光全息术的发展现状及未来趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《光信息存储》期末论文
题目:
姓名:
班级:
学号:
完成日期:
成绩:
光全息术的发展现状及未来趋势
摘要随着社会的发展和技术的进步,人们对信息的需求不断增加,对信息数据存储的要求也越来越高。从目前磁记录、磁光记录以及光盘记录的现状和发展趋势出发,指出现有的记录方法不能满足未来超大容量、高存取速率的要求。而全息存储将是最理想的存储技术。全息光存储技术是一种极具发展潜力的信息存储技术,因其具有高信息冗余度、高存储容量和高存取速率等有点而日益收到关注。
关键词全息光存储;存储材料
一、引言
随着光电等科学技术的发展,人类步入了一个全新的数字化时代和信息时代。由于信息的多媒体化,人们处理的不仅是简单的数据、文字、声音、图像,而是由高清晰度的和高质量的声音和运动图像等综合在一起的数字多媒体信息。
光电信息存贮技术是一种非接触的写入和读出,如光盘与磁盘相比,有使用寿命长、存贮密度高、容量大、可靠性高、图像质量好、存贮成本低等优点,因而获得广泛的应用。
尽管新一代的DVD已经进入市场,但光盘在不可擦除(尽管现在已有可擦除光盘,但使用寿命较低)和重写以及在数据传输速率等方面不占优势,而且又受光斑尺寸的限制,因而存储密度提高有限,所以出现了各种新型的超高密度光电存储技术。而其中光全息存储是当前比较热门的一种存储技术。
二、全息存储的背景
信息技术在经历了以解决计算机运算速度为主要任务的CPU时代和解决信息传播、传输、交换为主要矛盾的网络时代之后,现在又进入以解决信息存储和安全备份为主要矛盾的信息存储时代。
进入21世纪以来,通过开发新材料、改善材料存储性能、采用高性能软磁材料做磁头、缩小记录光斑尺寸、使用多层膜耦合及超分辨率读出等新技术手段,磁性和磁光记录存储的记录密度得到大幅度提高。磁盘的容量可达10Gb/in2,磁光盘的容量也可以达到20Gb/in2。但磁和磁光记录位不可能无限地小,它还受到无法克服的一个致命制约,这就是超顺磁效应。当磁和磁光记录介质中的铁磁颗
粒比单畴的临界尺寸小时,热涨落可使这种颗粒的磁矩产生一种类似于布朗运动一样的混乱转动,破坏磁矩间的整齐排列,使剩余磁化衰减或消失。100Gb/in2量级的记录密度可能是磁和磁光记录的极限。
在光盘的存储方面,人们通过研发新型有机光化学材料、采用短波长激光读写、提高道密度和线密度、开发多数据层光盘、提高盘面转速等技术,显著提高了光盘的存储密度和传输速率。然而,现有光盘的存储原理决定了它存在1/λ2(λ为光波波长)的面密度限制,其二维存储的密度将要接近物理极限,研究人员已将目光转向了三维体存储。对于光存储而言,体存储容量与面存储容量之比是所用激光器波长的平方与立方的关系。在现有的几种基于页的三维存储研究方案中(例如:全息记录、光谱烧孔、光子回波、双光子存储和光致变色多层存储),由于全息数据存储同时具有较高的数据传输速率(1Gb/ps)、巨大的存储容量(V/λ3:V是全息存储晶体的体积,λ同上)和短暂的访问响应时间(<100μs),是最有希望的下一代数据存储技术。
三、全息存储技术及其特点
全息存储是利用光的干涉,在记录材料上以全息的形式记录信息,并在特定条件下以衍射形式恢复所存储的信息的一种超高密度存储技术。全息即物体的全部信息,包括物光波的强度分布和位相分布。
全息记录原理与全息照相原理相同,但具体方法却有点差异。一是数据不是放在底片上,而是放在具有光折射特性的材料里,一块像小糖块大小的介质上含有上千个页(页相当于一张底片),每一页可包含几百万比特信息;二是使用物光的方式不一样。
全息存储在写入操作中,激光器输出的一束激光被分成2束,其中一束被扩束后作为参考光投射到记录介质上。另一束激光被扩束后经过被记录物体表面的漫反射作为物光也投射到记录介质上。物光用以携带数据,它被扩大到能够完全照射在整个立体光调制器(SLM)上。SLM其实就是一个LCD(液晶显示器)壁板,它以亮的和暗的像素阵列用整页的方式显示所要存储的二进制数据,物光穿过SLM 后,有的点亮,有的点暗,也就是携带了该页的数据。然后,同参考光在介质内起作用,把整页的数据都变成干涉条纹图样,整页的数据便通过干涉图样存放在介质中。
读出数据时,只要用参考光照射存储介质,同其内部干涉图样起衍射作用便可还原先写进去的亮的和暗的像素(分别表示1和0)构成的图像,落在CCD(电荷耦合器件)构成的读取阵列上,于是,便可读出整页的数据。
全息存储的特点是:
(1)存储密度高、容量大。全息存储容量的上限为l/λ2,理论上全息存储密度可达1Tb/cm3(1Tb=1000Gb),目前的技术已达10Gb/cm3。高存储密度是通过在感光材料的同一区域记录多张全息图得到的。目前,最常用的多重记录方法有多波长、多角度、多相位记录。为了得到更高的存储密度,可以将几种多重记录方法综合使用。例如,可以采用波长一角度相结合进行记录;
(2)数据传输速率高和存取时间短。全息图采用整页存储和读出的方式,一页中的所有信息位都被并行地记录和读出。此外,全息数据库可以用无惯性的光束偏转(例如声光偏转器)或波长选择等手段来寻址,不一定要用磁盘和光盘存储中必需的机电式读写头,因而数据传输速率和存取速率可以很高;
(3)高冗余度。与按位存储的磁盘和光盘不同,全息图以分布式的方式存储信息,每一信息位都存储在全息图的整个表面上或整个体积中,故记录介质局部的缺陷和损伤不会引起信息的丢失;
(4)存储可靠性高。全息存储材料都选用光学性能好、化学性能稳定的银盐晶体、有机高分子聚合物或金属化合物晶体。和全息照相的底片一样,即使存储载体有部分损坏,仍能读出全部数据,只不过清晰度有所降低。全息存储材料记录的信息可保持30年以上;
(5)可进行并行内容寻址。全息存储器能够接输出数据页或图像的光学重构信息,因此可以行地进行面向页面的检索和识别,具有快速的内相关寻址功能。这种独特的性能可以用来构建内寻址存储器。
四、全息学的发展阶段
目前全息学正处在它的第三个发展阶段。第一阶段,20 世纪40 年代后期——起始于《自然》杂志上盖伯的最初几篇论文。这个领域吸引了一些卓越的研究人员(Lohmann, Roger 等),但并没有引起普遍的兴趣。第二阶段,60 年代中期,起始于《英国光学学会会刊》上Leith 和Upatnieks 的论文以及几乎在同时问世的连续波可见光激光器。那时支持全息学的人们热情很高,而现实却显