热力学与统计物理答案第二章
《热力学与统计物理》第四版(汪志诚)课后题答案
若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
热力学与统计物理—第二章
§2.2 麦氏关系的简单应用
一、以T, V为状态参量
U p T p V T T V U S CV T T V T V
能态方程
CV p dS dT dV T T V
dS dU pdV T
4 d(VT 3 ) 3 4 S VT 3 S 0 3
3.物态方程 :
1 1 p u (T ) T 4 3 3
1 c J u cu T 4 T 4 4 4
Ju T 4
斯特藩—玻耳兹曼定律
三 . 红外技术及应用
红外探测
dG
V m ( )T , p 0 ( )T ,H H p
磁致伸缩 压磁效应
G G G dT dp dH T p H
G G V , 0 m p T ,H H T , p
§2.4 热辐射的热力学理论
第二章 均匀物质的热力学性质
1. 麦克斯韦关系及应用
2. 热辐射的热力学理论
3. 磁介质热力学
§2.1 麦克斯韦关系
热力学基本微分方程:
dU T dS Yi dyi
i
四个全微分(简单系统):
dU TdS pdV
H U pV
dH TdS Vdp dF SdT pdV
p dU CV dT T p dV T V
二
、以T, p为状态 dp T T p Tpp T
V dH C p dT V T dp T p
3. 辐射能量密度u:
U= u (T)V
4. 辐射通量密度:
热力学与统计物理-参考答案
热力学与统计物理 参考答案一、推出克拉珀龙方程mm m m S S dp dT V V βαβα-=-()m m L T V V βα=- 在相图上取两个相邻的点),(p T A 和),(p p T T B ∆+∆+,这两点上化学势都相等,),),p T p T ((βαμμ=),),p p T T p p T T ∆+∆+=∆+∆+((βαμμ两式相减得βαμμd d =,由吉布斯函数的全微分dG SdT Vdp =-+,化学势的全微分dp V dT S d m m +-=μ,dp V dT S m mαα+-dp V dT S m m ββ+-= mm m mS S dp dT V V βαβα-=- 以L 表示1摩尔物质相变潜热,则)(αβS S T S T L -=∆=二、证明均匀系统有:能态方程:()()T V U pT p V T∂∂=-∂∂ 选T ,V 为状态参量,则),(V T U U =,那么,dV VUdT T U dU T V )()(∂∂+∂∂= (1) 右边的偏导数,和状态函数联系,麦氏关系,),(V T S S =,dV VSdT T S dS T V )()(∂∂+∂∂=将dS代入pdV TdS dU -=pdV dU V S T dT T S T T V -∂∂+∂∂=)()(dV p VST dT T S T T V ])([)(-∂∂+∂∂=则 ()[()]V V S pdU T dT T p dV T T∂∂=+-∂∂(2)比较(1)和(2), ()()T V U pT p V T∂∂=-∂∂,能态方程; 三、若按量子力学,一维简谐振子以经典平衡位置的势能为零的振动能级公式为12n n εω⎛⎫=+ ⎪⎝⎭(n=0, 1, 2, …),(1)试求一维简谐振子的振动配分函数;(2)若204.810J n εω-∆=≈⨯,系统在300K 下达到热平衡,求此时处在第一激发态和基态的粒子数之比。
2020智慧树知道网课《热力学与统计物理》课后章节测试满分答案
第一章测试1【多选题】(1分)杨振宁认为中国大学生的学习方法有利有弊,最大的弊端是:A.讲课循序渐进B.他不能对整个物理学,有更高超的看法C.课外活动较少D.它把一个年轻人维持在小孩子的状态,老师要他怎么学,他就怎么学2【多选题】(1分)杨振宁认为“我一生中最重要的一年,不是在美国做研究,而是当时和黄昆同住一舍的时光。
”原因是:A.黄昆会做饭并经常和杨振宁共享B.杨振宁和黄昆都喜欢争论物理问题C.黄昆经常把听课笔记借给杨振宁参考D.黄昆对物理学的理解常常有独到之处,对杨振宁有启发3【多选题】(1分)杨振宁说:“我们学校里有过好几个非常年轻、聪明的学生,其中有一位到我们这儿来请求进研究院,那时他才15岁的样子,后来他到Princeton去了。
我跟他谈话以后,对于他前途的发展觉得不是那么最乐观。
”原因是这位学生:A.学到一些知识,学到一些技术上面的特别的方法,而没有对它的意义有深入的了解和欣赏B.只是学了很多可以考试得该高分的知识,不是真正做学问的精神C.对量子力学知识茫茫一片,不知道哪里更加好玩D.尽管吸收了很多东西,可是没有发展成一个taste4【多选题】(1分)梁启超的“智慧日浚则日出,脑筋日运则日灵”说明如下道理:A.人的智慧需要挖掘才会涌现出来B.大学生一开始接受教育的时候,就要弄清楚事物的本质C.人脑越用会越聪明D.认为初学之人不能穷凡物之理,而这种观点是不对的5【判断题】(1分)因为1=0.999…,所以对任何函数f(x),总有f(1)=f(0.999…)。
A.错B.对6【判断题】(1分)液态的水从100°C下降到0°C的过程中,密度单调下降。
A.对B.错7【判断题】(1分)温度和热是一个概念。
A.对B.错8【判断题】(1分)在冰箱中放一瓶纯净水,这瓶水在零下10°时依然不能结冰。
A.错B.对9【判断题】(1分)理想气体就是满足方程pV=nRT的气体。
A.错B.对10【判断题】(1分)所有相变都类似气液相变或者固液相变,总会有伴随相变潜热。
热力学_统计物理学答案第二章
F (T . x) = F (T ,0) + S (T , x ) = S (T ,0) −
1 2 Ax 2
案 网
习题 2.14 一弹簧在恒温下的恢复力 X 与其伸长 x 成正比, 即.X= - Ax;今忽略弹簧
课
1 dA 2 U (T , x) = U (T .0) + ( A − T )x 2 dT
.c o
∂T ⎞ ⋅⎛ ⎜ ⎟ 。 ⎝ ∂V ⎠ p
m
∂U ∂(U , T ) )T = ∂V ∂ (V , T )
=
∂ (U , T ) ∂( p, T ) ∂U ∂p =0= ( )T ( )T ∂ ( p ,T ) ∂ (V , T ) ∂p ∂V
联立(1),( 2)式得: ⎛ ∂H ⎞ ⎛ ∂H ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ∂p ⎟ ⎛ ∂T ⎞ ⎛ ∂T ⎞ ⎛ ∂T ⎞ ⎛ ∂H ⎞ ⎝ ∂p ⎠ S ⎜ ⎝ ⎠S ⎜ ⎟ = = ⎟ ⎜ ⎜ ∂p ⎟ ⎟ -⎜ ⎜ ∂p ⎟ ⎟ =⎜ ⎜ ⎟ ∂H ⎞ Cp ⎝ ⎠ S ⎝ ⎠ H ⎝ ∂H ⎠ p ⎝ ∂p ⎠ S ⎛ ⎜ ⎟ ⎝ ∂T ⎠ p 据: dU = TdS − pdV 熵不变时, (dS=0),
CV dT − R ln v − Ts 0 T
m
∆f 1 = u − Ts = ∫ CV dT + u 0 − T ∫ 过程Ⅱ: ∆ u = 0 ∆f 2 = ∆u − Ts = −T ⋅ ∆Q = −∆Q T
CV dT − Ts 0 T
∆u = 0 ,根据热力学第一定律 ∆Q = ∫ pdV = RT
w.
T = T ( p, S)
Cp ∂S ⎞ ⎛ ∂S ⎞ 由关系 C p = T ⎛ ⎜ ⎟ ;⇒ ⎜ ⎟ = T ⎝ ∂T ⎠ p ⎝ ∂V ⎠ p
热力学与统计物理学课后习题及解答
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。
解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。
解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量。
汪志诚热力学统计物理学答案第三版第二章
第二章 均匀物质的热力学性质习题2.1温度维持为25℃, 压强在0至1000p n 之间,测得水的实验数据如下:(TV∂∂)p =(4.5×10-3+1.4×10-6P)cm 3·mol -1·K -1 若在25℃的恒温下将水从1p n 加压到1000p n , 求水的熵增和从外界吸收的热量。
解:利用麦氏关系:p TV)(∂∂ =-T p S )(∂∂ 求熵增∆S ; 从而∆Q = T ∆S ,∆S =-0.572Jmol -1·K -1 Q =-157J ·mol -1习题2.2已知在体积保持不变的情况下,一气体的压强正比于其绝对温度.试证明在温度保持不变时,该气体的熵随体积而增加。
解:由题意得: )()(V f T V k p +=。
因V 不变,T 、p 升高,故k (V )>0 据麦氏关系(2.2.3)式得:T V S )(∂∂ =V Tp)(∂∂ =k (V ) (k (V )>0) ⎰+=⇒);()(T g dV V k S由于k (V )>0, 当V 升高时(或V 0→V ,V >V 0),于是⎰>0)(dV V k⇒T 不变时,S 随V 的升高而升高。
2.3设一物质的物态方程具有以下形式T V f P )(=,试证明其内能与体积无关。
解: T V f P )(= ,(V T V U ∂∂),()T =T V T P)(∂∂ - p = )()(V Tf V Tf - =0 得证。
习题2.4求证:(ⅰ) H P S )(∂∂ <0 (ⅱ) U VS)(∂∂ >0证: 由式(2.1.2)得: VdP TdS dH += 等H 过程:H H VdP TdS )()(-=⇒(P S ∂∂)H =-TV<0 (V >0; T >0) 由基本方程:PdV TdS dU -=dV TpdU T dS +=⇒1;⇒(VS∂∂)U =T p >0.习题2.5已知 T VU)(∂∂ =0 , 求证 T p U )(∂∂=0。
热力学统计物理_答案
1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰ 如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dV dT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3) 若11,T T pακ==,式(3)可表为11ln .V dT dp T p ⎛⎫=- ⎪⎝⎭⎰ (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln =ln ln ,V T p V T p - 即000p V pV C T T ==(常量), 或.p V C T =(5) 式(5)就是由所给11,T T p ακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.10 声波在气体中的传播速度为s p αρ⎛⎫∂= ⎪∂⎝⎭ 假设气体是理想气体,其定压和定容热容量是常量,试证明气体单位质量的内能u 和焓h 可由声速及γ给出:()21a a u u h h γγγ=+=+-200,-1 其中00,u h 为常量。
解:根据式(1.8.9),声速a 的平方为2v,a p γ= (1)其中v 是单位质量的气体体积。
理想气体的物态方程可表为,m pV RT m+= 式中m 是气体的质量,m +是气体的摩尔质量。
对于单位质量的气体,有 1v ,p RT m +=(2) 代入式(1)得2.a RT m γ+= (3)以,u h 表示理想气体的比内能和比焓(单位质量的内能和焓)。
热力学统计物理2章第5-7节
实验指出: 只是T的函数 ,与表面积A无关 。 所以,物态方程简化为: (T ) 当表面积有dA的改变时,外界作功为: 表面系统的自由能的全微分为:dF SdT dA 由此得: 由
F S T F A
dW dA
与A无关,第二积分式得:
d S A dT
V M 由完整微分条件可得: ( )T , P 0 ( )T , H H P
这也是磁介质的麦氏关系。左端是温度、压强不 变时体积随磁场的变化率,它描述磁致伸缩效应; 右端则是温度、磁场不变时,介质的磁矩随压强的变 化率,它描述压磁效应。两者有上述关系。 三、磁化功另一表达 假设空间中存在不均匀磁场,如:永久磁铁磁场, 将样品从无穷远处移入磁场内,从 x 处x 轴移到 x a 处,介质将被磁化。
0
dH ( x ) 样品在x处时,所受磁场力: 0 M ( x ) dx
移动样品时,外界必须克服此力而作功:
H ( x) dH ( x ) W 0 M ( x ) dx 0 MdH 0 dx M (a ) 分部积分: W 0 M (a) H (a) 0 HdM a
因此,空腔辐射的能量密度和能量密度按频率的 分布只可能是温度的函数。
电磁理论中,辐射压强P 与辐射能量密度u之间的关系:
1 p u 3
将平衡辐射看作热力学系统,选T和V为状态参量 由于能量密度只是温度的函数,平衡辐射的总能量 可表为: U (T ,V ) u(T )V 利用热力学公式: ( U )T T ( p )V P
F A
当 A趋于零时,表面系统不存在,F=0,所以不含 积分常数。 是单位面积的自由能. 由第一积分式得:
由U=F+TS,得表面系统的内能为: d U A( T ) dT 如果测得 (T )关系,就可得表面系统的热力 学函数. 例题:课本第100页,2.14题 一弹簧f= -Ax,忽略热胀 求:弹簧的F、S、U 解:外力对弹簧作功:
(完整版)第二章习题解答
第二章 热力学第二定律思考题答案一、是非题1 × 2√ 3× 4× 5× 6× 7× 8√ 9√ 10× 11× 12× 13× 14× 15× 16× 17× 18× 二、选择题1.C 2.D 3.C 4.C 5.D 6.A 7.B 8.D 9.A 10.A 11.A习 题1. 2mol 理想气体由500kPa ,323K 加热到1000kPa ,373K 。
试计算此气体的熵变。
(已知该气体的C V ,m =25R ) 解:由于实际过程不可逆,要求此过程的熵变,设计定压可逆与定温可逆两途径实现此过程,如下图所示:1212,,,ln ln 1121212121p pR T T C dp p RT T T dT C Vdp TTdT C TVdpdH T pdV Vdp pdV dH T pdV dpV dH TpdVdU T Q S m p p p T T m p p p T T m p rm -=-=-=-=+--=+-=+==∆⎰⎰⎰⎰⎰⎰⎰⎰⎰δ11212,1212,64.65001000ln 2323373ln 272ln ln )(ln ln -⋅=⨯-⨯=-+=-=∆K J kPakPa R mol K K R mol p pnR T T R C n p p nR T T nC S m V m p2. 在20℃时,有1molN 2和1molHe 分别放在一容器的两边,当将中间隔板抽去以后,两种气体自动混合。
在此过程中系统的温度不变,与环境没有热交换,试求此混合过程的△S ,并与实际过程的热温商比较之。
解:分别考虑假设N 2由V A 定温可逆膨胀至2V A ,同理He 由V A 定温可逆膨胀至2V A△S 1 = n (N 2)R ln2 △S 2 = n (He)R ln2所以系统的 △S = △S 1+△S 2 = n (N 2) R ln2 + n (He) R ln2= 2×1mol×8.314 J ·mol -1·K -1×ln2 = 11.52J.K -1而实际过程系统没有与环境交换热和功,则 TQ= 0 即 △S >TQ 3. 1 mol 双原子理想气体,温度为298.15 K ,压强为p θ,分别进行:(1)绝热可逆膨胀至体积增加1倍;(2)绝热自由膨胀至体积增加1倍。
热学第二章课后答案
热学第二章课后答案
1. 什么是热力学第一定律?它的表述方式是什么?
热力学第一定律是能量守恒定律,表述为:能量不会自发消失
或产生,只会转化为其他形式或从一个物体传递到另一个物体。
2. 什么是“内能”?它的符号是什么?
内能是指一个物体分子或原子微观热运动所带的能量总和,符
号为E。
3. 什么是“功”,它的符号是什么?以及什么情况下它的值为正,什么情况下它的值为负?
功是指一个力在物体上产生的位移,并且力和位移在同一方向上,符号为W。
当物体受到的力和移动方向相同时,功就是正的;当物体受到的力和移动方向相反时,功就是负的。
4. 什么情况下物体的内能增加?
当物体受到外部做功的作用,或通过吸收热能,其内能会增加。
5. 什么是外界对物体做功所需的最小力?
外界对物体做功所需的最小力,是物体承受的重力和加速度所
决定的。
6. 什么是“焓变”,以及它常用的符号是什么?
焓变指的是在等压过程中,系统由初态到末态时,因吸收或放
出能量所引起的焓值的变化,符号为ΔH。
7. 什么是“焦耳定律”?
焦耳定律是热力学中的基本定律,指的是物体所吸收的热量正
比于物体的质量,以及其温度的变化。
8. 什么是“热容”?
热容指的是物体在温度变化下,需要吸收或释放的热量与温度变化的比例。
9. 什么是“定容热容”?
定容热容指的是物体在定容状态下,吸收或释放的热量与温度变化的比例。
10. 什么是“定压热容”?
定压热容是指在恒定压力下,物体吸收或释放的热量与温度变化的比例。
以上是热学第二章的课后答案,希望可以帮助大家更好地掌握课程知识。
《热力学与统计物理学》习题解答
《热力学与统计物理学》习题解答
热力学与统计物理学习题解答:
P1. 一个双分子物质中有两个粒子,其中一个是A粒子而另一个则是B
粒子。
当它们达到蒸汽相时,请估计它们各自的平均表面速度。
答:根据热力学原理,在蒸汽相中,A粒子和B粒子的平均表面速
度应该是相同的,且都等于Boltzmann常数乘以绝对温度的平方根
(kT^(1/2))。
P2. 甲烷气体在室温下的布朗运动速度是多少?
答:甲烷气体的平均布朗运动速度等于Boltzmann常数乘以绝对
温度的平方根 (kT^(1/2)),在室温(293K)下,则为1.25×10^5 m/s。
P3. 为什么热力学第三定律的最终状态是均匀的熵?
答:热力学第三定律的最终状态是均匀的熵,这是因为概率分布
函数定义熵,而不断扩大分布函数来接近熵最大值,就可以最大化熵。
而这正是热力学第三定律所要求的。
热力学第二章习题及答案
热力学第二章习题及答案一、是非题1、任意过程只要知道其始末状态即可确定过程与外界的热交换(x)、功交换(x)及系统热力学能的变化(√)。
2、简单可压缩系统任意过程中对外所作膨胀功均可用计算(√)。
⎰pdV计算(x),用⎰dWpsurr3、流动功Δ(pdV)只有在开口系统中研究气体流动时才需要考虑(√)。
4、q和w是状态参数(x)二、选择题1、表达式δQ=dU+δW c 。
(a)适用于任意热力过程;(b)仅适用于准静态过程;(c)仅适用于闭口系统中的热力过程。
2、表达式δQ=dU+pdV适用a1中的a2。
(a1)闭口系;(b1)开口系;(c1)闭口及开口系;(a2)准静过程;(b2)任意热力过程;(c2)非准静过程。
3、任意准静或非准静过程中气体的膨胀功均可用b 计算。
(a)pdV;(b)p surr dV;(c)d(pv)。
4、在正循环中⎰Qδa零,同时⎰Wδa零。
在逆循环中⎰Qδ c 零,且⎰Wδ c 零(a )大于;(b )等于;(c )小于。
三、习题2-1 0.5kg 的气体,在汽缸活塞机构中由初态p 1=0.7MPa 、V 1=0.02m 3,准静膨胀到V 2=0.04m 3。
试确定在下列各过程中气体完成的功量及比功量; (1) 定压过程; (2) pV 2=常数。
解: (1)由准平衡过程体积变化功的表达式,当为定压过程时:W=p △V=0.7×106×0.02=14000 J=14 kJ 比功量 w= p △v=W/m=14000/0.5=28000 J=28 kJ(2)pV 2=0.7×106×0.022=280 J ·m 3 由准平衡过程体积变化功的表达式W=dV Vpdv v v ⎰⎰=04.002.0228021=7000 J=7 kJ 比功量 w= p △v=W/m=7000/0.5=14000 J=14 kJ 2-2为了确定高压下稠密气体的性质,取2kg 气体在25MPa 下从350K 定压加热到370K ,气体初终状态下的容器分别为0.03 m 3及0.035 m 3,加入气体的热量为700kJ ,试确定初终状态下的热力学能之差。
热力学与统计物理学思考题及习题
《热力学与统计物理学》思考题及习题第一章 热力学的基本定律§1.1 基本概念1. 试求理想气体的定压膨胀系数α、定容压强系数β和等温压缩系数κ。
2. 假设压强不太高,1摩尔实际气体的状态方程可表为)1(Bp RT pv += , 式中B 只是 温度的函数。
求βα、和κ,并给出在0→p 时的极限值。
3. 设一理想弹性棒,其状态方程是⎪⎪⎭⎫ ⎝⎛-=2200L L LL kT F 式中k 是常数,0L 是张力F 为零时棒的长度,它只是温度T 的函数。
试证明:(1) 杨氏弹性模量223AL kTL A F L F A L Y T +=⎪⎭⎫ ⎝⎛∂∂=;(2) 线膨胀系数AYT F T L L F -=⎪⎭⎫ ⎝⎛∂∂=01αα,其中F T L L ⎪⎭⎫⎝⎛∂∂=0001α,A 为弹性棒的横截面积。
4. 某固体的V Bp CT -=2α,V BT=κ,其中B 、C 为常数,试用三种方法求其状态方程。
5. 某种气体的α及κ分别为:pV Rνα=,V ap +=1κ,其中ν、R 、a 都是常数。
求此气体的状态方程。
6. 某种气体的α及k 分别为:()p f V aVT 134+=α,2Vp RT =κ。
其中a 是常数。
试证明:(1) ()2/p R p f =;(2) 该气体的状态方程为:T ap RT pV /-=。
7. 简单固体和液体的体胀系数α和压缩系数κ的值都很小,在一定的温度范围内可以近似视为常数。
试证明其状态方程可表为:)0,(),(00T V p T V =[p T T κα--+)(10]。
8. 磁体的磁化强度m 是外磁场强度H 和温度T 的函数。
对于理想磁体,从实验上测得: T C H m T =⎪⎭⎫⎝⎛∂∂ ,2T CH T m H-=⎪⎭⎫⎝⎛∂∂ , T CH m =。
其中C 是居里常数。
试证明其状态方程为:m =。
9. 求下列气态方程的第二、第三维里系数:(1) 范德瓦耳斯方程RT b v v ap =-+))((2;(2) 克劳修斯方程b v RT p -=2)(c v T a +-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 均匀物质的热力学性质已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加.解:根据题设,气体的压强可表为(),p f V T = (1)式中()f V 是体积V 的函数. 由自由能的全微分dF SdT pdV =--得麦氏关系.T VS p V T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将式(1)代入,有().T VS p p f V V T T ∂∂⎛⎫⎛⎫=== ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 由于0,0p T >>,故有0TS V ∂⎛⎫>⎪∂⎝⎭. 这意味着,在温度保持不变时,该气体的熵随体积而增加.设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1)故有().Vp f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.求证: ()0;HS a p ⎛⎫∂< ⎪∂⎝⎭ ()0.U S b V ∂⎛⎫> ⎪∂⎝⎭解:焓的全微分为.dH TdS Vdp =+ (1)令0dH =,得0.HS Vp T ⎛⎫∂=-< ⎪∂⎝⎭ (2)内能的全微分为.dU TdS pdV =- (3)令0dU =,得0.US p V T ∂⎛⎫=> ⎪∂⎝⎭ (4)已知0T UV ∂⎛⎫= ⎪∂⎝⎭,求证0.TU p ⎛⎫∂= ⎪∂⎝⎭ 解:对复合函数(,)(,(,))U T P U T V T p = (1)求偏导数,有.T T TU U V p V p ⎛⎫⎛⎫∂∂∂⎛⎫= ⎪⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (2) 如果0TU V ∂⎛⎫=⎪∂⎝⎭,即有0.TU p ⎛⎫∂= ⎪∂⎝⎭ (3) 式(2)也可以用雅可比行列式证明:(,)(,)(,)(,)(,)(,)T U U T p p T U T V T V T p T ⎛⎫∂∂= ⎪∂∂⎝⎭∂∂=∂∂.T TU V V p ⎛⎫∂∂⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭ (2)试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减.解:热力学用偏导数pS V ∂⎛⎫⎪∂⎝⎭描述等压过程中的熵随体积的变化率,用pT V ∂⎛⎫⎪∂⎝⎭描述等压下温度随体积的变化率. 为求出这两个偏导数的关系,对复合函数(,)(,(,))S S p V S p T p V == (1)求偏导数,有.p p p p pC S S T T V T V T V ∂∂∂∂⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 因为0,0p C T >>,所以p S V ∂⎛⎫⎪∂⎝⎭的正负取决于pT V ∂⎛⎫⎪∂⎝⎭的正负. 式(2)也可以用雅可经行列式证明:(,)(,)(,)(,)(,)(,)P S S p V V p S p T p T p V p ∂∂⎛⎫= ⎪∂∂⎝⎭∂∂=∂∂P PS T T V ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2)试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落.解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有.T P pS PS V T p T T Sp C T ⎛⎫∂∂⎛⎫ ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式().焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有.T PpH PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(). 将式(1)和式(2)相减,得0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.实验发现,一气体的压强p 与体积V 的乘积以及内能U 都只是温度的函数,即(),().pV f T U U T ==试根据热力学理论,讨论该气体的物态方程可能具有什么形式.解:根据题设,气体具有下述特性:(),pV f T = (1) ().U U T = (2)由式(2.2.7)和式(2),有0.T VU p T p V T ∂∂⎛⎫⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 而由式(1)可得.V p T df T T V dT∂⎛⎫= ⎪∂⎝⎭ (4) 将式(4)代入式(3),有,dfTf dT= 或.df dT f T= (5) 积分得ln ln ln ,f T C =+或,pV CT = (6)式中C 是常量. 因此,如果气体具有式(1),(2)所表达的特性,由热力学理论知其物态方程必具有式(6)的形式. 确定常量C 需要进一步的实验结果.证明2222,,p V T Vp TC C p V T T V T p T ∂⎛⎫⎛⎫⎛⎫∂∂∂⎛⎫==- ⎪ ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ 并由此导出0020222,.VV VV Vp p p p pp C C T dV T p C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎛⎫∂=- ⎪∂⎝⎭⎰⎰根据以上两式证明,理想气体的定容热容量和定压热容呈只是温度T 的函数.解:式(2.2.5)给出.V VS C T T ∂⎛⎫= ⎪∂⎝⎭ (1) 以T ,V 为状态参量,将上式求对V 的偏导数,有2222,V T VC S S S T T T V V T T VT ⎛⎫⎛⎫⎛⎫∂∂∂∂⎛⎫===⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (2) 其中第二步交换了偏导数的求导次序,第三步应用了麦氏关系(2.2.3). 由理想气体的物态方程pV nRT =知,在V 不变时,p 是T 的线性函数,即220.Vp T ⎛⎫∂= ⎪∂⎝⎭ 所以 0.V TC V ∂⎛⎫=⎪∂⎝⎭ 这意味着,理想气体的定容热容量只是温度T 的函数. 在恒定温度下将式(2)积分,得0202.VV VV Vp C C T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 式(3)表明,只要测得系统在体积为0V 时的定容热容量,任意体积下的定容热容量都可根据物态方程计算出来.同理,式(2.2.8)给出.p pS C T T ∂⎛⎫= ⎪∂⎝⎭ (4)以,T p 为状态参量,将上式再求对p 的偏导数,有2222.p p TC S S S T T T p p T T p T ∂⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂===- ⎪ ⎪ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭ (5)其中第二步交换了求偏导数的次序,第三步应用了麦氏关系(2.2.4). 由理想气体的物态方程pV nRT =知,在p 不变时V 是T 的线性函数,即220.pV T ⎛⎫∂= ⎪∂⎝⎭ 所以0.p TC p ∂⎛⎫= ⎪∂⎝⎭ 这意味着理想气体的定压热容量也只是温度T 的函数. 在恒定温度下将式(5)积分,得0202.pp pp pV C C T dp T ⎛⎫∂=+ ⎪∂⎝⎭⎰ 式(6)表明,只要测得系统在压强为0p 时的定压热容量,任意压强下的定压热容量都可根据物态方程计算出来.证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题式(2)22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为22.nRT n a p V nb V =-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据题式(3)0202(,)(,),VV V V Vp C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据题式(5)22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.证明理想气体的摩尔自由能可以表为,,00,002ln ln V m m V m m m m V m m m mC F C dT U T dT RT V TS TdTT C dT U TS RT V T=⎰+-⎰--=-⎰⎰+--解:式(2.4.13)和()给出了理想气体的摩尔吉布斯函数作为其自然变量,T p 的函数的积分表达式. 本题要求出理想气体的摩尔自由能作为其自然变量,m T V 的函数的积分表达式. 根据自由能的定义(式()),摩尔自由能为,m m m F U TS =- (1)其中m U 和m S 是摩尔内能和摩尔熵. 根据式(1.7.4)和(),理想气体的摩尔内能和摩尔熵为,0,m V m m U C dT U =+⎰ (2),0ln ,V m m m m C S dT R V S T=++⎰(3)所以,,00ln .V m m V m m m m C F C dT T dT RT V U TS T=--+-⎰⎰(4)利用分部积分公式,xdy xy ydx =-⎰⎰令,1,,V m x Ty C dT ==⎰可将式(4)右方头两项合并而将式(4)改写为 ,002ln .m V m m m m dTF T C dT RT V U TS T =--+-⎰⎰(5)求范氏气体的特性函数m F ,并导出其他的热力学函数. 解:考虑1mol 的范氏气体. 根据自由能全微分的表达式(2.1.3),摩尔自由能的全微分为 ,m m m dF S dT pdV =-- (1)故2,m m m m TF RT ap V V b V ⎛⎫∂=-=-+ ⎪∂-⎝⎭ (2) 积分得()(),ln ().m m m maF T V RT V b f T V =---+ (3) 由于式(2)左方是偏导数,其积分可以含有温度的任意函数()f T . 我们利用V →∞时范氏气体趋于理想气体的极限条件定出函数()f T . 根据习题式(4),理想气体的摩尔自由能为,,00ln .V m m V m m m m C F C dT dT RT V U TS T=--+-⎰⎰(4)将式(3)在m V →∞时的极限与式(4)加以比较,知,,00().V m V m m m C f T C dT T dT U TS T=-+-⎰⎰(5)所以范氏气体的摩尔自由能为 ()(),,00,ln .V m m m V m m m m mC aF T V C dT T dT RT V b U TS TV =----+-⎰⎰(6) 式(6)的(),m m F T V 是特性函数范氏气体的摩尔熵为(),0ln .V m mm m m C F S dT R V b S T T∂=-=+-+∂⎰ (7) 摩尔内能为,0.m m m V m m maU F TS C dT U V =+=-+⎰ (8)一弹簧在恒温下的恢复力X 与其伸长x 成正比,即X Ax =-,比例系数A 是温度的函数. 今忽略弹簧的热膨胀,试证明弹簧的自由能F ,熵S 和内能U 的表达式分别为()()()()()()2221,,0,2,,0,21,,0.2F T x F T Ax x dAS T x S T dT dA U T x U T A T x dT =+=-⎛⎫=+- ⎪⎝⎭ 解:在准静态过程中,对弹簧施加的外力与弹簧的恢复力大小相等,方向相反. 当弹簧的长度有dx 的改变时,外力所做的功为.dW Xdx =- (1)根据式(1.14.7),弹簧的热力学基本方程为.dU TdS Xdx =- (2)弹簧的自由能定义为,F U TS =-其全微分为.dF SdT Xdx =--将胡克定律X Ax =-代入,有 ,dF SdT Axdx =-+ (3)因此.TF Ax x ∂⎛⎫= ⎪∂⎝⎭ 在固定温度下将上式积分,得()()0,,0xF T x F T Axdx =+⎰()21,0,2F T Ax =+(4) 其中(),0F T 是温度为T ,伸长为零时弹簧的自由能.弹簧的熵为()21,0.2F dAS S T x T dT∂=-=-∂ (5) 弹簧的内能为()21,0.2dA U F TS U T A T x dT ⎛⎫=+=+- ⎪⎝⎭(6) 在力学中通常将弹簧的势能记为21,2U Ax =力学 没有考虑A 是温度的函数. 根据热力学,U 力学是在等温过程中外界所做的功,是自由能.X 射线衍射实验发现,橡皮带未被拉紧时具有无定形结构;当受张力而被拉伸时,具有晶形结构. 这一事实表明,橡皮带具有大的分子链.(a )试讨论橡皮带在等温过程中被拉伸时,它的熵是增加还是减少;(b )试证明它的膨胀系数1ST L L α∂⎛⎫= ⎪∂⎝⎭是负的.解:(a )熵是系统无序程度的量度.橡皮带经等温拉伸过程后由无定形结构转变为晶形结构,说明过程后其无序度减少,即熵减少了,所以有0.TS L ∂⎛⎫< ⎪∂⎝⎭ (1) (b )由橡皮带自由能的全微分dF SdT JdL =-+可得麦氏关系.T LS J L T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 综合式(1)和式(2),知0.LJ T ∂⎛⎫> ⎪∂⎝⎭ (3) 由橡皮带的物态方程(),,0F J L T =知偏导数间存在链式关系1,L J TJ T L T L J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 即.J L TL J L T T J ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (4) 在温度不变时橡皮带随张力而伸长说明0.TL J ∂⎛⎫> ⎪∂⎝⎭ (5) 综合式(3)-(5)知0,JL T ∂⎛⎫< ⎪∂⎝⎭ 所以橡皮带的膨胀系数是负的,即10.JL L T α∂⎛⎫=< ⎪∂⎝⎭ (6)假设太阳是黑体,根据下列数据求太阳表面的温度;单位时间内投射到地球大气层外单位面积上的太阳辐射能量为3211.3510J m s --⨯⋅⋅(该值称为太阳常量),太阳的半径为86.95510m ⨯,太阳与地球的平均距离为111.49510m ⨯.解:以s R 表示太阳的半径. 顶点在球心的立体角d Ω在太阳表面所张的面积为2s R d Ω. 假设太阳是黑体,根据斯特藩-玻耳兹曼定律(式(2.6.8)),单位时间内在立体角d Ω内辐射的太阳辐射能量为42.s T R d Ωσ (1)单位时间内,在以太阳为中心,太阳与地球的平均距离se R 为半径的球面上接受到的在立体角d Ω内辐射的太阳辐射能量为321.3510.se R d Ω⨯令两式相等,即得132421.3510.ses R T R σ⎛⎫⨯⨯= ⎪⎝⎭(3) 将,s R σ和se R 的数值代入,得5760.T K ≈计算热辐射在等温过程中体积由1V 变到2V 时所吸收的热量. 解:根据式(1.14.3),在可逆等温过程中系统吸收的热量为.Q T S =∆ (1)式(2.6.4)给出了热辐射的熵函数表达式34.3S aT V =(2) 所以热辐射在可逆等温过程中体积由1V 变到2V 时所吸收的热量为 ()4214.3Q aT V V =- (3)试讨论以平衡辐射为工作物质的卡诺循环,计算其效率. 解:根据式(2.6.1)和(),平衡辐射的压强可表为41,3p aT = (1) 因此对于平衡辐射等温过程也是等压过程. 式(2.6.5)给出了平衡辐射在可逆绝热过程(等熵过程)中温度T 与体积V 的关系3().T V C =常量 (2)将式(1)与式(2)联立,消去温度T ,可得平衡辐射在可逆绝热过程中压强p 与体积V 的关系43pV C '=(常量). (3)下图是平衡辐射可逆卡诺循环的p V -图,其中等温线和绝热线的方程分别为式(1)和式(3).下图是相应的T S -图. 计算效率时应用T S -图更为方便.在由状态A 等温(温度为1T )膨胀至状态B 的过程中,平衡辐射吸收的热量为()1121.Q T S S =- (4)在由状态C 等温(温度为2T )压缩为状态D 的过程中,平衡辐射放出的热量为()2221.Q T S S =- (5)循环过程的效率为()()2212211211111.T S S Q TQ T S S T η-=-=-=-- (6)如图所示,电介质的介电常量()DT Eε=与温度有关. 试求电路为闭路时电介质的热容量与充电后再令电路断开后的热容量之差.解:根据式(1.4.5),当介质的电位移有dD 的改变时,外界所做的功是đ,W VEdD = (1)式中E 是电场强度,V 是介质的体积. 本题不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换,p E V VD →-→ (2)下,简单系统的热力学关系同样适用于电介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有,E D D EE D C C VT T T ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4) 式中E C 是电场强度不变时介质的热容量,D C 是电位移不变时介质的热容量. 电路为闭路时,电容器两极的电位差恒定,因而介质中的电场恒定,所以D C 也就是电路为闭路时介质的热容量. 充电后再令电路断开,电容器两极有恒定的电荷,因而介质中的电位移恒定,所以D C 也就是充电后再令电路断开时介质的热容量.电介质的介电常量()DT Eε=与温度有关,所以 ,ED dE E T dT ∂⎛⎫= ⎪∂⎝⎭2,DE D d T dT εε∂⎛⎫=- ⎪∂⎝⎭ (5) 代入式(4),有2E D D d d C C VT EdT dTεεε⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭223.D d VT dT εε⎛⎫= ⎪⎝⎭(6)试证明磁介质H C 与M C 之差等于20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭解:当磁介质的磁化强度有dM 的改变时,外界所做的功是0đ,W V HdM μ= (1)式中H 是电场强度,V 是介质的体积.不考虑介质体积的改变,V 可看作常量. 与简单系统đW pdV =-比较,在变换0p H,V VM μ→-→ (2)下,简单系统的热力学关系同样适用于磁介质. 式(2.2.11)给出.p V V pp V C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (3)在代换(2)下,有0H M M HH M C C T T T μ∂∂⎛⎫⎛⎫-=- ⎪ ⎪∂∂⎝⎭⎝⎭ (4)式中H C 是磁场强度不变时介质的热容量,M C 是磁化强度不变时介质的热容量. 考虑到1H M TM T H T H M ∂∂∂⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ (5) (5)式解出HM T ∂⎛⎫⎪∂⎝⎭,代入(4)式,得 20H M M TH M C C T T H μ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭已知顺磁物质遵从居里定律:().CM H T=居里定律 若维物质的温度不变,使磁场由0增至H ,求磁化热.解:式(1.14.3)给出,系统在可逆等温过程中吸收的热量Q 与其在过程中的熵增加值∆S 满足.Q T S =∆ (1)在可逆等温过程中磁介质的熵随磁场的变化率为(式(2.7.7))0.T HS m H T μ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 如果磁介质遵从居里定律 (),CVm H C T=是常量 (3) 易知2Hm CV H T T ∂⎛⎫=- ⎪∂⎝⎭, (4) 所以0.TCV H S H T μ∂⎛⎫=- ⎪∂⎝⎭2(5) 在可逆等温过程中磁场由0增至H 时,磁介质的熵变为202.2HTCV H S S dH H T μ∂⎛⎫∆==- ⎪∂⎝⎭⎰(6) 吸收的热量为20.2CV H Q T S Tμ=∆=- (7)已知超导体的磁感强度0()0B H M μ=+=,求证:(a )M C 与M 无关,只是T 的函数,其中M C 是磁化强度M 保持不变时的热容量.(b )200.2M M U C dT U μ=-+⎰(c )0.MC S dT S T=+⎰解:先对超导体的基本电磁学性质作一粗浅的介绍.1911年昂尼斯(Onnes )发现水银的电阻在左右突然降低为零,如图所示. 这种在低温下发生的零电阻现象称为超导电性. 具有超导电性质的材料称为超导体. 电阻突然消失的温度称为超导体的临界温度. 开始人们将超导体单纯地理解为具有无穷电导率的导体. 在导体中电流密度e J 与电场强度E 满足欧姆定律.eJ E σ=(1) 如果电导率σ→∞,导体内的电场强度将为零. 根据法拉第定律,有,BV E t∂⨯=-∂ (2) 因此对于具有无穷电导率的导体,恒有0.Bt∂=∂ (3) 下图(a )显示具有无穷电导率的导体的特性,如果先将样品降温到临界温度以下,使之转变为具有无穷电导率的导体,然后加上磁场,根据式(3)样品内的B 不发生变化,即仍有0B =但如果先加上磁场,然后再降温到临界温度以下,根据式(3)样品内的B 也不应发生变化,即0.B ≠这样一来,样品的状态就与其经历的历史有关,不是热力学平衡状态了. 但是应用热力学理论对超导体进行分析,其结果与实验是符合的. 这种情况促使人们进行进一步的实验研究.1933年迈斯纳(Meissner )将一圆柱形样品放置在垂置于其轴线的磁场中,降低到临界温度以下,使样品转变为超导体,发现磁通量完全被排斥于样品之外,即超导体中的B 恒为零:()00.B H M μ=+= (4)这一性质称为完全抗磁性. 上图(b )画出了具有完全抗磁性的样品在先冷却后加上磁场和先加上磁场后冷却的状态变化,显示具有完全抗磁性的超导体,其状态与历史无关.1953年弗·伦敦()和赫·伦敦()兄弟二人提出了一个唯象理论,从统一的观点概括了零电阻和迈斯纳效应,相当成功地预言了超导体的一些电磁学性质.他们认为,与一般导体遵从欧姆定律不同,由于零电阻效应,超导体中电场对电荷的作用将使超导电子加速. 根据牛顿定律,有,m qE =v (5)式中m 和q 分别是超导电子的质量和电荷,v 是其加速度. 以s n 表示超导电子的密度,超导电流密度s J 为.=s s n q v J (6)综合式(5)和式(6),有1,s t Λ∂=∂J E (7) 其中2.s mΛn q=(8) 将式(7)代入法拉第定律(2),有,s Λt t ∂∂⎡⎤∇⨯=-⎢⎥∂∂⎣⎦B J或[]()0.s Λt∂∇⨯+=∂J B (9) 式(9)意味着()s Λ∇⨯+J B 不随时间变化,如果在某一时刻,有(),s Λ∇⨯=-J B (10)则在任何时刻式(10)都将成立. 伦敦假设超导体满足式(10).下面证明,在恒定电磁场的情形下,根据电磁学的基本规律和式(10)可以得到迈斯纳效应. 在恒定电磁场情形下,超导体内的电场强度显然等于零,否则s J 将无限增长,因此安培定律给出0.s μ∇⨯=B J (11)对上式取旋度,有0(),s Λμμ∇⨯∇⨯∇⨯=-B J B (12)其中最后一步用了式(10). 由于2()().∇⨯∇⨯=∇∇⋅-∇B B B而0∇⋅=B ,因此式(12)给出20μΛ∇=B B (13) 式(13)要求超导体中B 从表面随浓度很快地减少. 为简单起见,我们讨论一维情形. 式(13)的一维解是e≈B (14)式(14)表明超导体中B 随深度x 按指数衰减.如果2310cm s n ≈,可以得到6210cm .-≈⨯这样伦敦理论不仅说明了迈斯纳效应,而且预言磁屏蔽需要一个有限的厚度,磁场的穿透浓度是-610cm 的量级. 实验证实了这一预言. 综上所述,伦敦理论用式(7)和式(10)s ,()s tΛΛ∂=∂∇⨯=-J B J B(15) 来概括零电阻和迈斯纳效应,以式(15)作为决定超导体电磁性质的基本方程. 迈斯纳效应的实质是,磁场中的超导体会在表面产生适当的超导电流分布,使超导体内部0.=B 由于零电阻,这超导电流是永久电流,不会衰减. 在外磁场改变时,表面超导电流才会相应地改变.伦敦理论是一个唯象理论. 1957年巴丁、库柏和徐瑞佛(Bardeen ,Cooper ,Schriffer )发展了超导的微观理论,阐明了低温超导的微观机制,并对超导体的宏观特性给予统计的解释.下面回到本题的求解. 由式(3)知,在超导体内部恒有,M H =- (16)这是超导体独特的磁物态方程. 通常的磁物态方程(,,)0f H M T =对超导体约化为式(16).根据式(16),有0,0.HMM T H T ∂⎛⎫= ⎪∂⎝⎭∂⎛⎫= ⎪∂⎝⎭ (17)(a ) 考虑单位体积的超导体. 式(2.7.2)给出准静态过程中的微功为0đ.W HdM μ= (18)与简单系统的微功đW pdV =-比较知在代换0,p H V M μ→→下,简单系统得到的热力学关系同样适用于超导体. 题式(2)给出22.V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体相应的热力学关系为2020.M T MC H T ΜT μ⎛⎫∂∂⎛⎫=-= ⎪ ⎪∂∂⎝⎭⎝⎭ (19) 最后一步用了式(17). 由式(19)可知,M C 与M 无关,只是T 的函数.(b )相应于简单系统的(2.2.7)式,T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 超导体有000,T MU ΗT H M ΜT μμμ∂∂⎛⎫⎛⎫=-+=- ⎪ ⎪∂∂⎝⎭⎝⎭ (20) 其中第二步用了式(17).以,T M 为自变量,内能的全微分为0.M TM U U dU dT dMT M C dT MdM μ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭=- 积分得超导体内能的积分表达式为200.2M M U C dT U μ=-+⎰ (21)第一项是不存在磁场时超导体的内能,第二项代表外磁场使超导体表面感生超导电流的能量. 第二项是负的,这是式(16)的结果,因此处在外磁场中超导体的内能低于无磁场时的内能. (c )相应于简单系统的(2.4.5)式0,V V C p S dT dV S T T ⎡⎤∂⎛⎫=++ ⎪⎢⎥∂⎝⎭⎣⎦⎰ 超导体有00M MC ΗS dT dM S T T μ∂⎛⎫=-+ ⎪∂⎝⎭⎰0,MC dT S T=+⎰(22) 第二步用了式(17). 这意味着,处在外磁场中超导体表面的感生超导电流对熵(无序度)没有贡献.补充题1 温度维持为25C ,压强在0至1000n p 之间,测得水的实验数据如下:()363114.510 1.410cm mol K .pV p T ----∂⎛⎫=⨯+⨯⋅⋅ ⎪∂⎝⎭ 若在25C 的恒温下将水从1n p 加压至1000n p ,求水的熵增加值和从外界吸收的热量.解:将题给的pV T ∂⎛⎫⎪∂⎝⎭记为.pV a bp T ∂⎛⎫=+ ⎪∂⎝⎭ (1)由吉布斯函数的全微分dG SdT Vdp =-+得麦氏关系.p TV S T p ⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 因此水在过程中的熵增加值为()212121p P T p p pp p S S dpP V dp T a bp dp∂⎛⎫∆= ⎪∂⎝⎭∂⎛⎫=- ⎪∂⎝⎭=-+⎰⎰⎰()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3)将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅补充题2 试证明范氏气体的摩尔定压热容量与摩尔定容热容量之差为(),,23.21p m V m m m R C C a V b V RT-=--解:根据式(2.2.11),有,,.m m p m V m V pV p C C T T T ∂∂⎛⎫⎛⎫-= ⎪ ⎪∂∂⎝⎭⎝⎭ (1)由范氏方程2m mRT ap V b V =-- 易得,m V m p R T V b∂⎛⎫= ⎪∂-⎝⎭()232.m m Tm p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭ (2) 但1,m m V m Tp V p T T V p ⎛⎫⎛⎫∂∂∂⎛⎫=-⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 所以m V m pm Tp T V T p V ∂⎛⎫ ⎪∂⎝⎭∂⎛⎫=-⎪∂⎛⎫∂⎝⎭ ⎪∂⎝⎭()()323,2m m mm RV V b RTV a V b -=-- (3)代入式(1),得(),,23.21p m V m m mR C C a V b RTV -=--(4)补充题3 承前和第一章补充题3,试求将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量和内能的变化.解:式(2.4.4)给出,以,T V 为自变量的简单系统,熵的全微分为.V VC p dS dT dV T T ∂⎛⎫=+ ⎪∂⎝⎭ (1) 对于本题的情形,作代换 ,,V L p →→-J (2)即有.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (3) 将理想弹性体等温可逆地由0L 拉长至02L 时所吸收的热量Q 为2.L L LQ TdS T dL T ∂⎛⎫==- ⎪∂⎝⎭⎰⎰J (4) 由2020L L J bT L L ⎛⎫=- ⎪⎝⎭可得220002200021,L L L dL J L L b bT T L L L L L dT⎛⎫⎛⎫∂⎛⎫=--+ ⎪ ⎪⎪∂⎝⎭⎝⎭⎝⎭ (5) 代入式(4)可得0002222200022002L L L L L L L L Q bT dL bT a dL L L L L ⎛⎫⎛⎫=--++ ⎪ ⎪⎝⎭⎝⎭⎰⎰0051,2bTL a T ⎛⎫=-- ⎪⎝⎭(6)其中0001.dL L dTα=过程中外界所做的功为2220020,L L L L L L W JdL bT dL bTL L L ⎛⎫==-= ⎪⎝⎭⎰⎰(7) 故弹性体内能的改变为 2005.2U W Q bT L α∆=+= (8)补充题4 承上题. 试求该弹性体在可逆绝热过程中温度随长度的变化率.解:上题式(3)已给出.L LJ TdS C dT T dL T ∂⎛⎫=- ⎪∂⎝⎭ (1)在可逆绝热过程中0dS =,故有.S LL T T J L C T ∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 将习题式(5)求得的LJ T ∂⎛⎫⎪∂⎝⎭代入,可得2200022002.S L L L T bT L L T L C L L L L α⎡⎤⎛⎫⎛⎫∂⎛⎫=--+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦(3)补充题5 实验测得顺磁介质的磁化率()T χ. 如果忽略其体积变化,试求特性函数(,)f M T ,并导出内能和熵.解:在磁介质的体积变化可以忽略时,单位体积磁介质的磁化功为(式(2.7.2))0đ.W HdM μ= (1)其自由能的全微分为0.df SdT MdM μ=-+将()χ=T M H 代入,可将上式表为.Mdf SdT dM μχ=-+ (2)在固定温度下将上式对M 积分,得20(,)(,0).2()M f T M f T T μχ=+ (3)(,)f T M 是特性函数. 单位体积磁介质的熵为(),MS f T M T ∂⎡⎤=-⎢⎥∂⎣⎦221(,0).2d M S T dTμχχ=+ (4) 单位体积的内能为220002.22M d U f TS M T U dTμμχχχ=+=++ (5)。