最新最全初中数学知识点总结(大全)完整版 (4)(精华版)
初中数学知识点 初中数学知识点总结归纳(完整版)
初中数学知识点初中数学知识点总结归纳(完整版)初中数学知识点1一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误;相反数、倒数、绝对值的意义概念混淆,以及绝对值与数的分类。
每年选择必考。
易错点2:实数的运算,要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。
易错点3:平方根、算术平方根、立方根的区别。
填空题必考。
易错点4:求分式值为零时,易忽略分母不能为零。
易错点5:分式运算时要注意运算法则和符号的变化。
当分式的分子、分母是多项式时要先因式分解,因式分解要分解到不能再分解为止。
注意计算方法,不能去分母,把分式化为最简分式。
填空题必考。
易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。
易错点7:计算第一题必考。
五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。
易错点8:科学记数法。
精确度,有效数字。
易错点9:代入求值要使式子有意义。
各种数式的计算方法要掌握,一定要注意计算顺序。
二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。
(消元降次)主要陷阱是消除了一个带未知数的公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不变号的方向而导致结果出错。
易错点4:关于一元二次方程的取值范围的题目,易忽视二次项系数不为0导致出错。
易错点5:关于一元一次不等式组有解无解的条件,易忽视相等的情况。
易错点6:解分式方程时首要步骤是去分母,易忘记根检验,导致运算结果出错。
易错点7:不等式(组)的解的问题要先确定解集,确定解集的方法运用数轴。
易错点8:利用函数图象求不等式的解集和方程的解。
三、函数易错点1:各个待定系数表示的意义。
初中数学知识点总结完整版
初中数学知识点总结完整版初中数学是一个系统性很强的学科,包含了众多的知识点。
为了帮助同学们更好地掌握初中数学,下面对其主要知识点进行一个全面的总结。
一、数与代数1、有理数有理数包括整数和分数。
整数又分为正整数、零和负整数;分数包括正分数和负分数。
有理数的运算有加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。
乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、√2 等。
实数的运算与有理数的运算类似,只是在开方运算中要注意正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
3、代数式代数式包括整式、分式和二次根式。
整式包括单项式和多项式。
单项式是数字与字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算有加、减、乘、除。
乘法公式:(a + b)(a b) = a² b²;(a ± b)²= a² ± 2ab + b²。
分式:形如 A/B(A、B 是整式,且 B 中含有字母,B ≠ 0)的式子叫做分式。
分式有意义的条件是分母不为 0;分式的值为 0 的条件是分子为 0 且分母不为 0。
二次根式:形如√a(a ≥ 0)的式子叫做二次根式。
二次根式有意义的条件是被开方数为非负数。
二次根式的性质:√a² =|a| ;√ab =√a · √b(a ≥ 0,b ≥ 0);√a/b =√a /√b(a ≥ 0,b > 0)。
(完整版)初中数学知识点归纳总结(精华版)
第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数:32,7,3π+8,sin60o . 第二章 整式的加减考点一、整式的有关概念 (3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如c b a 235-是6次单项式。
考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项.第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
第四章 图形的初步认识考点一、直线、射线和线段 (3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
初中数学知识点总结最全版
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
2024初中数学知识点全总结
2024初中数学知识点全总结2024年,在初中数学学科中,学生将学习一系列基本的数学知识点,包括以下内容:一、数与式1.自然数、整数、有理数、实数的概念和性质;2.计数法、科学计数法、百分数的表示及应用;3.整数的概念、四则运算、约数与倍数;4.有理数的概念、四则运算、乘方、开方、比大小;5.实数的概念、不等式的性质及解法。
二、代数式与方程式1.代数式的概念、同类项的合并及多项式运算;2.一元一次方程的概念、解法及应用;3.一元一次不等式的概念、解法及应用;4.分式的概念、四则运算、约分与基本问题的解答;5.二元一次方程组及其应用。
三、图形1.平面图形的基本概念和性质(点、线、角、多边形等);2.三角形的性质(角的度量、三角形分类、勾股定理等);3.四边形的性质(矩形、菱形、平行四边形、梯形等);4.平面镜像、轴对称、中心对称的概念及应用;5.相似与全等的概念及判定;6.平移、旋转、翻转的概念及操作方法。
四、数与量1.长度、面积、体积、质量、时间、速度等量的概念及计量方法;2.对一些简单的量进行加、减、乘、除、比较等运算;3.解决实际问题时,运用合适的量的单位进行计量。
五、函数1.函数的概念、函数的运算、函数的性质及其图像;2.一次函数、二次函数、反比例函数等函数的概念及性质;3.函数与线性关系、函数与几何关系及函数与实际问题的应用。
六、统计与概率1.统计数据的收集、整理、分析;2.频数表示、频数分布表、频数分布图;3.地图、图表和轴线图的解读,统计图的制作;4.概率的概念、基本事件的计算、互斥事件与独立事件的判断。
七、几何运动1.点的平移;2.线段的平移;3.角度的平移;4.平面图形的变换(平移、旋转、对称、放缩)。
(精华)初中数学知识点大全(完整版)15篇
(精华)初中数学知识点大全(完整版)15篇初中数学知识点大全(完整版)1一、线段的比※1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、注意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;⑤比例的基本性质:若,则ad=bc;若ad=bc,则二、黄金分割※1、如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.※2、黄金分割点是最优美、最令人赏心悦目的点.四、相似多边形¤1、一般地,形状相同的图形称为相似图形.※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.五、相似三角形※1、在相似多边形中,最为简简单的就是相似三角形.※2.对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.※3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.※5、相似三角形周长的比等于相似比.※6、相似三角形面积的比等于相似比的平方.六、探索三角形相似的条件※1、相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.①两角对应相等;②两边对应成比例,且夹角相等;③三边对应成比例.①一个锐角对应相等;②两条边对应成比例:a.两直角边对应成比例;b.斜边和一直角边对应成比例.※2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.※3、平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.八、相似的多边形的性质※相似多边形的周长等于相似比;面积比等于相似比的平方.九、图形的放大与缩小※1.如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比.※2.位似图形上任意一对对应点到位似中心的距离之比等于位似比.◎3.位似变换:①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心.②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.③利用位似的方法,可以把一个图形放大或缩小.提高数学思维的方法转化思维转化思维,既是一种方法,也是一种思维。
初中数学知识点总结
初中数学知识点总结新人教版初中数学知识点总结(完整版)总结是对某一特定时间段内的学习和工作生活等表现情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,让我们来为自己写一份总结吧。
如何把总结做到重点突出呢?下面是店铺整理的新人教版初中数学知识点总结(完整版),仅供参考,大家一起来看看吧。
新人教版初中数学知识点总结(完整版) 篇1诱导公式的本质所谓三角函数诱导公式,就是将角n(/2)的三角函数转化为角的三角函数。
常用的诱导公式公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k)=sin kzcos(2k)=cos kztan(2k)=tan kzcot(2k)=cot kz公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin()=-sincos()=-costan()=tancot()=cot公式三:任意角与 -的三角函数值之间的关系:sin(-)=-sincos(-)=costan(-)=-tancot(-)=-cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()=sincos()=-costan()=-tancot()=-cot新人教版初中数学知识点总结(完整版) 篇21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类3、有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若a、b互为相反数,则a+b=0;相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。
初中数学知识点总结【精华版】
初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
往下拉↓↓↓2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
初中数学知识点归纳总结(精华版)
初中数学知识点归纳总结(精华版)一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:,+8,sin60o。
第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“”表示,1度记作“1”,n 度记作“n”。
完整版初中数学知识点归纳总结精华版
初中数学知识点归纳总结一元一次方程1.概念:含有一个未知数,未知数的最高次数为1,这样的方程叫一元一次方程。
2.形式:ax + b = 0(a、b是常数,且a≠0)3.解法:移项、合并同类项、化简系数二元一次方程1.概念:含有两个未知数,未知数的最高次数为1,这样的方程叫二元一次方程。
2.形式:ax + by = c(a、b、c是常数,且a、b≠0)3.解法:消元法、代入法、行列式法一元一次不等式1.概念:含有一个未知数,未知数的最高次数为1,这样的不等式叫一元一次不等式。
2.形式:ax > b(a、b是常数,且a≠0)3.解法:同解一元一次方程,注意不等号的方向4.概念:分式是指形如a/b的表达式,其中a、b是整式,且b≠0。
5.性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
6.运算:加减乘除、分式的乘方点、线、面1.点:没有长度、宽度、高度的物体。
2.线:只有长度,没有宽度、高度的物体。
3.面:只有长度和宽度,没有高度的物体。
直线方程1.点斜式:y - y1 = k(x - x1)(k是直线的斜率,(x1, y1)是直线上的一点)2.截距式:y = kx + b(k是直线的斜率,b是直线在y轴上的截距)三角形1.概念:由三条线段首尾顺次连接所组成的图形叫三角形。
2.性质:三角形的内角和为180°,三角形的对边相等。
3.分类:不等边三角形、等腰三角形、等边三角形四边形1.概念:由四条线段首尾顺次连接所组成的图形叫四边形。
2.性质:四边形的内角和为360°,四边形的对边相等。
3.分类:矩形、平行四边形、梯形、菱形4.概念:平面上到一个固定点距离相等的所有点的集合叫圆。
5.性质:圆的半径相等,圆心到圆上任意一点的距离相等。
6.公式:圆的周长C = 2πr,圆的面积S = πr²概率与统计1.概念:事件发生的可能性叫概率。
2.求法:列举法、树状图法、列表法3.概念:统计学是研究数据收集、处理、分析、解释的科学。
最完整初中数学知识点总结(免费下载)(精华版)
初中数学知识点总结一、基本知识㈠、数与代数1、有理数A、数与式:有理数:①整数→正整数②分数→正分数/负分数/0/负整数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,示的数,右边的总比左边的大。
正数大于位于原点的两侧,并且与原点距离相等。
④数轴上两个点表0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、有理数的运算:0 的绝对值是0。
两个负数比较大小,绝对值大的反而小。
加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与减法:减去一个数,等于加上这个数的相反数。
0;绝对值不0 相加不变。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与个有理数互为倒数。
0 相乘得0 。
③乘积为1 的两除法:①除以一个数等于乘以一个数的倒数。
②0 不能作除数。
乘方:求N 个相同因数 A 的积的运算叫做乘方,乘方的结果叫幂, A 叫底数,N 叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X 的平方等于A,那么这个正数X 就叫做 A 的算术平方根。
②如果一个数X 的平方等于A,那么这个数X 就叫做 A 的平方根。
③一个正数有 2 个平方根/0 的平方根为0/ 负数没有平方根。
④求一个数 A 的平方根运算,叫做开平方,其中 A 叫做被开方数。
立方根:①如果一个数X 的立方等于A,那么这个数X 就叫做 A 的立方根。
(完整版)初中数学知识点大全(完整版)
第一册第一章有理数1.1 正数和负数以前学过的 0 以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量拥有相反的意义1.2 有理数有理数正整数、 0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都能够用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不能。
⑵同一根数轴,单位长度不能够改变。
一般地,设是一个正数,则数轴上表示 a 的点在原点的右侧,与原点的距离是 a 个单位长度;表示数- a 的点在原点的左侧,与原点的距离是 a 个单位长度。
相反数只有符号不相同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
绝对值一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
一个正数的绝对值是它的自己;一个负数的绝对值是它的相反数;0 的绝对值是 0。
在数轴上表示有理数,它们从左到右的序次,就是从小到大的序次,即左侧的数小于右侧的数。
比较有理数的大小:⑴正数大于0, 0 大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3 有理数的加减法有理数的加法有理数的加法法规:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同 0 相加,仍得这个数。
两个数相加,交换加数的地址,和不变。
加法交换律: a+b=b+a三个数相加,先把前面两个数相加,也许先把后两个数相加,和不变。
加法结合律: (a+b)+ c= a+ (b+c)有理数的减法有理数的减法能够转变成加法来进行。
有理数减法法规:减去一个数,等于加这个数的相反数。
初中数学知识点归纳总结(精华版)
第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数:,+8,sin60o。
第二章整式的加减考点一、整式的有关概念(3分)1、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
第三章一元一次方程考点一、一元一次方程的概念(6分)1、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。
第四章图形的初步认识考点一、直线、射线和线段(3分)1、点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
2、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
3、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
考点二、角(3分)1、角的度量:角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
初中数学知识点总结最新最全
初中数学知识点总结一、代数1.1 实数实数包括有理数和无理数。
有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
无理数不能表示为两个整数的比值,例如 √2 和 π。
1.2 代数式代数式是由数字、字母和运算符组成的表达式。
初中阶段主要学习一元一次方程、一元二次方程、二元一次方程组和不等式(组)。
1.3 一元一次方程一元一次方程是指只有一个未知数,且未知数的最高次数为1的方程。
例如:2x +3=7。
1.4 一元二次方程一元二次方程是指只有一个未知数,且未知数的最高次数为2的方程。
例如:x 2−5x +6=0。
1.5 二元一次方程组二元一次方程组是由两个一元一次方程组成的方程组。
例如:{2x +3y =8x −y =1。
1.6 不等式(组)不等式是用“>”、“<”、“≥”、“≤”等符号表示两个数之间大小关系的式子。
不等式组是由多个不等式组成的集合。
二、几何2.1 点、线、面点是没有长度、宽度和高度的对象。
线是由无数个点连成的,有方向和长度,但没有宽度和高度。
面是由无数个线段连成的,有长度和宽度,但没有高度。
2.2 平面几何基本概念平面几何基本概念包括:线段、射线、直线、角、钝角、锐角、直角、平角、周角、三角形、四边形、五边形、六边形等。
2.3 三角形三角形是由三条线段组成的平面图形。
根据边长和角度的关系,三角形分为等边三角形、等腰三角形和普通三角形。
2.4 四边形四边形是由四条线段组成的平面图形。
根据边长和角度的关系,四边形分为矩形、正方形、平行四边形、梯形等。
2.5 圆圆是由与圆心等距的所有点组成的平面图形。
圆的基本要素包括圆心、半径、直径、弧、扇形等。
2.6 几何公式几何公式包括:三角形面积公式、平行四边形面积公式、矩形面积公式、正方形面积公式、圆面积公式等。
三、概率与统计3.1 概率概率是指某一事件发生的可能性。
概率的取值范围在0和1之间,概率越大,事件发生的可能性越大。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。
下面是由编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。
初中数学知识点总结归纳1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 菱形的四条边都相等;⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷ 菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。
②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。
②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。
a叫被开方数。
9、中被开方数的取值范围:被开方数a≥010、平方根性质:①一个正数的平方根有两个,它们互为相反数。
②0的平方根是它本身0。
③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。
12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是013、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。
14、求正数a的算术平方根的方法;完全平方数类型:①想谁的平方是数a。
人教版初中数学知识点总结(精华)(最新最全)
初中数学知识点总结(精华)第一章 有理数1、有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 .4、.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数 6、有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0;②除以一个不为0的数,等于乘以这个数的倒数7、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .8、比较两个数的大小:(1)负数< 0 < 正数,任何一个正数都大于一切负数(2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小(4)两数相乘(或相除),同号得正 > 0,异号得负 < 09、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-an 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .10、科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.11、非负数的性质:若02=++c b a ,则000===c b a 且且第二章 整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
(完整版)初中数学知识点归纳总结(精华版)
(完整版)初中数学知识点归纳总结(精华版)【完整版】初中数学知识点归纳总结(精华版)一、数的性质与运算1. 自然数与整数自然数是大于等于0的整数,而整数包括正整数、负整数和0。
2. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数。
3. 实数实数包括有理数和无理数,可以用数轴表示。
4. 数的分类与运算规律数可以分为正数、负数和零,对于加法、减法、乘法和除法,都有相应的运算法则和运算规律。
二、代数表达式与简单方程1. 代数表达式代数表达式是用数、字母和运算符号表示的数学式子。
2. 同类项与合并同类项同类项具有相同的字母部分和相同的指数,可以合并同类项简化代数表达式。
3. 方程与解方程方程是含有未知数的等式,解方程就是求出使等式成立的未知数的值。
三、平面图形与坐标系1. 点、直线、线段与射线点是没有长度、宽度和高度的,直线是由无穷多个点连在一起的路径,线段是在两个点之间的部分,射线是一个起点固定的直线段。
2. 角与三角形角是由两条射线共享一个公共起点形成的,三角形是由三条线段相交形成的,有等边三角形、等腰三角形和直角三角形等。
3. 坐标系与坐标坐标系由横纵两条相互垂直的线段组成,坐标是表示一个点在坐标系中位置的数对。
四、比例与相似1. 比例和比例的性质比例是两个等式之间的比较关系,其中有比的前项和比的后项,比例具有相等的比值。
2. 类比与相似类比是指两个或多个比例关系相同的比,相似是指形状相似,但尺寸不同的图形。
3. 相似三角形与比例定理相似三角形的对应角相等,对应边成比例,有相似三角形的比例定理可以解决各种相关问题。
五、数与代数1. 分式与整式分式是由分子和分母构成的,整式则不包含分式。
2. 一元二次方程与解方程一元二次方程是最高次项的次数为2的一元方程,可以使用求根公式求解。
六、函数与图象1. 函数的概念与函数的图象函数是一个将定义域中的每个元素映射到值域中唯一元素的关系,函数的图象可以表示函数各点的对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点总结
【实数的分类】
【自然数】表示物体个数的1、2、3、4···等都称为自然数
一个大于 1 的整数,如果除了它本身和 1 以外不能被其它正整数所整除,那么这个数称为质数。
【质数与合数】一个大于 1 的数,如果除了它本身和 1 以外还能被其它正整数所整除,那么这个数知名人士为合数, 1 既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
【绝对值】
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】 1 除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数 a 的平方等于有理数b,那么这个有理数 b 叫做完全平方数。
【方根】如果一个数的n 次方(n 是大于 1 的整数)等于a,这个数叫做 a 的n 次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数 a 的正的n 次方根叫做 a 的n 次算术根,零的算术根是零,负数没有算术根。
用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫【代数式】
做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】
【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式
【无理式】根号下含有字母的代数式叫做无理式
【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式
【分式】除式中含字母的有理式叫分式
【有理数的运算律】
【等式的性质】
【乘法公式】
【因式分解】
方程含有未知数的等式叫做方程。
【方程】方程的解在未知数允许值范围内,能使方程两边相等的未知数的值叫做方程的解。
解方程在指定范围内求出方程所有解,或者确定方程无解的过程,叫做解方程。
一元一次方程:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方【一元一次方程】
程
【一元二次方程】
平面几何
(不定义)直线向两方无限延伸,它无端点。
直线
射线在直线上某一点旁的部分。
射线只有一个端点。
线段直线上两点间的部分。
它有两个端点。
垂线如果两条直线相交成直角,那么称这两条直线互相垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
线段的垂直平分线定理:线段的垂直平分线上的点和这条线段两个端点的距离相等。
平行线在同一平面内不相交的两条直线叫做平行线。
经过直线外一点,有一条而且只有一条直线和这条直线平行。
平行线公理及推论
平行于同一条直线的两条直线平行。
角的定义有公共点的两条射线所组成的图形,叫做角
角的分类周角:360 度平角:180 度直角:90 度锐角:0 度<a<90 度钝角:90 度<a<180 度
按角分锐角三角形,钝角三角形,直角三角形三角形的分类
按边分等腰三角形,等边三角形,不等边三角形
三角形的角平分线三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段, 叫做三角形的角的平分线。
三角形的中线连结三角形一个顶点的线段,叫做三角形的中线。
三角形的高三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。
三角形的中位线连结三角形两边中点的线段,叫做三角形的中位线。
全等三角形
定义能够完全重合的两个三角形叫全等三角形。
性质全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。
任意三角形直角三角形
SAS
(1)两边及夹角对应相等。
记为(1)一边一锐角对应相等
判定
(2)两角和一边对应相等。
记为ASAA或AAS(2)两直角边对应相
等。
SSS
(3)三边对应相等。
记为(3) 斜边、直角边对应相等(HL)
三角形的四心
名称定义性质
(1)内心到三角形三边的距离相等。
三角形三条内角平分线的交点,叫做三角形
内心
的内心(即内切圆的圆心)
(2)三角形一个顶点与内心的连线平分这个角。
(1)外心到三角形的三个顶点的距离相等。
三角形三边的垂直平分线的交点,叫做三角
外心(2)外心与三角形一边中点的连线必垂直该边。
形的外心。
(即外接圆的圆心)
(3)过外心垂直于三角形一边的直线必平分该边。
(1)重心到每边中点的距离等于这边中线的三分之一。
重心三角形三条中线的交点,叫做三角形的重心。
(2)三角形顶点与重心的连线必过对边中点。
垂心三角形三条高的交点,叫做三角形的垂心。
三角形的一个顶点与垂心连线必垂直于对边。