汽车复合材料

合集下载

复合材料在汽车上的应用

复合材料在汽车上的应用

复合材料在汽车上的应用随着汽车工业的发展,复合材料在汽车上的应用越来越广泛。

相比传统的金属材料,复合材料具有轻质、高强度、耐腐蚀、耐疲劳、噪音低、耐高温等优异性能,因此受到了广泛的关注和应用。

前段大量使用的复合材料之一是碳纤维复合材料。

这种材料具有高强度、低密度、耐高温、耐腐蚀等优点,可制成车身、座椅、悬挂系统等零部件,以减轻汽车重量,提高燃油经济性。

许多高性能跑车、超级跑车以及电动车都使用了碳纤维车身,以提高车辆的动力性能和续航里程。

碳纤维还可以用于制造轮毂、刹车盘、变速箱、发动机纵梁等高强度部件,以提高汽车的性能和安全性。

除了碳纤维复合材料外,另一种较为常见的材料是玻璃纤维复合材料。

这种材料可以制成车身板、前保险杠、后保险杠、引擎罩等外壳结构件,具有较好的耐撞击性和仿真效果。

由于玻璃纤维复合材料的成本较低,应用领域比碳纤维复合材料更为广泛。

除了车身和外壳结构件之外,复合材料还可以用于汽车底盘、悬挂系统、排气系统、内饰件等零部件。

碳纤维增强聚酰亚胺材料可以用于制造悬挂系统的上下臂等部位,以提高汽车的行驶稳定性和操控性能。

而玻璃纤维复合材料可以用于制造排气系统的中段管道和消音器等部位,以降低噪音和提高耐腐蚀性。

复合材料内饰件如门板、座椅罩、天窗罩等,也可以用来美观、轻量化、提高舒适性。

通过使用复合材料,汽车的零部件重量可降低30%至70%,有助于提高燃油经济性并降低排放。

在未来,复合材料在汽车上的应用将会更加广泛。

同时也要注意复合材料的加工和生产成本,以及回收再利用问题,进一步推动汽车工业的绿色环保发展。

随着科技的不断发展,复合材料在汽车工业的应用前景越来越广阔。

在汽车行业中,除了玻璃纤维和碳纤维复合材料,还有许多其他类型的复合材料,如复合材料板材、复合材料密封件等,都可以应用到汽车的不同部位。

复合材料板材可以用来替代金属板材,制成车门、车顶、引擎罩、尾门或后盖等车身结构件。

这种板材在抗撞击性、耐腐蚀性、耐热性和耐疲劳性等方面都具有优良性能,同时也比同等强度的金属材料更轻,可以减轻车辆的总重量,提高燃油经济性和行驶稳定性。

汽车中的复合材料

汽车中的复合材料

复合材料在汽车中的应用一、汽车用复合材料简洁概述随着全球能源危机、环境污染等问题的重视,汽车对于重量、噪声、耗油等方面的要求的越来越高。

另一方面,高档轿车的附加功能越来越多,又会增加轿车质量。

汽车的轻量化会可以降低油耗、节省能源、保护环境、改善汽车性能。

图一展现了各类不同汽车的车重和它们的百公里油耗比照状况。

从图中可以看出汽车车重平均削减100kg,汽车的百公里油耗削减0.7L。

值得提示的是,汽车部件的能耗可以从三个方面考察:原材料能耗、加工能耗和运载能耗,图一所示的只是运载能耗。

汽车轻量化设计最有效的途径就是更换新材料。

在现代的众多材料之中,聚合物基复合材料具有比强度和比模量高、耐疲惫、本钱低、减振和降噪性能良好、耐腐蚀和尺寸稳定等优良性能,生产耗能只有钢材的50%-60%,是Al、Mg 材料的70%・80%, 其实不仅是聚合物基复合材料具有以上几点特点,用复合材料替代传统材料,普遍表现出质量小、耐腐蚀、易修补、噪声小、燃油消耗低、成型工艺便利、易回收采用,已广泛应用与制造汽车车身、车门、发动机罩、油底壳、保险杠、板弹簧和驱动轴等。

例如: 美国的Pontiac Fiero轿车采纳纤维增加塑料车身,车重削减了80%o下面概述一下各种复合材料在汽车上面的应用。

金属基复合材料在汽车上的应用:目前应用与汽车工业的金属基复合材料主要有AI或Mg基的颗粒或者短纤维增加的材料,特点是:比强度和比刚度高,耐磨性好,导热性好,热膨胀系数低。

金属基复合材料适合制造汽车的制动器耐磨件,如制动盘等。

现在的汽车制动盘大多采纳铸铁制图一:汽车能耗与重量关系造,但是用铝基复合材料替代铸铁可以减重50%-60%,同时制动距离短,提高导热系数,制动过程中的大量的热量能够散发出去,提高了抗热震性能。

在反复连续制动的工况下外表温度基本维持在450℃,而铸铁刹车盘外表温度高达700C,止匕外,摩擦系数更为稳定。

金属基复合材料还广泛用于制造轻质连杆和活塞。

汽车复合材料的定义

汽车复合材料的定义

汽车复合材料的定义、分类和基本特点汽车复合材料具有“结构物”的本质,即它首先是结构,其次才是材料。

因此,要充分发挥汽车复合材料的优势从而推进其在汽车中的广泛应用,必须首先对汽车复合材料的定义、分类和基本特点有一个清晰的了解和认识。

尽管纤维增强树脂基复合材料(以下简称“复合材料”)的诞生至今已有76年的发展历史,世界首辆复合材料车身的汽车Chevrolet Corvette诞生也有55年的历史,在适应汽车工业发展的需求中汽车复合材料技术也不断得到了进步和新的突破,从而在汽车中的应用越来越广泛。

但是,一个不容忽视的问题是,汽车复合材料的推进工作在汽车制造业中相对于其他轻量化材料仍然进展缓慢,起伏跌宕,这一问题在我国汽车制造业中尤为突出。

究其深层次原因,其中很重要的一点是,我国汽车行业的企业家、工程技术人员和用户,包括目前汽车复合材料的部分从业人员对复合材料缺乏正确的认识。

针对复合材料行业特有的认识问题,我国著名的复合材料专家张汝光教授曾经多次撰文并在不同的会议场合上大声疾呼:要正确认识复合材料!对此,他曾列举了一个例子:1988年,美国国会技术评价局发表了一份供政府决策指导的300多页的研究报告,报告题为“可设计的先进材料(指复合材料)”。

编者在“影响先进材料更广泛应用的原因”一节中指出,要实现先进材料的更广泛应用,不仅仅要解决好技术方面的问题,还要设法改变包括研究人员和用户等在内的人的观念问题,因为人们总是习惯于用更适合于常规材料的观念来考虑问题。

这个例子很能说明问题,也值得大家反思。

张教授指出,“习惯于用更适合于常规材料的观念来认识复合材料”是影响复合材料广泛应用的主要原因。

众所周知,美国是世界上复合材料应用最广、用量最大以及技术最先进的国家,但他们仍然认为,还是不能正确地认识和看待复合材料,这是影响复合材料发展的重要原因。

因此,对于复合材料应用还很落后、急需迎头赶上的中国汽车工业而言,只有正确认识汽车复合材料,才能用好汽车复合材料,也才能更好、更快地发展汽车复合材料。

复合材料在汽车轻量化中的应用

复合材料在汽车轻量化中的应用

复合材料在汽车轻量化中的应用嘿,大家好,今天咱们聊聊复合材料在汽车轻量化中的应用。

听到“复合材料”,你可能会觉得有点高深莫测,但其实它们就像是汽车的“减肥药”,能让车子变得更轻,更灵活,开起来也更省油。

说到轻量化,这可不是随便说说,轻了之后,汽车的性能可是大大提升,真的是事半功倍。

想象一下,开着一辆轻盈的车在马路上飞驰,那感觉可真爽啊!复合材料就是帮助实现这种感觉的魔法材料。

它们通常由两种或两种以上的材料组合而成,形成一种新型的材料,兼具强度和轻便。

这就像是把钢铁的坚固和塑料的轻便结合在了一起,真是妙不可言。

你可能会问,这些材料到底有哪些呢?比如碳纤维、玻璃纤维等等,都是近年来汽车制造中炙手可热的明星。

说到碳纤维,它可是个牛叉的家伙,虽然价格偏贵,但轻得要命,强度却爆表。

简直就是赛车手的最爱,想想在赛车场上飞速驰骋,那一瞬间,真是让人热血沸腾。

再说玻璃纤维,这家伙更是性价比之王,轻而且便宜,简直是大众化的选择。

像一些家庭轿车,都开始用这种材料来减轻车身重量。

减重的好处不止于此,轻量化还意味着更好的燃油经济性。

这年头,油价像过山车一样,让人心惊胆战。

如果汽车能轻一点,跑起来更省油,钱包也能轻松一点,真是一举两得。

这就好比吃了“减肥药”,看着体重秤上的数字一点一点往下掉,心里那个乐啊,甭提多爽了。

复合材料的好处还不止于此。

它们的耐腐蚀性可谓一绝,开车的时候难免遇到风吹日晒,车身表面难免会受到侵害。

这时候,复合材料的抗氧化能力就显得尤为重要。

就像是给车子穿上了一层保护膜,轻松应对各种恶劣天气,真是名副其实的“铁打的汉子”。

不过,大家也要知道,复合材料的生产工艺可不是那么简单。

它们需要特殊的设备和技术,制造过程中也得小心翼翼,才能确保材料的性能和质量。

这就好比做菜,材料新鲜、火候掌握得当,才能做出一盘色香味俱全的佳肴。

聊到这儿,咱们也得提提汽车行业的趋势。

随着环保意识的增强,越来越多的车企开始关注轻量化这一领域,纷纷投入资源研发新型复合材料。

聚氨酯汽车复合材料

聚氨酯汽车复合材料

聚氨酯汽车复合材料
聚氨酯汽车复合材料是一种新型的汽车材料,它具有轻质、高强度、耐腐蚀等
特点,因此在汽车制造领域有着广泛的应用前景。

聚氨酯汽车复合材料由聚氨酯树脂与玻璃纤维、碳纤维等增强材料复合而成,其优异的性能使其成为汽车制造领域的热门材料之一。

首先,聚氨酯汽车复合材料具有轻质的特点。

相比传统的金属材料,聚氨酯汽
车复合材料的密度更低,因此可以有效减轻汽车的整体重量。

在如今注重节能减排的社会背景下,汽车制造商们更加关注汽车的轻量化设计,以降低燃料消耗和减少尾气排放。

因此,聚氨酯汽车复合材料的轻质特性使其在汽车制造中具有重要意义。

其次,聚氨酯汽车复合材料具有高强度的特点。

聚氨酯树脂本身具有较高的强度,而与玻璃纤维、碳纤维等增强材料复合后,其强度更是得到了进一步提升。

这使得聚氨酯汽车复合材料在汽车制造中可以替代一些传统的金属材料,如钢铁、铝合金等,从而在保证汽车结构强度的前提下,更加轻量化。

此外,聚氨酯汽车复合材料还具有耐腐蚀的特点。

传统的金属材料在长期使用
过程中容易受到氧化、腐蚀等影响,从而影响汽车的使用寿命和安全性。

而聚氨酯汽车复合材料由于其化学稳定性较高,因此具有较好的耐腐蚀性能,可以有效延长汽车的使用寿命。

总的来说,聚氨酯汽车复合材料具有轻质、高强度、耐腐蚀等诸多优点,这使
得它在汽车制造领域有着广阔的应用前景。

随着汽车工业的不断发展和技术的不断进步,相信聚氨酯汽车复合材料将会在未来发展中扮演越来越重要的角色,为汽车制造业带来更多的创新和发展。

复合材料在汽车行业的应用研究

复合材料在汽车行业的应用研究

复合材料在汽车行业的应用研究在当今汽车工业的快速发展中,复合材料凭借其独特的性能优势,逐渐成为汽车制造领域的重要材料。

复合材料不仅能够减轻车辆重量、提高燃油效率,还能增强汽车的安全性和耐久性。

本文将对复合材料在汽车行业的应用进行深入研究。

一、复合材料的特点与分类复合材料是由两种或两种以上具有不同物理和化学性质的材料组合而成的一种多相固体材料。

其特点主要包括高强度、高刚度、低密度、良好的耐腐蚀性和抗疲劳性能等。

常见的复合材料在汽车行业的应用主要有纤维增强复合材料和聚合物基复合材料。

纤维增强复合材料如碳纤维增强复合材料(CFRP)和玻璃纤维增强复合材料(GFRP),具有优异的力学性能。

聚合物基复合材料则以其良好的成型性能和成本优势,在汽车内饰和非结构部件中得到广泛应用。

二、复合材料在汽车车身结构中的应用汽车车身是复合材料应用的重要领域之一。

采用复合材料制造车身结构,可以显著减轻车身重量,从而提高燃油经济性和降低尾气排放。

例如,一些高端汽车品牌已经开始使用碳纤维增强复合材料来制造车身框架和覆盖件。

碳纤维的高强度和低重量特性,使得汽车在保持结构强度的同时,大幅降低了整车重量。

此外,玻璃纤维增强复合材料也常用于车身部件的制造,如保险杠、车门和引擎盖等。

这些部件在碰撞时能够吸收能量,提高汽车的被动安全性。

三、复合材料在汽车动力系统中的应用在汽车动力系统中,复合材料也发挥着重要作用。

例如,复合材料可以用于制造发动机缸体、缸盖和曲轴等部件。

这些部件需要具备高强度、耐高温和良好的耐磨性,而复合材料的性能能够满足这些要求。

同时,复合材料还可以用于制造涡轮增压器叶片和排气管等部件。

由于其良好的耐热性和耐腐蚀性,能够延长部件的使用寿命,提高动力系统的可靠性。

四、复合材料在汽车内饰中的应用汽车内饰对于舒适性和美观性有着较高的要求,复合材料在这方面也有着出色的表现。

聚合物基复合材料可以制成各种形状和颜色的内饰部件,如仪表板、座椅靠背和中控台等。

汽车材料配合的名词解释

汽车材料配合的名词解释

汽车材料配合的名词解释随着汽车工业的快速发展,汽车材料配合已成为汽车制造中不可或缺的重要环节。

本文将从材料配合的角度,对其中涉及的一些名词进行解释和探讨。

一、材料配合的概述材料配合是指将不同种类的材料进行组合和应用,以达到汽车结构设计和性能要求的一种工艺过程。

通过合理配合不同材料的特点和优势,汽车制造商能够提升汽车的品质、安全性、燃油效率等方面的性能。

二、复合材料复合材料是汽车材料配合中的一个重要概念。

它是指由两种或两种以上的材料通过物理或化学方式结合而成的材料。

常见的汽车复合材料有纤维增强塑料(Fiber Reinforced Plastics,FRP)、碳纤维复合材料(Carbon Fiber Reinforced Composites,CFRP)等。

这些材料具有高强度、轻质化、耐腐蚀等优点,因此广泛应用于汽车车身、底盘等部件制造中。

三、材料耐久性材料耐久性是指材料在长期使用过程中受到的损伤程度。

汽车材料的耐久性直接影响汽车的寿命和使用性能。

在材料配合中,需要考虑材料的抗拉强度、抗腐蚀性、耐磨损性等特性,以确保汽车在各种恶劣环境下也能保持稳定可靠的性能。

四、热膨胀系数热膨胀系数是指材料在温度变化下膨胀或收缩的性质。

在材料配合中,不同材料的热膨胀系数需相互匹配,以避免在温度变化时产生过大的应力,从而导致零部件失效。

例如,铝合金的热膨胀系数与钢铁相比较大,因此在汽车发动机的设计中通常采用铝合金和钢铁的复合结构,以提高发动机的性能和效率。

五、材料接头材料接头即材料之间的连接方式。

在汽车制造中,接头的质量和可靠性对整车结构的稳定性和安全性起着至关重要的作用。

常见的材料接头方式有焊接、螺栓连接、胶合等。

不同的材料接头有不同的优缺点,需根据具体应用需求进行选择。

六、材料设计材料设计是指根据汽车功能要求和运行环境,选择合适的材料,并确定其在汽车制造中的应用方式和配合关系。

材料设计需要考虑多个因素,如强度、重量、成本、环保性等。

列举汽车用复合材料优缺点

列举汽车用复合材料优缺点

列举汽车用复合材料优缺点复合材料是一种由两种或两种以上的材料组合而成的新材料,具有独特的性能和优势。

在汽车制造领域,复合材料被广泛应用于车身、底盘、发动机和内饰等部件中。

本文将从优点和缺点两个方面列举汽车用复合材料的特点。

一、优点1. 轻量化:复合材料相比传统金属材料更轻,可以有效减轻汽车的整体重量。

相同重量下,使用复合材料制造的汽车具有更高的燃油效率和更低的尾气排放,有助于降低环境污染。

2. 强度高:复合材料具有优异的强度和刚度,能够提供更好的撞击安全性和车辆稳定性。

使用复合材料制造的车身结构可以有效吸收和分散碰撞能量,提高车辆的安全性能。

3. 抗腐蚀:与金属材料相比,复合材料具有更好的抗腐蚀性能。

在恶劣的环境条件下,复合材料能够更好地抵御潮湿、酸碱、盐雾等腐蚀因素,延长汽车的使用寿命。

4. 设计自由度高:复合材料可以通过模压、注射、层叠等工艺制造成各种形状和尺寸的零部件,提供了更多的设计自由度。

汽车制造商可以根据不同的需求和风格,设计出更加独特和美观的车身和内饰。

5. 能量吸收性能好:复合材料的能量吸收性能优于传统金属材料,可以在碰撞时有效地减少乘员受伤的风险。

这是由于复合材料的结构可以通过合理的设计和材料组合来实现更好的能量吸收和分散。

二、缺点1. 成本高:相比传统的金属材料,复合材料的制造成本较高。

复合材料的生产工艺要求更高,需要投入更多的时间和资源。

因此,使用复合材料制造的汽车往往价格较高,不适合大众市场。

2. 回收难度大:复合材料的回收和再利用相对困难。

由于复合材料的成分多样,不同材料的分离和处理需要专门的设备和技术。

这给环境保护和可持续发展带来了一定的挑战。

3. 耐热性差:部分复合材料在高温环境下容易发生脱层、变形等问题。

这限制了复合材料在发动机和排气系统等高温部件上的应用。

在这些部件上,传统金属材料仍然具有较好的性能。

4. 维修困难:相比传统金属材料,复合材料的维修和修复难度较大。

复合材料在汽车工业的创新应用

复合材料在汽车工业的创新应用

复合材料在汽车工业的创新应用在当今汽车工业的发展进程中,复合材料凭借其独特的性能优势,逐渐成为了创新应用的焦点。

这些材料不仅为汽车带来了更出色的性能表现,还在环保、安全和设计等方面发挥着重要作用。

复合材料是什么呢?简单来说,复合材料是由两种或两种以上不同性质的材料通过物理或化学的方法组合在一起形成的一种新型材料。

与传统的单一材料相比,复合材料具有更优异的综合性能。

在汽车制造领域,复合材料的应用范围十分广泛。

首先,车身部件是复合材料大显身手的重要领域之一。

例如,汽车的引擎盖、车门、车顶等部位,都可以采用复合材料来制造。

这是因为复合材料具有轻质高强的特点,能够在减轻车身重量的同时,保证车身的结构强度和刚性。

减轻车身重量对于汽车来说意义重大。

随着能源和环境问题的日益突出,汽车轻量化成为了汽车工业发展的重要趋势。

较轻的车身重量可以降低汽车的能耗,提高燃油效率或者增加电动汽车的续航里程。

以碳纤维增强复合材料为例,其强度是钢的数倍,而重量却只有钢的几分之一。

将这种材料应用于车身结构,可以显著减轻汽车的整备质量,从而实现节能减排的目标。

除了车身部件,复合材料在汽车内饰方面也有着出色的表现。

汽车座椅、仪表盘、中控台等内饰部件使用复合材料,可以提供更好的舒适性和美观性。

复合材料可以根据设计需求被制成各种形状和纹理,为汽车内部营造出独特的氛围。

同时,它们还具有良好的隔音、隔热性能,能够提升车内的乘坐环境。

在汽车底盘和悬挂系统中,复合材料同样发挥着重要作用。

传统的金属底盘和悬挂部件往往较重,且在复杂的路况下容易产生疲劳和磨损。

而采用复合材料制造的底盘和悬挂部件,不仅重量更轻,还具有更好的抗疲劳性能和耐腐蚀性。

这有助于提高汽车的操控性能和行驶稳定性,为驾驶者带来更加舒适和安全的驾驶体验。

此外,复合材料在汽车动力系统中的应用也在不断拓展。

例如,一些高性能汽车的发动机部件,如进气歧管、气门室盖等,开始采用复合材料制造。

这些部件能够承受高温和高压的工作环境,同时减轻发动机的重量,提高发动机的功率输出。

复合材料在汽车工业中的应用

复合材料在汽车工业中的应用

复合材料在汽车工业中的应用汽车,这一现代社会中不可或缺的交通工具,大家都不陌生。

咱今天不说它那炫酷的外观设计,也不讲它那强劲的动力系统,而是来聊聊复合材料在汽车工业里那些有趣又实用的应用。

我记得有一次,我去参加一个汽车展览会。

在展览会上,各种各样的汽车琳琅满目,让人目不暇接。

其中有一辆车特别吸引我的注意,它的车身线条流畅,颜色亮丽,关键是走近一瞧,才发现它使用了大量的复合材料。

要说这复合材料啊,那可真是汽车工业的“新宠”。

为啥这么说呢?首先,复合材料重量轻。

这就好比一个人背着重重的书包跑步,累得气喘吁吁,而一旦把书包里没用的东西扔掉,那跑起来就轻松多了。

汽车也是一样,用了复合材料,车身变轻了,油耗也就降低啦,不仅省钱,还环保。

再说说它的强度吧。

复合材料的强度那可真是杠杠的!就像我们建房子用的钢筋混凝土,既坚固又耐用。

汽车在行驶过程中,难免会遇到各种碰撞和冲击,这时候复合材料就能发挥大作用,保护车内人员的安全。

还有啊,复合材料的耐腐蚀性也特别出色。

想象一下,一辆车常年暴露在风吹雨打、日晒雨淋的环境中,如果材料不耐腐蚀,那用不了多久就会锈迹斑斑,变得惨不忍睹。

但有了复合材料,这些问题就迎刃而解啦。

在汽车的内饰方面,复合材料也有大展身手的机会。

比如说座椅,采用复合材料制作的座椅,不仅坐起来舒适,而且还具有良好的透气性和耐磨性。

还有仪表盘、中控台等部件,使用复合材料能让它们的质感和外观都更上一层楼。

另外,复合材料在汽车的发动机部件中也有应用。

发动机可是汽车的“心脏”,工作环境那是相当恶劣,高温、高压、高磨损。

而复合材料的耐高温和耐磨性能,正好能满足发动机的需求,提高发动机的工作效率和寿命。

总之,复合材料在汽车工业中的应用那是越来越广泛,给汽车带来了诸多的好处。

就像我在车展上看到的那辆车,正是因为有了复合材料的加持,才显得如此与众不同。

相信在未来,随着技术的不断进步,复合材料会在汽车工业中发挥更加重要的作用,让我们的汽车变得更轻、更强、更舒适、更环保!。

汽车车身材料钢铁铝合金和复合材料的对比

汽车车身材料钢铁铝合金和复合材料的对比

汽车车身材料钢铁铝合金和复合材料的对比在汽车制造业中,车身材料的选择对于汽车的性能和安全性有着重要的影响。

钢铁、铝合金和复合材料是常见的车身材料,它们各自具有不同的特点和应用。

本文将对这三种材料进行对比,并分析它们在车身制造中的优缺点。

一、钢铁材料钢铁作为传统的车身材料,具有较高的强度和刚性。

它经久耐用且具有良好的可塑性,可以满足汽车对于承载能力和结构刚度的需求。

此外,钢铁还具有较高的回收率和低成本的优势,为制造商提供了便利。

然而,由于钢铁的密度较大,使用钢铁制造的车身相对较重。

重量的增加会导致汽车燃油消耗量的增加,从而降低燃油经济性。

同时,钢铁容易受到氧化和腐蚀的影响,需要加强防护措施来延长车身的使用寿命。

二、铝合金材料相对于钢铁,铝合金具有更低的密度和更好的耐腐蚀性能。

通过使用铝合金,车身的重量可以得到有效降低。

较轻的车身重量有助于提高汽车的操控性能和燃油经济性,减少尾气排放。

同时,铝合金材料也具有较高的强度和可塑性,可以满足车身结构的要求。

然而,铝合金相对于钢铁而言,成本较高。

铝合金的生产和加工成本相对较高,因此使用铝合金材料制造车身会增加整车的制造成本。

此外,铝合金容易产生应力集中和疲劳损伤,对制造工艺和质量控制提出了更高的要求。

三、复合材料复合材料是由两种或更多种材料组合而成的,具有各种独特的性能。

在汽车制造中,碳纤维复合材料是常见的选择。

碳纤维具有非常高的强度和刚度,同时具有较低的密度。

使用碳纤维复合材料可以大幅减轻车身重量,提高燃油经济性和操控性能。

然而,复合材料也存在一些问题。

首先,复合材料的制造成本高,且生产难度大。

其次,复合材料的可塑性较差,不如金属材料容易加工成型。

此外,复合材料制作过程中的废料处理和回收也具有一定难度。

综上所述,钢铁、铝合金和复合材料在汽车车身制造中都有各自的优势和局限性。

钢铁具有成本低、可塑性好等优点,但重量较大。

铝合金具有轻量化和抗腐蚀性能好的特点,但成本较高。

复合材料在新能源汽车的应用

复合材料在新能源汽车的应用

复合材料在新能源汽车的应用
复合材料在新能源汽车中具有广泛的应用,主要包括以下几个方面:
1. 轻量化:复合材料的密度相对较低,重量轻,可以有效减轻整车重量,进而提高能源利用效率和续航里程。

例如,复合材料可以用于制造车身和车身零部件,如碳纤维复合材料可以用于车身外壳,以减轻车身重量。

2. 强度和刚度增加:复合材料具有优异的强度和刚度特性,可以提高汽车的结构强度和刚度。

这种特性可以使得汽车具有更好的安全性能和抗碰撞能力。

3. 耐热性和耐腐蚀性:复合材料具有较好的耐高温性能和抗腐蚀性能,可以在高温和腐蚀环境下保持稳定性能。

这对于电动汽车中的电池和电动机等关键部件的长期稳定运行非常重要。

4. 热隔离性:复合材料的热隔离性能优良,可以阻止热量的传导,提高新能源汽车的能源利用效率。

例如,可以将复合材料应用于车辆的隔热板、隔热垫等部件,减少能量的损耗。

综上所述,复合材料在新能源汽车中的应用具有重要的意义,可以提高整车性能、减少能耗、延长电池寿命等。

随着复合材料技术的不断发展和成熟,相信其在新能源汽车领域的应用将会越来越广泛。

复合材料在汽车的应用

复合材料在汽车的应用

复合材料在汽车的应用在汽车制造中,复合材料主要应用于车身、底盘、发动机等重要部件。

其主要好处在于具有较高的比强度、较低的比重和良好的抗腐蚀性能。

下面将就几个典型的应用领域进行详细介绍。

首先,复合材料在汽车车身方面应用广泛。

由于复合材料具有较高的比强度和较低的比重,可以显著降低车身重量,提高汽车的燃油经济性能。

此外,复合材料车身还能够提供更好的碰撞安全性能,增加车辆乘坐者的安全性。

许多高档汽车品牌已经采用了碳纤维复合材料来制造车身,使得车辆更加轻盈且具有更好的驾驶性能。

其次,复合材料在底盘方面也有广泛应用。

底盘是汽车的重要组成部分,承担着车身和发动机的重量以及悬挂系统的负荷。

复合材料底盘具有较高的刚度和强度,能够提供更好的悬挂系统性能和操控稳定性。

此外,复合材料底盘还具有较好的吸震性能,能够减少驾乘者的颠簸感和疲劳感,提高车辆的乘坐舒适性。

第三,发动机部件中的复合材料应用也越来越多。

例如,复合材料可以用于制造发动机罩和进气道等部件,以提高发动机的性能和效率。

由于复合材料具有较低的热膨胀系数和较高的抗热稳定性,可以有效降低发动机在高温条件下的变形和热裂纹的发生。

此外,复合材料材质还能提供更好的隔音和隔热效果,减少发动机噪音对驾乘者的干扰。

此外,复合材料也可用于制造汽车内饰部件,如仪表盘、门板等。

由于复合材料具有良好的成型性能和表面质量,能够制造出更加精细和美观的内饰部件。

与传统的塑料材料相比,复合材料具有更高的耐磨损性和耐划伤性能,能够提高内饰部件的使用寿命。

综上所述,复合材料在汽车制造中有着广泛的应用,能够显著改善汽车的性能和重量。

随着技术的不断进步,相信复合材料在汽车制造中的应用将会更加广泛,为我们带来更安全、更环保和更高性能的汽车。

汽车内饰常用纤维复合材料

汽车内饰常用纤维复合材料

汽车内饰常用纤维复合材料汽车内饰用纤维复合材料简称复合材料,以塑性复合材料居多。

复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,塑性复合材料通常是指以塑料为基体,用玻璃纤维、碳纤维、木纤维、麻纤维等增强的复合材料。

由于复合材料是以两种或两种以上的物质组成,故而它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。

很多复合材料的强度和刚度都已接近或超过金属材料。

内饰纤维复合材料多指纤维增强聚丙烯材料,按照大体的分类可分为无机(制造纤维)复合材料和有机(天然纤维)复合材料。

而无机复合材料又可分为玻璃纤维复合材料、碳纤维复合材料和硼纤维复合材料等;天然纤维复合材料可分为木纤维复合材料(木粉板)、麻纤维复合材料和其他天然纤维增强材料。

1.玻璃纤维复合材料玻璃纤维复合材料是指玻璃纤维增强聚丙烯材料,其制造过程是以玻璃纤维毡和聚丙烯按一定比例混合加工而成的。

LFT (Long- Fiber Reinforce Thermoplastic)中文译为长纤维增强热塑性塑料,又称为长纤维增强热塑性复合材料,它是纤维增强聚合物领域的一种新型高级轻量化材料。

LFT材料的机械特性与增强纤维的材性和所占比例有关。

车用LFT增强纤维通常为玻璃纤维。

LFT的机械特性还与增强纤维的长度有着密切的关系。

与相类似的短纤维(纤维长度约小于1mm)增强注塑成型热塑性复合材料相比,LFT材料无论在强度、抗撞击性能、能量的吸收率等方面都得到了很大提高。

因此,这些特性也为LFT在要求更为严格的汽车内外部的结构件和半结构件上的应用创造了条件。

LFT除了具有热塑性塑料的特点之外,还由于混配了长玻纤,使其产生了更为优良的物理性能和力学性能。

LFT的特点如下:(1)密度小、强度高。

LFT的密度为1.1-1.6g/cm3,仅为钢材的1/5-1/7,它能够以较小的单位质量获得较高的机械强度。

(2)可设计性的自由度大。

LFT的物理、化学和力学性能都可以通过合理选择原材料的种类、配比、加工方法、纤维含量来进行设计。

聚氨酯汽车复合材料

聚氨酯汽车复合材料

聚氨酯汽车复合材料聚氨酯汽车复合材料是一种具有广泛应用前景的新型材料,它由聚氨酯树脂与增强材料(如玻璃纤维、碳纤维等)组成,具有优异的力学性能、耐腐蚀性能和成型加工性能。

在汽车制造领域,聚氨酯复合材料已经被广泛应用于车身、车顶、车门、前后保险杠等部位,取得了显著的经济和社会效益。

首先,聚氨酯汽车复合材料具有优异的力学性能。

由于聚氨酯树脂具有较高的强度和刚度,结合增强材料的加入,使得复合材料具有更高的抗拉强度、抗压强度和弯曲强度,能够满足汽车结构件在使用过程中的各种力学要求,提高了汽车的整体安全性和稳定性。

其次,聚氨酯汽车复合材料具有良好的耐腐蚀性能。

传统的金属材料在长期受到潮湿、酸碱等环境的侵蚀下容易发生腐蚀,而聚氨酯复合材料由于其无机化学性质,具有较强的抗腐蚀能力,能够有效延长汽车零部件的使用寿命,降低了汽车维护成本。

再次,聚氨酯汽车复合材料具有良好的成型加工性能。

相比于金属材料,聚氨酯复合材料在成型加工过程中更加灵活,可以通过模压、注塑等方式制备成各种复杂形状的零部件,满足汽车设计的多样化和个性化需求,提高了汽车制造的灵活性和效率。

总的来说,聚氨酯汽车复合材料具有广阔的市场应用前景。

随着汽车轻量化、节能化、环保化的发展趋势,聚氨酯复合材料将会成为未来汽车制造的重要材料之一,为汽车行业的可持续发展做出重要贡献。

在实际应用中,我们需要进一步加强对聚氨酯汽车复合材料的材料设计、成型工艺、性能测试等方面的研究,不断提升其力学性能、耐腐蚀性能和成型加工性能,推动其在汽车制造领域的广泛应用。

同时,应加强对复合材料的环保性能评价,确保其在生产、使用和废弃处理过程中对环境的影响最小化,实现可持续发展目标。

总之,聚氨酯汽车复合材料具有巨大的发展潜力,将会在未来汽车制造领域发挥重要作用,为推动汽车产业的技术升级和转型发展做出重要贡献。

汽车复合材料

汽车复合材料

汽车复合材料
汽车复合材料是指由两种或两种以上的材料组合而成的新材料,具有轻质、高强度、耐腐蚀等特点。

随着汽车工业的发展,汽车复合材料在汽车制造中扮演着越来越重要的角色。

首先,汽车复合材料具有较轻的重量。

相比传统的金属材料,汽车复合材料通常更轻,可以有效减轻汽车的整体重量。

轻量化是当前汽车工业的一个重要趋势,可以提高汽车的燃油经济性,降低排放,减少能源消耗,对环境友好。

其次,汽车复合材料具有较高的强度。

由于汽车在行驶过程中需要承受各种外部力的作用,因此对材料的强度要求较高。

汽车复合材料通常具有优异的强度和刚度,可以有效提高汽车的安全性能,降低事故风险。

此外,汽车复合材料还具有良好的耐腐蚀性能。

在汽车使用过程中,会受到各种环境因素的影响,如潮湿、高温、化学物质等,传统金属材料容易受到腐蚀的影响,而汽车复合材料可以有效抵御这些因素的侵蚀,延长汽车的使用寿命。

除此之外,汽车复合材料还具有设计灵活、成型方便等优点。

由于汽车复合材料可以根据设计需要进行灵活的组合,因此可以满足汽车设计师对于外观和结构的多样化需求。

同时,汽车复合材料的成型方式多样,可以通过模压、注塑等工艺制造出各种形状和尺寸的零部件,满足汽车制造的个性化需求。

综上所述,汽车复合材料在汽车制造中具有重要的意义,可以为汽车提供轻量化、高强度、耐腐蚀等优良性能,符合当前汽车工业发展的趋势。

随着技术的不断进步和应用的不断扩大,相信汽车复合材料在未来会发挥更加重要的作用,推动汽车制造迈向更加高效、环保、安全的方向。

汽车复合材料的主要加工工艺和技术

汽车复合材料的主要加工工艺和技术

汽车复合材料的主要加工工艺和技术——模压成型汽车复合材料是一种可设计的材料,能够方便地实现整体综合优化设计。

其中汽车复合材料制造工艺的可设计性带给了汽车复合材料制造行业无穷的想像力和创新机会。

目前,我们己知的汽车复合材料制造工艺技术就多达几十种,并且还处于不断的创新发展之中。

模压成型工艺(Compression Molding)是复合材料生产中最古老而又富有无限活力的一种成型方法。

它是将一定量的预混料或预浸料加入金属对模内,经加热、加压固化而成型的一种方法。

模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。

当前常用的模压料品种有:热固性复合材料,包括SMC、BMC和TMC等;热塑性复合材料,包括GMT、D-LFT和G-LFT等。

模压成型工艺示意图在提到模压成型工艺技术时,我们特别要提到汽车复合材料工业广泛应用的热固性复合材料SMC和热塑性复合材料GMT模压成型工艺。

SMC(Sheet Moulding Compounds)又名片状模塑料,是一种带流动性能的预浸材料,其物理形态是一种类似“橡皮”的夹芯材料,“芯材”由经树脂糊充分浸渍的短切玻璃纤维(或毡)组成,上下两面为聚乙烯薄膜所覆盖,以防止空气、灰尘、水汽及杂质等对材料的污染以及聚酯树脂交联剂苯乙烯的挥发损失。

树脂糊里含有聚酯树脂、引发剂、化学增稠剂、低收缩率添加剂、填料、脱模剂和颜料等组分。

SMC主要采用金属对模的模压成型工艺,其压制工艺过程相对比较简单,主要包括片状模塑料的制备和成模两部分。

由于SMC的组成比较复杂,每种组分的种类、质量、性能及其配比等对SMC的生产工艺、成型工艺及最终制品的性能、价格等都有很大的影响,因此,对组分、用量和配比等进行合理的选择,对于制造优良的汽车SMC零部件具有十分重要的意义。

SMC模压成型工艺流程GMT(Glass Mat Reinforced Thermoplastics)又名玻纤毡增强热塑性塑料片材,是一种用玻璃纤维针刺毡或原丝毡增强的热塑性塑料半成品片材。

复合材料在汽车领域的应用文章

复合材料在汽车领域的应用文章

复合材料在汽车领域的应用文章
复合材料是由两种或两种以上的不同材料通过一定的方式组合成的材料,具有轻质、高强、高刚度等优点。

随着技术的不断发展,复合材料在汽车领域的应用也越来越广泛。

首先,在汽车外壳方面,复合材料可以替代传统的钢铁材料,有效减轻汽车重量,减少二氧化碳排放。

如今,越来越多的汽车厂商开始采用碳纤维等复合材料制造轻量化车身,与传统钢板相比,重量可以减轻20%-30%。

同时,复合材料的高强度和冲击吸收性能也可以提高汽车的安全性能。

其次,在汽车内饰方面,复合材料也有着广泛应用。

目前市场上的汽车座椅、仪表盘和门板等内饰件往往采用聚合物材料,而聚合物材料与金属材料相比,不仅具有更好的加工性能和表面饰面效果,而且还可以满足节能环保的要求。

最后,在汽车发动机领域,复合材料也发挥着越来越重要的作用。

发动机舱内的涡轮增压器、进气管道和排气管道都是复合材料的应用领域。

与金属材料相比,复合材料具有更好的耐热性能和降噪性能,能够有效提高发动机的性能表现。

总之,复合材料在汽车领域的应用已经成为趋势。

它不仅可以提高汽车的性能和安全性,还可以减少排放和节能环保,具有广阔的市场前景。

但同时也需要不断探索新的复合材料工艺和应用领域,让汽车制造更加安全、环保、高效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车复合材料主要加工工艺和技术世界上第一辆全复合材料车身的汽车诞生55年以来,随着汽车工业的快速发展以及大众环保意识和节能意识的不断增强,尤其是在世界能源危机和石油涨价而使得汽车工业向轻量化方向发展的大背景下,作为汽车轻量化主流轻质材料之一的汽车复合材料的材料性能和加工工艺技术也因此而得到了快速发展。

现在,无论是欧、美、日等汽车工业发达国家,还是中国、巴西和印度等汽车工业快速发展中国家,都已在汽车制造量采用汽车复合材料,涉及的车辆有商用车、乘用车、工程车、农用车、运动车以及休闲车、军用车和摩托车等几乎所有的车种,主要应用围也从外履件发展到汽车的各个部分,可以说从车头到车尾,从外饰件到饰件,从A级表面的车身面板到结构件、半结构件,从车门、车窗到车盖、车顶,从皮卡车厢、车身底护板到发动机气门盖、油底壳,从座椅骨架、底盘到储气罐、传动轴和板弹簧等,到处都有汽车复合材料的应用。

那么,这些形状各异、技术性能各不相同,甚至规格和产量规模都相差甚远的汽车复合材料零部件是如何生产出来的呢?其主要生产工艺有哪些?与常规金属汽车零部件生产相比又有什么优缺点?……我们知道,汽车复合材料是一种可设计的材料,能够方便地实现整体综合优化设计。

其中汽车复合材料制造工艺的可设计性带给了汽车复合材料制造行业无穷的想像力和创新机会。

目前,我们己知的汽车复合材料制造工艺技术就多达几十种,并且还处于不断的创新发展之中。

由于篇幅有限,本文就汽车复合材料主要且常用的6种加工工艺和技术做一初步介绍。

手糊成型工艺和技术简单地说,手糊成型工艺(Hand Lay-up Molding)是手工作业把玻璃纤维织物和树脂交替地铺层在已被覆好脱模剂和胶衣的模具上,然后用压辊滚压压实脱泡,最后在常温下固化成型为汽车复合材料制品,如图1所示。

尽管在现代汽车复合材料成型新工艺不断涌现的情况下,手糊成型工艺显得比较原始,但是,该工艺却具有其独特的不可替代性,仍然为世界各国汽车复合材料行业特别是中国汽车复合材料行业所广泛采用。

图1 手糊成型工艺示意图图2所示为手糊成型工艺流程。

从该工艺流程可以看出,手糊成型工艺具有以下优点:不需要复杂的设备和模具,投资低;生产技术容易掌握,且产品不受尺寸形状的限制,适合小批量和大型制件的生产;可与其他材料如金属、木材及塑料泡沫等同时复合制成一体。

这些优点使得手糊成型工艺至今仍然作为汽车复合材料的一种主要成型工艺而被用于小批量地加工各种汽车复合材料制品,如客车和重型卡车的前/后围面板、高顶、导流罩、引擎罩盖、保险杠、挡泥板以及休闲车、农用车的车身等。

此外该工艺还被用于新车开发,如制造概念车和新车样件试制。

图2 手糊成型工艺流程手糊成型工艺的缺点是生产效率低,生产周期长,工作环境差,因此对于大批量车型的产品不太适合。

此外,由于这种工艺与操作人员的技能水平和制作环境条件有很大的关系,受此影响,在我国,由手糊成型工艺生产的汽车零部件的质量往往不够稳定,从而影响了汽车复合材料的声誉。

需要说明的是,手糊成型工艺并不是劣质汽车复合材料零部件的代名词。

只要严格按照手糊成型工艺的流程和工艺规,准确掌握手糊工艺的技术要领,同样能够制作出一流水平的汽车复合材料制品。

实际上,国外很多昂贵和精致的高档跑车以及在展会上熠熠生辉的很多概念车均出自于手糊成型工艺之手。

图3所示的Chevrolet Corvette跑车,其车身即为用手糊成型工艺生产出来的。

图3 用手糊成型工艺生产的跑车车身喷射成型工艺和技术图4所示为喷射成型工艺(Spray Up Molding)示意图。

该工艺是将混有引发剂和促进剂的两种聚酯分别从喷枪两侧喷出,同时将切断的玻纤无捻粗纱由喷枪中心喷出,使其与树脂在空间均匀混合后沉积到模具上。

当沉积到一定厚度时,用压辊滚压使纤维浸透树脂,排除气泡,在经常温固化后成型为汽车复合材料制品。

喷射成型工艺是在手糊成型工艺的基础上发展起来的。

由于该工艺是借助于机械的手工操作工艺,因此也被称为“半机械手糊成型工艺”。

图5所示为该工艺的工艺流程。

图4 喷射成型工艺示意图图5 喷射成型工艺流程与手糊成型工艺相比,喷射成型工艺的效率提高了2~4倍甚至更高。

其优点是:由于使用无捻粗纱代替了手糊工艺的玻璃纤维织物,因而材料成本更低;成型过程中无接缝,这使得制品的整体性和层间剪切强度更好;可自由调节产品的壁厚、纤维与树脂的比例以及纤维的长度,因而满足了汽车零部件的不同机械强度要求。

由于喷射成型工艺具有效率高、成本低及产品尺寸形状不受限制的优点,因此该工艺在国外汽车复合材料行业中,有逐步取代传统的手糊成型工艺的趋势,例如,客车和重型卡车的很多前/后围面板、侧面护板、高顶及导流罩等都已由喷射成型工艺制作。

喷射成型工艺的缺点是:产品的均匀度在很大程度上取决于操作人员的操作熟练程度;由于喷射成型的树脂含量高且增强玻纤短,因而制品强度较低;阴模成型比阳模成型难度大,小型制品比大型制品生产难度大;生产现场工作环境恶劣,环境污染程度一般均大于其他的工艺方法;初期投资比手糊成型工艺大。

尽管如此,近年来,喷射成型工艺的缺点正在得到极大的改善。

在国外,已采用机械手编程来替代人工喷射,从而大大提高了产品质量的稳定性,原材料的损耗也被明显降低。

同时,通过对生产现场采取全封闭的管理措施以及进行空气排放处理,使得环境污染问题得到明显改善。

图6所示为采用喷射成型工艺生产的KENWORTH重卡高顶。

图6 采用喷射成型工艺生产的重卡高顶缠绕成型工艺和技术缠绕成型工艺(Filament Winding)是在控制纤维力和预定线型的条件下,将浸过树脂胶液的连续纤维(或布带、预浸纱)按照一定的规律连续地缠绕到相应于制品腔尺寸的芯模或衬上,然后在室温或加热条件下使之固化、脱模,获得一定形状的汽车复合材料制品,如图7所示。

根据纤维缠绕成型时树脂基体的物理化学状态不同,分为干法缠绕、湿法缠绕和半干法缠绕三种。

其中,湿法缠绕的应用最为普遍。

湿法缠绕工艺顾名思义是将连续玻璃纤维粗纱或玻璃布带浸渍树脂胶后,直接缠绕到芯模或衬上而成型并经固化的成型方法。

而干法缠绕一般仅用于高性能、高精度的尖端技术领域中。

图7 纤维缠绕成型工艺示意图纤维缠绕成型工艺的优点是:能够按产品的受力状况设计缠绕规律,以充分发挥纤维的强度;比强度高。

一般来讲,纤维缠绕压力容器与同体积、同压力的钢质容器相比,重量可减轻40%~60%;可靠性高。

纤维缠绕制品易实现机械化和自动化生产,工艺条件确定后,缠出来的产品质量稳定、精确;生产效率高。

采用机械化或自动化生产,只需少数操作工人,缠绕速度快(240m/min);成本低。

在同一产品上,可合理配选若干种材料(包括树脂、纤维和衬),使其再复合以达到最佳的技术经济效果。

现在用纤维缠绕成型工艺生产的CNG/LPG高压气瓶、传动轴和板状弹簧等已广泛应用于大客车、轿车和卡车上。

纤维缠绕成型工艺的缺点是:缠绕成型适应性小,不能缠任意结构形式的制品,特别是具有凹形表面的制品。

这是因为缠绕时,纤维不能紧贴在芯模表面,而是处于架空状态;缠绕成型需要有缠绕机、芯模、固化加热炉、脱模机及熟练的技术工人,不仅投资大,而且技术要求高,因此只有大批量生产时才能获得较大的经济技术效益。

图8所示为采用纤维缠绕成型工艺生产的CNG乘用车用高压气瓶。

图8 采用纤维缠绕成型工艺生产的CNG车用气瓶树脂传递模塑成型工艺和技术树脂传递模塑成型工艺(Resin Transfer Moulding)简称RTM。

该技术始于1950年代,是从湿法铺层手糊成型工艺和注塑成型工艺中衍生出来的一种新的闭模成型工艺。

该工艺一般是在模具的型腔中预先放置玻璃纤维增强材料(包括螺栓、螺帽或聚氨酯泡沫塑料等嵌件),闭模锁紧后,将配好的树脂胶液在一定的温度和压力下,从设置于适当位置的注入孔处注入模腔,浸透玻纤增强材料,然后一起固化,最后启模、脱模,得到两面光滑的汽车复合材料制品。

图9所示为RTM工艺示意图。

图9 树脂传递模塑成型工艺示意图图10所示为RTM的工艺流程。

由于是一种闭模成型工艺,因此RTM的优点是:无需胶衣涂层即可使构件获得双面光滑的表面;在成型过程中散发的挥发性物质很少,有利于工人的健康和环境保护;模具制造与材料选择的机动性强,不需要庞大、复杂的成型设备就可以制造出复杂的、有极好制品表面的大型构件;根据设计需求,增强材料可以按任意方向铺放或局部增强,因而容易实现按制品受力状况铺放增强材料的目的。

成型效率高、投资少以及易实现自动化生产的特点,使RTM工艺日益为汽车复合材料行业所重视,并逐步成为取代手糊成型、喷射成型的主导成型工艺之一。

图10 RTM工艺流程目前,RTM工艺在汽车制造业中的应用已非常广泛,如乘用车的车顶、后厢盖、侧门框和备胎仓,以及卡车的整体驾驶室、挡泥板和储物箱门等都有用RTM工艺生产的。

图11所示是用RTM工艺生产的ASTON MARTIN跑车的车身侧围板。

图11 用RTM工艺生产的车身侧围板当然,RTM工艺也存在一些不足,如:双面模具的加工费用较高;预成型坯加工生产设备的投资大;对原材料(树脂和玻纤材料)和模具质量的要求高,以及对模具中的设置与工艺要求严格等。

目前,对RTM成型工艺的研究和推广不断取得新的进展,主要研究方向集中在:微机控制注射机组、增强材料预成型技术、低成本模具、快速树脂固化体系及工艺稳定性和适应性等方面,涌现出了一系列改良的RTM成型工艺,如Lite-RTM、VARTM、VIP和TERTM等。

模压成型工艺和技术模压成型工艺(Compression Molding)是复合材料生产中最古老而又富有无限活力的一种成型方法。

它是将一定量的预混料或预浸料加入金属对模,经加热、加压固化而成型的一种方法,如图12所示。

模压料的品种有很多,可以是预浸物料、预混物料,也可以是坯料。

当前常用的模压料品种有:热固性复合材料,包括SMC、BMC和TMC等;热塑性复合材料,包括GMT、D-LFT和G-LFT等。

图12 模压成型工艺示意图在提到模压成型工艺技术时,我们特别要提到汽车复合材料工业广泛应用的热固性复合材料SMC和热塑性复合材料GMT模压成型工艺。

SMC(Sheet Moulding Compounds)又名片状模塑料,是一种带流动性能的预浸材料,其物理形态是一种类似“橡皮”的夹芯材料,“芯材”由经树脂糊充分浸渍的短切玻璃纤维(或毡)组成,上下两面为聚乙烯薄膜所覆盖,以防止空气,灰尘、水汽及杂质等对材料的污染以及聚酯树脂交联剂苯乙烯的挥发损失。

树脂糊里含有聚酯树脂、引发剂、化学增稠剂、低收缩率添加剂、填料、脱模剂和颜料等组分。

SMC主要采用金属对模的模压成型工艺,其压制工艺过程相对比较简单,主要包括片状模塑料的制备和成模两部分。

相关文档
最新文档