误差及分析数据处理
数据处理与误差分析报告
数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。
在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。
本报告将对数据处理的方法进行介绍,并分析误差来源和处理。
2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。
通过筛选和校对,确保数据的准确性和一致性。
2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。
这样可以方便进行后续的分析和比较。
2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。
常见的数据归约方法包括维度约简和特征选择等。
2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。
通过统计分析,可以从整体上了解和描述数据的特征和分布情况。
3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。
观测误差可以分为系统误差和随机误差两种类型。
系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。
3.2 数据采集误差数据采集误差包括采样误差和非采样误差。
采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。
采取合理的抽样策略和数据校正方法,可以减小这些误差。
3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。
不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。
3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。
模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。
通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。
实验误差分析及数据处理
u + Δu = f (x + Δx, y + Δy,z + Δz)
由泰勒公式,并略去误差的高次项,得
115
地球物理实验
u + Δu = f (x, y,z) + ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
或
Δu = ∂f Δx + ∂f Δy + ∂f Δz
∂x ∂y ∂z
该式即为误差传递公式。 例如我们通过直接测量圆柱形试件的直径D及高H来计算试件的体积V。
前面提到测量值=真值+误差,这里误差包含了系统误差和偶然误差,则测量值=真值+
系统误差+偶然误差,当系统误差修正后,误差主要即是偶然误差。在多次测量中,偶然误
差是一随机的变量,那么测量值也就是一随机变量,我们则可用算术平均值和标准误差来
描述它。
算术平均值 X :
X
=
1 n
n
∑
i =1
xi
式中xi为第i次测量的测量值,n为测量次数,当n→∞时, X →xt(真值),但是当n增加到 一定程度时, X 的精度的提高就不显着了,所以一般测量中n只要大于10就可以了。
明误差在 ± 1.96s 以外的值都要舍去,这里
1.96s=1.96×1.12=2.19
我们以算术平均值代表真值,表中第4个测量值的偏差 di 为2.4,在 ± 2.19 以外,应当舍
去,再计算其余9个数据的算术平均值和标准误差,有
m = ∑ mi = 416.0 = 46.2
n
9
∑ s =
d
2 i
偶然误差是一种不规则的随机的误差,无法予测它的大小,其误差没有固定的大小和 偏向。
滴定分析中的误差及数据处理
滴定分析中的误差及数据处理引言概述:滴定分析是一种常见的定量分析方法,广泛应用于化学、生物化学、环境科学等领域。
然而,在滴定分析过程中,由于实验条件、仪器设备等因素的影响,往往会产生误差。
正确处理这些误差并进行数据处理,对于保证分析结果的准确性和可靠性至关重要。
本文将从五个方面详细阐述滴定分析中的误差及数据处理方法。
一、体积误差1.1 仪器误差:滴定分析中常用的仪器有分析天平、容量瓶、滴定管等。
在使用这些仪器时,应注意校准和使用规范,以减小仪器误差。
1.2 液面误差:滴定分析中,液面的读取对于结果的准确性有着重要影响。
因此,在读取液面时,应注意垂直读取、避免液面的折光等因素对读数的影响。
1.3 滴定管的容量误差:滴定管的容量误差是滴定分析中常见的误差来源。
为减小这一误差,可以使用一定体积的滴定管,或者采用称量法确定滴定管的容量。
二、滴定试剂误差2.1 试剂纯度误差:滴定试剂的纯度对于滴定分析结果的准确性有着重要影响。
因此,在滴定分析中,应选择高纯度的试剂,并进行纯度检验。
2.2 试剂滴定度误差:试剂滴定度是指滴定试剂与被滴定物质的化学反应当量比。
在实际操作中,试剂滴定度的确定是十分重要的,应根据实验条件和反应特性精确测定。
2.3 试剂保存误差:试剂的保存条件对于滴定分析结果的准确性也有着重要影响。
应将试剂保存在干燥、避光、低温的条件下,避免因试剂的降解或者氧化而引起误差。
三、指示剂误差3.1 选择合适的指示剂:指示剂的选择应根据被滴定物质的性质和滴定反应的特点来确定。
应选择颜色变化明显、与被滴定物质反应快速的指示剂。
3.2 指示剂的浓度误差:指示剂的浓度对于滴定分析结果的准确性有着重要影响。
应根据实际需要精确配制指示剂,并在使用前进行浓度检验。
3.3 指示剂的添加量误差:指示剂的添加量过多或者过少都会对滴定分析结果产生影响。
应根据滴定试剂的滴定度和指示剂的滴定反应比确定适当的添加量。
四、操作误差4.1 滴定速度误差:滴定速度的快慢会对滴定分析结果产生影响。
数据分析中常见误差和偏差的处理方法
数据分析中常见误差和偏差的处理方法数据分析是指通过收集、整理、处理和解释数据,以揭示数据中隐藏的模式、关系和趋势,从而支持决策和行动。
然而,由于数据本身的特点和数据收集过程中的不确定性,常常会出现误差和偏差,影响数据分析结果的准确性和可靠性。
本文将介绍数据分析中常见的误差和偏差,并探讨如何有效地处理它们,以确保数据分析结果的准确性。
一、抽样误差的处理方法在数据分析中,常常需要从整体数据中选取一个代表性的子集进行分析,这个过程称为抽样。
然而,由于抽样的随机性和有限性,可能导致抽样误差。
为了减小抽样误差,可以采取以下处理方法:1. 增加样本容量:增加样本容量可以减小抽样误差。
当样本容量足够大时,抽样误差趋于零。
因此,根据具体情况,可以适当增加样本容量。
2. 使用层次抽样:层次抽样是指将总体按照一定的规则划分为若干层,然后从每一层随机选取样本进行分析。
这样可以保证各个层次的代表性,减小抽样误差。
二、测量误差的处理方法测量误差是指由于测量设备或测量方法的限制而引入的误差。
为了处理测量误差,可以采取以下方法:1. 校准测量设备:经常对使用的测量设备进行校准,校准的目的是调整测量设备的偏差,提高测量的准确性。
2. 多次测量取平均值:对同一指标进行多次测量,并取平均值作为测量结果。
由于测量误差是随机的,多次测量取平均值可以减小测量误差。
三、样本选择偏差的处理方法样本选择偏差是指在样本选择过程中,样本与总体之间存在系统性差异而引入的偏差。
为了处理样本选择偏差,可以采取以下方法:1. 随机抽样:采用随机抽样的方法可以减小样本选择偏差。
随机抽样可以确保样本具有代表性,并能够反映总体的特征。
2. 控制变量法:在样本选择过程中,控制与研究对象相关的其他变量,以减小样本选择偏差。
通过控制变量,可以消除其他因素对研究结果的影响,使样本选择更加准确。
四、分析偏差的处理方法分析偏差是指在数据分析过程中,由于分析方法、模型选择或统计技术的不合理而引入的偏差。
实验数据误差分析与数据处理
第一章实验数据误差分析与数据处理第一节实验数据误差分析一、概述由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差;为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论;实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案;实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高;二、实验误差的来源实验误差从总体上讲有实验装置包括标准器具、仪器仪表等、实验方法、实验环境、实验人员和被测量五个来源;1.实验装置误差测量装置是标准器具、仪器仪表和辅助设备的总体;实验装置误差是指由测量装置产生的测量误差;它来源于:1标准器具误差标准器具是指用以复现量值的计量器具;由于加工的限制,标准器复现的量值单位是有误差的;例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的;又如,标称值为1kg的砝码的实际质量真值并不等于1kg等等;2仪器仪表误差凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值;例如,温度计、电流表、压力表、干涉仪、天平,等等;由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差;例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等;但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差;3附件误差为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件;如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差;又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等;按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差;结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等;这些误差大部分是由于制造工艺不完善和长期使用磨损引起的;调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等;这些误差是由于仪器仪表在使用时,未调整到理想状态引起的;变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等;这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的;2.环境误差环境误差系指测量中由于各种环境因素造成的测量误差;被测量在不同的环境中测量,其结果是不同的;这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一;环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着;测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差;3.方法误差方法误差系指由于测量方法包括计算过程不完善而引起的误差;事实上,不存在不产生测量误差的尽善尽美的测量方法;由测量方法引起的测量误差主要有下列两种情况:第一种情况:由于测量人员的知识不足或研究不充分以致操作不合理,或对测量方法、测量程序进行错误的简化等引起的方法误差;第二种情况:分析处理数据时引起的方法误差;例如,轴的周长可以通过测量轴的直径d,然后由公式:L=πd计算得到;但是,在计算中只能取其近似值,因此,计算所得的L也只能是近似值,从而引起周长L的误差;4.人员误差人员误差系指测量人员由于生理机能的限制,固有习惯性偏差以及疏忽等原因造成的测量误差;由于测量人员在长时间的测量中,因疲劳或疏忽大意发生看错、读错、听错、记错等错误造成测量误差,这类误差往往相当大是测量所不容许的;为此,要求测量人员养成严格而谨慎的习惯,在测量中认真操作并集中精力,从制度上规定,对某些准确性较高而又重要的测量,由另一名测量人员进行复核测量;5.测量对象变化误差被测对象在整个测量过程中处在不断地变化中;由于测量对象自身的变化而引起的测量误差称为测量对象变化误差;例如,被测温度计的温度,被测线纹尺的长度,被测量块的尺寸等,在测量过程中均处于不停地变化中,由于它们的变化,使测量不准而带来误差;三、误差的分类误差是实验测量值包括间接测量值与真值客观存在的准确值之差别,误差可以分为下面三类:1. 系统误差由某些固定不变的因素引起的;在相同条件下进行多次测量,其误差的数值大小正负保持恒定,或误差随条件按一定规律变化;单纯增加实验次数是无法减少系统误差的影响,因为它在反复测定的情况下常保持同一数值与同一符号,故也称为常差;系统误差有固定的偏向和确定的规律,可按原因采取相应的措施给予校正或用公式消除;2. 随机误差偶然误差由一些不易控制的因素引起,如测量值的波动,肉眼观察误差等等;随机误差与系统误差不同,其误差的数值和符号不确定,它不能从实验中消除,但它服从统计规律,其误差与测量次数有关;随着测量次数的增加,出现的正负误差可以相互抵消,故多次测量的算术平均值接近于真值;3.过失误差由实验人员粗心大意,如读数错误,记录错误或操作失误引起;这类误差与正常值相差较大,应在整理数据时加以剔除;四、实验数据的真值与平均值1.真值真值是指某物理量客观存在的确定值,它通常是未知的;虽然真值是一个理想的概念,但对某一物理量经过无限多次的测量,出现的误差有正、有负,而正负误差出现的概率是相同的;因此,若不存在系统误差,它们的平均值相当接近于这一物理量的真值;故真值等于测量次数无限多时得到的算术平均值;由于实验工作中观测的次数是有限的,由此得出的平均值只能近似于真值,故称这个平均值为最佳值;2.平均值油气储运实验中常用的平均值有:1算术平均值设x,x,.,x为各次测量值, n 为测量次数,则算术平均值为:算术平均值是最常用的一种平均值,因为测定值的误差分布一般服从正态分布,可以证明算术平均值即为一组等精度测量的最佳值或最可信赖值;2均方根平均值3几何平均值五、误差的表示方法1.绝对误差测量值与真值之差的绝对值称为测量值的误差,即绝对误差;在实际工作中常以最佳值代替真值,测量值与最佳值之差称为残余误差,习惯上也称为绝对误差;设测量值用x 表示,真值用X 表示,则绝对误差D 为D=|X-x|如在实验中对物理量的测量只进行了一次,可根据测量仪器出厂鉴定书注明的误差,或取测量仪器最小刻度值的一半作为单次测量的误差;如某压力表精确度为级,即表明该仪表最大误差为相当档次最大量程的%,若最大量程为,该压力表的最大误差为:×%=如实验中最常用的U 形管压差计、转子流量计、秒表、量筒等仪表原则上均取其最小刻度值为最大误差,而取其最小刻度值的一半作为绝对误差计算值;2.相对误差绝对误差D 与真值的绝对值之比,称为相对误差:式中真值X 一般为未知,用平均值代替;3.算术平均误差算术平均误差的定义为:x——测量值,i=1,2,3, .,n ;d——测量值与算术平均值x 之差的绝对值,d= x x i . ;4.标准误差均方误差对有限测量次数,标准误差表示为:标准误差是目前最常用的一种表示精确度的方法,它不但与一系列测量值中的每个数据有关,而且对其中较大的误差或较小的误差敏感性很强,能较好地反映实验数据的精确度,实验愈精确,其标准误差愈小;六、精密度、正确度和准确度1、精密度精密度是指对同一被测量作多次重复测量时,各次测量值之间彼此接近或分散的程度;它是对随机误差的描述,它反映随机误差对测量的影响程度;随机误差小,测量的精密度就高;如果实验的相对误差为%且误差由随机误差引起,则可以认为精密度为10-4;2、正确度正确度是指被测量的总体平均值与其真值接近或偏离的程度;它是对系统误差的描述,它反映系统误差对测量的影响程度;系统误差小,测量的正确度就高;如果实验的相对误差为%且误差由系统误差引起,则可以认为正确度为10-4;3、准确度准确度是指各测量值之间的接近程度和其总体平均值对真值的接近程度;它包括了精密度和正确度两方面的含义;它反映随机误差和系统误差对测量的综合影响程度;只有随机误差和系统误差都非常小,才能说测量的准确度高;若实验的相对误差为%且误差由系统误差和随机误差共同引起,则可以认为精确度为10-4;七、实验数据的有效数与记数法任何测量结果或计算的量,总是表现为数字,而这些数字就代表了欲测量的近似值;究竟对这些近似值应该取多少位数合适呢应根据测量仪表的精度来确定,一般应记录到仪表最小刻度的十分之一位;例如:某液面计标尺的最小分度为1mm,则读数可以到;如在测定时液位高在刻度524mm 与525mm 的中间,则应记液面高为,其中前三位是直接读出的,是准确的,最后一位是估计的,是欠准的,该数据为4 位有效数;如液位恰在524mm刻度上,该数据应记为,若记为524mm,则失去一位末位欠准数字;总之,有效数中应有而且只能有一位末位欠准数字;由上可见,当液位高度为时,最大误差为±,也就是说误差为末位的一半;在科学与工程中,为了清楚地表达有效数或数据的精度,通常将有效数写出并在第一位数后加小数点,而数值的数量级由10 的整数幂来确定,这种以10 的整数幂来记数的方法称科学记数法;例如:应记为×10-3,88000有效数3 位记为×104;应注意科学记数法中,在10 的整数幂之前的数字应全部为有效数;有效数字进行运算时,运算结果仍为有效数字;总的规则是:可靠数字与可靠数字运算后仍为可靠数字,可疑数字与可疑数字运算后仍为可疑数字,可靠数字与可疑数字运算后为可疑数字,进位数可视为可靠数字;对于已经给出了不确定度的有效数字,在运算时应先计算出运算结果的不确定度,然后根据它决定结果的有效数字位数;加减运算规则:A.如果已知参与加减运算的各有效数字的不确定度,则先算出计算结果的不确定度,并保留1-2位,然后确定计算结果的有效位数;B.如果没给出参与加减运算的各有效数字的不确定度,则先找出可疑位最高的那个有效数字,计算结果的可疑位应与该有效数字的可疑位对齐;乘除运算规则若干个有效数字相乘除时,计算结果积或商的有效数字位数在大多数情况下与参与运算的有效数字位数最少的那个分量的有效位数相同; 乘方、开方运算规则有效数字在乘方或开方时,若乘方或开方的次数不太高,其结果的有效数字位数与原底数的有效数字位数相同; 对数运算规则有效数字在取对数时,其有效数字的位数与真数的有效数字位数相同或多取1位;第二节 实验数据处理基本方法数据处理是指从获得数据开始到得出最后结论的整个加工过程,包括数据记录、整理、计算、分析和绘制图表等;数据处理是实验工作的重要内容,涉及的内容很多,这里仅介绍一些基本的数据处理方法; 一、列表法对一个物理量进行多次测量或研究几个量之间的关系时,往往借助于列表法把实验数据列成表格;其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系;所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能;列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称符号和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理; 二、图解法图线能够直观地表示实验数据间的关系,找出物理规律,因此图解法是数据处理的重要方法之一;图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸即毫米方格纸、对数坐标纸和极坐标纸等,根据作图需要选择;在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯;2.曲线改直 由于直线最易描绘,且直线方程的两个参数斜率和截距也较易算得;所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线;下面为几种常用的变换方法;1c xy =c 为常数;令xz 1=,则cz y =,即y 与z 为线性关系; 2y c x =c 为常数;令2x z =,则z cy 21=,即y 与z 为线性关系;3b ax y =a 和b 为常数;等式两边取对数得,x b a y lg lg lg +=;于是,y lg 与x lg 为线性关系,b 为斜率,a lg 为截距;4bx ae y =a 和b 为常数;等式两边取自然对数得,bx a y +=ln ln ;于是,y ln 与x 为线性关系,b 为斜率,a ln 为截距;3.确定坐标比例与标度 合理选择坐标比例是作图法的关键所在;作图时通常以自变量作横坐标x 轴,因变量作纵坐标y 轴;坐标轴确定后,用粗实线在坐标纸上描出坐标轴,并注明坐标轴所代表物理量的符号和单位;坐标比例是指坐标轴上单位长度通常为cm 1所代表的物理量大小;坐标比例的选取应注意以下几点:1原则上做到数据中的可靠数字在图上应是可靠的,即坐标轴上的最小分度m m 1对应于实验数据的最后一位准确数字;坐标比例选得过大会损害数据的准确度;2坐标比例的选取应以便于读数为原则,常用的比例为“1∶1”、“1∶2”、“1∶5”包括“1∶”、“1∶10”…,即每厘米代表“1、2、5”倍率单位的物理量;切勿采用复杂的比例关系,如“1∶3”、“1∶7”、“1∶9”等;这样不但不易绘图,而且读数困难;坐标比例确定后,应对坐标轴进行标度,即在坐标轴上均匀地一般每隔cm 2标出所代表物理量的整齐数值,标记所用的有效数字位数应与实验数据的有效数字位数相同;标度不一定从零开始,一般用小于实验数据最小值的某一数作为坐标轴的起始点,用大于实验数据最大值的某一数作为终点,这样图纸可以被充分利用;4.数据点的标出 实验数据点在图纸上用“+”符号标出,符号的交叉点正是数据点的位置;若在同一张图上作几条实验曲线,各条曲线的实验数据点应该用不同符号如×、⊙等标出,以示区别;5.曲线的描绘 由实验数据点描绘出平滑的实验曲线,连线要用透明直尺或三角板、曲线板等拟合;根据随机误差理论,实验数据应均匀分布在曲线两侧,与曲线的距离尽可能小;个别偏离曲线较远的点,应检查标点是否错误,若无误表明该点可能是错误数据,在连线时不予考虑;对于仪器仪表的校准曲线和定标曲线,连接时应将相邻的两点连成直线,整个曲线呈折线形状;6.注解与说明 在图纸上要写明图线的名称、坐标比例及必要的说明主要指实验条件,并在恰当地方注明作者姓名、日期等;7.直线图解法求待定常数 直线图解法首先是求出斜率和截距,进而得出完整的线性方程;其步骤如下:1选点;在直线上紧靠实验数据两个端点内侧取两点),(11y x A 、22,(y x B ,并用不同于实验数据的符号标明,在符号旁边注明其坐标值注意有效数字;若选取的两点距离较近,计算斜率时会减少有效数字的位数;这两点既不能在实验数据范围以外取点,因为它已无实验根据,也不能直接使用原始测量数据点计算斜率;2求斜率;设直线方程为bx a y +=,则斜率为1212x x y y b --=1-5-13求截距;截距的计算公式为11bx y a -= 1-5-2三、逐差法当两个变量之间存在线性关系,且自变量为等差级数变化的情况下,用逐差法处理数据,既能充分利用实验数据,又具有减小误差的效果;具体做法是将测量得到的偶数组数据分成前后两组,将对应项分别相减,然后再求平均值;例如,在弹性限度内,弹簧的伸长量x 与所受的载荷拉力F 满足线性关系kx F =实验时等差地改变载荷,测得一组实验数据如下表:求每增加1Kg 砝码弹簧的平均伸长量x ∆;若不加思考进行逐项相减,很自然会采用下列公式计算[])(71)()()(7118782312x x x x x x x x x -=-++-+-=∆ 结果发现除1x 和8x 外,其它中间测量值都未用上,它与一次增加7个砝码的单次测量等价;若用多项间隔逐差,即将上述数据分成前后两组,前一组),,,(4321x x x x ,后一组),,,(8765x x x x ,然后对应项相减求平均,即[])()()()(44148372615x x x x x x x x x -+-+-+-⨯=∆ 这样全部测量数据都用上,保持了多次测量的优点,减少了随机误差,计算结果比前面的要准确些;逐差法计算简便,特别是在检查具有线性关系的数据时,可随时“逐差验证”,及时发现数据规律或错误数据; 四、最小二乘法由一组实验数据拟合出一条最佳直线,常用的方法是最小二乘法;设物理量y 和x 之间的满足线性关系,则函数形式为bx a y +=最小二乘法就是要用实验数据来确定方程中的待定常数a 和b ,即直线的斜率和截距;我们讨论最简单的情况,即每个测量值都是等精度的,且假定x 和y 值中只有y 有明显的测量随机误差;如果x 和y 均有误差,只要把误差相对较小的变量作为x 即可;由实验测量得到一组数据为),2,1;,(n i y x i i =,其中i x x =时对应的i y y =;由于测量总是有误差的,我们将这些误差归结为i y 的测量偏差,并记为1ε,2ε,…,n ε,见图1-5-2;这样,将实验数据),(i i y x 代入方程bx a y +=后,得到⎪⎪⎭⎪⎪⎬⎫=+-=+-=+-n n n bx a y bx a y bx a y εεε)()()(222111我们要利用上述的方程组来确定a 和b ,那么a 和b 要满足什么要求呢 显然,比较合理的a 和b 是使1ε,2ε,…,n ε数值上都比较小;但是,每次测量的误差不会相同,反映在1ε,2ε,…,n ε大小不一,而且符号也不尽相同;所以只能要求总的偏差最小,即min 21→∑=i ni ε 令 2121)(i in i i ni bx a yS --==∑∑==ε使S 为最小的条件是0=∂∂a S ,0=∂∂bS ,022>∂∂a S ,022>∂∂b S由一阶微商为零得y⎪⎪⎭⎪⎪⎬⎫=--∑-=∂∂=--∑-=∂∂==0)(20)(211i i i n i i i n i x bx a y b Sbx a y aS 解得 212112111)(i ni i ni ini i ni i i n i i n i x n x y x y x x a ======∑-⎪⎭⎫ ⎝⎛∑∑∑-∑∑=1-5-32121111)(ini i ni i i ni i ni i ni x n x y x n y x b =====∑-⎪⎭⎫ ⎝⎛∑∑-∑∑=1-5-4令111x n x n i =∑=,i n i y n y 11=∑=,21121⎪⎭⎫⎝⎛∑==x n x n i ,2121i n i x n x =∑=,)(111i n i y x n xy =∑=,则x b y a -= 1-5-5 22xx xyy x b --⋅=1-5-6如果实验是在已知y 和x 满足线性关系下进行的,那么用上述最小二乘法线性拟合又称一元线性回归可解得斜率a 和截距b ,从而得出回归方程bx a y +=;如果实验是要通过对x 、y 的测量来寻找经验公式,则还应判断由上述一元线性拟合所确定的线性回归方程是否恰当;这可用下列相关系数r 来判别))((2222y y x x yx xy r --⋅-= 1-5-7其中21121⎪⎭⎫ ⎝⎛∑==y n y n i ,2121i n i y n y =∑=;可以证明,||r 值总是在0和1之间;||r 值越接近1,说明实验数据点密集地分布在所拟合的直线的近旁,用线性函数进行回归是合适的;1||=r 表示变量x 、y 完全线性相关,拟合直线通过全部实验数据点;||r 值越小线性越差,一般9.0||≥r 时可认为两个物理量之间存在较密切的线性关系,此时用最小二乘法直线拟合才有实际意义;。
数据处理及误差分析
数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。
在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。
因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。
2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。
它包括了数据清洗、数据转换、数据提取和数据集成等步骤。
2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。
清洗后的数据更加可靠和准确,能够更好地反映实际情况。
2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。
比如,将连续型数据离散化、进行数据标准化等。
2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。
通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。
2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。
通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。
3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。
误差可以分为系统误差和随机误差两种类型。
3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。
它们可能是由于仪器精度不高、实验环境变化等原因引起的。
系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。
3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。
它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。
4. 误差分析方法误差分析通常采用统计学和数学方法进行。
其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。
4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。
它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。
4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。
物理实验中的数据处理与误差分析
物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。
准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。
本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。
一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。
计算平均值可以减小测量误差的影响,提高结果的准确性。
求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。
2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。
当存在多个物理量的测量误差时,需要对误差进行传递计算。
常见的误差传递公式有乘法、除法和幂函数的误差传递公式。
3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。
直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。
而斜率的计算可以通过拟合得到的直线参数来得出。
二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。
随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。
系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。
在误差分析中,需要分别考虑和处理这两种误差。
2.误差的类型与来源误差可以分为绝对误差和相对误差。
绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。
误差的来源主要有仪器误差、人为误差和环境误差等。
3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。
通常可以采用标准差、百分误差和置信区间等方法来评估误差。
同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。
三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。
分析数据时常见的误差与处理方法
分析数据时常见的误差与处理方法数据分析在现代社会中起着至关重要的作用,它帮助人们更好地理解和解释现象,从而指导决策和行动。
然而,在数据分析过程中,常常会出现各种误差,对结果的准确性和可靠性产生负面影响。
本文将从以下六个方面展开详细论述常见的数据分析误差及其处理方法。
一、采样误差采样误差是由于抽样方法不当或样本代表性不足而引起的误差。
例如,在进行社会调查时,如果采样方法不具备随机性,会导致调查结果的偏差。
处理采样误差的方法可以是增加样本的大小,提高样本的代表性以及采用更合理的抽样方法,如随机抽样或分层抽样。
二、测量误差测量误差指的是由于测量仪器的不准确性或被测对象的个体差异而导致的误差。
在进行实验研究或数据收集时,使用的测量工具和方法可能存在不确定性,从而引入测量误差。
要处理这种误差,可以提高测量仪器的精确度和可靠性,对被测对象进行多次测量并取平均值,或者通过使用标准化方法来校正测量结果。
三、数据处理误差数据处理误差是在数据输入、转换和存储过程中产生的误差。
常见的数据处理误差包括数据录入错误、数据丢失和数据转换错误等。
为了减少这种误差,可以使用自动化的数据采集和处理工具,加强对数据的质量控制,以及定期进行数据的核对和修正。
四、样本偏倚误差样本偏倚误差指的是样本在统计特征上与总体存在显著差异所引起的误差。
当样本不具备代表性时,会导致研究结果的偏离真实情况。
为了纠正样本偏倚误差,可以使用加权抽样法或启发式抽样法,以确保样本更接近总体的特征。
五、缺失数据误差缺失数据误差是由于数据的丢失或缺失引起的误差。
在进行数据分析时,常常会遇到数据缺失的情况,如果不处理好这些缺失数据,会导致结果的不准确性。
处理缺失数据误差的方法可以是使用插补法,将缺失数据进行估计和补全,或者通过合理的数据筛选和清洗来剔除缺失数据影响。
六、模型假设误差模型假设误差指的是在建模过程中所做出的假设与真实情况之间存在偏差。
在进行数据分析时,所使用的模型和方法都基于一定的假设前提,如果这些假设与真实情况不符,结果可能会产生误差。
数据分析中常见的偏差和误差处理方法
数据分析中常见的偏差和误差处理方法数据分析是现代社会中不可或缺的一项技能,它帮助我们从海量的数据中提取有用的信息,为决策和问题解决提供支持。
然而,在进行数据分析的过程中,我们常常会遇到各种偏差和误差,这些偏差和误差可能会导致我们得出错误的结论。
因此,了解和处理这些偏差和误差是非常重要的。
一、抽样偏差在数据分析中,我们经常需要从总体中抽取一部分样本进行分析。
然而,由于抽样过程中的偏差,样本可能不能完全代表总体,从而导致分析结果不准确。
为了解决这个问题,我们可以采用以下方法:1.随机抽样:通过随机选择样本,可以降低抽样偏差。
随机抽样可以保证每个个体都有相等的机会被选中,从而更好地代表总体。
2.分层抽样:将总体划分为若干个层次,然后从每个层次中随机选择样本。
这样可以确保每个层次都有足够的样本量,从而更好地代表总体。
3.多次抽样:通过多次抽取样本,可以减小抽样偏差。
每次抽样后,我们可以计算不同样本的分析结果,并观察它们的差异。
如果不同样本的结果差异较大,那么可能存在较大的抽样偏差。
二、测量误差在数据分析中,测量误差是指由于测量工具或测量方法的不准确性而引入的误差。
为了减小测量误差,我们可以采用以下方法:1.校准仪器:定期校准测量仪器,确保其准确性。
如果测量仪器的准确性不可靠,那么测量结果可能会出现较大的误差。
2.重复测量:通过多次重复测量同一样本,可以减小测量误差。
每次测量的结果可能存在一定的差异,通过计算这些差异的平均值,可以更接近真实值。
3.标准化测量方法:使用标准化的测量方法可以减小测量误差。
标准化的测量方法可以确保每个测量者在进行测量时都遵循相同的步骤和标准,从而减小主观因素的影响。
三、选择偏差选择偏差是指在数据收集过程中,由于选择样本的方式或条件的不合理而引入的偏差。
为了减小选择偏差,我们可以采用以下方法:1.随机选择样本:通过随机选择样本,可以减小选择偏差。
随机选择样本可以确保每个个体都有相等的机会被选中,从而更好地代表总体。
定量分析中误差及数据处理
CLICK HERE TO ADD A TITLE
学习目的
原始测量数据如:m、V……
有效数字
测量误差 客观存在
测量结果:x1、x2、x3……
应记录几位数字?
计算公式
应保留几位数字?
误差的分类、特点及消除或减小
如何用测量值x1、x2、x3科学的表达样品真值
置信区间
可疑数值判断
=真值
和分别决定了正态曲线的位置与形状
描述了测量值x出现在某一位置的概率密度或出现在某一区域内的概率(如:出现在+内的概率为1)
反映数据集中趋势
反映数据分散趋势
3-4 随机误差的分布规律(2)
测量平均值 的分布规律
即一系列测定的平均值 (m)的分布规律(其中任一平均值均是n(有限)次测定平均结果)
01
系统误差(Systematic Error)
02
具有单向性、重现性、为可测误差,理论上可消除
03
随机误差(Random Error),亦称偶然误差
04
由不确定因素引起—服从统计规律(见3-4)
05
过失误差(mistake)
06
由粗心大意引起,可以避免,通常不算入误差范畴
误差的分类
3-1 误差的基本概念(4)
0.01 mL
0.02 mL
解:
常量滴定分析时,通常要求由滴定管读数引起的误差在0.1%以内,同时要求节约试剂,因此滴定体积一般应控制在2030 mL范围内(25 mL)
例5:滴定分析中称样质量的控制 万分之一分析天平的精度? 称取一份试样的绝对误差? 计算称样质量分别为20.0和200.0 mg时相对误差。
0.1 mg
实验数据误差分析和数据处理
实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。
随机误差是不可避免的,并且符合一定的统计规律。
通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。
2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。
系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。
通过合理校准仪器、控制环境条件等方式可以减小系统误差。
在数据误差分析的基础上,进行数据处理是必不可少的步骤。
数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。
1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。
2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。
通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。
3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。
通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。
4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。
例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。
综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。
准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。
通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。
第二章 误差和分析数据的处理(改)
记录的数字不仅表示数量的大小,而且要正 记录的数字不仅表示数量的大小, 确地反映测量的精确程度。 确地反映测量的精确程度。
结果 绝对误差 相对误差 ±0.002% ±0.02% ±0.2% 有效数字位数 5 4 3
0.51800 ±0.00001 0.5180 0.518 ±0.0001 ±0.001
E
绝对误差与相对误差的计算
仪器的绝对误差通常是一个定值,我们可以 仪器的绝对误差通常是一个定值, 相对误差 测量值(x) 真值 真值(µ) 绝对误差 绝对误差(δ) 物品 测量值 (RE%) 用称( 取较大质量(体积)的试样, 用称(量)取较大质量(体积)的试样,使 0.0002g A 0.2175g 0.2173g 0.1% 测量的相对误差较少, 测量的相对误差较少,在实际工作中意义较 0.0002g B 1% 大。 0.0217g 0.0215g
δ A = xA − µA = 0.2175− 0.2173 = 0.0002 当测量值的绝对 误差恒定时, δB = xB − µB = 0.0217 − 0.0215 = 0.0002 误差恒定时,被
测定的量越大, 测定的量越大, 0.0002 δA RE (A) = % ×100%= ×100%= 0.1% 相对误差越小, 相对误差越小, 0.2173 µA 测定的准确性也 0.0002 δB 就越高。 就越高。 RE (B) = ×100%= % ×100%= 1%
n
i
d=
∑x −x
i =1 i
n
n
=
37.40 + 37.20 + 37.30 + 37.50 + 37.30 = 37.34 5
n
=
0.06 + 0.14 + 0.04 + 0.16 + 0.04 = 0.088 5
误差分析与数据处理
产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。
当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。
第二章 误差和分析数据处理
2位
2位
2位
(6) 数据的第一位数大于等于 8, 有效数字可多算一 位: 9.55 4位 ; 8.2 3位
37
1.0008 0.1000 0.0382
43181 10.98%
五 位有效数字 四 位有效数字 二 位有效数字 一 位有效数字 位数模糊
1.98×10-10 三 位有效数字
54
0.05
0.0040
度)是精密度常见的别名。
一般例行分析精密度用相对平均偏差表示就
够了,但在科研中要用标准偏差或相对标准偏差
来表示。
18
3、准确度和精密度的关系
x1
x2
x3
x4
19
一般情况下,精密度高,准确度不 一定高。 精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度 好,准确度就高。 精密度高是保证准确度好的前提 精密度好不一定准确度高
答:不可以。 3、系统误差和偶然误差在起因及出现规律方面,有什 么不同? 答:系统误差是由确定原因引起的,可重复出现,偶然 误差是由不确定原因引起的,遵循一定的统计规律。
7
4、分析测定中系统误差的特点是: A、由一些原因引起的 B、重复测定会重复出现 C、增加测定次数可减小系统误差 D、系统误差无法消除
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
34
有效数字的位数与计算相对误差有关
0.5180g
相对误差=± 0.0001/ 0.5180 ×100%=±0.02%
0.518g
相对误差=± 0.001/0.518 ×100%=±0.2%
35
判断有效数字的位数:
第二章
误差分析与数据处理
第一章 误差分析与数据处理1-1 误差分析的意义何在?1-2 误差有几种类型?总结系统误差与随机误差的异同点。
1-3 试验数据的准确度和精密度如何表示,它们之间有何关系? 1-4 什么叫有效数字,有效数字的误差如何计算? 1-5 数据有几种表示方法,各有何优缺点? 1-6 可疑观测值的取舍有哪些方法?简述其步骤。
1-7 测得某三角块的三个角度之和为180º00′02″,试求测量的绝对误差和相对误差。
1-8 在万能测长仪上,测量某一被测件的长度为50 mm ,已知其最大绝对误差为1 m ,试问该被测件的真实长度为多少?1-9 在测量某一长度时,读数值为2.31 m ,其最大绝对误差为20 m ,试求其最大相对误差。
1-10 使用凯特摆时,g 由公式2212/)(4T h h g +=π给定。
今测出长度(h 1+h 2)为(1.04230±0.00005) m ,振动时间T 为(2.0480±0.0005) s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005) m ,为了使g 的误差能小于0.001 m/s 2,T 的测量必须精确到多少?1-11 检定2.5级(即引用误差为2.5%)、量程为100 V 的电压表,发现50 V 刻度点的示值误差2 V 为最大误差,问该电压表是否合格?1-12 为什么在使用微安表等各种电表时,总希望指针在全量程的2/3范围内使用?1-13用两种方法测量L 1=50 mm ,L 2=80 mm ,测量结果为50.004 mm ,80.006 mm 。
试评定两种方法测量精度的高低。
1-14 多级弹导火箭的射程为10000 km 时,其射击偏离预定点不超过0.1 km ,优秀射手能在距离50 m 远处准确地射中直径为2 cm 的靶心,试评述哪一个射击精度高?1-15 测量某物体重量共8次,测得数据(单位为g)为236.45,236.37,236.51,236.34,236.39,236.48,236.47,236.40。
误差和分析数据处理
误差和分析数据处理
(1)误差
绝对误差δ=x-μ相对误差=δ/μ*100%
(2)绝对平均偏差:
△=(│△1│+│△2│+……+│△n│)/n (△为平均绝对误差;△1、△2、……△n为各次测量的平均绝对误差)。
(3)标准偏差
相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100% (4)平均值的置信区间:
*真值落在μ±1σ区间的几率即置信度为68.3%
*置信度——可靠程度
*一定置信度下的置信区间——μ±1σ
对于有限次数测定真值μ与平均值x之间有如下关系:
s:为标准偏差
n:为测定次数
t:为选定的某一置信度下的几率系数(统计因子) (5)单个样本的t检验
目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:
t统计量:
自由度:v=n - 1
适用条件:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本标准误;
(3) 样本来自正态或近似正态总体。
n=35 =3.42 S =0.40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
S
Xi X 2
i 1
0.152 0.132 0.212 0.072 =0.17
n 1
3
RSD S 100% 0.17 100% 1.1%
X
15.82
5) 重复性与再现性
重复性:一个分析工作者,在一个指定的 实验室中,用同一套给定的仪器,在短时 间内,对同一样品的某物理量进行反复测 量,所得测量值接近的程度。
再现性:由不同实验室的不同分析工作者 和仪器,共同对同一样品的某物理量进行 反复测量,所得结果接近的程度。
三、准确度与精密度的关系
准确度反应的是测定值与真实值的 符合程度。 精密度反应的则是测定值与平均值 的偏离程度;
准确度高精密度一定高;
精密度高是准确度高的前提,但精 密度高,准确度不一定高。
四、误差的传递
t X
s
t分布曲线(见图2-2)与正态分布曲线相似, 以t=0为对称轴,t分布曲线的形状与自由度 f=n-1有关, f 愈大,曲线愈接近正态分布。
和、差计算公式:R = x + y - z △R= △x +△y +△z
乘、除计算公式:R=x·y/z
R x y z Rxyz
例如 用容量分析法测定药物有效成分 的含量,其百分含量(P%)计算公式:
P% T •V • F 100% W
则P的极值相对误差是:
P V F W PV F W
上述计算属乘除法运算,相对误差的传递为:
CK2Cr2O7
C K2Cr2O7
W
K2Cr2O7
W
K2Cr2O7
K2Cr2O7
M
K2Cr2O7
V
V
W由减重法求得,即W=W前-W后; δW= δ前- δ后
CK2Cr2O7 W前 W后 V 0.3 (0.2) 0.25 0.02%
C
W
V 4903.3 1000
看看下面各数的有效数字的位数:
1.0008
43181
五位有效数字
0.1000
10.98% 四位有效数字
0.0382
1.98×10-10 三位有效数字
54
0.0040
二位有效数字
0.05
2×105
一位有效数字
3600
100
位数模糊
PH=11.20对应于[H+]=6.3×10-12 二位有效数字
三、有效数字的计算规则
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d Xi X =15.82-15.67=0.15
Rd
d X
100%
=0.15/15.82×100%=0.95%
n
Xi X
d i1 n
=(0.15+0.13+0.21+0.07)/4=0.14
Rd d 100 % =0.14/15.82×100%=0.89%
§3 有效数字及计算规则
一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字, 除最后一位为可疑数字,其余的数字都是确 定的。
如:分析天平称量:1.21 23 (g)(万分之一) 滴定管读数:23.26 (ml)
2. 位数确定
(1) 记录测量数据时,只允许保留一位可疑数字。
n
2
Xi X
i 1
X
RSD
S
_
100%
X
n 1 100% X
实际工作中都用RSD表示分析结果的 精密度。
例如,一组重复测定值为15.67, 15.69, 16.03, 15.89。求15.67这次测量值的绝对偏差和相对 偏差,这组测量值的平均偏差、相对平均偏 差、标准偏差及相对标准偏差。
4.消除系统误差的方法:加校正值的方法
二、偶然误差
1. 概念:偶然误差(random error)也称为随 机误差。它是由不确定的原因或某些难 以控制原因造成的。
2. 产生原因:随机变化因素(环境温度、 湿度和气压的微小波动)
3. 特点 (1) 双向性 (2) 不可测性
4.减免方法:增加平行测定次数
解:δ=0.2898-0.2902=-0.0004 Rδ=-0.0004/0.2902×100%=-0.14%
例2 用分析天平称量两个样品,一个是 0.0021克,另一个是0.5432克。两个测量值 的绝对误差都是0.0001克,但相对误差却差 别很大。
精密度与偏差
精密度(precision)是平行测量的各测量 值(实验值)之间互相接近的程度。 用测定 值与平均值之差—偏差来表示,可分为: 绝对偏差(d)与相对偏差(Rd):
(2)标准偏差法
标准偏差法:利用偶然误差的统计学传 递规律估计测量结果的偶然误差。
规律1:和、差结果的标准偏差的平方, 等于各测量值的标准偏差的平方和。
公式:
R=x+y-z
SR2
Sx2
S
2 y
SZ2
规律2:乘、除结果的相对标准偏差的 平方,等于各测量值的相对标准偏差 的平方和。
计算公式: R=x·y/z
1.数值相加减时,结果保留小数点后位数应与 小数点后位数最少者相同(绝对误差最大) 0.0121+12.56+7.8432=0.01+12.56+7.84=20.41
总绝对误差取决于绝对误差大的
2. 数值相乘除时,结果保留位数应与有效数 字位数最少者相同。(相对误差最大),
(0.0142×24.43×305.84)/28.7=(0.0142×24.4 ×306) /28.7=3.69
(2) 仪器或试剂误差:是由于仪器未经校准或试剂 不合格的原因造成的。如称重时,天平砝码不够 准确;配标液时,容量瓶刻度不准确;对试剂而 言,杂质与水的纯度,也会造成误差。
(3) 操作误差:是由于分析操作不规范造成。如标 准物干燥不完全进行称量;
3. 特点 (1) 重现性(2)单向性; (3) 恒定性
(1)绝对偏差(d): d X i X
(2)相对偏差(Rd)为绝对偏差与平均值
之比,常用百分率表示:
Rd
d
100%
X
2.平均偏差与相对平均偏差
1) 平均偏差 d:为各次测定值的偏差的绝 对值的平均值,
n
Xi X
d i1 n
式中n为测量次数。由于各测量值的绝对偏 差有正有负,取平均值时会相互抵消。只有 取偏差的绝对值的平均值才能正确反映一组 重复测定值间的符合程度。
误差及分析数据处理
概述 测量误差 有效数字及运算法则 有限量实验数据的统计处理
§1 概述
误差客观上难以避免。 在一定条件下,测量结果只能接 近于真实值,而不能达到真实值。
§2 测量误差
误差(error):测量值与真实值的差值 根据误差产生的原因及性质,可以将 误差分为系统误差和随机误差。
一 系统误差
σ和 μ是正态分布的两个基本的参数。一般用 N(μ,σ2)表示总体平均值为μ,标准偏差为σ的正 态分布。
引入
u
X
则
Y (u)
1
u2
e2
2
则是标准正态分布。
一、 t 分布曲线
对于有限测定次数,测定值的偶然误差的分 布不符合正态分布,而是符合t 分布,应用t 分布来处理有限测量数据。
一、t 分布曲线:用t 代替正态分布u,样本标 准偏差s代替总体标准偏差σ有
1.系统误差的传递
(一)加减法 规律(1): 和、差的绝对误差等于各测 量值绝对误差的和、差。 即: R = x + y - z
δR= δx +δy -δz
规律(2): 积、商的相对误差等于各测量 值相对误差的和差。
即:
R=x·y/z
R x y z
R xyz
P14:例3 解:
W CK2Cr2O7 M K2Cr2O7 V (mol / L)
(SR )2 (Sx )2 (Sy )2 (Sz )2
R
x
y
z
例4 设天平称量时的标准偏差S=0.10mg, 求称量试样时的标准偏差SW。 解:无论是减重法,或在称量皿中称 量都需两次。
SW S12 S22 2S 2 0.14(mg)
五、提高分析准确度的方法
•一、减小系统误差
办法:则应从分析方法、仪器和试剂、实验操作 等方面,减少或消除可能出现的系统误差,具体有:
•1 方法选择
常量组分的分析,常采用化学分析,而微量和痕 量分析常采用灵敏度较高的仪器分析方法;
•2 取样量要适当
过小的取样量将影响测定的准确度。如用分析天 平称量,一般要求称量至少为0.2g,滴定管用于滴 定,一般要求滴定液体积至少20ml。
3 需检查并校正系统误差
如分析天平及各种仪器的定期校正,滴定管、移 液管等容量仪器,应注意其质量等级,必要时可进行 体积的校正。
(2) 有效数字的位数反映了测量的相对误差,不 能随意舍去或保留最后一位数字
(3) 若第一位数字大于或等于8,其有效数字位 数应多算一位
(4) 数据中的“0”作具体分析,如1.2007g, 0.0012007kg均为五位有效数值,
(5) 常数π等非测量所得数据,视为无限多位有 效数字;
(6) pH、pM等对数值,有效数字位数仅取决于 小数部分数字的位数。如pH=10.20,应为两位有 效数值
二、减小随机误差
办法:多次测定取其平均值
•分析化学常用试验的方法检查系统误差的存在,并 对测定值加以校正,使之更接近真实值。常有以下试 验方法:
1)对照实验 已知含量的试样与未知试样对照
2)回收试验 未知试样+已知量的被测组分,与另
一相同的未知试样平行进行分析,测其回收率