][]0000100[][][]0000T Tn u M u u K u ωω⎧⎡⎤⎪⎢⎥=⎪⎢⎥⎪⎢⎥⎣⎦⎨⎡⎤⎪⎢⎥=⎪⎢⎥⎪⎢⎥⎪⎣⎦⎩因此:21200{}00{}00{}[][][]{}(){}[][][]{}100{}00{}001T T T n T T T y y y u K u y R x y u M u y y y ωω⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦==⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦222222112222212......n n ny y y y y y ωωω+++=+++由于:22212...n ωωω≤≤≤所以:22221112211()nninii i nniii i yyR x yyωω====≤≤∑∑∑∑即:221)(n x R ωω≤≤证毕。

(二)一、填空题(本题15分,1空1分)1、机械振动是指机械或结构在(静平衡)附近的(弹性往复)运动。

2、按不同情况进行分类,振动系统大致可分成,线性振动和(非线性振动);确定性振动和随机振动;自由振动和和(强迫振动);周期振动和(非周期振动);(连续系统)和离散系统。

3、(惯性 )元件、(弹性 )元件、(阻尼 )元件是离散振动系统的三个最基本元素。

4、叠加原理是分析(线性振动系统 )的振动性质的基础。

5、研究随机振动的方法是(统计方法),工程上常见的随机过程的数字特征有:(均值),(方差),(自相关)和互相关函数。

6、系统的无阻尼固有频率只与系统的(质量)和(刚度)有关,与系统受到的激励无关。

二、简答题(本题40分,每小题5分) 1、简述确定性振动和随机振动的区别,并举例说明。

答:确定性振动的物理描述量可以预测;随机振动的物理描述量不能预测。

比如:单摆振动是确定性振动,汽车在路面行驶时的上下振动是随机振动。

2、简述简谐振动周期、频率和角频率(圆频率)之间的关系。

答:21T fπω==,其中T 是周期、ω是角频率(圆频率),f 是频率。

3、简述无阻尼固有频率和阻尼固有频率的联系,最好用关系式说明。

答:d ωω=,其中d ω是阻尼固有频率,n ω是无阻尼固有频率,ξ是阻尼比。

4、简述非周期强迫振动的处理方法。

答:1)先求系统的脉冲响应函数,然后采用卷积积分方法,求得系统在外加激励下的响应;2)如果系统的激励满足傅里叶变换条件,且初始条件为0,可以采用傅里叶变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做傅里叶逆变换,求得系统的时域响应;3)如果系统的激励满足拉普拉斯变换条件,且初始条件不为0,可以采用拉普拉斯变换的方法,求得系统的频响函数,求得系统在频域的响应,然后再做拉普拉斯逆变换,求得系统的时域响应;5、什么是共振,并从能量角度简述共振的形成过程。

答:当系统的外加激励与系统的固有频率接近时候,系统发生共振;共振过程中,外加激励的能量被系统吸收,系统的振幅逐渐加大。

6、简述刚度矩阵[K]的元素,i j k 的意义。

答:如果系统的第j 个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为保持系统这种变形状态需要在各个自由度施加外力,其中在第i个自由度上施加的外力就是kij 。

7、简述线性变换[U]矩阵的意义,并说明振型和[U]的关系。

答:线性变换[U]矩阵是系统解藕的变换矩阵;[U]矩阵的每列是对应阶的振型。

8、简述线性系统在振动过程中动能和势能之间的关系。

答:线性系统在振动过程中动能和势能相互转换,如果没有阻尼,系统的动能和势能之和为常数。

三、计算题(本题45分)1、设有两个刚度分别为1k ,2k 的线性弹簧如图1,计算它们并联时和串联时的总刚度eq k 。

(5分)图1 图2 图3 2、一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图2所示,求系统的固有频率。

(15分)3、求如图3所示的三自由度弹簧质量系统的固有频率和振型。

(25分)(设13;m m m ==22;m m = 14;k k k ==232;k k k ==563;k k k ==)1.解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x =⎧⎨=⎩ 由力的平衡有:1212()P P P k k x =+=+ 故等效刚度为:12eq Pk k k x==+2)对系统施加力P ,则两个弹簧的变形为:1122P x kP x k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:12211211eq k k P k x k k k k ===++2. 解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有θ转角时,系统有: 2222111()()222T E I m r I mr θθθ=+=+ 21()2U k r θ=由()0T d E U +=可知:22()0I mr kr θθ++=即:n ω=(rad/s )3.解:以静平衡位置为原点,设123,,m m m 的位移123,,x x x 为广义坐标,系统的动能和势能分别为=++222112233111222T E m x m x m x =+-+-+++22222112123234356211111()()()22222U k x k x x k x x k x k k x =+++++++--22212123562343212323111()()()222U k k x k k k k x k k x k x x k x x求偏导得到:[][]1231222235633340010000020;00001032021020023m M m m m k k k K k k k k k k k k k k ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦+--⎡⎤⎡⎤⎢⎥⎢⎥=-+++-=--⎢⎥⎢⎥⎢⎥⎢⎥-+-⎣⎦⎣⎦得到系统的广义特征值问题方程:[][]1223()0u K M u u ω⎧⎫⎪⎪-=⎨⎬⎪⎪⎩⎭和频率方程:2222320()210220023k m k k k m k k k mωωωω--=---=--即:222422()(3)(21622)0k m m km k ωωωω=--+=解得:2(4k mω=±和23k m ω=所以:123ωωω=<=<= 将频率代入广义特征值问题方程解得:112131::1:0.618:1u u u ≈;122232::1:0:1u u u ≈-;132333::0.618:1:0.618u u u ≈--;(三)一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

相关文档
最新文档