迈克尔逊干涉仪.共23页
迈克尔逊干涉仪,实验报告
迈克尔逊干涉仪,实验报告迈克尔孙干涉仪实验报告迈克耳孙干涉仪实验报告实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及光源的时间相干性,空间相干性等重要问题。
实验原理1. 迈克尔逊干涉仪的光路迈克尔逊干涉仪有多种多样的形式,其基本光路如图5.16.1所示。
从光源束光,在分束镜束1射出的半反射面发出的一上被分成光强近似相等的反射光束1和透射光束2。
反射光;光束2经过补偿板投向反射镜,反后投向反射镜,反射回来再穿过射回来再通过,在半反射面上反射。
于是,这两束相干光在空间相遇并产生干涉,通过望远镜或人眼可以观察到干涉条纹。
补偿板的材料和厚度都和分束镜相同,并且与分束镜平行放置,其作用是为了补偿反射光束1因在中往返两次所多走的光(来自: 写论文网:迈克尔逊干涉仪,实验报告)程,使干涉仪对不同波长的光可以同时满足等光程的要求。
2. 等倾干涉图样(1) 产生等倾干涉的等效光路如图2所示(图中没有绘出补偿板外,还可以看到镜经分束镜),观察者自点向镜看去,除直接看到镜的半反射面和反射的像。
这样,在观察者看来,两相干光束好象是由同一束光分别经涉仪所产生的干涉花样与形成时,只要考虑、、反射而来的。
因此从光学上来说,迈克尔逊干间的空气层所产生的干涉是一样的,在讨论干涉条纹的两个面和它们之间的空气层就可以了。
、和观察屏的相所以说,迈克尔逊干涉仪的干涉情况即干涉图像是由光源以及对配置来决定的。
(2) 等倾干涉图样的形成与单色光波长的测量当和镜垂直于镜时,与相互平行,相距为。
若光束以同一倾角入射在作垂直于光上,反射后形成1和两束相互平行的相干光,如图3所示。
过线。
因和之间为空气层,,则两光束的光程差为所以当固定时,由(1)式可以看出在倾角(1)相等的方向上两相干光束的光程差均相等。
由此可知,干涉条纹是一系列与不同倾角对应的同心圆形干涉条纹,称为等倾干涉条纹。
由于1、两列光波在无限远处才能相遇,因此,干涉条纹定域无限远处。
《迈克尔逊干涉仪》课件
提高测量精度的措施
使用高精度仪器
选择加工精度高、装配精度高的迈克 尔逊干涉仪,能够减少仪器本身带来 的误差。
细致调整
在实验前对迈克尔逊干涉仪进行细致 的调整,确保干涉条纹完全对齐,以 减小调整误差的影响。
控制环境因素
尽可能在恒温、无气流和振动的环境 中进行实验,以减小环境因素对实验 结果的影响。
重复测量
等方面将更加智能化和自动化。
03
多功能化与拓展应用
未来迈克尔逊干涉仪将进一步拓展应用领域,不仅局限于光学和物理学
,还将应用于化学、生物学等领域,实现更多功能和应用。
THANKS
感谢观看
折射率测量
迈克尔逊干涉仪可以用于测量介质的 折射率,这对于光学玻璃、晶体等材 料的检测和表征具有重要意义。通过 干涉仪测量折射率,可以获得高精度 的结果。
光学玻璃的检测
光学玻璃的折射率
迈克尔逊干涉仪可以用于检测光学玻璃的折射率,这对于光学仪器的制造和校准具有关键作用。通过干涉仪测量 折射率,可以确保光学元件的性能和精度。
光学玻璃的均匀性
迈克尔逊干涉仪还可以用于检测光学玻璃的均匀性,即检查玻璃内部是否存在杂质或气泡。通过观察干涉条纹的 变化,可以判断玻璃的质量和加工工艺。
物理实验中的重要工具
基础物理实验
迈克尔逊干涉仪是许多基础物理实验的重要工具,如光速的测量、光的波动性研究等。通过使用迈克 尔逊干涉仪,学生可以深入理解光的干涉原理和波动性质。
暗物质与暗能量研究
迈克尔逊干涉仪可以用于寻找暗物质和暗能量的线索,帮助解决宇宙 学中的重大问题。
迈克尔逊干涉仪在技术领域的应用前景
1 2 3
量子信息技术
迈克尔逊干涉仪是量子通信和量子计算中的关键 组件,对于量子密钥分发和量子纠缠态的制备具 有重要意义。
迈克尔逊干涉仪实(“干涉仪”相关文档)共10张
实验仪器
迈克尔逊干涉仪
M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 转动手轮,移动M1,使干涉条纹对比度为零(或最大),记下M1的位置d1。 熟悉迈克尔逊干涉仪的结构和工作原理; 微动手轮:每转一圈读数窗口内刻度盘转动一格,即M1移动0.
1018m83m年,物□理□由学读家数迈窗克口尔内逊刻和度莫盘雷读合出作。,为证明“以太”存在设计制造了第一台用于精密测量的干涉仪--迈克尔逊干涉仪,它是在平板或薄膜
干涉现象的基础上发展起来的。
测量三次取平均,有效数字取三位。
(λ1=589.0nm λ2=589.6nm)
5. 实验注意事项
光学元件表面严禁触摸,精密仪器操作耐心细致, 反射镜粗到微动螺丝不能出现拧紧拧死现象,出现不好调 节情况及时报告指导教师。
2
M1在位导置轨的上读由数粗为动:手××轮. 和微动手轮的转动而前后移动。
粗迈动克手 尔轮逊:还每用转该一干圈涉可仪动测全量反出镜太移阳动系以1m外m星,球读的数大窗小口。内刻度盘转动一圈共100个小格,每小格为0. 测再量继纳 续黄移光动双M1谱,线使的干波涉长条差纹;对比度再次为零(或最大),记下M1的位置d2。
半导体激光器 测量三次取平均,有效数字取三位。
再继续移动M1,使干涉条纹对比度再次为零(或最大),记下M1的位置d2。 测量三次取平均,有效数字取三位。 了解光源的时间相干性 。 测量三次取平均,有效数字取三位。
钠光灯
溴钨灯
迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准。 发现真空中的光速为恒定值,为爱因斯坦的相对论奠定了基础。 M1位置的读数为:××. M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 M1位置的读数为:××. 粗动手轮:每转一圈可动全反镜移动1mm,读数窗口内刻度盘转动一圈共100个小格,每小格为0. M1在导轨上由粗动手轮和微动手轮的转动而前后移动。 01mm,□□由读数窗口内刻度盘读出。 迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。 1883年物理学家迈克尔逊和莫雷合作,为证明“以太”存在设计制造了第一台用于精密测量的干涉仪--迈克尔逊干涉仪,它是在平板或薄膜 干涉现象的基础上发展起来的。 纳黄光双谱线的波长差的测量原理和测量方法 转动手轮,移动M1,使干涉条纹对比度为零(或最大),记下M1的位置d1。 0001mm,还可估读下一位。 可动全反镜移动及读数 测量三次取平均,有效数字取三位。 了解光源的时间相干性 。
《迈克尔逊干涉仪》PPT课件
2 就可算出待测物体的长度。式中,m 是从物体起端 到末端记录仪记录的条纹数。
Δ 2nh cos2 m 2h
精选课件ppt
25
2)光纤迈克尔逊干涉仪
随着光纤技术的发展,光纤传感器已经获得了广泛 的应用。在众多的光纤传感器中,有许多装置的工 作原理,实际上是由光纤构成的迈克尔逊干仪。
光源L
时,条纹定域在无穷远
处,或定域在 L2 的焦 平面上;当 M2 和 G2 同 时绕自身垂直轴转动时,
条纹虚定域于 M2 和 G2 之间。即通过调节M2和 G2,可使条纹定域在 M2和 G2 之间的任意位 置上,从而可以研究任
意点处的状态。
Image ImNaoge
G No 1
M2
定域位置
G2 M1
精选课件ppt
精选课件ppt
1
3.4.1 迈克尔逊干涉仪 (Michelson interferometer )
迈克尔逊干涉仪是迈克尔逊和莫雷设计出来的一种利 用分割光波振幅的方法实现干涉的精密光学仪器。其 调整和使用具有典型性。
迈克尔逊(1852~1931),美国物理 学家 ,主要贡献在于光谱学和度量 学,获1907年诺贝尔物理学奖。
所观察到的干涉
图样近似是定域
在楔表面上或楔
表面附近的一组
平行于楔边的等
厚条纹。
M1 M 2 D
Ⅰ1
A E
S
C
G1
G2
L
P
精选课件ppt
Ⅱ
M2
11
迈克耳逊干涉仪的干涉条纹
M1 M 2
M1 M 2
Bfaf0424.gif
精选课件ppt
M1 M 2
12
迈克尔逊干涉仪
Northeastern University
用迈克尔逊干涉仪测量物质折射率
用迈克尔逊干涉仪的白光干涉条纹可以测量M1镜 用迈克尔逊干涉仪的白光干涉条纹可以测量M1镜 M1 的位置。将待测薄玻璃片置入有M1镜的臂中, M1镜的臂中 的位置。将待测薄玻璃片置入有M1镜的臂中,再 次调出白光干涉条纹, 这时, 可以测到M1 M1镜的新 次调出白光干涉条纹, 这时, 可以测到M1镜的新 位置。 位置。 参考实验4.9 用迈克尔逊干涉仪测量物质折射率 参考实验4.9
物理实验教学中心
Nor理
物理实验教学中心
Northeastern University
(1)迈克尔逊干涉仪的结构与光路
分光板G 分光板 1 刻度盘 补偿板G 补偿板 2
可动镜M 可动镜 2
固定镜M 固定镜 1
粗调手轮
倾度微调 倾度微调
微调手轮
物理实验教学中心
33+0.52+0.00246= 33+0.52+0.00246=33.52246mm
物理实验教学中心
Northeastern University
主尺
粗动手轮读数窗口
微动手轮
最后读数为:? 32.52215mm 最后读数为:?
物理实验教学中心
Northeastern University
迈克尔逊干涉仪原理图
物理实验教学中心
Northeastern University
设两混叠区间距Δd0, 相应的Δk记作Δk0, 对λ1来 设两混叠区间距Δd 相应的Δk记作Δk Δk记作
2d 0 2d 0 λ 2= 来说, 说 λ1= , 对λ2来说, k 2 k1
从而
λ2 λ = 1
迈克尔逊干涉仪实验
思考题
1.为什么向“等光程”状态调节时,圆条纹 变粗变疏? 2.迈克尔逊干涉仪中的圆状干涉条纹与牛顿 环的性质是否相同?为什么? 3.如用白炽灯作光源,怎样调节干涉仪才能 看到干涉条纹?
点光源 S ,分光镜 G1 右表面 镀有半透半反膜,使入射光 分成强度相等的两束。 全反射镜 M1 和 M2 : M2 为固 定全反射镜,背部有三个粗 调螺丝,侧面和下面有两个 微调螺丝。 M1 为可动全反 射镜,背部有三个粗调螺 丝。 观察区E,如E处的两束光满足相干条件,可发生干涉现象。 G2为补偿板,与G1为相同材料相同的厚度,且平行安装。
2 d
2
计算出黄光双谱线的波长差Δ λ , 取589.3nm。 测量三次取平均,有效数字取三位。 (λ1=589.0nm λ2=589.6nm)
5. 实验注意事项
光学元件表面严禁触摸,精密仪器操作耐心
细致,反射镜粗到微动螺丝不能出现拧紧拧死现
象,出现不好调节情况及时报告指导教师。
2. 可动全反镜移动及读数
M1在导轨上由粗动手轮和微动手轮的转动而前后移动。
M1位置的读数为:××.□□△△△ (mm)
××在mm刻度尺上读出。 粗动手轮:每转一圈可动全反镜移动 1mm,读数窗口内刻度盘 转动一圈共 100 个小格,每小格为 0.01mm ,□□由读数窗口内 刻度盘读出。 微动手轮:每转一圈读数窗口内刻度盘转动一格,即 M1 移动 0.01mm,微动手轮有 100格,每格0.0001mm,还可估读下一位。 △△△由微动手轮上刻度读出。 注意螺距差的影响。
2d N
测量半导体激光波长,测量三次取平均,有效数字取三位。
4. 纳黄光双谱线的波长差的测量原理和测量方法
迈克耳逊干涉仪PPT课件
实验原理——点光源产生的非定域干涉
因此,当M2镜移动时,若有 Δn个条纹陷入中心,则表明M2 相对于M1移近了
d n
(3)
2
反之,若有Δn个条纹从中心涌出
来时,则表明M2相对于M1移
远了同样的距离。
如果精确地测出M2移动的 距离Δd,则可由式(3)计算出入 射光波的波长。
实验原理——测量钠光的双线波长差Δλ
③去掉遮住M2的物体,在E处放置毛玻璃屏。这时可看 到两排光点。调节M2背后的三个螺钉,使两排光点中最 强的光点完全重合,则M1与M2大致相互垂直了。
实验内容——测He-Ne激光的波长
①在He-Ne激光器前放置一扩束镜(短焦距凸透镜) 形成点光源的发射光束,在E屏上可看到干涉条纹。 ②谨慎调节M2背后的三个螺钉,使条纹变宽,趋向 圆形。 ③再仔细调节M1镜的两个拉簧螺丝,直到把干涉环 中心调到视场中央。 ④将微调手轮沿相同方向旋转手轮及鼓轮调好零点。 ⑤始终沿原调零方向,细心转动微调手轮,直到干涉 环发生“涌出”或“陷入”现象,观察并记录每“涌 出”或“陷入”50个干涉环时,M2镜的位置,连续记 录8次。然后用逐差法根据公式(3)求出激光波长。并 与公认值6.328×10-7m比较。
由式(4)求得钠黄光双线的波长差。
返回
实验内容——调整仪器
①点燃He-Ne激光器,使之与分光板G1等高并且位于沿 分光板和M1镜的中心线上,转动粗调手轮,使M1镜距 分光板G1的中心与M1镜距分光板G1的中心大致相等。
②遮住M2镜,使激光束经分光板G1射向M1镜。调节激 光器的方向,使由M1反射回激光器的光,能射在光束出 发点(也可以通过观察置于激光器出射孔附近的小孔屏上 反射点的分布来调节。因为玻璃板的每个平行界面都有反 射,故光点不止一个。但M1是高反射的。所以,它反射 的光点光强最强)。
光学课件第一章15迈克尔逊干涉仪2012923
1.干涉仪的结构和原理 2.干涉条纹的特征
1
迈克耳孙
(A.A.Michelson ) 1852—1931 美籍德国人
因创造精密光学仪
器,用以进行光谱 学和度量学的研究,
并精确测出光速,
获1907 诺贝尔物 理奖。
迈克耳孙在工作
2
B: beam-splitter(分束镜); C: compensator(补偿器); M1, M2: mirrors (反射镜)
1 rj ( j ) R 2
M N
R
o
r
d
r j 16
1 ( j 16 ) R 2
r
2 j 16
r 16 R
2 j
18
( 5 . 0 10 2 ) 2 ( 3 . 0 10 2 ) 2 4 . 0 10 7 m 16 2 . 50
例1 精确测量长度变化的仪器如图所示,A为平凸透镜 ,B为平玻璃板,C为金属柱,D为框架。A,B之间为 空气(图中给出A、B接触情况)。A固定在框架边缘 上。温度变化时,C发生伸缩。用波长为λ的光垂直照 射,试问:(1)若在反射光中观察时,看到牛顿环条 纹向中央移动,问这时金属柱C的长度是在增加还是缩 短?(2)若观察到10条明条纹向中央移动收缩而消失 ,问C的长度变化了多少个波长?
39
讨 论 题
• • • • • 光的相干条件是什么? 光的干涉分哪几类? 何为“光程”? 何为“干涉相长”?何为“干涉相消”? 杨氏双缝干涉实验中亮、暗条纹的位置及间距 如何确定?
40
• • • • •
影响干涉条纹可见度大小的主要因素是什么? 计算干涉条纹可见度大小的常用公式有哪几个? 光源的非单色性对干涉条纹有什么影响? 光源的线度对干涉条纹有什么影响? 在什么情况下哪种光有半波损失?
北航迈克尔逊干涉仪
确保实验室环境安静、整洁,避免外界光线干扰实验结果。此外,需要调整实 验室温度和湿度,确保光学元件的性能稳定。
实验操作步骤
打开光源
开启激光器或单色光源,调整光路,使光线照射到干涉仪 的反射镜上。
记录数据
通过计算机或手动记录干涉条纹的变化情况、测量数据等 。在记录数据时需要注意数据的准确性、可靠性和可重复 性。
将半反射镜调整到适当位置,使得一 部分光束反射回激光器,一部分光束 透射进入干涉仪。
记录干涉图样,并进行分析和处理。
03 北航迈克尔逊干涉仪实验 方法
实验前的准备
仪器准备
检查迈克尔逊干涉仪是否工作正常,调整干涉仪的粗动臂和微动臂的位置,确 保其能够正常移动。同时,检查光源、光电池、反射镜等光学元件是否清洁完 好。
重视基本原理和实验技能的学习
通过北航迈克尔逊干涉仪实验,应重视基本原理 和实验技能的学习,这是进行其他干涉仪实验的 基础。
加强理论分析和计算能力的培养
在实验过程中,应加强理论分析和计算能力的培 养,以便更好地理解和分析实验结果。
3
提高观察和分析实验现象的能力
应提高观察和分析实验现象的能力,以便及时发 现问题并进行调整。
分析2
通过计算出的光波长和速度,可以验证迈克尔逊干涉仪的准确性, 同时也可以与其他实验结果进行比较,验证实验方法的可靠性。
分析3
干涉条纹的移动现象可以说明光的干涉现象是由于反射镜角度的变化 引起的。
结果讨论与解释
讨论1
干涉图的结果表明迈克尔逊干涉仪实验是成功的,但实验 中仍然存在一些误差,需要进一步分析误差来源。
01
通过实验,验证了迈克尔逊干涉仪的工作原理和特点,包括干
涉现象、干涉条纹的移动等。
构造与光路示意图-迈克耳孙干涉仪
*§12-6 迈克耳孙干涉仪
构造与光路示意图
上页 下页 返回 退出
M2 M1
2
G1
G2 M1
S
1
半透 2 1
半反膜
E
上页 下页 返回 退出
ห้องสมุดไป่ตู้
工作原理 光束2′和1′发生干涉
• 若M1、M2平行 等倾条纹 S
M2 M1 2 G1 G2 M1
1
2 1
等倾条纹
上页 下页 返回 退出
工作原理
光束2′和1′发生干涉
上页 下页 返回 退出
§12-9 圆孔的夫琅禾费衍射 光学仪器的分辨本领 §12-10 光栅衍射 *§12-11 X射线的衍射 §12-12 光的偏振状态 §12-13 起偏和检偏 马吕斯定律 §12-14 反射和折射时光的偏振 *§12-15 光的双折射 *§12-16 偏振光的干涉 人为双折射 *§12-17 旋光性 *§12-18 现代光学简介
上页 下页 返回 退出
应用原理
由等厚干涉原理,任意两相邻明纹(或暗纹)
所对应的空气层厚度差为:
e
ek1
ek
2
在迈克耳孙干涉仪上发生等厚干
十字叉丝
涉时,若M1平移d引起干涉条纹移
过N条,则有
d N
2
此原理可用来测量微小长度。
等厚条纹
上页 下页 返回 退出
选择进入下一节 §12-0 教学基本要求 *§12-1 几何光学简介 §12-2 光源 单色光 相干光 §12-3 双缝干涉 §12-4 光程与光程差 §12-5 薄膜干涉 *§12-6 迈克耳孙干涉仪 §12-7 光的衍射现象 惠更斯-菲涅耳原理 §12-8 单缝的夫琅禾费衍射
大学物理实验-迈克尔逊干涉仪
迈克尔逊干涉仪》实验报告一、引言迈克尔逊曾用迈克尔逊干涉仪做了三个闻名于世的实验:迈克尔逊-莫雷以太漂移、推断光谱精细结构、用光波长标定标准米尺。
迈克尔逊在精密仪器以及用这些仪器进行的光谱学和计量学方面的研究工作上做出了重大贡献,荣获1907年诺贝尔物理奖。
迈克尔逊干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型,它不仅可用于精密测量长度,还可以应用于测量介质的折射率,测定光谱的精细结构等。
二、实验目的(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法(2)学习一种测定光波波长的方法,加深对等倾的理解(3)用逐差法处理实验数据三、实验仪器迈克尔逊干涉仪、He-Ne激光器、扩束镜等。
四、实验原理迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。
用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。
后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。
1.干涉仪的光学结构迈克尔逊干涉仪的光路和结构如图1与2所示。
M1、M2是一对精密磨光的平面反射镜,M1的位置是固定的,M2可沿导轨前后移动。
G1、G2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。
G1的一个表面镀有半反射、半透射膜A,使射到其上的光线分为光强度差不多相等的反射光和透射光;G1称为分光板。
当光照到G1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过G2,在G1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过G1射向E。
由于光线(2)前后共通过G1三次,而光线(1)只通过G1一次,有了G2,它们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G2称为补偿板。
光学课件:3d等倾干涉迈克尔逊干涉仪
许多著名的实验都堪称科学中的艺 术,如:全息照相实验,吴健雄实验,兰 姆赛移位实验等等。
重要的物理思想+巧妙的实验构思 +精湛的实验技术 —— ® 科学中的艺术
Albert A. Michelson, Albert Einstein
and Robert A. Millikan 1931于美国加州理工学院(CalTech)
扩展光源的等倾条纹
S, S 发出两平行光
线,它们经平板上 下表面反射得出射 光线1和2仍保持平 行,光程差相等。 若相长均相长,若 相消均相消。
光程差只与入射角(折射角) 有关系,不同的点源发出的平 行光光程差相等,与点光源的 位置无关。
扩展光源只会增 加干涉图样的亮 度。
观察等倾条纹(扩展光源)的实验装置图
波阵面分割法
振幅分割法
s1
光* 源
s2
分振幅干涉装置的基础: 能量分配、光强分配、振幅分配
薄膜干涉条纹的观察(回顾)
物像平面上各点的光强度由相交于该点的相干光线的 光程差决定,参加干涉的两光线在共轭点相遇是光程差为整 数,即产生干涉图样(实干涉条纹、虚干涉条纹)
薄膜干涉的分类(回顾)
等厚干涉
等倾干涉
设准单色光波中心波长为l,中心波数为k0,线宽为k, 谱密度为I(k),且
干涉中单一波长的光强随L的变化是:I(k)(1+cos(kL)
则不同波长的 光强非相干迭 加的干涉图样 总强度:
干涉图样衬比度和相干长度
1.0
I/4I0 0.5
0
0
10
20
30
照明光源具有一定谱线宽度时的
干涉条纹强度分布(k=k0/10)
1.0
g
一般情况下,具有一定光谱带宽
迈克尔逊干涉仪共23页
迈克尔逊干涉仪
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
23
ቤተ መጻሕፍቲ ባይዱ