精密和超精密加工技术

合集下载

精密超精密加工技术

精密超精密加工技术

精密超精密加工技术精密及超精密加工对尖端技术的发展起着十分重要的作用。

当今各主要工业化国家都投入了巨大的人力物力,来发展精密及超精密加工技术,它已经成为现代制造技术的重要发展方向之一。

本节将对精密、超精密加工和细微加工的概念、基本方法、特点和应用作一般性介绍。

一、精密加工和超精密加工的界定精密和超精密加工主要是根据加工精度和表面质量两项指标来划分的。

这种划分是相对的,随着生产技术的不断发展,其划分界限也将逐渐向前推移。

1.一般加工一般加工是指加工精度在10µm左右(IT5~IT7)、表面粗糙度为R a0.2µm~0.8µm的加工方法,如车、铣、刨、磨、电解加工等。

适用于汽车制造、拖拉机制造、模具制造和机床制造等。

2.精密加工精密加工是指精度在10µm~0.1µm(IT5或IT5以上)、表面粗糙度值小于R a0.1µm的加工方法,如金刚石车削、高精密磨削、研磨、珩磨、冷压加工等。

用于精密机床、精密测量仪器等制造业中的关键零件,如精密丝杠、精密齿轮、精密导轨、微型精密轴承、宝石等的加工。

3.超精密加工超精密加工一般指工件尺寸公差为0.1µm~0.01µm数量级、表面粗糙度R a 为0.001µm数量级的加工方法。

如金刚石精密切削、超精密磨料加工、电子束加工、离子束加工等,用于精密组件、大规模和超大规模集成电路及计量标准组件制造等方面。

二、实现精密和超精密加工的条件精密和超精密加工技术是一项内容极为广泛的制造技术系统工程,它涉及到超微量切除技术、高稳定性和高净化的工作环境、设备系统、工具条件、工件状况、计量技术、工况检测及质量控制等。

其中的任一因素对精密和超精密加工的加工精度和表面质量,都将产生直接或间接的不同程度的影响。

1.加工环境精密加工和超精密加工必须具有超稳定的加工环境。

因为加工环境的极微小变化都可能影响加工精度。

精密和超精密加工技术

精密和超精密加工技术
ELID磨削的应用
电子材料,磁性材料的镜面磨削:大尺寸硅片;铁金氧磁头 光学材料的镜面磨削:记录用光学材料,光学镜片研磨抛光前 陶瓷材料的镜面磨削 高精度钢铁材料及复合材料,硬质合金
4、脆性材料精密磨削
尖锐压头下的材料变形过程
(a) 初始加载: 接触区产生—永久塑性变形区,没有任何 裂纹破坏。变形区尺寸随载荷增加而变大。 (b) 临界区: 载荷增加到某一数值时,在压头正下方应力 集中处产生中介裂纹(M edian Crack)。 (c) 裂纹增长区: 载荷增加, 中介裂纹也随之增长。 (d) 初始卸载阶段: 中介裂纹开始闭合,但不愈合。 (e) 侧向裂纹产生: 进一步卸载,由于接触区弹塑性应力 不匹配,产生一个拉应力叠加在应力场中,产生系列向侧 边扩展的横向裂纹(L ateral Crack)。 (f) 完全卸载: 侧向裂纹继续扩展,若裂纹延伸到表面则 形成破坏的碎屑。
精密、超精密磨削、镜面磨削形成的零散刻痕
1、精密和超精密磨削加工基础
精密和超精密磨削分类
将磨料或微粉与结合剂粘合在一起, 形成一定的形状并具有一定强度,再 采用烧结、粘接、涂敷等方法形成砂 轮、砂条、油石、砂带等磨具。
精密和超精 密磨料加工 固结磨 料加工
磨料或微粉不是固结在一起, 而是成游离状态。
3、在线电解磨削技术
ELID磨削的特点
磨削过程具有良好的稳定性; ELID修整法使金刚石砂轮不会过快的磨耗,提高了贵重磨料的利用率; ELID修整法使磨削过程具有良好的可控性;
采用ELID磨削法,容易实现镜面磨削,并可大幅度减少超硬材料被磨零件的 残留裂纹。
3、在线电解磨削技术
1、精密和超精密磨削加工基础
切削和磨削的比较

精密和超精密加工

精密和超精密加工

精密和超精密加工一、精密和超精密加工的概念与范畴通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1μm,表面粗糙度为Ra0.1~0.01μm的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

精密加工包括微细加工和超微细加工、光整加工等加工技术。

传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等,具体如下:a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。

b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。

c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

d.精密研磨与抛光是通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。

e.抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法

常用精密加工和超精密加工方法(1)钻削加工:是将工件上的金属材料在刀具作用下进行来回转动,把车削面旋转出来,是加工圆柱形、锥形、凹形孔和凹陷、螺纹等零部件表面等的单一机床加工方法。

(2)车削加工:是指加工零件时借助车刀切削,用于加工外螺纹、花键、形状方程式曲面及其他复杂曲面等外形精密零部件。

(3)铣削加工:是指利用滚筒式或刀片式的刀具的移动和旋转,把工件表面形成各种曲面的一种机床加工方法,主要用于加工工件体上的平面、槽、沟等工件表面。

(4)磨削加工:是指采用研磨轮加工工件表面,采用悬磨或抛光技术将其加工精度提高,使其表面光洁度、粗糙程度达到要求的一种机床加工方法。

(5)拉铆加工:是指拉铆头将两个工件紧固在一起,从而使两个工件处于相对固定的位置,而不受旋转影响的一种加工方法,是将机械元件拉铆加工的技术。

(1)水切削加工:是将工件表面由削刀削成薄片,然后由水冲刷把薄片去除,达到精密加工表面粗糙度和平整度要求的一种加工方法。

(2)气刀加工:是将刀具用空气喷射动力使得刀具旋转,切削工件的加工方法,可以实现高速、大功率的切削,适用于切削金属界面、铸件、钢材等表面加工。

(3)超声波加工:是指使用超声波让工件表面产生振动,来切削、拉分和焊接工件表面等加工方法,可以达到更高的精度和更小的表面粗糙度,并且可以实现连续加工。

(4)电火花加工:是一种快速高效的切削方法,主要是通过产生火花后,再通过冲击脉冲和热能来融化微小部份表面材料,从而实现准确切削的一种加工方法。

(5)激光加工:是通过产生强大的激光能,对工件表面进行破碎溶解而实现加工的一种加工方法,可以获得极高的切削精度、平整度和极好的加工质量,和小尺寸孔、槽加工。

精密与超精密加工技术课件

精密与超精密加工技术课件
珩磨效果影响因素
珩磨效果受到多种因素的影响 ,如磨石的粒度、粘结剂的类 型、珩磨头的转速和压力等。
电解加工工艺
电解加工工艺概述
电解加工是一种利用电化学反应去除 工件材料的加工方法,具有加工精度 高、表面质量好等特点。
电解加工工艺流程
电解加工工艺通常包括工件表面处理 、电解液的选择和调整、电解加工设 备的设置以及加工参数的控制等步骤 。
、汽车和航空领域。
陶瓷材料
陶瓷材料具有高硬度、高耐磨性和 耐高温等特点,常用于制造刀具、 磨具和高温部件。
复合材料
复合材料由两种或多种材料组成, 具有优异的综合性能,如碳纤维复 合材料具有高强度和轻质的特点。
复合材料
玻璃纤维复合材料
玻璃纤维复合材料具有高 强度、高刚性和耐腐蚀等 特点,广泛应用于建筑、 船舶和汽车领域。
抛光效果受到抛光轮的材料、转速、抛光膏或抛光液的成分以及抛光 压力等因素的影响。
珩磨工艺
珩磨工艺概述
珩磨是一种利用珩磨头上的磨 石与工件表面进行摩擦,以去 除表面微小凸起和划痕的加工
方法。
珩磨材料
珩磨头上的磨石由硬质颗粒和 粘结剂组成,具有较高的硬度 和耐磨性。
珩磨工艺流程
珩磨工艺通常包括工件表面处 理、涂敷润滑剂、珩磨头的旋 转运动以及工件的往复运动等 步骤。
碳纤维复合材料
碳纤维复合材料具有高强 度、轻质和耐高温等特点 ,常用于制造航空器和体 育用品。
金属基复合材料
金属基复合材料以金属为 基体,加入增强纤维或颗 粒,以提高材料的强度、 刚度和耐磨性。
04
精密与超精密加工工艺
研磨工艺
研磨工艺概述
研磨材料
研磨是一种通过研磨剂去除工件表面微小 凸起和划痕的加工方法,以达到平滑表面 的效果。

第5章 精密、超精密加工技术

第5章 精密、超精密加工技术

• 和表面粗糙度的检验,而且要测量加工设备 的精度和基础零部件的精度。 • 高精度的尺寸和几何形状可采用分辨率为 0.1~0.01µ m,的电子测微计、分辨率为 0.01~0.001µ m的电感测微仪或电容测微仪来 测量。圆度还可以用精度为0.01µ m的圆度仪 来测量。
加工设备必须具有高精度的主轴系统、进给 系统(包括微位移装臵),现在的超精密车 床,其主轴回转精度可达0.02µ m,导轨直线 度可达1000000:0.025,定位精度可达 0.013µ m,进给分辨率可达0.005µ m。其回转 零件应进行精密的动平衡。
• 2)高刚度
• 包括静刚度和动刚度,不仅要注意零件本身
• 精密和超精密磨料加工是利用细粒度的磨粒 和微粉主要对黑色金属、硬脆材料等进行加 工,按具体地加工方法分为精密和超精密磨 削,加工精度可达5~0.5µ m,表面粗糙度 Ra0.05~0.008µ m);精密和超精密研磨(加 工精度可达10~0.1µ m,表面粗糙度 Ra0.01~0.008µ m);
合金等刀具进行精密和超精密切削,这些刀
具材料的切削效果不如金刚石,但能加工黑
色金属。对黑色金属等硬脆材料的精密加工
和超精密加工,一般多采用磨削、研磨、抛
光等方法。
• 精密和超精密磨削时,通常采用粒度240#~W7
或更细的白刚玉或铬刚玉磨料和树脂结合剂
制成的紧密组织砂轮,经金刚石精细修整后
• 进行加工。
• 出现了精密电火花加工、精密电解加工、精
密超声波加工、分子束加工、电子束加工、
离子束加工、原子束加工、激光加工、微波
加工、等离子体加工、光刻、电铸及变形加
工等。
• 4.复合加工
• 复合加工是将几种加工方法叠合在一起,发 挥各种加工方法的长处,达到高质量(加工

发展精密和超精密加工技术的重要性

发展精密和超精密加工技术的重要性

发展精密和超精密加工技术的重要性精密和超精密加工代表了加工精度发展的不同阶段,通常,按加工精度划分,可将机械加工分为一般加工,精密加工,超精密加工三个阶段精密加工;加工精度在0.1 -1um,讲表面粗糙度在Ra 0.02-0.1um之间的加工方法称为精密加工超精密加工;加工精度高于0.1um,加工表面粗糙度小于Ra 0.01um的加工方法称为超精密加工。

(微细加工、超微细加工、光整加工、精整加工等)二提高加工精度的原因提高制造精度后可提高产品的性能和质量,提高产品稳定性和可靠性;促进产品小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

三发展超精密加工的重要性1 超精密加工是国家制造工业水平的重要标志之一超精密加工所能达到的精度、表面粗糙度、加工尺寸范围和几何形状是一个国家制造技术水平的重要标志之一。

金刚石刀具切削刃钝圆半径的大小是金刚石刀具超精密切削的一个关键技术参数,日本声称已达到2nm,而我国尚处于亚微米水平,相差一个数量级(国际上公认0.1nm~100nm为纳米尺度空间,100nm~1000nm为亚微米体系,小于1个纳米为原子团簇);金刚石微粉砂轮超精密磨削在日本已用于生产,使制造水平有了大幅度提高,突出地解决了超精密磨削磨料加工效率低的问题。

2 精密和超精密加工是先进制造技术的基础和关键计算机工业的发展不仅要在软件上,还要在硬件上,即在集成电路芯片上有很强的能力,我国集成电路的制造水平约束了计算机工业的发展。

美国制造工程研究者提出的汽车制造业的“两毫米工程”(车身尺寸变动量控制在2mm以内)使汽车质量赶上欧、日水平,其中的举措都是实实在在的制造技术。

3 国防工业上的需求陀螺仪的加工涉及多项超精密加工,导弹系统的陀螺仪质量直接影响其命中率,1kg的陀螺转子,其质量中心偏离其对称轴0.0005μm,则会引起100m的射程误差和50m的轨道误差。

大型天体望远镜的透镜、直径达 2.4m,形状精度为0.01μm,如著名的哈勃太空望远镜,能观察140亿光年的天体(六轴CNC研磨抛光机)(图)。

精密与超精密加工技术.ppt

精密与超精密加工技术.ppt

2.2精密与超精密加工的主要方法
1、 ELID(Electrolytic In-Process Dressing)
金刚石砂轮
(铁纤维结合剂)
电源
电刷
冷却液
+-
进给
冷却液
图2-8 ELID磨削原理
使用ELID磨削,冷却液为一种特殊电解液。通电后,砂 轮结合剂发生氧化,氧化层阻止电解进一步进行。在切削 力作用下,氧化层脱落,露出了新的锋利磨粒。由于电解 修锐连续进行,砂轮在整个磨削过程保持同一锋利状态。
Ra <0.02μm
雷达导波管 平面度垂直度误差 < 0.1μm Ra <0.02μm
卫星仪表轴承 圆柱度误差 <0.01μm
Ra <0.002μm
天体望远镜 形状误差 < 0.03μm
Ra <0.01μm
精密加工与超精密加工的发展(图2-1)
2.1 概 述
加工误差(μm)
102 101 100 10-1 10-2 10-3
1140 1020 640 720
2.2精密与超精密加工的主要方法
金刚石刀具
超精切削刀具材料:天然金刚石,人造单晶金刚石
金刚石的晶体结构:规整的单晶金刚石晶体有八面体、
十二面体和六面体,有三根4次对称轴,四根3次对称轴和
六根2次对称轴(图2-4)。
L4 (100)
L2
L3
(111)
(110)
与高新技术产品紧密结合 精密与超精密加工设备造价高,难成系列。常常针对某一 特定产品设计(如加工直径3m射电天文望远镜的超精密车 床,加工尺寸小于1mm微型零件的激光加工设备)。 与自动化技术联系紧密 广泛采用计算机控制、适应控制、再线检测与误差补偿技 术,以减小人的因素影响,保证加工质量。

2.3精密和超精密加工技术

2.3精密和超精密加工技术

现代制造技术
2. 非机械超精密加工技术——特种精密加工方法
包括精密电火花加工、精密电解加工、精密超声加工、
电子束加工、离子束加工、激光束加工等一些非传统加工方 法;
3. 复合超精密加工方法
传统加工方法的复合 特种加工方法的复合 传统加工方法和特种加工方法的复合
(例如机械化学抛光、精密电解磨削、精密超声珩磨等)。
1~0.1 0.1~ 0.001 0.1~ 0.01 1~0.1 1~0.1 5 5 1~0.1
0.025~ 0.008 0.025~ 0.008 0.025~ 0.008 0.01 0.01 0.01 0.01~ 0.02 0.01~ 0.008
黑色金属、铝合金 黑色金属、非金属 材料 黑色金属、非金属 材料、有色金属 黑色金属、非金属 材料 黑色金属、非金 属材料、有色金属 黑色金属等 黑色金属等 黑色金属、非金属 材料、有色金属
发展:超精密磨削应用比较成熟的首推金刚石微粉砂轮 超精密磨削。
现代制造技术 1)金刚石微粉砂轮 采用粒度为F240~F1000的金刚石微粉作为磨料,树脂、 陶瓷、金属为结合剂烧结而成;也可采用电铸法和气相沉积 法制作。 用筛选法分级,粒度号以磨粒通过的筛网上每英寸长度 内的孔眼数来表示。如60 # 的磨粒表示其大小刚好能通过每 英寸长度上有60孔眼的筛网。对于颗粒尺寸小于40 μ m的磨 料,称为微粉。 • 用显微测量法分级,用W和后面的数字表示粒度号,其W后 的数值代表微粉的实际尺寸。如W20表示微粉的实际尺寸为 20 μ m
• 精密加工是指加工精度达到1~0.1μm,表面粗
糙度Ra在0.1~0.01μm的加工工艺。
• 超精加工则是指加工尺寸精度高于0.1μm,表 面粗糙度Ra小于0.025μm的精密加工方法。

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识

对精密和超精密加工技术的认识一、引言精密加工技术是一种高精度、高效率的制造方法,广泛应用于电子、航空航天、医疗器械等领域。

而超精密加工技术则是在精密加工技术的基础上进一步提高了加工的精度和表面质量。

本文将对精密和超精密加工技术进行深入的探讨和分析。

二、精密加工技术的概念和应用精密加工技术是一种通过在加工过程中控制和调整各种工艺参数,使加工零件达到高精度要求的加工方法。

它主要包括数控加工、激光加工、电火花加工等多种技术手段。

精密加工技术在电子领域的应用尤为广泛,如半导体芯片加工、PCB板制造等。

三、精密加工技术的特点和优势1. 高精度:精密加工技术可以实现亚微米甚至纳米级别的加工精度,满足对零件精度要求极高的应用领域。

2. 高效率:精密加工技术采用自动化控制和高速切削等方法,加工效率高,能够大大提高生产效率和产品质量。

3. 灵活性:精密加工技术具有灵活性强的特点,可以根据不同产品的要求进行个性化加工,满足市场需求的多样化。

四、超精密加工技术的概念和原理超精密加工技术是在精密加工技术的基础上,通过进一步提高加工设备的精度和加工工艺的控制精度,实现更高精度加工的一种技术手段。

超精密加工技术主要包括超精密车削、超精密磨削、超精密拓扑等方法。

五、超精密加工技术的应用领域超精密加工技术在光学仪器、航空航天、精密仪器等领域具有广泛的应用。

例如,在光学仪器领域,超精密加工技术可以用于制造高精度的光学元件,提高光学系统的分辨率和成像质量。

六、精密和超精密加工技术的发展趋势随着科技的进步和工业制造的需求,精密和超精密加工技术也在不断发展和创新。

未来的发展趋势主要包括以下几个方面:1. 加工精度的提高:随着需求的增加,对加工精度的要求也越来越高,未来的精密和超精密加工技术将进一步提高加工的精度和表面质量。

2. 加工效率的提高:随着自动化技术和智能化技术的发展,精密和超精密加工技术将更加高效,加工速度更快,生产效率更高。

精密和超精密加工技术

精密和超精密加工技术

《精密和超精密加工技术》学习总结11机械1班 2011411011070. 引言精密和超精密加工技术不仅直接影响尖端技术和国防工业的发展,还影响着国家的机械制造业的国际竞争力,因此,全球各国对此十分重视!本文就从超精密切削、精密和超精密磨削、精密研磨与抛光、精密加工的机床设备和外部支撑环境、微纳加工技术等相关的超精密加工技术进行研究与总结。

1. 超精密切削超精密切削是国防和尖端技术中的重要部分,受到了各国的重视和发展。

一、超精密切削的切削速度选择超精密切削所使用的刀具是天然单晶金刚石刀具,它是目前自然界硬度最高的物质,具有耐磨性好、热传导系数高和有色金属间摩擦系数小。

因此,在加工有色金属时,切削温度低,刀具寿命很高,亦可使用1000-2000m/min的高速切削。

而这一点(切削速度并不受刀具寿命的制约)是和普通切削规律不同的。

超精密切削的速度选择是根据所使用的超精密机床的动特性和切削系统的动特性所决定的,即选择振动最小的转速。

换而言之,要高效地切削出高质量的加工表面,就应该选择动特性好,振动小条件下最高转速的超精密机床。

例如沈阳第一机厂圣工场的SI-255液体静压主轴的超精密车床在700-800r/min时振动最大,故要避开该转速范围,选择低于或者高于该速度范围进行切削,则可得到较好的加工表面。

二、超精密切削时刀具的磨损和寿命天然单晶金刚石刀具超精密切削应用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料,比如激光反射镜、雷达的波导管内腔、计算机磁盘等。

判断金刚石刀具是否破损或磨损而不能继续使用的标准是根据工件加工的表面粗糙度有无超过规定值。

而金刚石刀具的切削路程的长度则是其寿命长短的标志。

倘若切削条件正常,刀具的耐用度可达数百千米。

但是在实际使用中,金刚石刀具常是达不到这个耐用度,因为加工过程中切削刃会产生微小崩刃而不能继续使用,而这主要是由于切削时的振动或切削刃的碰撞引起的。

因此,金刚石刀具只能使用在机床主轴转动非常平稳的高精度机床上,而刀具的维护对机床的要求亦是如此。

精密与超精密加工技术

精密与超精密加工技术

空气静压轴承主轴能够得到高于轴承零件本身的回转精度。
2) 导轨及进给驱动装置:动作灵活,无爬行等不连续动作, 直线精度 好。通常采用空气静压导轨 。
空气静压导轨
精密与超精密加工技术
摩擦驱动原理图
精密与超精密加工技术
(3)超精密加工的工作环境
超精密加工必须在超稳定的环境下进行,主要衡量指标有三个:
等离子体辅助抛光(PACE)
等离子体辅助抛光又称化学蒸发加工(chemical vaporization machining, CVM),是在真空环境下进行将化学气体(通常为卤素类气体,如CF、Cl2等) 激发成活性等离子体,与加工面产生化学反应,生成挥发性物质从而达到 材料去除的目的。这种加工方法实用化的一种就是等离子腐蚀。
金刚石的热传导率是矿物中最大的,切削加工中发热量非常小。
精密与超精密加工技术
天然金刚石的加工多采用研磨加工方法,通常采用空气轴承 研磨机,由于振动小,可达到很低的粗糙度和极小的刃口半径。
精密与超精密加工技术
1)刀尖的磨损 在切削距离到达100km以前,后刀面磨损急剧上升,以后磨损逐渐减 慢。 注:由于积屑瘤的原因,一般将研磨好的锋利刀尖有意加工成理想的 稳定的磨损状态。
精密与超精密加工技术
(1)超精密加工刀具
超精密加工要求刀具能均匀地去除不大于工件加工精度且厚度极薄 的金属层或非金属层。 超精密切削中的加工刀具,一般指天然单晶金刚石刀具。超精密切 削中必须保证金刚石刀具的刀面与刃口质量。 超精密磨削的加工刀具砂轮的磨料品级与力度均匀性在加工中十分 重要。
精密与超精密加工技术
精密与超精密加工技术
7、超精密加工的发展趋势
高精度、高效率 工艺整合化 两极化(大型化、微型化) 在线检测 智能化 绿色化

精密与超精密加工技术综述

精密与超精密加工技术综述

就先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域1。

前者包括了精密加工、超精密加工、微细加工,以及广为流传的纳米加工,它追求加工上的精度和表面质量的极限,可统称为精密工程;后者包括了设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是提高产品质量的有效方式。

两者有密切联系,许多精密和超精密加工要靠自动化技术才能达到预期目标,而不少制造自动化则有赖于精密加工才能达到设计要求。

精密工程和制造自动化具有全局性的、决策性的作用,是先进制造技术的支柱。

精密和超精密加工与国防工业有密切关系。

导弹是现代战争的重要武器,其命中精度由惯性仪表的精度所决定,因而需要高超的精密和超精密加工设备来制造这种仪表。

例如,美国“民兵”型洲际导弹系统的陀螺仪其漂移率为0.03~0.05°/h,加速度计敏感元件不允许有0.05μm的尘粒,它的命中精度的圆概率误差为500m;MX战略导弹(可装载10个核弹头),由于其制导系统陀螺仪精度比“民兵—Ⅲ”型导弹要高出一个数量级,因而其命中精度的圆概率误差仅为50~150m。

对射程4000km的潜射弹道导弹,当潜艇的位置误差对射程偏差的影响为400m、潜艇速度误差对射程偏差的影响为800m、惯性平台的垂直对准精度对射程偏差的影响为400m时,要求惯性导航的陀螺仪的漂移精度为0.001°/h、航向精度在1′以上、10小时运行的定位精度为0.4~0.7海里,因此,陀螺元件的加工精度必须达到亚微米级,表面粗糙度达到Ra0.012~0.008μm。

由此可知,惯性仪表的制造精度十分关键。

如1kg重的陀螺转子,其质量中心偏离其对称轴为0.5nm时,就会造成100m的射程误差和50m的轨道误差;激光陀螺的平面反射镜的平面度为0.03~0.06μm,表面粗糙度要求为Ra0.012μm以上;红外制导的导弹,其红外探测器中接受红外线的反射镜,其表面粗糙度要求达到Ra0.015~0.01μm[2]。

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?

精密和超精密加工,精密加工的技术手段有什么?制造业是一个国家或地区国民经济的重要支柱,所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合集成的生产技术。

先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。

精密加工技术是为适应现代高技术需要而发展起来的先进制造技术,是其它高新技术实施的基础。

精密加工技术的发展也促进了机械、液压、电子、半导体、光学、传感器和测量技术以及材料科学的发展。

精密和超精密加工通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。

目前,精密加工是指加工精度为1~0.1µ;m,表面粗糙度为Ra0.1~0.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。

精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。

超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。

当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。

超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。

微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。

光整加工一般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高。

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望

精密与超精密加工技术现状和发展展望精密加工技术是一种在当今制造业中非常重要的技术,它的发展与制造业的发展息息相关。

精密加工技术是通过对材料进行高精度的加工来制造出各种精密零部件,这些精密零部件被广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

现阶段,精密加工技术已经取得了很大的进步,各种高精度的加工设备和加工工艺层出不穷。

在这些技术发展的基础上,超精密加工技术应运而生。

超精密加工技术是一种相对于精密加工技术更加高端、更加精密的加工技术,它可以实现对材料的超高精度加工,甚至可以达到纳米级的精度。

这种技术对于一些特殊材料的加工非常重要,比如硬质合金、钢、陶瓷等材料。

超精密加工技术的发展展望是非常乐观的。

随着科学技术的不断进步,各种先进的加工设备和工艺将不断涌现。

在这种趋势下,超精密加工技术将会得到更加广泛的应用。

在汽车工业中,超精密加工技术可以用于制造高压油泵的零部件,提高汽车发动机燃油的利用率;在医疗器械领域,超精密加工技术可以用于制造各种医疗器械的零部件,提高医疗器械的精度和安全性。

在未来的发展中,我们还可以看到超精密加工技术将会在航空航天领域得到更广泛的应用。

超精密加工技术可以制造出更加轻巧和高强度的航空零部件,提高航空器的性能和安全性。

超精密加工技术在电子产品领域也有很大的潜力,它可以制造出更小巧、更精密的电子元件,提高电子产品的性能和可靠性。

精密加工技术和超精密加工技术的发展是非常重要的。

它们直接关系到制造业的发展和产品的质量。

相信随着科学技术的不断进步,这些技术将会取得更大的突破,为各个领域带来更多的创新和发展。

精密与超精密加工技术的现状和发展展望精密加工技术是制造业中至关重要的一环,它的发展与制造业的发展密不可分。

精密加工技术通过对材料进行高精度的加工,制造出各种精密零部件,广泛应用于汽车、航空航天、医疗器械、电子产品等各个领域。

当前,精密加工技术已取得了长足的发展,各种高精度加工设备和工艺不断涌现。

精密与超精密加工技术

精密与超精密加工技术
大于工件加工精 度,且厚度极薄的金属层或非金属层
刀具种类:金刚石刀具; 超精密磨削砂轮
金刚石刀具
1、金刚石刀头的特性: 颜色:有红色和绿色等多种颜色,其硬
度随颜色而不同; 硬度:显微硬度值比其他物质高许多; 热传导率:在矿物中最大。
金刚石刀具
2、金刚石刀头的制造: 成形:采用研磨加工方法; 研磨方法:用空气轴承的研磨机; 特殊刀头的形状
第三章 先进制造工艺技术
第一节 精密与超精密加工技术
一、 精密与超精密加工技术概述
1、精密加工与超精密加工定义
精密加工是指加工精度在0.1~lμm之间, 表面粗糙度Ra在0.lμm以下(称微米加工)
超精密加工的加工精度在0.lμm以下,表面 粗糙度在0.02μm以下(称为亚微米加工)
2、精密加工与超精密加工的特点
光纤测微仪 更小测量范围的测量仪器:扫描隧道显微
镜 、扫描电子显微镜、原子力显微镜
激光干涉仪
SPA-400 多功能扫描探针显微镜
回顾
一、 精密与超精密加工技术概述 二、 超精密加工方法 三、 超精密加工刀具 四、 超精密加工设备 五、 精密加工环境 六、 超精密加工精度的在线检测及计量测试
五、精密加工环境
超精密加工必须在超稳定的环境下进 行。
超稳定环境:恒温、超净和防振。
六、超精密加工精度的在线检测及计量测试
对加工误差进行在线检测,实时建模与 动态分析预报,再根据预报数据对误差 源进行补偿,从而消除或减少加工误差。
六、超精密加工精度的在线检测及计量测试
大距离的测量仪器:双频激光干涉仪 小距离的测量仪器:电容式、电感式测微仪、
超精密磨削砂轮
超精密磨削质量控制方面的首要因素: 砂轮磨料:应与工件材料选配适当; 磨料粒度:具备形成微刃的粒度; 砂轮硬度:硬度中软。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、通常将加工精度在0.1-1um、加工表面粗糙度R在0.02-0.1um之间的加工方法称为精密加工。

而将加工精度高于0.1um、加工表面粗糙度R小于0.01um的加工方法称为超精密加工。

2、提高加工精度的原因:提高制造精度后可提高产品的性能和质量,提高其稳定性和可靠性;促进产品的小型化;增强零件的互换性,提高装配生产率,并促进自动化装配。

3、精密和超精密加工目前包含三个领域:超精密切削;精密和超精密磨削研磨‘精密特种加工。

4、金刚石刀具的超精密切削加工技术,主要应用于两个方面:单件的大型超精密零件的切削加工和大量生产的中小型零件的超精密切削加工技术。

5、金刚石刀具有两个比较重要的问题:晶面的选择;切削刃钝圆半径。

6、超稳定环境条件主要是指恒温、防振、超净和恒湿五个方面的条件。

7、我国应开展超精密加工技术基础的研究,其主要内容包括以下四个方面:
1)超精密切削、磨削的基本理论和工艺。

2)超精密设备的关键技术、精度、动特性和热稳定性。

3)超精密加工的精度检测、在线检测和误差补偿。

4)超精密加工的环境条件。

5)超精密加工的材料。

8、超精密切削实际选择的切削速度,经常是根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。

9、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度、使用的超精密机床的性能状态、切削时的环境等都直接有关。

10、为实现超精密切削,刀具应具有如下性能:
1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和很高的尺寸耐用度。

2)切削刃钝圆能磨得极其锋锐,切削刃钝圆半径r值极小,能实现超薄切削厚度。

3)切削刃无缺陷,切削时刃形将复印在加工表面上,能得到超光滑的镜面。

4)和工件材料的抗粘结性好、化学亲和性小、摩擦因素低,能得到极好的加工表面完整性。

11、SPDT——金刚石刀具切削和超精密切削。

12、晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象称为解理现象。

13、金刚石晶体定向方法有:人工目测定向;X射线晶体定向;激光晶体定向。

14、单晶金刚石刀具都用于超精密切削。

衡量金刚石刀具质量的好坏,首先看其是否能加工出高质量的超光滑表面,其次是看它能否有较长的切削时间保持切削刃锋锐,切出极高质量的加工表面。

15、设计超精密切削用金刚石刀具最主要的问题有三个:优先切削部分的几何形状,前、后面选择最佳晶面,确定刀具结构和金刚石在刀具上的固定方法。

16、金刚石刀具粗研磨的主要任务是去除余量,这时的主要问题是如何提高研磨效率。

17、提高研磨质量,使切削刃研制更为锋锐,影响精研刀具质量的因素有:磨料粒度;研磨盘质量;研磨方向;精抛。

18、精密和超精密加工是利用细粒度的磨粒和微粉对黑色金属、硬脆材料等进行加工。

19、精密和超精密磨料加工可分为固结磨料和游离磨料两大类加工方式。

20、涂覆磨具结构包括基底、粘接膜、粘接剂(底胶)、粘接剂(覆胶)、磨粒。

21、磨床应满足以下要求:1)高几何精度;2)低速进给运动的稳定性;3)减少振动。

22、超硬磨料砂轮磨削的共同特点是:
1)可用来加工各种高硬度、高脆性金属材料和非金属材料
2)磨削能力强,耐磨性好,寿命高,易于控制加工尺寸及实现加工自动化。

3)磨削力小,磨削温度低,加工表面质量好,无烧伤、裂纹和组织变化。

4)磨削效率高
5)加工成本低
23、修整通常包括整形和修锐两个过程。

24、镜面磨削一般是指加工表面粗糙度达到R0.02-0.01um,表面光泽如镜的磨削方法。

25、磨削加工过程;1)单颗粒磨削;2)连续磨削。

26、液体静压轴承有较高的刚度和回转精度,但有下列缺点不易解决:
1)液体静压轴承的温升升高。

2)静压油回油将空气带入油源,形成微小气泡悬浮在油中,不易排出,因此将降低液体静压轴承的刚度和动特性。

27、测量技术的发展主要在以下几方面:
1)极高精度测量方法和测量仪器的发展。

2)精密在线自动测量技术的发展。

3)测量数据的自动采集处理技术发展。

28、我国的量块标准分为00、0、1、2、3和校准级K等6种精度等级。

29、测量角度使用圆光栅和圆感应同步器。

30、圆度误差的评定方法:1)最小外接圆法;2)最大内接圆法;3)最小包容区域圆法;4)最小二乘方圆法。

31、双频激光干涉测量系统受环境干扰的影响比单频激光测量系统要小很多,使测量精度大为提高。

32、保证零件加工精度的途径有两条:母性原则;创造性原则。

33、精度检测可分为:离线检测、在位检测和在线检测。

34、微位移系统一般由微位移机构、检测装置和控制系统所组成,其目的是要实现小行程、高灵敏度和高精度的位移。

微位移机构是实现微位移的执行机构,其核心部分是微位移器件。

35、压电效应:电介质受到机械应力作用时,会产生电极化,电极化的大小与施加的机械应力成正比,电极化的方向随应力的方向而改变,这种现象称为压电效应。

压电效应和电致伸缩应统称为机电耦合效应。

36、研磨加工的主要特点:1)微量切削;2)按进化原理成形;3)多刃多向切削。

37、抛光加工通常是指利用微细磨粒的机械作用和化学作用,在软质抛光工具或化学加工液、电/磁场等辅助作用下,为获得光滑或超光滑表面,减小或完全消除加工变质层,从而获得高表面质量的加工方法。

38、精密研磨与抛光加工的主要工艺因素包括加工设备、研具、磨粒、加工液、工艺参数和加工环境等。

39、现代制造技术的发展趋势:一是向着自动化、柔性化、集成化、智能化等发展;另一是寻求制造技术极小尺寸、极大尺寸和极端功能的极限,而微细加工技术是指制造微小尺寸零件的加工技术。

40、一般尺寸加工时,精度是用其加工误差与加工尺寸的比值来表示的。

41、许多加工方法都与电子束、激光束、离子束统称为三束加工有关。

42、激光表面改性技术:利用激光对材料表面进行处理可改变其物理结构、化学成分和金相组织,从而改善材料表面的物理、力学、化学性质,称之为激光表面改性技术。

43、集成电路的主要工艺有外延生长、氧化、光刻、选择扩散和真空镀膜等。

44、所谓恒温条件主要以两个指标进行衡量:一是恒温基数;二是恒温精度。

45、过滤效率是较为重要的指标,它是指在额定风量情况下,过滤器捕获的尘埃量与过滤器前进入过滤器的尘埃量的百分比。

46、工业生产中常见的噪声主要有空气动力噪声、机械噪声和电磁噪声。

47、对噪声控制应首先从噪声源入手,尽量减少噪声源或降低噪声辐射,包括尽可能选用低速低噪声的加工设备和辅助设施;严格控制送风管道等空调系统中的气流速度;使用高质量、高性能的电气元件。

48、纳米技术平时指纳米级0.1-100um的材料、设计、制造、测量、控制和产品的技术。

49、纳米技术主要包括:纳米级精度和表面形貌的测量。

50、纳米级加工精度包含:纳米级尺寸精度,纳米级几何形状精度、纳米级表面质量。

51、MEMS——微型机电系统。

相关文档
最新文档