半导体物理参考习题和解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习思考题与自测题
第一章
1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层
电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量
3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?
答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?
答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;
答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F
作用下,电子的波失K不断改变,
d k
f h
d t
,其变化率与外力成正比,因为电子的速度与k有关,
既然k状态不断变化,则电子的速度必然不断变化。
7.以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系,为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?
答:沿不同的晶向,能量带隙不一样。因为电子要摆脱束缚就能从价带跃迁到导带,这个时候的能量就是最小能量,也就是禁带宽度。
2.为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述?
答:空穴是一个假想带正电的粒子,在外加电场中,空穴在价带中的跃迁类比当水池中气
泡从水池底部上升时,气泡上升相当于同体积的水随气泡的上升而下降。把气泡比作空穴,
下降的水比作电子,因为在出现空穴的价带中,能量较低的电子经激发可以填充空穴,而填
充了空穴的电子又留下了一个空穴。因此,空穴在电场中运动,实质是价带中多电子系统在
电场中运动的另一种描述。因为人们发现,描述气泡上升比描述因气泡上升而水下降更为方
便。所以在半导体的价带中,人们的注意力集中于空穴而不是电子。
3.有两块硅单晶,其中一块的重量是另一块重量的二倍.这两块晶体价带中的能级数是否相等,彼
此有何联系?
答:相等,没任何关系
4.为什么极值附近的等能面是球面的半导体,当改变磁场方向时只能观察到一个共振吸收峰。
答:各向同性。
5.金刚石晶体结构和闪锌矿晶体结构的晶向对物理性质的影响。
6.典型半导体的带隙。
一般把禁带宽度等于或者大于2.3ev的半导体材料归类为宽禁带半导体,主要包括金刚石,SiC,GaN,金刚石等。26族禁带较宽,46族的比较小,如碲化铅,硒化铅(0.3ev),35族的砷化镓(1.4ev)。
第二章
1.说明杂质能级以及电离能的物理意义。为什么受主、施主能级分别位于价带之上或导带之下,
而且电离能的数值较小?
答:被杂质束缚的电子或空穴的能量状态称为杂质能级,电子脱离杂质的原子的束缚成为导电电子的过程成为杂质电离,使这个多余的价电子挣脱束缚成为导电电子所需要的能量成为杂质电离能。杂质能级离价带或导带都很近,所以电离能数值小。
2.纯锗,硅中掺入III或Ⅴ族元素后,为什么使半导体电学性能有很大的改变?杂质半导体(p型或
n型)应用很广,但为什么我们很强调对半导体材料的提纯?
答:因为掺入III或Ⅴ族后,杂质产生了电离,使得到导带中得电子或价带中得空穴增多,增强了半导体的导电能力。极微量的杂质和缺陷,能够对半导体材料的物理性质和化学性质产生决定性的影响,,当然,也严重影响着半导体器件的质量。
3.把不同种类的施主杂质掺入同一种半导体材料中,杂质的电离能和轨道半径是否不同? 把同一
种杂质掺入到不同的半导体材料中(例如锗和硅),杂质的电离能和轨道半径又是否都相同?
答:不相同
4.何谓深能级杂质,它们电离以后有什么特点?
答:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。特点:能够产生多次电离,每一次电离相应的有一个能级。
5.为什么金元素在锗或硅中电离后可以引入多个施主或受主能级?
答:因为金是深能级杂质,能够产生多次电离,每一次电离相应的有一个能级,因此,金在硅锗的禁带往往能引入若干个能级。
6.说明掺杂对半导体导电性能的影响。
答:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n
型半导体和p型半导体。
例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。当在Si中
掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为
2.25╳104cm-3。半导体中的多数载流子是电子,而少数载流子是空穴。
7.说明半导体中浅能级杂质和深能级杂质的作用有何不同?
答:深能级杂质在半导体中起复合中心或陷阱的作用。
浅能级杂质在半导体中起施主或受主的作用
8.什么叫杂质补偿,什么叫高度补偿的半导体,杂质补偿有何实际应用。
答:当半导体中既有施主又有受主时,施主和受主将先相互抵消,剩余的杂志最后电离,这就是杂质补偿,若施主电子刚好填充受主能级,虽然杂质很多,但不能向导带和价带提供电子和空穴,这种现象称为杂质的高度补偿。利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。
9.什么是半导体的共掺杂
答:掺入两种或两种元素以上
10.用氢原子模型计算杂质电离能