反比例函数难题拓展含答案

合集下载

反比例函数(含答案)

反比例函数(含答案)

例1 已知一次函数2y x k =-的图象与反比例函数5k y x+=的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式. 解: 依题意,由两个函数解析式得所以一次函数和反比例函数的解析式分别为例注意: 解本题的关键是正确理解什么叫y 1与x+1成正比例,y 2与x 2成反比例,即把x+1与x 2看成两个新的变量.典型例题四例 (上海试题,2002)如图,直线221+=x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,x PB ⊥轴,B 为垂足,9=ABP S ∆(1)求点P 的坐标;(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧.作x RT ⊥轴,T 为垂足,当BRT ∆与AOC ∆相似时,求点R 的坐标.那么2-=b BT ,b RT 6=. ①当RTB ∆∽AOC ∆时,CO BT AO RT =,即2==COAOBT RT , ∴226=-b b ,解得3=b 或1-=b (舍去). ∴ 点R 的坐标为()2,3.②RTB ∆∽ COA ∆时,AO BT CO RT =,即21==AO CO BT RT , ∴2126=-b b ,解得131+=b 或131-=b (舍去). ∴点R 的坐标为⎪⎪⎭⎫ ⎝⎛-+2113,131. 综上所述,点R 的坐标为()2,3或⎪⎫⎛-+113,131.y例 B.((解 :(1)设点A 的坐标为(m,n),那么n AB m OB =-=,.∵ AB OB S ABO ⋅=∆21,∴.4,2)(21-==⋅-mn n m 又mk n =,∴4-==mn k .∴ 双曲线:x y 4-=,直线:4+-=x y .(2)解由xy 4-=,4+-=x y 组成的方程组,得2221+=x ,2221-=y ;例 A 、B 求B 两点的抛物线在x 轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作x BH ⊥轴于点H . 在OHB ∆Rt 中,.3,31tan BH HO HO BH HOB =∴==∠由勾股定理,得222OB HO BH =+. 又10=OB ,.3,1,0.)10()3(222==∴>=+∴HO BH BH BH BH ∴ 点B (-3,-1).∵ ∴ ∴ (∵ ∴ ∴ 令 ).31(321)(2122m m GA BH DO GA DO BH DO S +-=+=⋅+⋅=由已知,直线经过第一、二、三象限, ∴ 0>b ,即03>-mm..03,0>-∴>m m由此得 .30<<m ∴ ).31)(3(21mm S +-=即 ).30(292<<-=m mm S (3)过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.证明如下:S ∆由得 ∵ ∴ ∴ ∴ 即 则 aa 2121令 .321=-x x 则 .9324)21(2=-⋅-+-aa a a 整理,得 01472=+-a a . ∵ ,012174)4(2<-=⨯⨯--=∆∴ 方程01472=+-a a 无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.典型例题八例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 [ ]; (2)面积为定值时长方形的长与宽的关系 [ ]; (3)圆面积与半径的关系 [ ]; (4)圆面积与半径平方的关系 [ ];(5)三角形底边一定时,面积与高的关系 [ ]; (6)三角形面积一定时,底边与高的关系 [ ];(7)三角形面积一定且一条边长一定,另两边的关系 [ ]; (8)在圆中弦长与弦心距的关系 [ ];(9)x 越来越大时,y 越来越小,y 与x 的关系 [ ]; (10)在圆中弧长与此弧所对的圆心角的关系 [ ].说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义。

反比例函数的定义专项练习30题(有答案)

反比例函数的定义专项练习30题(有答案)

反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A .y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A .y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A .﹣1 B.0 C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A .0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A .正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A .x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A .①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A .x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A .0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A .正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A .①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A .m≠0B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A .2 B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m= _________ 时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k= _________ .21.若是反比例函数,则m= _________ .22.已知函数,当m= _________ 时,它是正比例函数;当m= _________ 是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= _________ .24.已知函数y=,若y=﹣3,则x的取值为_________ .25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________ .26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________ .27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________ ;当y越来越大时,x越来越_________ ;但无论x,y如何变化,它们都必须满足等式_________ .(2)如果把x看成自变量,则y是x的_________ 函数;(3)如果把y看成自变量,则x是y的_________ 函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________ .30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数定义30题参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

反比例函数专题复习一、反比例函数的对称性1、直线y=ax(a>0)与双曲线y= 3/x交于A(x1,y1)、B(x2,y2)两点,则4x1y2-3x2y1=2、如图1,直线y=kx(k>0)与双曲线y= 2/x交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A、-8B、4C、-4D、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-X1,Y2=-Y1双曲线形式可变化为XY=2,即双曲线上点的横纵坐标乘积为2因此X1Y1=2X1Y2+X2Y1=X1(-Y1)+(-X1)Y1=-X1Y1-X1Y1=-4图1 图2 图3 图4二、反比例函数中“K”的求法1、如图2,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC边在直线l上滑动,使A,B在函数 y=k/x的图象上.那么k的值是()A、3B、6C、12D、 15/4解析:∵BC在直线X=1上,设B(1,M),则C(1,M-3),∴A(5,M-3),又A、B都在双曲线上,∴1*M=5*(M-3),M=15/4 即K=15/42、如图3,已知点A、B在双曲线y= k/x(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=解析:A(x1,k/x1),B(x2,k/x2)AC:x=x1 BD:y=k/x2P(x1,k/x2)k/x2=k/2x1 2x1=x2BP=x2-x1=x1AP=k/x1-k/x2=k/2x1S=x1*k/(2x1)*1/2)=k/4=3 k=123、如图4,双曲线y= k/x(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为()A、y=1/xB、y=2/xC、y=3/xD、y=6/x三、反比例函数“K”与面积的关系1、如图5,已知双曲线 y1=1/x(x>0), y2=4/x(x>0),点P为双曲线y2=4/x上的一点,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别次双曲线y1=1/x于D、C两点,则△PCD的面积为()图5 图6 图7解析:假设P的坐标为(a,b),则C(a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线 y=k/x(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A、S1<S2<S3B、S1>S2>S3C、S1=S2>S3D、S1=S2<S3解析:结合题意可得:AB都在双曲线y=kx上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线 y=k/x交于C、D两点,且S△AOC=S△COD=S△BOD,则k= 。

《反比例函数》专项练习和中考真题(含答案解析及点睛)

《反比例函数》专项练习和中考真题(含答案解析及点睛)

三角形的面积的性质求得△BOD 的面积,依据反比例函数的比例系数 k 的几何意义即可求解.
OA 1 【解析】解:如图作 AC⊥x 轴于点 C,作 BD⊥x 轴于点 D.∵ OB 3OA∴ =
OB 3
1
1
∵点 A 是双曲线 y (x 0) 上∴S△OAC= ∵∠AOB=90°,∴∠AOC+∠BOD=90°,
22
4
1 ﹣S△AOD=S 梯形 ADCE,得到
mm
1
( + )•(m﹣
m)= 3 ,即可求得 k= m2
=2.
2 42
2
2
4
mm
【解析】解:根据题意设 B(m,m),则 A(m,0),∵点 C 为斜边 OB 的中点,∴C( , ),
22
∵反比例函数 y= k (k>0,x>0)的图象过点 C,∴k= m m = m2 ,
(3)设 B'(2m 5, 4) , C'(2m 8,1) 在直线 y k (k 0) 上, x
有 (2m 5) 4 (2m 8) 1, m 2 , B' (1, 4) , C' (4,1) ,代入方程后有 k=-4;
综上所述,k=-6 或 k=-4;故答案为:-6 或-4. 【点睛】本题考查轴对称图形的坐标关系以及反比例函数解析式,其中明确轴对称图形纵坐标相等,横坐标之和为 对称轴横坐标的 2 倍是解题的关键.
x
22 4
∵∠OAB=90°,∴D 的横坐标为 m,
k
m
∵反比例函数 y= (k>0,x>0)的图象过点 D,∴D 的纵坐标为 ,作 CE⊥x 轴于 E,
x
4
3
∵S△COD=S△COE+S 梯形 ADCE﹣S△AOD=S 梯形 ADCE,S△OCD= ,

反比例函数专题训练(含答案)-

反比例函数专题训练(含答案)-

反比例函数专题训练(含答案)一、填空题1. 图象经过点(-2 ,5)的反比例函数的解析式是.2. 已知函数 2 2) 2m m 3y (m x 是反比例函数,且图象在第一、三象限内,则m .k3. 反比例函数(k 0)y 的图象叫做. 当k 0 时,图象分居第x象限,在每个象限内y 随x 的增大而;当k 0 时,图象分居第象限,在每个象限内y 随x 的增大而.4. 反比例函数y 5x,图象在第象限内,函数值都是随x 的增大而.5. 若变量y 与x 成反比例,且x=2 时,y=-3 ,则y 与x 之间的函数关系式是,在每个象限内函数值y 随x 的增大而.6. 已知函数my ,当x1x 时,y 6,则函数的解析式是.2k 2x2(k 为常数)的图象上有三个点(-2 ,y1),(-1 ,y2) ,(127. 在函数y,y3),函数值y1,y2,y3 的大小为.8.如图,面积为 3 的矩形OABC的一个顶点 B 在反比例函数ky 的图象上,另三点在x坐标轴上,则k= .9. 反比例函数ky 与一次函数y=kx+m 的图象有一个交点是(-2 ,1),则它们的另一x个交点的坐标是.10. 已知反比例函数. y2kx的图象位于第二、四象限,且经过点(k-1,k+2 ),则k=二、选择题11. 平行四边形的面积不变,那么它的底与高的函数关系是()A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数12. 下列函数中,反比例函数是()A.xy B. y2x21C.1y xD.2y x 2128. 函数my 的图象过(2,-2 ),那么函数的图象在()xA. 第一、三象限B. 第一、四象限C. 第二、三象限D. 第二、四象限9. 如图,在y 1x(x 0)的图象上有三点A,B,C,过这三点分别向x 轴引垂线,交x 轴于A1,B1,C1 三点,连OA,OB,OC,记△OAA1,△OBB1 ,△OCC1 的面积分别为S1,S2,S3,则有( )A.S 1=S2=S3B.S 1 S2 S3C.S 3 S1 S2D.S 1 S2 S310. 已知y 与x 成反比例,且1x 时,y=-1 ,那么y 与x 之间的函数关系式是()4A. y 2 xB.1y yC.2 x14xD. y 4x11. 反比例函数ky (k 0)在第一象限的图象上有一点P,PQ⊥x 轴,垂足为Q,连xPO,设Rt△POQ的面积为S,则S 的值与k 之间的关系是()A.kS B.4kS S k SC. D.k212. 已知a· b 0,点P(a,b)在反比例函数ay 的图象上,则直线y ax b不经x过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限13. 函数ky 与y kx 1(k 0) 在同一坐标系中的图象大致是()x214. 若点(x1,y1 )、(x2,y2)、(x3,y3)都是反比例函数y 1x的图象上的点,并且x1 0 x2 x3,则下列各式中正确的是()A.y 1 y2 y3B.y 2 y3 y 1C.y 3 y2 y1D.y 1 y3 y 2215. 若P(2,2)和Q(m,-m)是反比例函数ky 图象上的两点,则一次函数y=kx+m x的图象经过()A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限三、解答题16. 甲、乙两地相距100 千米,一辆汽车从甲地开往乙地,求汽车到达乙地所用的时间y(时)与汽车的平均速度x(千米/ 时)之间的函数关系式,并写出自变量的取值范围,画出图象的草图.17. 如图,Rt△AOB的顶点A(a,b)是一次函数y=x+m-1 的图象与反比例函数y m x的图象在第一象限内的交点,△AOB的面积为 3. 求:(1)一次函数和反比例函数的解析式;(2)点 A 的坐标.k18. 已知变量y 与x 成反比例,即(k 0)y 并且当x=3 时,y=7,求:(1)k 的值;x(2)当1x 2 时y 的值;(3)当y=3 时x 的值.319. 在反比例函数ky 的图象上有一点P,它的横坐标m与纵坐标n 是方程tx2 -4t-2=0的两个根.(1)求k 的值;(2)求点P 与原点O的距离.20. 已知y=y1-y 2,y 1 与x 成反比例,y2 与x2 成正比例,且当x=-1 时,y=-5 ,当x=1 时,y=1,求y 与x 之间的函数关系式.21. 一定质量的二氧化碳,当它的体积V=5m3 时,它的密度ρ=1.98kg/m3 时,它的密度ρ=1.98kg/m3.(1)求ρ与V 的函数关系;3(2)求当V=9m时二氧化碳的密度ρ.22. 如图,一个圆台形物体的上底面积是下底面积的23,如果放在桌上,对桌面的压强是200Pa,翻过来放,对桌面的压强是多少?23. 设函数 2 m 5m 5y (m 2) ,当m取何值时,它是反比例函数?它的图象位于哪些象限内?(1)在每一个象限内,当x 的值增大时,对应的y 值是随着增大,还是随着减小?(2)画出函数图象.(3)利用图象求当-3 ≤x≤12 时,函数值y 的变化范围.24. 已知反比例函数y 12x的图象和一次函数y=kx-7 的图象都经过点P(m,2).求:(1)这个一次函数的解析式;(2)如果等腰梯形ABCD的顶点A,B 在这个一次函数的图象上,顶点C,D在这个反比例函数的图象上,两底A D,BC与y 轴平行,且A和B 的横坐标分别为 a 和a+2,求 a 的值.25. 如图,直线AB过点A(m,0),B(0,n)(m 0,n 0). 反比例函数my 的图象与AB x交于C,D两点.P 为双曲线my 上任一点,过P作PQ⊥x 轴于QPR⊥y 轴于R.请分别按(1)x(2)(3)各自的要求解答问题.(1)若m+n=10,n 为值时ΔAOB面积最大?最大值是多少?(2)若S△AOC=S△COD=S△DOB,求n 的值.(3)在(2)的条件下,过O,D,C三点作抛物线,当抛物线的对称轴为x=1 时,矩形PROQ的面积是多少?参考答案动脑动手13.k 1=3,k 2=2,所求函数为32 y 2x .x14. y 12x(3≤x≤5).2015. ( 1,2,3,4,5)16.y x .x17. (1)求A,B 两点坐标问题转化为解方程组y 8 x ,y x 2.4(2)S△AOB=S△AOC+S△BOC,因A,B 两点坐标已求出,面积可求. [(1) A( 2, 4), B(4, 2); (2)S AOB 6.]y x 8,26. (1)y k x .得x 2 -8x+k=0.2 0, 方程 2 8x k 0 ∵( 8)1 k 64 4kx 有两个不相等的实数根.∴k 16 且k≠0 时,所给两个函数图象有两个交点.(2)∵y=-x+8 图象经过一、二、四象限,∴0 k 16 时,由双曲线两分支分别在一、三象限,可知这两个函数图象的两个交点 A 和B 在第一象限.∴∠AOB∠xOy,即∠AOB 90°.当k 0 时,由双曲线两分支分别在二、四象限,可知这两个函数图象的两个交点A和B分别在第二、四象限.∴∠AOB∠xOy. 即∠AOB 90°.27. (1)略.(2)至少有三种解法,略.(3)解一:连O F,在Rt△PAO中,PA2=PH·PO.又由切割线定理,得PA2=PE·PF.∴PH ·PO=PE·PF.PH PE即EPH OPF, . PF PO∴△EPH∽△OPF.∴OF ∶EH=PF∶PH.∵PH=8 ,OF=3,PF=y,EH=x,∴y 24x(2≤x 2 2 ).解二:在Rt △POAk,OA=3,OP=9.根据勾股定理,得2 OP OA2 22 2PA 9 3 72 . 根据切割线定理,得2 ,PA PE PF∴PE2PAPF72y.5连结O E,那么OE=OA.即O HOE OEOP(或用OH=1,OE=3,OP=9得出OH∶OE=OE∶OP).又∵∠HOE=∠EOP,∴△OHE∽△OEP.∴EH ∶EP=OH∶OE.72又OE EH xOH 1, EP , 3, .y∴y 24x(2≤x 2 2 ).同步题库一、填空题28. y 10x. 2.2. 3. 双曲线;一、三;减小;二、四;增大. 4. 一、三;减小.18. y 6x; 6.36 . 7.yx13 y1 y2. 8.3. 9., 42. 10.-1.二、选择题11.B 12.B 13.D 14.A 15.B 16.B 17.C 18.C 19.B 20.C三、解答题21. 解:y 100x(x 0)x 1 2 3 4 y100 100 50x331325629. 解:(1)由b12m,aab 3,得m=6.∴y x6 5; y .x(2)由x65 ,解得xx1=1,x 2=-6( 舍).∴A(1,6).30. 解:(1)把x=3,y=7 代入∴k=21.ky 中,xky ,3(2)把1x 2 代入2y21x中,则21∴9y .73(3)把y=3 代入y 21x中,则213 ,x∴x=7.31. 解:(1)∵P(m,n)在ky 上,x∴kn ,m∴mn=k.又∵m,n 是t 2-4t-2=0 的两根,则mn=-2. ∴k=-2.2 2 2(2)OP m n (m n) 2mn( 24) 2 ( 2) 2 3 . 32. 解:∵y1 与x 成反比例,k∴设 1 ( 0)y1 k .x2∵y2 与x成正比例,∴设y2=k2 x2.∵y=y 1-y 2,∴k1 k x2 y .2x7把xy15;xy1,分别代入得33.15k1k1k2,k ,2解得k 1=3;k2=2.∴y 与x 的函数解析式为32 y 2x .x19. 解:将V=5时,ρ=1.98 代入mV得m=1.98×5=9.9.∴ρ与V 的函数关系式为ρ12.V.22.当V=9时,ρ 1.19 3 ).(kg/m9.9当V=9时,ρ 1.19 3 ).(kg/m20. 解:设下底面积是S0,则由上底面积是23S0.由Fp ,且S=S0 时p=200,F=pS=200S0.S∵是同一物体,∴F=200S0 是定值.∴当2S S 时,3F 200Sp =300(Pa) .23SS∴当圆台翻过来时,对桌面的压强是300Pa.21. 解:依题意,得2mm5m2 0.51,解得m=3.当m=3时,原函数是反比例函数,即y 1x,它的图象在第一、三象限内.(1)由m-2=3-2 - 知,在每个象限内,当x 的值增大时,对应的y 值随着减小. (2)列表:x 1 1 1 1 12 3 3 2y 1 -2 -3 3 2 1 x8(3)由图象知,当-3 ≤x≤12 时,函数值y由13减小到-2 ,即-2 ≤y≤13.34. 解:(1)∵点P(m,2)在函数∴m=6. y12x的图象上,∵一次函数y=kx-7 的图象经过点P(6,2),得6k-7=2 ,∴3k .2 3∴所求的一次函数解析式是7y x .2(2)∵点A,B的横坐标分别是 a 和a+2,3∴可得: A a. a 7 ,23B a 2, a 4 ,2C12a 2, ,a 2D12 a, .a∵AB=DC,∴22+32=22+2+32=22+212 12a 2 a.12 12即 3a 2 a.12 12①由 3,化简得a2 2a 8 0方程无实数根.a 2 a12 122 x ②由3化简得 28 0a .a 2 a∴a=-4 ;a=2.经检验:a=-4 ,a=2 均为所求的值.9135. 解:(1)由, 10,36.S AOB mn m n 得21 12 1 2 25 S AOB n(10 n) n 5n (n5) .2 2 2 2当n=5 时,S△AOB的最大值为252.n(2)∵AB过(m,0),(0,n)两点,求得AB的方程为x ny .m当S△AOC=S△COD=S△DOB时,有AC=DC=D,B过C,D作x 轴的垂线,可知D,C的横坐标分m 2别为m,3 3.将mx 代入3my ,得y=3.x将y=3,m n nx 代入直线方程y x n 得n 33 m 3.∴9 n .2(3)当9 2 3 mn 时,可求得C( m, ), D( ,3) .2 3 2 32设过O,C,D y ax bx,可得4 92m a23mb23,1 92m am3b 22.解得ab8124m63.4m,b 7∴对称轴为mx2a 18.7∴ 1m ,∴1818 m .7∵P(x,y)在my 上,x10∴S18四边形PRO=Q xy=m=7.11。

反比例函数难题(含答案)

反比例函数难题(含答案)

反比例函数典型例题1、(2011•宁波)正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y=x 2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y=x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则P 2点的坐标为___________,则点P 3的坐标为__________。

答案:P 2(2,1) P 2(3+1,3-1)2、已知关于x 的方程x 2+3x+a=0的两个实数根的倒数和等于3,且关于x的方程(k-1)x 2+3x-2a=0有实根,且k 为正整数,正方形ABP 1P 2的顶点P 1、P 2在反比例函数y=x1k +(x >0)图象上,顶点A 、B 分别在x 轴和y 轴的正半轴上,求点P 2的坐标.答案:(2,1)或(6,26) 3、如图,正方形OABC 和正方形AEDF 各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为2. (1)求反比例函数的解析式;(2)求点D 的坐标.答案:(1) y=x4(2) (15+,1-5)4、两个反比例函数y=x 3,y=x6在第一象限内的图象如图所示,点P 1、P 2在反比例函数图象上,过点P 1作x 轴的平行线与过点P 2作y 轴的平行线相交于点N ,若点N (m ,n )恰好在y=x3的图象上,则NP 1与NP 2的乘积是______。

答案:3答案:35、(2007•泰安)已知三点P 1(x 1,y 1),P 2(x 2,y 2),P 3(1,-2)都在反比例函数y=xk的图象上,若x 1<0,x 2>0,则下列式子正确的是( )答案:D A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 26、如图,已知反比例函数y=x1的图象上有点P ,过P 点分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边形OAPB 为正方形,又在反比例函数图象上有点P 1,过点P 1分别作BP 和y 轴的垂线,垂足分别为A 1、B 1,使四边形BA 1P 1B 1为正方形,则点P 1的坐标是________。

(完整版)反比例函数练习题(含答案)

(完整版)反比例函数练习题(含答案)

1.已知矩形的面积为10,则它的长与宽之间的关系用图象大致可表示为()A.B.C.D.2.某乡的粮食总产量为a(a为常数)吨,设该乡平均每人占有粮食为y(吨),人口数为x,则y与x间的函数关系的图象为()A.B.C.D.3.甲、乙两地相距100千米,汽车从甲地到乙地所用的时间y(小时)与行驶的平均速度x (千米/小时)的函数图象大致是()A.B.C.D.4.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积(单位:m3)的反比例函数,它的图象如图所示,当时,气体的密度是()A.5kg/m3B.2kg/m3C.100kg/m3D.1kg/m35.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是()米A.10B.5C.1D.0.56.物理学知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为. 当一个物体所受压力为定值时,那么该物体所受压强P与受力面积S之间的关系用图象表示大致为()A.B.C.D.7.如图,已知□ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE= ,DE的延长线交CB的延长线于点F,设CF=,则下列图象能正确反映与的函数关系的是()A.B.C.D.8.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m3)的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m3B.小于m3C.不小于m3D.小于m39.已知,且,则函数与在同一坐标系中的图象不可能是()A.B.C.D.10.若A(a-1,b1),B(a2,b2)是反比例函数图象上的两个点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.大小不确定11.已知:两点,反比例函数与线段相交,过反比例函数上任意一点作轴的垂线为垂足,为坐标原点,则面积的取值范围是()A.B.C.D.或12.某闭合电路中,电源电压为定值,电流与电阻成反比例.图表示的是该电路中电流与电阻之间函数关系的图象,则用电阻表示电流的函数解析式为()A.B.C.D.二、填空题(共4小题)13.如图,直线y=kx+b与双曲线相交于A(-1,6)、B(n,3),则当x<0时,不等式kx+b>的解集是.14.如图,已知A(-3,0),B(0,-2),将线段AB平移至DC的位置,其D点在y轴的正半轴上,C点在反比例函数的图象上,若S△BCD=9,则k= .15.两个反比例函数,在第一象限内的图象如图所示, 点,,,…,在反比例函数图象上,它们的横坐标分别是,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P 1,P2,P3,…,P2005分别作轴的平行线,与的图象交点依次是(1,y1),(2,2),(3,3),…,(2005,2005),则2005= -.16.蓄电池电压为定值,使用此电源时,电流I(安)与电阻R(欧)之间关系图象如图所示,若点P在图象上,则I与R(R>0)的函数关系式是_.答案部分1.考点:17.2 实际问题与反比例函数试题解析:答案:A2.考点:17.2 实际问题与反比例函数试题解析:答案:D3.考点:17.2 实际问题与反比例函数试题解析:答案:B4.考点:17.2 实际问题与反比例函数试题解析:答案:D5.考点:17.2 实际问题与反比例函数试题解析:答案:D6.考点:17.2 实际问题与反比例函数试题解析:答案:C7.考点:17.2 实际问题与反比例函数试题解析:答案:B8.考点:17.2 实际问题与反比例函数试题解析:答案:C9.考点:17.2 实际问题与反比例函数试题解析:答案:B10.考点:17.2 实际问题与反比例函数试题解析:答案:D11.考点:17.2 实际问题与反比例函数试题解析:答案:B12.考点:17.2 实际问题与反比例函数试题解析:答案:A13.考点:17.2 实际问题与反比例函数试题解析:答案:-2<x<-114.考点:17.2 实际问题与反比例函数试题解析:答案:1215.考点:17.2 实际问题与反比例函数试题解析:答案:2004.516.考点:17.2 实际问题与反比例函数试题解析:答案:。

反比例函数解析含答案

反比例函数解析含答案

反比例函数解析含答案一、选择题1.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.2.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.3.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D【解析】【分析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x =, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.6.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.7.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质8.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23BF OA =, ∴OA=3OC ,BF=2OC∴若设F (m ,n )则OA=3m ,BF=2m∵S △BEF =4∴BE=4m则E (3m ,n-4m) ∵E 在双曲线y=k x 上 ∴mn=3m (n-4m) ∴mn=6即k=6.故选A .【点睛】 此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.11.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.12.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.13.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( )A .2B .3C .4D .6【答案】C【解析】【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1 ∴14k =1,∴k=4.故选:C.【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.14.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.17.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.18.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.19.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】 根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.20.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k值是解题的关键.。

反比例函数经典大题(有详细答案)

反比例函数经典大题(有详细答案)

反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小.2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数x ky =与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyO Mx A(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 .(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。

⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。

(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk B O A21xyA O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

反比例函数难题汇编附答案

反比例函数难题汇编附答案

x 轴,交 y 轴
A.6 【答案】D 【解析】
B.8
C.10
D.12
【分析】
过点 A 作 AD⊥x 轴于 D,过点 B 作 BE⊥x 轴于 E,得出四边形 ACOD 是矩形,四边形 BCOE
是矩形,得出 S矩形ACOD =4, S矩形BCOE k ,根据 AB=2AC,即 BC=3AC,即可求得矩形 BCOE
∵ y 2 x 0 ,过整点(-1,-2),(-2,-1),
x
当 b= 4 时,如图:区域 W 内没有整点, 3
当 b= 2 时,区域 W 内没有整点, 3
∴ 4 b 2 时图形 W 增大过程中,图形内没有整点,
3
3
故选:D.
【点睛】
此题考查函数图象,根据函数解析式正确画出图象是解题的关键.
y1>y2 的 x 的取值范围是( )
A.0<x<2
B.x>2
C.x>2 或-2<x<0 D.x<-2 或 0<x<2
【答案】D
【解析】
【分析】
先根据反比例函数与正比例函数的性质求出 B 点坐标,由函数图象即可得出结论.
【详解】
∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B 两点关于原点对称.
【解析】
【分析】
首先根据 A,B 两点的横坐标,求出 A,B 两点的坐标,进而根据 AC//BD// y 轴,及反比例函数
2
2
几何意义得到 1 |k|= 3 ,然后利用反比例函数的性质确定 k 的值. 22
【详解】
连接 OC,如图,
∵BA⊥x 轴于点 A,C 是线段 AB 的中点,
∴S△AOC= 1 S△OAB= 3 ,
2
2
而 S△AOC= 1 |k|, 2

中考数学反比例函数选择填空难题(含详细答案)

中考数学反比例函数选择填空难题(含详细答案)

反比例函数(1)1、如图,已知点A ,C 在反比例函数)0(>=a x a y 的图象上,点B ,D 在反比例函数)0(<=b xby 的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =3,CD =2,AB 与CD 的距离为5,则b a -的值是 6【解】不妨取点C 的横坐标为1,∵点C 在反比例函数(0)ay a x=>的图象上,∴点C 的坐标为()1,a . ∵CD ∥x 轴,CD 在x 轴的两侧,CD =2,∴点D 的横坐标为1-. ∵点D 在反比例函数(0)by b x=<的图象上,∴点D 的坐标为()1,b -- . ∵AB ∥CD ∥x 轴,AB 与CD 的距离为5,∴点A 的纵坐标为5b --. ∵点A 在反比例函数(0)a y a x =>的图象上,∴点A 的坐标为,55a b b ⎛⎫--- ⎪+⎝⎭. ∵AB ∥x 轴,AB 在x 轴的两侧,AB =3,∴点B 的横坐标为315355a b ab b +--+=++. ∵点B在反比例函数(0)by b x=<的图象上,∴点B的坐标为23155,5315b a b b b b a ⎛⎫+-+ ⎪++-⎝⎭ .∴225554155315a b b b b b b b b b a =-⎧+⎪⇒--=⎨++--=⎪+-⎩. ∵50b +≠,∴4153b b b --=⇒=-. ∴3a =.∴6a b -=.2、反比例函数x a y =(a >0,a 为常数)x y 2=在第一象限内的图象如图所示,点M 在xay =的图象上,MC ⊥x 轴于点C ,交x y 2=的图象于点A ;MD ⊥y 轴于点D ,交xy 2=的图象于点B ,当点M 在的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论有 ①②③【解】①由于A 、B 在同一反比例函数xy 2=图象上,则△ODB 与△OCA 的面积相等,都为×2=1,正确;②由于矩形OCMD 、三角形ODB 、三角形OCA 为定值,则四边形MAOB 的面积不会发生变化,正确;③连接OM ,点A 是MC 的中点,则△OAM 和△OAC 的面积相等,∵△ODM 的面积=△OCM 的面积=2a,△ODB 与△OCA 的面积相等,∴△OBM 与△OAM 的面积相等,∴△OBD 和△OBM 面积相等, ∴点B 一定是MD 的中点.正确;3、如图,两个反比例函数x k y 11=(其中k 1>0)和xy 32=在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3﹕1B .2﹕3C .2﹕1D .29﹕14【解】∵B 、C 反比例函数x y 32=的图象上,∴S △ODB =S △OAC =23 ∵P 在反比例函数x k y 11=的图象上, ∴S 矩形PDOC =k 1=6+23+23=9∴图象C 1的函数关系式为x y 9=∵E 点在图象C 1上,∴S △EOF =21×9=29,∴3=∆∆ACO EFO S S ,∵AC ⊥x 轴,EF ⊥x 轴,∴AC ∥EF ,∴△EOF ∽△AOC ,∴3=ACEF,故选:A4、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC =4,BC =3.将BC 边在直线l 上滑动,使A ,B 在函数x k y =的图象上.那么k 的值是 4155、如图,OABC 为菱形,点C 在x 轴上,点A 在直线y=x 上,点B 在xky =(k >0)的图象上, 若S 菱形OABC =2,则k 的值为2+1 .【解】:∵直线y=x 经过点A ,∴设A (a ,a ),∴OA 2=2a 2,∴AO=2a , ∵四边形ABCD 是菱形,∴AO=CO=CB=AB=2a ,∵菱形OABC 的面积是2,∴2a=2,∴a =1,∴AB=2,A (1,1)∴B (1+2,1), 设反比例函数解析式为xky =(k ≠0),∵B (1+2,1)在反比例函数图象上, ∴k =(1+2)×1=2+1,故答案为:2 +1.6、如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线xky =(x >0)上,则k 的值为 3BACO 1xy l【解】易得OB=1,AB=2,∴AD=2,∴点D 的坐标为(3,2),∴点C 的坐标为(3,1),∴k =3×1=3.7、如图,平面直角坐标系中,直线1-=kx y 与反比例函数xy 6-=相交于点A ,AB ⊥x 轴,S △ABC =1,则k 的值为 81-8、如图,A 、B 是双曲线xky =(k >0)上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k = 4 .【解】分别过点A 、B 作x 轴的垂线,垂足分别为D 、E ,再过点A 作AF ⊥BE 于F . 则AD ∥BE ,AD=2BE=ak,∴B 、E 分别是AC 、DC 的中点. 在△ABF 与△CBE 中,∠ABF=∠CBE ,∠F=∠BEC=90°,AB=CB , ∴△ABF ≌△CBE .∴S △AOC =S 梯形AOEF =6. 又∵A (a ,a k ),B (2a ,a k 2),∴S 梯形AOEF =21(AF+OE )×EF=21(a+2a )×ak=6,得:k =4.9、(2006•长春)如图,双曲线xy 8=的一个分支为( )A B CO DxyA .①B .②C .③D .④【解】∵在xy 8=中,k =8>0∴它的两个分支分别位于第一、三象限,排除①②; 又当x =2时,y =4,排除③;所以应该是④.故选D .10、(2014•盐城)如图,反比例函数xky =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是215+【解】如图,∵点A 坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为xy 1-= ∵OB=AB=1,∴△OAB 为等腰直角三角形,∴∠AOB=45°, ∵PQ ⊥OA ,∴∠OPQ=45°,∵点B 和点B′关于直线l 对称, ∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P ⊥y 轴,∴点B′的坐标为(﹣t 1,t ),∵PB=PB′,∴t ﹣1=|﹣t 1|=t1,整理得t 2﹣t ﹣1=0,解得t 1=215+,t 2=215-(不符合题意,舍去),∴t 的值为215+.11、直线y=ax (a >0)与双曲线xy 3=交于A (x 1,y 1)、B (x 2,y 2)两点,则4x 1y 2﹣3x 2y 1= ﹣3 . 【解】直线y=ax (a >0)过原点和一、三象限,且与双曲线xy 3=交于两点,则这两点关于原点对称,∴x 1=﹣x 2,y 1=﹣y 2,又∵点A 点B 在双曲线xy 3=上, ∴x 1×y 1=3,x 2×y 2=3,∴原式=﹣4x 2y 2+3x 2y 2=﹣4×3+3×3=﹣3.12、如图,点A 在双曲线x y 1=上,点B 在双曲线xy 3=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 2 .【解】过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线xy 1=上,∴四边形AEOD 的面积为1, ∵点B 在双曲线xy 3=上,且AB ∥x 轴,∴四边形BEOC 的面积为3, ∴矩形ABCD 的面积为3﹣1=213、已知(x 1,y 1),(x 2,y 2)为反比例函数xky =图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的一个值可为 ﹣1 .(只需写出符合条件的一个k 的值)【解】:∵x 1<x 2<0,∴A (x 1,y 1),B (x 2,y 2)同象限,y 1<y 2,∴点A ,B 都在第二象限, ∴k <0,例如k=﹣1等.故答案为:﹣1.(小于0均可)14、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xky =的图象上,若点A 的坐标为(﹣2,﹣2),则k 的值为 4 .【解】设C 的坐标为(m ,n ),又A (﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m ,CM=n ,∴AD=AF+FD=2+m ,AB=BN+NA=2+n ,∵∠A=∠OMD=90°,∠MOD=∠ODF , ∴△OMD ∽△DAB ,∴DA OM AB MD =,即mmn +=+222, 整理得:4+2m =2m +mn ,即mn =4,则k =4.15、(2010•衡阳)如图,已知双曲线xky =(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k = 2 .【解】:过D 点作DE ⊥x 轴,垂足为E ,∵在Rt △OAB 中,∠OAB=90°,∴DE ∥AB ,∵D 为Rt △OAB 斜边OB 的中点D ,∴DE 为Rt △OAB 的中位线,∴DE ∥AB ,∴△OED ∽△OAB ,∴两三角形的相似比为:=21∵双曲线x k y =(k >0),可知S △AOC =S △DOE =21k ,∴S △AOB =4S △DOE =2k , 由S △AOB ﹣S △AOC =S △OBC =3,得2k ﹣21k=3,解得k =2.故本题答案为:2.16、如图,在平面直角坐标系中,反比例函数xky =(x >0)的图象交矩形OABC 的边AB 于点D ,交边BC 于点E ,且BE=2EC .若四边形ODBE 的面积为6,则k = 3 .【解】连接OB ,如图所示:∵四边形OABC 是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB 的面积=△OBC 的面积,∵D 、E 在反比例函数xky =(x >0)的图象上,∴△OAD 的面积=△OCE 的面积, ∴△OBD 的面积=△OBE 的面积=21四边形ODBE 的面积=3,∵BE=2EC ,∴△OCE 的面积=21△OBE 的面积=23,∴k=3;故答案为:3.17、如图,双曲线)0(2>=x xy 经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 2.18、如图,平行四边形AOBC 中,对角线交于点E ,双曲线xky =(k >0)经过A ,E 两点,若平行四边形AOBC 的面积为24,则k =________819、如图,▱ABCD 的顶点A 、B 的坐标分别是A (-1,0),B (0,-2),顶点C 、D 在双曲线xky 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k =_______12【解】如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,DG 交BC 于M 点,过C 点作CH ⊥DG ,垂足为H ,∵ABCD 是平行四边形,∴∠ABC=∠ADC ,∵BO ∥DG ,∴∠OBC=∠GDE ,∴∠HDC=∠ABO ,∴△CDH ≌△ABO (ASA ),∴CH=AO=1,DH=OB=2,设C (m+1,n ),D (m ,n+2),则(m+1)n=m (n+2)=k ,解得n=2m ,则D 的坐标是(m ,2m+2),设直线AD 解析式为y=ax+b ,将A 、D 两点坐标代入解得b=2,∴a=b=2∴y=2x+2,E (0,2),BE=4,∴S △ABE=21×BE×AO=2, ∵S 四边形BCDE=5S △ABE=5×21×4×1=10,∴S △ABE+S 四边形BEDM=10,即2+4×m =10,解得m =2,∴n =2m =4,∴k=(m +1)n =3×4=12.20、如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =54,反比例函数xy 48=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于 40【解】过点A 作AM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图所示.设OA =a ,BF =b ,在Rt △OAM 中,∠AMO =90°,OA =a ,sin ∠AOB =54, ∴AM =OA •sin ∠AOB =54a ,OM =53a ,∴点A 的坐标为(53a ,54a ). ∵点A 在反比例函数x y 48=的图象上,∴53a ×54a =22512a =48,解得:a =10,或a =﹣10(舍去). ∴AM =8,OM =6.∵四边形OACB 是菱形,∴OA =OB =10,BC ∥OA ,∴∠FBN =∠AO B . 在Rt △BNF 中,BF =b ,sin ∠FBN =54,∠BNF =90°, ∴FN =BF •sin ∠FBN =54b ,BN =53b ,∴点F 的坐标为(10+53b ,54b ). ∵点B 在反比例函数x y 48=的图象上,∴(10+53b )×54b =48,解得:b =3)561(5-,或b =3)561(5+-(舍去). ∴FN =3)561(4-,BN =61﹣5,MN =OB +BN ﹣OM =61﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =21(AM +FN )•MN =21(8+3)561(4-)×(61﹣1)=32×(61+1)×(61﹣1)=40.21、如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数xky =的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( C )A .3B .4C .6D .8 【解】设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D , ∵tan ∠BAO =2,∴AO BO =2,∵S △ABO =21•AO •BO =4,∴AO =2,BO =4, ∵△ABO ≌△A ′O ′B ,∴AO =A ′0′=2,BO =BO ′=4, ∵点C 为斜边A ′B 的中点,CD ⊥BO ′,∴CD =21A ′0′=1,BD =21BO ′=2, ∴x =BO ﹣CD =4﹣1=3,y =BD =2,∴k =x •y =3•2=6.22、如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数xky =的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = 6 .【解】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数x k y =得,点A 的纵坐标为6k ,点B 的横坐标为3k ,即AM =6k ,NB =3k, ∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12,6×3﹣21×6×6k ﹣21×3×3k=12,解得:k =6.23、(2017•临沂)如图,在平面直角坐标系中,反比例函数xky =(x >0)的图象与边长是6的正方形OABC的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM+PN 的最小值是 262解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,6k ),N (6k ,6),∴BN=6﹣6k ,BM=6﹣6k , ∵△OMN 的面积为10,∴6×6﹣21×6×6k ﹣⨯216×6k ﹣21×(6﹣6k)2=10,∴k=24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M′,连接NM′交x 轴于P ,则NM′的长=PM+PN 的最小值, ∵AM=AM′=4,∴BM′=10,BN=2,∴NM′=262,24、如图,矩形OABC 中,A (1,0),C (0,2),双曲线x ky =(0<k <2)的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,S △OEF =2S △BEF ,则k 值为 32【解】∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =21(1﹣2m )(2﹣m ),S △OFC =S △OAE =21m ,∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣2m ﹣2m ﹣21(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣2m ﹣2m ﹣21(1﹣2m )(2﹣m )=2•21(1﹣2m)(2﹣m ),整理得43(m ﹣2)2+m ﹣2=0,解得m 1=2(舍去),m 2=32,∴E 点坐标为(1,32);∴k =32,.25、如图,直线63-=x y 分别交x 轴,y 轴于A ,B ,M 是反比例函数xky =(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,AC•BD=34,则k 的值为( ﹣3 )【解】过点D 作DE ⊥y 轴于点E ,过点C 作CF ⊥x 轴于点F , 令x =0代入63-=x y ,∴y =﹣6,∴B (0,﹣6),∴OB=6, 令y=0代入63-=x y ,∴x =32,∴(32,0),∴OA=32,∴勾股定理可知:AB=34,∴sin ∠OAB=AB OB =23,cos ∠OAB=AB OA =21 设M (x ,y ),∴CF=﹣y ,ED=x ,∴sin ∠OAB=ACCF , ∴AC=y 332-,∵cos ∠OAB=cos ∠EDB=BDED, ∴BD=2x ,∵AC•BD=34,∴y 332-×2x =34,∴xy =﹣3, ∵M 在反比例函数的图象上,∴k=xy =﹣3,26、如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数xky =的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = 6 .【解】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3, 代入反比例函数y =x k 得,点A 的纵坐标为6k ,点B 的横坐标为3k, 即AM=6k ,NB=3k,∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12, 6×3﹣21×6×6k ﹣21×3×3k =12,解得:k =627、如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数xky =(x >0)的图象经过点E ,则k = 8 .【解】设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n , ∴BF=OB+OF=m +n ,∴S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =21m (m +n )+21n 2﹣21m (m +n )=4,∴n 2=8, ∵点E (n ,n )在反比例函数xky =(x >0)的图象上,∴k =n 2=8, 28、(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数x k y 11=(x >0)的图象上,顶点B 在函数xky 22=(x >0)的图象上,∠ABO=30°,则21k k = 31- .【解】如图,Rt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°, ∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°, 设AC=a ,则OA=2a ,OC=a 3,∴A (a 3,a ), ∵A 在函数xk y 11=(x >0)的图象上,∴k 1=a 3•a =23a Rt △BOC 中,OB=2OC=a 32,∴BC=3a ,∴B (a 3,﹣3a ), ∵B 在函数x k y 22=(x >0)的图象上,∴k 2=﹣3a a 3=﹣323a ,∴21k k = 31-29、两个反比例函数x y 4=,x y 8-=的图象在第一象限,第二象限如图,点P1、P2、P3…P2010在xy 4=的图象上,它们的横坐标分别是有这样规律的一行数列1,3,5,7,9,11,…,过点P1、P2、P3、…、P2010分别作x 轴的平行线,与xy 8-=的图象交点依次是Q1、Q2、Q3、…、Q2010,则点Q2010的横坐标是______________-803830、如图所示,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上;点FAB 上,点B ,E 在反比例函数y=x 1(x >0)的图象上.正方形MNPB 中心为原点O ,且NP ∥BM ,(1)则正方形MNPB 面积为 4. (2)点E 的坐标为 .⎪⎪⎭⎫⎝⎛+21-5215, 【解】31、如图,梯形AOBC 中,对角线交于点E ,双曲线xky =(k >0)经过A 、E 两点,若AC :OB=1:3,梯形AOBC 面积为24,则k = 710832、如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数xky =(k >0,x >0)的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,△AEF 的面积为1,则k 的值为 3【解】设A (a ,0),∵矩形ABCD ,∴D (a ,ak), ∵矩形ABCD ,E 为AC 的中点,则E 也为BD 的中点,∵点B 在x 轴上,∴E 的纵坐标为ak 2, E )2,2(a k a ∵E 为AC 的中点,∴点C (3a ,a k ),∴点F (3a ,ak3), ∵△AEF 的面积为1,AE =EC ,∴S △ACF =2,解得:k =3.33、如图,点A ,B 在反比例函数xky =(k >0,x >0)的图象上,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,BE ⊥y 轴于点E ,连结AE .若OE =1,OC =32OD ,AC =AE ,则k 的值为 223【解】∵BD ⊥x 轴于点D ,BE ⊥y 轴于点E ,∴四边形BDOE 是矩形,∴BD =OE =1,把y =1代入xky =,求得x =k , ∴B (k ,1),∴OD =k ,∵OC =32OD ,∴OC =32k ,∵AC ⊥x 轴于点C ,把x =32k 代入x k y =得,y =23,∴AE =AC =23,∵OC =EF =32k ,AF =23﹣1=21,在Rt △AEF 中,AE 2=EF 2+AF 2,∴(23)2=(32k )2+(21)2,解得k =±223,∵在第一象限,∴k =223,34、如图,点P 是函数y =x k 1(k 1>0,x >0)的图象上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数y =xk2(k 2>0,x >0)的图象于点C 、D ,连接OC 、OD 、CD 、AB ,其中k 1>k 2.下列结论:①CD ∥AB ;②S △OCD =221k k -;③S △DCP =12212(k k k )-,其中正确的是( )A .①②B .①③C .②③D .① 【解】∵PB ⊥y 轴,P A ⊥x 轴,点P 在上,点C ,D 在上,设P (m ,),则C (m ,),A (m ,0),B (0,),令,则,即D (,),∴PC =,PD =,∵,,即,又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12212(k k k )-,故③正确;S △OCD =S 四边形OAPB ﹣S △OCA ﹣S △DPC =12212(k k k )-,故②错误;故选:B .35、如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥x 轴,AO ⊥AD ,AO =AD .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数xky =(x >0)的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若S △EOF =811,则k 的值为 37【解】:延长EA 交x 轴于点G ,过点F 作FH ⊥x 轴于点H ,如图,∵AB ∥x 轴,AE ⊥CD ,AB ∥CD ∴AG ⊥x 轴.∵AO ⊥AD ∴∠DAE +∠OAG =90°. ∵AE ⊥CD ,∴∠DAE +∠D =90°.∴∠D =∠OAG . 在△DAE 和△AOG 中,∴△DAE ≌△AOG (AAS ).∴DE =AG ,AE =OG . ∵四边形ABCD 是菱形,DE =4CE ,∴AD =CD =45DE . 设DE =4a ,则AD =OA =5a .∴OG =AE =3a .∴EG =AE +AG =7a .∴E (3a ,7a ). ∵反比例函数xky =(x >0)的图象经过点E ,∴k =21a 2. ∵AG ⊥GH ,AH ⊥GH ,AF ⊥AG ,∴四边形AGHF 为矩形.∴HF =AG =4a .∵点F 在反比例函数x k y =(x >0)的图象上,∴y =421a . ∴F (421a , 4a ).∴OH =421a .∴GH =OH ﹣OG =49a∵S △OEF =S △OEG +S 梯形EGHF ﹣S △OFH ,S △EOF =811,得:a 2=91.∴k =21a 2=37.36、如图,在Rt △AOB 中,OAB ∠的外角平分线与OBA ∠外角平分线交于点C ,反比例函数)0(>=x xky经过点C ,延长CA 交x 轴于D ,延长CB 交y 轴于E ,连接DE 、DE 的中点F 恰好落在反比例函数)0(9<=x xy 图像上,则k = 1837、如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为(-10,0),对角线AC 和OB 相交于点D 且AC·OB=160.若反比例函数xky = (x <0)的图象经过点D ,并与BC 的延长线交于点E,则S △OCE ∶S △OAB =________1:5O。

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优易错难题)含答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.11.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

反比例函数拓展题(含规范标准答案)

反比例函数拓展题(含规范标准答案)

1:(2007年浙江省初中数学竞赛)函数y =1x-图象的大致形状是( )A B C D2.(2009年牡丹江市)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += .3.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.4.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则(s= ).x yABO1S2S8题图7.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).8.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.9.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.12.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.13.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).14.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

反比例函数经典大题(有详细答案)

反比例函数经典大题(有详细答案)

1 反比例函数1. 如图,函数b x k y +=11的图象与函数xk y22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小. 2、如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ¹在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM D 的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小最小. .3、若反比例函数xk y =与一次函数42-=x y 的图象都经过点A (a ,2)(1)求反比例函数xky =的解析式;(2) 当反比例函数xk y =的值大于一次函数42-=x y 的值时,求自变量x的取值范围.ABOCxy OMxyA (第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为的面积为 . (1)求k 和m 的值;的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。

⑴求点D 的坐标;的坐标;⑵求经过点C 的反比例函数解析式. 6、如图,一次函数3y kx =+的图象与反比例函数m y x=(x>0)的图象交于点P ,P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。

(1)求点D 的坐标;的坐标;(2)求一次函数与反比例函数的表达式;)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?取何值时,一次函数的值小于反比例函数的值?xkx k B O A21xyAO PBC D7、已知一次函数y =kx +b 的图象交反比例函数42m y x-=(x>0)图象于点A 、B ,交x 轴于点C .(1)求m 的取值范围;的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;的值和一次函数的解析式;(3)写出当x 取何值时,一次函数的值小于反比例函数的值?取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

反比例函数专题知识点归纳 常考(典型)题型 重难点题型(含详细答案)

反比例函数专题知识点归纳 常考(典型)题型  重难点题型(含详细答案)

反比例函数专题知识点归纳+常考(典型)题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.知识结构 (2)2.反比例函数的概念 (2)3.反比例函数的图象 (2)4.反比例函数及其图象的性质 (2)5.实际问题与反比例函数 (4)三、常考题型 (6)1.反比例函数的概念 (6)2.图象和性质 (6)3.函数的增减性 (8)4.解析式的确定 (10)5.面积计算 (12)6.综合应用 (17)三、重难点题型 (22)1.反比例函数的性质拓展 (22)2.性质的应用 (23)1.求解析式 (23)2.求图形的面积 (23)3. 比较大小 (24)4. 求代数式的值 (25)5. 求点的坐标 (25)6. 确定取值范围 (26)7. 确定函数的图象的位置 (26)二、基础知识点1.知识结构2.反比例函数的概念(k≠0)可以写成y=x−1(k≠0)的形式,注意自变量x 1.y=kx的指数为-1,在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件;(k≠0)也可以写成xy=k的形式,用它可以迅速地求出反2.y=kx比例函数解析式中的k,从而得到反比例函数的解析式;的自变量x≠0,故函数图象与x轴、y轴无交点.3.反比例函数y=kx3.反比例函数的图象的图象时,应注意自变量x的取值在用描点法画反比例函数y=kx不能为0,且x应对称取点(关于原点对称).4.反比例函数及其图象的性质1.函数解析式:y=k(k≠0)x2.自变量的取值范围:x≠03.图象:(1)图象的形状:双曲线.|k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大.(2)图象的位置和性质:①与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.②当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;③当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:①图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.②图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(4)k的几何意义图1上任意一点,作PA⊥x①如图1,设点P(a,b)是双曲线y=kx轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO|k|).和三角形PBO的面积都是12图2②如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.(5)说明:①双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.的关系:②直线y=k1x与双曲线y=k2x当k1k2<0时,两图象没有交点;当k1k2>0时,两图象必有两个交点,且这两个交点关于原点成中心对称.5.实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、常考题型1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.y-3=2x C.3xy=1 D.y=x2答案:A为正比例函数B为一次函数C变型后为反比例函数D为二次函数(2)下列函数中,y是x的反比例函数的是().A.y=14x B.y=−1x2C.y=1x−1D.y=1+1x答案:A为反比例函数,k为14B、C、D都不是反比例函数2.图象和性质(1)已知函数y=(k+1)x k2+k−3是反比例函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档反比例函数经典专题知识点回顾很多中考试题都将反比例函数与面积结合起来由于反比例函数解析式及图象的特殊性,又能充分体现数进行考察。

这种考察方式既能考查函数、反比例函数本身的基础知识内容,可以较好地将知识与能力融合在一起。

形结合的思想方法,考查的题型广泛,考查方法灵活,下面就反比例函数中与面积有关的问题的四种类型
归纳如下:的几何意义求解与面积有关的问题利用反比例函数中|k|一、
设P为双曲线上任意一点,过点P作x轴、y轴的垂线PM、PN,垂足分别为M、N,则两垂线
段与坐标轴所围成的的矩形PMON的面积为S=|PM|×|PN|=|y|×|x|=|xy|
∴xy=k 故S=|k| 从而得
结论1:过双曲线上任意一点作x轴、y轴的垂线,所得矩形的面积S为定值|k|
对于下列三个图形中的情形,利用三角形面积的计算方法和图形的对称性以及上述结论,可得出
对应的面积的结论为:
S= 中,面积:在直角三角形ABO结论2S=2|k| 中,面积为:在直角三角形ACB结论3S=|k| 中,面积为:在三角形AMB结论4
例题讲解
PP、】如右图,已知△P0A,△PAA都是等腰直角三角形,点1【例21111224的坐A、A都在x轴上.则点A都在函数y=的图象上,斜边OA)>(x02121x .
标为
、都是等腰直角三角形,点PPAA…△,△POA,△PAAPA1、如例1A图,已知△1n1122n123n-134轴上.则x都在AAA、0)的图象上,斜边OAA、A…A>y=都在函数…P、PP(x n1n-1122n233x的坐标为点A10精品文档.
精品文档
1 ,6PAB的图像上,如果△的面积为-2A、已知点(0,2)和点B(0,),点P在函数y=2x求P点的坐标。

k轴BC在xABCDy=x(>0)的图像上,矩形的边2【例】如右图,已知点(1,3)在函数xk的横坐标两点,点EA,E)y=是对角线BD的中点,函数>(k0的图象又经过E上,x为m,解答下列各题求k的值1. 2.的横坐标(用C求点m表示) 3.当∠112m°时,求ABD=45的值
精品文档.
精品文档y的交点,反比例函是对角AB轴上、已知:如图,矩ABC的B两点,的纵坐标)的图象经
表示)求坐标(1的值;若不存在,请说为正方形,若存在,请求出mm,使四边形(2)是否存在实数ABCD 明理由
、ABD的中点,点)是对角线E(m,1在2、如图1,矩形ABCD的边BCx轴的正半轴上,点k y=的图象上.E在反比例函数x
AB的长;)求(1k轴翻折,得到反比例函数y=的图象沿y是正方形时,将反比例函数(2)当矩形ABCDy=x
k1的值;2),求k的图象(如图1x2)下,第一2都平行NPy轴交在条件(上有一长为(3)直线y=-x,作动线段MNMH、k)?若能,请求3,问四边形PMHPN能否为平行四边形(如图、y=象限内的双曲线于点H x的坐标;若不能,请说明理由.出点M精品文档.
精品文档
精品文档.
精品文档
【例3】在平面直角坐标系中,已知A(1,0),B(0,1),矩形OMPN的相邻两边OM,ON分别在x,y轴的正半轴上,O为原点,线段AB与矩形OMPN的两边MP,NP的交点分别为E,F,△AOF∽
△BOE(顶点依次对应)
(1)求∠FOE;
(2)求证:矩形OPMN的顶点P必在某个反比例函数图像上,并写出该函数的解析式。

如图,在平面直角坐标系中,直线y=-x+1分别交x轴、y轴于A,B两点,点P(a,b)是1在第一象限内的任意一点,过点P分别作PM⊥x轴于点M,PN⊥y 轴于反比例函数y=2x点N,PM,PN分别交直线AB于E,F,有下列结论:①AF=BE;②图中的等腰直角三角形有4
1②③④其中结论正确的序号是EOF=45;a+b-1=(③个;S)④∠°.△OEF2
精品文档.
精品文档
k,其中一次函数的图像经和一次函数】已知:如右图,已知反比例函数【例4y=y=2x-1x2.
)a+1,(,b+k过(a,b)
)求反比例函数的解析式;(1的A)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点(2 坐标;为等腰三角形?AOP,x轴上是否存在点P使△在23()利用()的结果,请问:点坐标都求出来;若不存在,请说明理由若存在,把符合条件的P.
精品文档.
精品文档
k)b+k+2(a+k,,ay=2x-1和一次函数,其中一次函数的图象经过(,b)已知反比例函数y=x2
两点.(1)求反比例函数的解析式;
的坐标:、)求反比例函数与一次函数两个交点(2AB k的解集;)根据函数图象,求不等式(3>2x-1x2
点坐标都轴上是否存在点AOP,使△P为等腰三角形?若存在,把符合条件的Px)的条件下,24)在((求出来;若不存在,请说明理由。

精品文档.精品文档
精品文档.。

相关文档
最新文档