线路直击雷过电压及耐雷水平
110kv耐雷水平
110kv耐雷水平110kv耐雷水平是指110kv线路在遭受雷击时能够承受的雷电过电压水平。
耐雷水平是评估线路防雷保护能力的重要指标之一,对于保障电力系统的安全稳定运行具有重要意义。
本文将从以下几个方面详细介绍110kv耐雷水平的含义、影响因素、计算方法和提高措施。
一、110kv耐雷水平的含义110kv耐雷水平是指110kv线路在遭受雷击时,能够承受的雷电过电压水平。
耐雷水平的高低直接影响到线路的防雷保护效果。
当线路遭受雷击时,雷电过电压会超过线路的绝缘水平,导致线路跳闸或设备损坏等后果,严重时甚至会影响到电力系统的稳定运行。
因此,提高110kv线路的耐雷水平对于保障电力系统的安全稳定运行具有重要意义。
二、影响110kv耐雷水平的因素影响110kv耐雷水平的因素有很多,主要包括以下几个方面:1.雷电活动的强度和频度:雷电活动的强度和频度是影响线路耐雷水平的重要因素。
一般来说,雷电活动强烈的地区,线路的耐雷水平相对较低。
2.线路绝缘水平:线路绝缘水平是决定线路耐雷水平的关键因素。
绝缘水平低的线路容易发生闪络,导致线路跳闸或设备损坏。
3.杆塔高度和地形条件:杆塔高度和地形条件也会对线路的耐雷水平产生影响。
高杆塔和复杂地形条件的线路更容易遭受雷击,因此其耐雷水平相对较低。
4.防雷保护措施:防雷保护措施的采取和效果也会对线路的耐雷水平产生影响。
例如,安装避雷器、架设耦合地线等措施可以提高线路的耐雷水平。
三、110kv耐雷水平的计算方法110kv耐雷水平的计算方法主要包括以下几种:1.统计法:根据多年的雷电活动情况和线路跳闸记录,统计出线路的耐雷水平。
这种方法简单易行,但准确度相对较低。
2.模拟法:通过模拟雷电过电压对线路的影响,计算出线路的耐雷水平。
这种方法需要建立模型并进行大量计算,但可以得到较为准确的结果。
3.工程法:根据经验公式和相关参数,计算出线路的耐雷水平。
这种方法在实际工程中应用较为广泛,但准确度受到参数选择的影响。
电力系统防雷保护-高电压技术考点复习讲义和题库
考点5:电力系统防雷保护5.1 输电线路的感应雷过电压一、雷击线路附近大地时,线路上的感应雷过电压1、先导在导线轴线方向上的电场强度X E 将导线两端与雷云电荷异号的正电荷,吸引到最靠近先导通道的一段导线上,成为束缚电荷。
导线上的负电荷则被排斥而向两侧运动,经线路泄露电导和系统中性点进入大地。
导线上电流很小,忽略线路工作电压,导线电位仍保持的电位。
正束缚电荷产生的电场在导线高度处被电导中负电荷产生的电场所抵消。
2、主放电先导通道中的负电荷自下而上被迅速中和,相应的电场被迅速减弱,使导线上正束缚电荷迅速释放,形成电压波向两侧传播,形成的过电压称为感应过电压的静电分量。
与此同时,由于先导通道中雷电流所产生的磁场变化而引起的感应称为感应过电压的电磁分量。
(1)当雷击点离开线路的距离s>65m 时,)(25d L KV Sh I u g ⨯⨯≈ 其中L I :雷电流峰值(KA);d h :导线平均高度(m);S:为雷击点离线路的距离。
感应过电压峰值一般最大可达300~400KV,这会引起35KV 及以下钢筋混凝土杆线路绝缘闪络。
(2)加避雷线由于屏蔽作用,感应过电压下降,导线上的感应过电压为)k 1(U U gd ,gd -=因此,避雷线离导线越近,耦合系数k 越大,U 感应越小。
二、雷击线路杆塔时,导线上的感应过电压无避雷线d ah =gd U有避雷线)1(U gd ,k ah d -=与直击雷相比,感应过电压的特点:1、极性与雷云电荷相反,一般为正极性。
2、在三相导线上同时出现,不会直接产生相间过电压。
3、 波形较缓和,波前几微秒到几十微秒,波长可达数百微秒。
5.2 输电线路的直击雷过电压和耐雷水平一、雷击杆塔顶部1.塔顶电位塔顶电流i gt <雷电流L i ,即L i i β=gt 雷电流到达峰值时,塔顶电压有最大值6.2(ch L R U gt L td I +=β其中β为分流系数,设雷电流具有斜角波前,at i =,则t L R L L bib t ++=11β,t 取T/2,(T 1波前时间2.6us)2.导线电位和线路绝缘上的电位当塔顶电位为td U 时,在塔顶的避雷线也有同样的电位,导线上产生的耦合电压为td kU ,由于通道电磁场的作用,导线上有感应过电压)1(a k h d -, 此电压与塔顶电位极性相反,所以导线电位的幅值d U 为)1(a U U td k h k d d --=作用在线路绝缘上的总电压k)-)(1ah (U U U U d td j +=-=d td 对于斜角波前的雷电波6.2L 1LI I a T == )1)(6.26.2(ch L k h I d gt j L R U -++=ββ 3.耐雷水平的计算 耐雷水平:]6.2)6.2[)(1(ch %501d gt h k L R U I ++-=β提高耐雷水平:↓↑↓β,,R ch k ,加强线路绝缘。
电力系统防雷保护(二)
可将避雷器上的电压ub近似 为一斜角平顶波。波头上升 部分斜率为侵入波的陡度, 幅值为Ub-5
只要避雷器上电压<变压器冲 击电压,则可保护
17
二、距离效应
由于避雷器离被保护设备有一段距离,在波的折反射过程中,被 保护设备的电压将不同于避雷器上的电压。
at
L
B
T
at
L
B
T l2
l1
(a)
雷电波侵入变电站的典型接线
例题:
一条220kV线路架设在平原地区,绝缘子串13片,正极性50%放电 电压为1410V;杆塔冲击接地电阻为7,避雷线半径为5.5mm, 弧垂fd=7m,导线弧垂fd=12m。求该线路的耐雷水平和雷击跳闸 率。 解:(1) 求耦合系数
避雷线的平均高度
导线的平均高度 h
d
h b 29 . 1
13
对于110kV以下的配电装置,绝缘水平高,可 用构架避雷针,并就近装设辅助接地装置。 对于变压器,由于最重要,因此不能装设构架 避雷针 对于35kV以下的变电站,由于绝缘水平低,故 只能装设独立避雷针,接地电阻不能超过10 发电厂厂房一般不能装设避雷针。 现在国标也推荐采用避雷线。
2 降低杆塔接地电阻
工频接地电阻一般为10-30
3
架设耦合地线
在某些雷击故障频繁的线路上,在导线下方架设一条耦合地线。 可起到分流、增加耦合的作用。
4
采用不平衡绝缘方式
在同塔双回线的情况下,采用不平衡绝缘,可避免双回线同时跳 闸而完全停电。 10
常用措施(二):
5 6 装设自动重合闸
我国110kV以上线路自动重合闸成功率在75%-95%以上
第九章 输电线路的防雷保护(4)
第九章输电线路的防雷保护本章要求:输电线路的感应过电压:雷击大地和雷击杆塔时导线上感应过电压的计算输电线路上的直击雷过电压和耐雷水平建弧率及雷击跳闸率的计算。
输电线路防雷措施及作用分析由于输电线路长度大,分布面广,地处旷野,易受到雷击。
输电线路上出现的大气过电压有两种:一种是雷击于输电线路引起的,称为直击雷过电压;(1)雷直击导线,无避雷线的线路最易发生,但即使有避雷线,雷电仍可能绕过避雷线的保护范围而击于导线(绕击)。
(2)雷击杆塔或避雷线强大的雷电流通过杆塔及接地电阻,使杆塔和避雷线的电位突然升高,杆塔与导线的电位差超过线路绝缘子闪络电压时绝缘子发生闪络,导线上出现很高的电压。
这种杆塔电位升高,反过来对导线放电,称为反击。
另一种是雷击线路附近地面而引起的,由于电磁感应所引起的,称为感应雷过电压。
(3)雷击输电线路附近大地:当雷击导线水平距离65m以外的大地时(更近的落雷由于线路的引雷作用而击于线路),由于空间电磁场的急剧变化,在导线上感应出的过电压,称为感应雷过电压。
感应雷过电压的危害:(3-1)引起线路跳闸,影响正常供电由于过电压引起绝缘子闪络,导线对地短路,雷电过电压持续时间短(几十μs),继电保护装置来不及动作,但工频续流沿放电通道继续放电,在形成稳定燃烧的电弧后,则继电保护装置将使断路器跳闸,影响正常送电。
(3-2)雷电波侵入变电站导线上形成的雷电过电压波,最终将侵入变电站,经复杂的折反射后,在电气设备上出现很高的过电压,危及设备绝缘,造成事故。
输电线路防雷性能的优劣主要由耐雷水平及雷击跳闸率来衡量。
耐雷水平:雷击线路时线路绝缘不发生冲击闪络的最大雷电流的幅值,单位为KA。
线路的耐雷水平越高,线路绝缘发生冲击闪络的机会就越小。
雷击跳闸率:每100km线路每年有雷击所引起的跳闸次数。
是衡量线路防雷性能的综合指标。
线路防雷问题是一个综合的技术经济问题,在确定线路的具体防雷措施时,应根据线路的电压等级、负荷性质、系统运行方式、雷电活动的强弱、地形地貌的特点和土壤电阻率的高低等条件,特别要结合当地原有线路的运行经验通过技术经济比较来确定。
输电线路防雷技术基础知识讲解
此时雷电流 iL=αt =αL/Vb 间隙S承受的最大电压:
Us
UA
kUA
L b
Z0Zb 2Z0 Zb
(1 K)
感应过电压与下列因素有关:
①雷电波陡度;②档距长度;③耦合系数.
S最短间隙距离从Us的50%击穿电压得到。
Zb/2
A
Z0
❖ U50% 750SkV
❖ S (1 k) Z0Zs
750vs 2Z0 Zs
输电线路防雷技术 基础知识讲解
雷击输电线路的方式
大气过电压:
直击雷过电压:① 、②、 ③
感应雷过电压:④、②、①
其中④只对35KV以下线路有 危害
大气过电压带来的后果: 发生短路接地故障 雷电波侵入变电所,破坏设 备绝缘,造成停电事故 衡量线路防雷性能的优劣:
耐雷水平:线路遭受雷击 所能耐受不至于引起闪络 的最大雷电流(kA) 雷击跳闸率:每100km 线路每年因雷击引起的跳 闸次数
= Utd – KUtd + αhd(1-k) =(Utd +αhd) (1-K)
=[βIL(Rch+Lgt/2.6) + IL hd /2.6](1-K) =IL[β(Rch+Lgt/2.6) + hd /2.6](1-K)
4、线路绝缘子耐雷水平
当作用在线路绝缘子上的电压Uj>绝缘子串冲击闪络电压Uj50% 绝缘子将发生闪络,由于塔顶电位高于导线电位,闪络将从杆塔向 导线发展,故称为反击。 耐雷水平: 雷击杆塔时绝缘子串上承受最大雷电冲击电压所对应的雷电流:
输电线路的直击雷过电压和耐雷水平
Z0 Zb U S U A (1 k ) I L (1 k ) 2Z 0 Z b
不会出现击穿的经验公式
S 0.012 l 1
3.3.3 雷电绕击于导线时的耐雷水平
绕击率:
雷电绕过避雷线直接击中导线的概率
平原地区
lg P
lg P
h
86
3.9
3.35
3.3 输电线路的直击雷过电压和耐雷水平
我 国 110kV 及 以 上 线 路
一般全线都装设避雷线,而
35kV及以下线路一般不装设
避雷线,中性点直接接地系 统有避雷线的线路遭受直击 雷一般有三种情况: 雷击杆塔塔顶;
雷击避雷线档距中央;
雷电绕过避雷线击于导线
有避雷线线路直击雷的 三种情况
3.3.1 雷击杆塔塔项时的耐雷水平
3.3.2 雷击避雷线档距中央
3.3.3 雷电绕击于导线
返回
3.3.1 雷击杆塔塔顶时的耐雷水平
运行经验表明,雷击杆塔的次数与避雷线的根 数和经过地区的地形有关,雷击杆塔次数与雷击线 路总次数的比值称为击杆率 g , DL/T 620—1997 标 准,击杆率g可采用下表所列数据。
击杆率g
Zb / 2 Z0 Zb U A iL Z 0 at Z0 Zb / 2 2Z 0 Z b
分析 雷击避雷线档距中央时, UA 自雷击点向两侧杆
塔移动,并于L/(2*V)的时间到达杆塔;
由于杆塔的接地作用,将出现一个负的反射波, 并经L/(2*V)的时间到达雷击点;
若此时雷电流尚未到达幅值,雷击点的电位自 负反射波到达之时开始下降,最大电位出现在 L/V时刻;
避雷线根数 平原 山丘
1 1/4 1/3
线路直击雷过电压与耐雷水平
额定电压(kV)
35
110
220
330
500
耐雷水平I1(kA) 雷电流超过I1的概率(%)
20~30 40~75 75~110 100~150 125~175
59~46 35~14 14~6
7~2
3.8~1
2、雷击避雷线档距中央:
根据模拟试验和实际运行经验,雷击避雷线档 距 中由央于的半概 径率较较小小的(避10雷%线)。的强烈电晕衰减作用,使 过 电压波传播到杆塔时,已不足以使绝缘子串闪络 标,准通规常定只,需只要要考按虑经雷验击公避式雷S线=对0.导01线2l+的1确反定击档问距题。 中央导、地线间的空气间距S,一般不会发生避雷 线 对导线的反击故障。
Riit
Lt
dit dt
(Rii Lt
di ) dt
Lt为杆塔等值电感,雷电流波前陡度di/dt=I/T1, 塔顶电位幅值为:
U top Ri I Lti / T1 I Ri Lt / T1
注:不同类型杆塔的等值电感不同,见表7-1; 不同电压等级及避雷线数目的β也不同,见表7-2
谢谢观看! 2020
(2) 导线电位和绝缘子串上的电压:
雷击塔顶时,与塔顶相连的避雷线也有相同的电位 utop。负极性的雷电波沿杆塔及避雷线传播时,由 于避雷线与导线之间的电磁耦合作用,在导线上将 产生耦合电压kutop,其极性与雷电流极性相同。
另一方面,由塔顶向雷云发展的正极性雷电波,引 起空间电磁场的迅速变化,又使导线上出现与雷电 流极性相反的正的感应过电压 U g ahc (1 k) 。
提高雷击塔顶时耐雷水平的措施:
(1)一般高度杆塔(小于40m),冲击接地电阻 上压降是塔顶电位的主要成分,因此降低接地电阻 可以有效地减小塔顶电位和提高耐雷水平; (2)增大耦合系数k; (3)加强线路绝缘(提高U50%) 。
线路直击雷过电压及耐雷水平
于是,导线电位就等于避雷线电位产生的耦合电压 与雷电流引起的感应过电压之和:
uc kutop ahc (1 k )
作用在绝缘子串上的电压就等于横担处杆塔电位与 导线电位之差,近似等于塔顶电位与导线电位差。
100 I
——近似计算中假设Z0 ≈Zc/2,Zc线路波阻抗, 取400Ω。
i 2
u0 Zc
A
Z0 i Zc
A
uA
Z0
Zc 2
此即国标中用来估算绕击时过电压的近似公式
(2) 绕击时的耐雷水平: 令 U A U 50% ,可得绕击时的耐雷水平I2:I 2 U 50% 100
例如:采用13片XP-70型绝缘子的220kV线路绝缘子 串的U50%≈1200kV,可求得其I2=12 kA ,大于I2的 雷电流出现概率P1≈73.1%。同理110、500kV线路 绕击时耐雷水平分别只有7、27.4kA,雷电流幅值超 过7、27.4kA的概率分别为83.3%、48.8%!
(1) 雷击点电压幅值:
研究表明,雷电流通道具有分布参数特征,其波阻 抗用Z0表示。
从实际效果看,雷击线路过程可看作是一数值为雷 电流之半(i/2) 的电流波沿一波阻抗为Z0的通道向被 击线路传播的过程,于是可得到其彼得逊等值电路
雷击点电压幅值为:
UA
I
Z0Zc 2Z0 Zc
1 4 IZ c
U top Ri I Lti / T1 I Ri Lt / T1
注:不同类型杆塔的等值电感不同,见表7-1; 不同电压等级及BLX数目的β也不同,见表7-2
线路直击雷过电压及耐雷水平课件
架设耦合地线
耦合地线能够增加地线的分流作用, 从而降低杆塔的电位,提高线路的耐 雷水平。
架设耦合地线需要考虑杆塔的结构、 地形条件等因素,并进行相应的设计 和施工。
在雷电活动频繁的地区,应考虑架设 耦合地线,以增强线路的防雷效果。
其他措施
其他措施包括加强线路绝缘、 采用不平衡绝缘等。
加强线路绝缘可以通过增加绝 缘子的片数或更换绝缘子类型 来实现。
不平衡绝缘是通过在两回线路 上采用不同数量的绝缘子来实 现,以提高线路的耐雷水平。
05
线路直击雷过电压的案例 分析
国内案例
案例一
某500kV输电线路在雷击后出现绝缘子闪络,导致线路跳闸。经调查发现,该线 路的防雷设计存在缺陷,接地电阻过高,导致雷电流无法有效泄入大地。
人员安全威胁
过高的电压可能对巡线人 员构成安全威胁,需要采 取相应的防护措施。
国内外研究现状及发展趋势
国内外研究现状
目前国内外对于线路直击雷过电 压的研究主要集中在过电压产生 的机理、影响因素和防护措施等 方面。
发展趋势
随着科技的不断进步,未来对于 线路直击雷过电压的研究将更加 深入,可能会涉及到更多新型的 防护技术和智能化监测手段。
此外,我们还针对雷电活动规律、雷 电流幅值和雷电流波形等进行了深入 研究,为雷电防护技术的发展提供了 有力支持。
展望
未来,我们将继续深入研究线路直击雷 过电压及耐雷水平的机理和特性,探索
更加有效的防雷保护措施。
我们将加强与国际同行的交流与合作, 引进先进的雷电防护技术和理念,提高
我国在雷电防护领域的整体水平。
原理
通过建立三维电磁场模型,模拟 雷电放电过程中电磁场的分布和 变化,计算过电压的大小和波形。
线路直击雷过电压及耐雷水平讲义
分类: 雷击杆顶、雷击避雷线档距 中央、直击或绕击导线
1、雷击杆顶:
大部分雷电流经杆塔入地, 小部分经避雷线入地。
(1) 塔顶电位: 设雷电流i为斜角波头,波头T1,幅值I,陡度a, 流过杆塔的电流为 it i at (β为分流系数) 则塔顶电位为
(2) 导线电位和绝缘子串上的电压: 雷击塔顶时,与塔顶相连的避雷线也有相同的电位 utop。负极性的雷电波沿杆塔及避雷线传播时,由 于避雷线与导线之间的电磁耦合作用,在导线上将 产生耦合电压kutop,其极性与雷电流极性相同。 另一方面,由塔顶向雷云发展的正极性雷电波,引 起空间电磁场的迅速变化,又使导线上出现与雷电 ahc (1 k ) 。 流极性相反的正的感应过电压 U g 于是,导线电位就等于避雷线电位产生的耦合电压 与雷电流引起的感应过电压之和: uc kutop ahc (1 k )
u top dit di Ri it Lt ( Ri i Lt ) dt dt
Lt为杆塔等值电感,雷电流波前陡度di/dt=I/T1, 塔顶电位幅值为:
U top Ri I Lt i / T1 I Ri Lt / T1
注:不同类型杆塔的等值电感不同,见表7-1; 不同电压等级及避雷线数目的β也不同,见表7-2
提高雷击塔顶时耐雷水平的措施: (1)一般高度杆塔(小于40m),冲击接地电阻 上压降是塔顶电位的主要成分,因此降低接地电阻 可以有效地减小塔顶电位和提高耐雷水平; (2)增大耦合系数k; (3)加强线路绝缘(提高U50%) 。 为了减少反击,必须提高线路的耐雷水平。标 准中规定,雷击塔顶时应有的耐雷水平I1为:
有避雷线时线路应有的耐雷水平
雷电流幅值雷击杆塔塔顶时的过电压和耐雷水平
雷击杆塔塔顶时的过电压和耐雷水平
(3)耐雷水平的计算
I1
(1
K )
U 50% (Rch
Lgt ) 2.6
hd 2.6
雷击杆塔时的耐雷水平与分流系数,杆塔的等值电感,耦合系数及内
络电压有关
雷击避雷线档距中央时的过电压
流入雷击点的雷电流波为:
iZ
iL 1 Zb
(2)绕击跳闸率
n2 0.6hbPa P2
(四)、输电线路的防雷措施
架设避雷线 降低杆塔接地电阻 架设耦合地线 采用不平衡绝缘方式 装设自动重合闸 采用销弧线圈接地方式 装设管型避雷器 加强绝缘
三、输电线路的防雷措施
1、3~10kV线路防雷保护
不架设避雷线,可利用水泥杆的自然接地,为提高供电可 靠性可投入自动重合闸。在雷电特别强烈地区可因地制宜 采用高一电压等级的绝缘子,或顶相用针式两边改用两片 悬式绝缘子,也用采用瓷横担,以提高线路的绝缘水平。 对特殊用户应用用环形供电或不同杆双回路供电,必要时 改为电缆供电。
防止雷击闪络后建立工频短路电弧 防止线路中断供电
一、输电线路的感应雷击过电压
1、无避雷线时
当雷击点离开线路的距离大于65米时,导线上的 感应雷过电压最大值按下式计算:
Ug 25 ILhd S
感应电压一般不超过500kV,对35kV及其以下的 水泥杆线路可能会引起闪络事故,对110kV及其以 上线路,由于线路绝缘水平较高,所以一般不会 引起闪络事故。
2
Z0
过电压为
uA
iL
Z0Zb 2Z0 Zb
(三)输电线路的雷击跳闸率 (1)建弧率
冲击闪络转为稳定工频电弧的概率称为建弧率
线路直击雷过电压及耐雷水平资料
中央导、地线间的空气间距S,一般不会发生避雷 线 对导线的反击故障。
3、直击或绕击:
装设避雷线的线路,仍有雷绕过避雷线击于导线的 可能
发生绕击的概率称为绕击率Ka Ka与避雷线保护角α、杆塔高度h及线路通过地区 的地形地貌有关。 山区线路因地面附近电场受山坡地形影响,绕击率 约为平原线路的3倍。 虽然绕击率很小,但一旦发生绕击,产生的雷过电 压很高,即使是绝缘水平很高的超高压线路也往往 难免闪络。 (1) 雷击点电压幅值: 研究表明,雷电流通道具有分布参数特征,其波阻 抗用Z0表示。
令 U Lj U 50% ,即可求得 雷击塔顶反击时的耐雷水 平I1,即 影响I1的因素:
I1
U 50% Lt hc (1 k ) Ri T T 1 1
杆塔分流系数β,杆塔等值电感Lt,杆塔冲击接 地电阻Ri,耦合系数k和绝缘子串的U50%冲击放 电电压。
此即国标中用来估算绕击时过电压的近似公式
(2) 绕击时的耐雷水平: 令 U A U 50% ,可得绕击时的耐雷水平I2:I 2
U 50%
100
例如:采用13片XP-70型绝缘子的220kV线路绝缘子 串的U50%≈1200kV,可求得其I2=12 kA ,大于I2的 雷电流出现概率P1≈73.1%。同理110、500kV线路 绕击时耐雷水平分别只有7、27.4kA,雷电流幅值超 过7、27.4kA的概率分别为83.3%、48.8%!
反击:本来是地(低)电位的物体,由于某种原因 导致其电位(绝对值)突然升高,当其与周围导体 的电压超过了该间隙的击穿电压或表面放电电压时 ,发生的击穿或闪络现象。
绝缘子串上 电压幅值为: (3) 耐雷水平:
U j
线路直击雷过电压及耐雷水平
03
雷电对线路的影响
雷电对线路的影响主要包括对线路设备的损坏和对电力系统的正常运行
影响。直击雷过电压可能引起线路跳闸、设备损坏等问题,影响电力系
统的稳定性和可靠性。
对线路防雷的建议与展望
加强防雷设施的维护和管理
定期检查和维修防雷设施,确保其正常运行。对 于老化和损坏的设备应及时更换,以提高防雷设 施的可靠性。
06
结论与建议
结论总结
01
线路直击雷过电压的特性
线路直击雷过电压是由于雷电直接击中线路而产生的过电压现象。其特
性包括雷电的电流幅值、雷击点位置、线路的波阻抗等。
02
线路耐雷水平的评估
线路耐雷水平是指线路在遭受雷击时能够承受的雷电能量大小。评估线
路耐雷水平需要考虑线路的绝缘水平、接地电阻、防雷设施等因素。
接地网
设计合理的接地网结构,提高雷电泄流效率。
接地极
选择合适的接地极材料和埋深,以提高接地系统的稳 定性。
线路保护措施的实施
绝缘子串
使用高性能的绝缘子串,提高 线路的绝缘水平。
防雷改造
对老旧线路进行防雷改造,增 强线路的耐雷能力。
巡检与维护
定期进行线路巡检,及时发现 和处理防雷隐患。
05
案例分析
增加防雷设备的配置
在雷电活动频繁地区,可以增加防雷设备的配置 ,如安装避雷器、避雷针等,以提高线路的防雷 能力。
优化线路的接地电阻
降低线路的接地电阻可以提高线路耐雷水平。应 定期检测接地电阻,对于不合格的接地应及时整 改。
研发新型防雷技术
随着科技的发展,应积极研发新型防雷技术,如 雷电预警系统、有源滤波器等,以提高线路的防 雷水平和电力系统的稳定性。
输电线路防雷基础知识讲解
1、塔顶电位
• 雷击杆塔时,有电流 沿杆塔流入大地,由 于避雷线的分流作用, 流入大地的电流为: igt=βi
一般档距的线路杆塔分流系数β
线路额定电压 避雷线根
β值
(kV)
数
110
1
0.90
2
0.86
220
1
0.92
2
0.88
330
2
0.88
在工程近似计算中,将杆 塔和避雷线的分布参数以 集中参数电感来代替。
绝缘上的电压为:
U j Utd U d
Utd KUtd hd 1 K (Utd hd )1 K
U j Utd KUtd hd 1 K
(Utd hd )1 K
(RchI L
IL
Lgt 2.6
I Lhd 2.6
)(1
K)
I L (Rch
Lgt 2.6
hd )(1 2.6
三、感应雷过电压的幅值
• 1、无避雷线时
当雷击点离开线路的距离S>65m 时,
Ug=25
ILhd S
由于雷击地面时,雷电流幅值一般不超过100kA。 实测表明:感应雷过电压一般不超过500kV,对 35kV及以下的水泥杆线路可能引起闪络事故,对 110kV 及以上的线路不会引起事故。
2、有避雷线时
黄岛油库火灾造成40名消防战士和5名油库 职工牺牲,66名官兵和12名油库职工受伤,烧毁 油罐5座,原油34.6万吨及老罐区所有配套设施, 造成直接经济损失3540万元。
事故分析认为是由于空中雷电的电磁感应在油
罐上出现感应电压和感应电流以及间隙放电引起 的。
3、雷击杆塔塔顶时:
• 雷击杆塔塔顶时,由于雷电通道所产生的电磁场 迅速变化,将在导线上感应出与雷电流极性相反 的过电压。无避雷线时,对于一般高度(约40米 以下)的线路,感应电压的幅值为U gd=αhd,
第9章 输电线路的防雷保护
2. 输电线路的直击雷过电压和耐雷水平
若雷电流取为斜角波头,即 iL=at,可得雷击点的最高电
位:
uA
= iZ
⋅ Zb 2
= iL
Z0Zb 2Z0 + Zb
iL = at
UA
=
a×
l vb
×
Z0Zb 2Z0 + Zb
l
2. 输电线路的直击雷过电压和耐雷水平
由于避雷线与导线间的耦合作用,在导线上将产生耦合
输电线路防雷的原则和措施
做好输电线路的防雷工作,不仅可以提高输电线路 本身的供电可靠性,而且还可以使变电所安全运行。
输电线路的防雷保护
架空线路遭受雷击的可能性 10kV、35kV线路
主要是110kV、 220kV,部分 500kV线路
雷击线路附近地面 雷击塔顶及塔顶附近避雷线 雷击档距中央的避雷线 雷击导线
110kV、 220kV、 500kV线路
1、输电线路的感应雷过电压
感应过电压 当雷击线路附近大地时,由于电磁感应,在线路上的
导线会产生感应过电压。
1、输电线路的感应雷过电压
(一)、雷击线路附近大地时,线路上的感应过电压
主放电前 在雷云放电的起始阶段,存在着向大地发展的先导放
电过程,线路正处于雷云与先导通道的电场中,由于静电 感应,沿导线方向的电场强度分量Ex将导线两端与雷云异 号的正电荷吸引到靠近先导通道的一段导线上来成为束缚 电荷,导线上的负电荷则由于Ex的排斥作用而使其向两端 运动,经线路的泄露电导和系统的中性点而流入大地。
(二)、雷击线路杆塔时,导线上的感应过电压
雷击线路杆塔时,由于雷电通道所产生的电磁场迅速变 化,将在导线上感应出与雷电流极性相反的过电压,其计算问 题至今尚有争论,不同方法计算的结果差别很大,也缺乏实践 数据。目前,《规程》建议对一般高度(约40M以下)无避雷 线的线路,此感应过电压最大值可用下式计算
电力系统防雷保护
五、输电线路直击雷过电压
避雷线的分流作用 降低了U top
设避雷线上的电位为U top
导线避雷线间耦合作用(k) 导
线考上虑耦感合应电过压电为压kaUhct(o1p khhgc)ahc(1k)
导线电位:U ckU to pac(h 1k)
U liI(Ri 2 L .t62 h.c 6)1 (k)
(线路绝缘子串两端电压)
变电所方便
第三节 旋转电机的防雷保护(发电机、调相机、
变频机、电动机)
主要内容: 一、旋转电机防雷特点 二、直配电机防雷保护措施及接线 三、非直配电机的防雷保护
不用考虑直击雷保护(安装在户内)。 配线方式:①直配线:与相同电压等级的架空线路或电缆直接相连
②经变压器与线路相连
一、旋转电机防雷特点
1.冲击绝缘水平很低→防雷保护比变压器困难(不是浸在油中 的
一、发电厂、变电所的直击雷保护
2. 架空避雷线 (1)两端接地的避雷线
d1 [0.3Ri 0.16(hl)]
(l2 h)/(l2 l 2h)
——避雷d线2 分流0.3系数Ri,l ——避雷线两支柱间距离
l——雷击点与最近支柱点间的距离, l2 ll
(2)一端经配电装置构架接地,另一端绝缘的避雷线,( 1)
线上束缚电荷K0—u避i'(感c雷)应线u电与i(压c导)线k0间ui(的g)几u何i(耦c)合1(系k0数hhgc)
线间距离
K0
感应过电压愈低
五、输电线路直击雷过电压
雷击杆塔杆顶 雷击避雷线挡距之间 雷绕过避雷线击于导线—绕击
五、输电线路直击雷过电压
1. 雷击杆塔杆顶时的过电压和耐雷水平 雷击杆塔时 大部分电流经被击杆塔流入大地
输电线路的防雷保护相关知识讲解
P
h
86
3.35
输电线路雷击跳闸率
n n1 n2
N (gP1 P P2 )
例题
四.输电线路的防雷措施
1.架设避雷线 作用:
防止雷直击于导线; 对雷电流有分流作用,使塔顶电位下降; 对导线有耦合作用,降低雷击杆塔时绝缘子串 上电压; 对导线有屏蔽作用,可降低导线上感应电压
330kv及以上: 全线架设双避雷线 α在20度左 右
输电线路的防雷保护相 关知识讲解
衡量输电线路防雷性能的两个指标:
耐雷水平:雷击线路绝缘不发生闪络的最大 雷电流幅值
雷击跳闸率:每100km线路每年由雷击引起的 跳闸次数
一.输电线路的感应雷过电压
1.感应过电压的计算
(1).导线上方无避雷线
Ug
25
Ihd S
S:雷击点与线路的垂直距离
I:雷电流幅值
hd :导线悬挂的平均高度
(2).导线上方挂有避雷线
U
' gd
U
' gd
(1
k0
hb ) hd
(3).雷击线路杆塔时,导线上的感应过电压
无避雷线:
U gd hd
有避雷线:
U
' gd
hd (1 k0
hb hd
)
二.输电线路的直击雷过电压和耐雷水平
1.雷击杆塔塔顶 雷电流的分布
等值电路图
流经杆塔的电流
雷击处避雷线与导线间的空气隙S上承受最大电压
US U A (1 k)
l Z0Zb (1 k) b 2Z0 Zb
不会出现击穿的经验公式
S 0.012l 1
3.雷绕过避雷线击于导线或直接击于导线 等值电路图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类: 雷击杆顶、雷击BLX档距 中央、直击或绕击导线
1、雷击杆顶:
大部分雷电流经杆塔入地, 小部分经BLX入地。
(1) 塔顶电位: 设雷电流i为斜角波头,波头T1,幅值I,陡度a, 流过杆塔的电流为 it i at (β为分流系数) 则塔顶电位为
(2) 导线电位和绝缘子串上的电压: 雷击塔顶时,与塔顶相连的BLX也有相同的电位 utop。负极性的雷电波沿杆塔及BLX传播时,由于 BLX与导线之间的电磁耦合作用,在导线上将产 生耦合电压kutop,其极性与雷电流极性相同。 另一方面,由塔顶向雷云发展的正极性雷电波,引 起空间电磁场的迅速变化,又使导线上出现与雷电 ahc (1 k ) 。 流极性相反的正的感应过电压 U g 于是,导线电位就等于避雷线电位产生的耦合电压 与雷电流引起的感应过电压之和: uc kutop ahc (1 k )
架空输电线路典型杆塔的Байду номын сангаас击跳闸率
电压等级/kV 110 220 500
平原跳闸率/(次/百公 里· 年)
山区跳闸率/(次/百公 里· 年)
0.83
1.18- 2.01
0.25
0.43- 0.95
0.081
0.17-0.42
三、输电线路防雷措施
自学总结
自学要点:(1)BLX在线路防雷中的作用? (2)Ri的影响? (3)消弧线圈在防雷中怎么起作用?
u top dit di Ri it Lt ( Ri i Lt ) dt dt
Lt为杆塔等值电感,雷电流波前陡度di/dt=I/T1, 塔顶电位幅值为:
U top Ri I Lt i / T1 I Ri Lt / T1
注:不同类型杆塔的等值电感不同,见表7-1; 不同电压等级及BLX数目的β也不同,见表7-2
反击:本来是地(低)电位的物体,由于某种原因 导致其电位(绝对值)突然升高,当其与周围导体 的电压超过了该间隙的击穿电压或表面放电电压时 ,发生的击穿或闪络现象。
绝缘子串上 电压幅值为: (3) 耐雷水平:
U Lj
Lt hc (1 k ) Ri T T I 1 1
令 U Lj U 50% ,即可求得 雷击塔顶反击时的耐雷水 平I1,即 影响I1的因素:
I1
U 50% Lt hc (1 k ) Ri T T 1 1
杆塔分流系数β,杆塔等值电感Lt,杆塔冲击接 地电阻Ri,耦合系数k和绝缘子串的U50%冲击放 电电压。
发生绕击的概率称为绕击率Ka Ka与避雷线保护角α、杆塔高度h及线路通过地区 的地形地貌有关。 山区线路因地面附近电场受山坡地形影响,绕击率 约为平原线路的3倍。 虽然绕击率很小,但一旦发生绕击,产生的雷过电 压很高,即使是绝缘水平很高的超高压线路也往往 难免闪络。 (1) 雷击点电压幅值: 研究表明,雷电流通道具有分布参数特征,其波阻 抗用Z0表示。
思考题
7-3
补充思考题: 1、耐雷水平的含义?影响耐雷水平的 因素主要有哪些? 2、线路防雷措施主要有哪些?
由于半径较小的BLX的强烈电晕衰减作用,使过 电压波传播到杆塔时,已不足以使绝缘子串闪络 ,通常只需要考虑雷击BLX对导线的反击问题。
标准规定,只要按经验公式S=0.012l+1确定档距 中央导、地线间的空气间距S,一般不会发生BLX 对导线的反击故障。
3、直击或绕击:
装设BLX的线路,仍有雷绕过BLX击于导线的可能
2
建弧率η取决于沿绝缘子串或空气间隙的平均工作 电压梯度E,也与闪络瞬间工频电压瞬时值和去游 离条件有关。
2、雷击跳闸率的计算
线路总的雷击跳闸率n为雷击杆塔跳闸率n1和 绕击跳闸率n2之和,即n=n1+n2
g· P1·η 经验公式: n1=N·
n2=N· Pa· P2· η
其中g为击杆率,P1为雷电流幅值超过雷击杆顶 耐雷水平I1的概率; Pa为绕击率,P2为雷电流幅 值超过绕击耐雷水平I2的概率。 影响因素:P1(I1)——耐雷水平 降低雷击跳闸率的措施:↑I、加强绝缘法↓E
作用在绝缘子串上的电压就等于横担处杆塔电位与 导线电位之差,近似等于塔顶电位与导线电位差。
u Li (1 k )Ri i (1 k )Lt di dt ahc (1 k ) (1 k )[ ( Ri i Lt di dt ahc ]
绝缘子串上电压随着雷电流增大而增大,当绝缘子 串上电压超过其50%冲击放电电压时,绝缘子串就 发生逆闪络(反击),可能造成线路跳闸。
提高雷击塔顶时耐雷水平的措施: (1)一般高度杆塔(小于40m),冲击接地电阻 上压降是塔顶电位的主要成分,因此降低接地电阻 可以有效地减小塔顶电位和提高耐雷水平; (2)增大耦合系数k; (3)加强线路绝缘(提高U50%) 。 为了减少反击,必须提高线路的耐雷水平。标 准中规定,雷击塔顶时应有的耐雷水平I1为:
从实际效果看,雷击线路过程可看作是一数值为雷 电流之半(i/2) 的电流波沿一波阻抗为Z0的通道向被 击线路传播的过程,于是可得到其彼得逊等值电路 雷击点电压幅值为:
Z0Zc 1 UA I IZc 100I 2Z 0 Z c 4
i 2
A
uA
u0 Zc
A
Z0 Zc
i
Z0
Zc 2
——近似计算中假设Z0 ≈Zc/2,Zc线路波阻抗, 取400Ω。
可见,绕(直)击时线路的耐雷水平很低!
因此对110kV及以上中性点直接接地系统的输电线路, 一般都要求沿全线架设避雷线,以防止线路频 繁发生雷击闪络跳闸事故。
4.4 雷击跳闸率及防雷措施
一、引起跳闸的过电压类型
击杆顶——反击(1) 击避雷线档距中央——(2) 直击——绕击(3) 感应雷过电压——(4) 显然,对110KV及以上线路,只需考虑(1)、 (3) 两种情况下过电压产生的跳闸率。
二、雷击跳闸率计算
1、建弧率
雷击输电线路导致跳闸需要两个条件,一是雷电流 超过线路的耐雷水平,导致绝缘子串发生冲击闪络; 其二是冲击电弧转化为稳定的工频短路电弧,才会 跳闸。
建弧有一定的统计性,在线路冲击闪络的总次数 中,可能转为稳定工频电弧的比例称为建弧率η:
(4.5E
0.75
14) 10
有避雷线时线路应有的耐雷水平
额定电压(kV) 耐雷水平I1(kA) 雷电流超过I1的概率(%) 35 20~30 59~46 110 40~75 35~14 220 75~110 14~6 330 100~150 7~ 2 500 125~175 3.8~1
2、雷击BLX档距中央:
根据模拟试验和实际运行经验,雷击BLX档距 中央的概率较小(10%)。
此即国标中用来估算绕击时过电压的近似公式
(2) 绕击时的耐雷水平: 令 U A U 50% ,可得绕击时的耐雷水平I2:I 2
U 50%
100
例如:采用13片XP-70型绝缘子的220kV线路绝缘子 串的U50%≈1200kV,可求得其I2=12 kA ,大于I2的 雷电流出现概率P1≈73.1%。同理110、500kV线路 绕击时耐雷水平分别只有7、27.4kA,雷电流幅值超 过7、27.4kA的概率分别为83.3%、48.8%!