浙江省初中数学竞赛试题
最新浙江省衢州市中考数学竞赛试题附解析
![最新浙江省衢州市中考数学竞赛试题附解析](https://img.taocdn.com/s3/m/158d81ee3086bceb19e8b8f67c1cfad6195fe9d1.png)
浙江省衢州市中考数学竞赛试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.一个正方体的木块在太阳光下的影子不可能是( ) A .正方形B .长方形C .一条线段D .三角形2.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( ) A .14B .13C .16D .253. 给出下列式子:① cos450>sin600;②sin780>cos780;③sin300>tan450;④ sin250=cos650,其中正确的是 ( ) A .①③B .②④C .①④D .③④4.反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴,y 轴引垂线,垂足分别为P Q ,,已知四边形APOQ 的面积为4,那么这个反比例函数的解析式为( )A .4y x=B .4x y =C .4y x =D .2y x=5.若x 是3和6的比例中项,则x 的值为( ) A . 23 B . 23- C . 23± D .32± 6.弦 AB 把⊙O 分成两条弧的度数的比是4:5,M 是 AB 的中点,则∠AOM 的度数为( ) A .160° B .l00° C .80° D .50° 7.□ABCD 中,∠A=55°,则∠B 、∠C 的度数分别是( )A .135°,55°B .55°,135°C .125°,55°D .55°,125°8.已知四边形ABCD 中,AC 交BD 于点O,如果只给条件“AB ∥CD ”,那么还不能判定四边形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形 (2)如果再加上条件“∠BAD=∠BCD ”,那么四边形ABCD 一定是平行四边形 (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形 (4)如果再加上条件“∠DBA=∠CAB ”,那么四边形ABCD 一定是平行四边形 其中正确的说法是( ) A .(1)(2) B .(1)(3)(4)C .(2)(3)D .(2)(3)(4)9.△ABC 和△A ′B ′C ′中,条件①AB=A ′B ′; ②BC=B ′C ′;③AC=A ′C ′;④∠A=∠A ′; ⑤∠B=∠8′;⑥∠C=∠C ′,则下列各组中不能保证△ABC ≌△A ′B ′C ′的是( ) A .①②③ B .①②⑤C .①③⑤D .②⑤⑥ 10.方程(2)0x x +=的根是( )A .2x =B .0x =C .120,2x x ==-D .120,2x x ==11.为了了解全世界每天婴儿出生的情况,应选择的调查方式是( ) A .普查B .抽样调查C .普查,抽样调查都可以D .普查,抽样调查都不可以12.画一个物体的三视图时,一般的顺序是( )A .主视图、左视图、俯视图B .主视图、俯视图、左视图C .俯视图、主视图、左视图D .左视图、俯视图、主视图13. 如图所示的4组图形中,左边图形与右边图形成轴对称的图形有( ) A .1组B .2组C .3组D .4组14.已知A ,B 两地相距30千米.小王从A 地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B 地,则小王骑自行车的速度为( ) A .13.25千米/时 B .7.5千米/时 C .11千米/时 D .13.75千米/时.二、填空题15.为了在平面上表示空间物体,人们常用数学上的“投影”方法,即把物体从不同的方向投射到平面上,然后通过这些平面的捉影图形去想像空间立体图形.这是人类征服空间所表现出的伟大智慧 ! 如图是某一物体的三个方向的影像图. 它相当于光线从正面、侧面和上面照射时,该物体留下的影子. 那么这个几何体大约是 .16.一个内角和为1260°的凸多边形共有 条对角线.17.某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸成较大的矩形,并使彩纸的面积恰好与原画面面积相等,设彩纸的宽为x cm ,可列方程 .18.如图所示,已知AB ∥CD ,∠1=48°,∠D=∠C ,则∠B= .19.如图,直线 DE 经过点 A ,且∠1 =∠B ,∠2=50°,则∠3= .20.如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE= cm.21.某市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是l6岁的概率是 .22.已知几个整式的积为3221012x x x ++,你认为这几个整式可能是什么?请将你所想出的几个整式写在下面的横线上: . 解答题23.已知a 、b 互为相反数,并且325a b -=,则222a b += . 24.用“>”或“<”号填空:(1)-3 -4;(2)(4)-- |5|--;(3)45- 34-;(4)0 1|10|3-.三、解答题25.填写下表: 二次函数对称轴 顶点坐标 x 取何值是最大 (或最小)值22y x = 2(3)y x =-- 2(1)2y x =-+- 244y x x =-+26.已知一次函数y=3x-2k 的图象与反比例函y=k-3x 的图象相交,其中一个交点的纵坐标为6,求一次函数的图象与x 轴、y 轴的交点坐标. (-103,0),(0,10).27.一个包装盒的表面展开图如图. (1)描述这个包装盒的形状;(2)画出这个包装盒的三视图,并标注相应尺寸; (3)求这个包装盒的容积(纸板厚度忽略不计).28.一个几何体的表面展开图如图所示,说出它是一个怎样的几何体.29. 如图,已知直线1l ∥2l ,△ABC 的面积与△DBC 的面积相等吗?若相等请说明理由. 并在直线1l 与2l 之间画出其他与△ABC 面积相等的三角形.30.用如图所示的纸片,取其两片,可以拼合成几种不同形状的长方形?画出示意图,并写出所拼的长方形的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.B4.A5.C6.C7.C8.C9.C10.C11.B12.A13.A14.D二、填空题 15.一个倒立圆锥16.2717.20302)230)(220(⨯⨯=++x x 18.132°19.50°20.321. 92022. 2x 256x x ++等23.324.(1)> (2)> (3)< (4)<三、解答题 25.26. 27.(1)长方体(2)略(3)850cm 328.长方体29.ABC DBC S S ∆∆=,由同底等高的两三角形面积相等可得;在2l 上任意取一点E ,连结BE 、CE ,则BEC ABC S S ∆∆=30.略.。
最新浙江省衢州市中考数学竞赛试卷附解析
![最新浙江省衢州市中考数学竞赛试卷附解析](https://img.taocdn.com/s3/m/5ad7ae6e3d1ec5da50e2524de518964bce84d247.png)
浙江省衢州市中考数学竞赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.晚上,小浩出去散步,经过一盏路灯时,他发现自己的身影是( )A . 变长B . 先变长后变短 C. 变短 D . 先变短后变长2.下列图形经过折叠不能围成一个棱柱的是( )A .B .C .D .3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( )A .12B .14C .16D .18 4.已知,420930a b c a b c -+=++=,,则二次函数2y ax bx c =++图象的顶点可能在( )A .第一或第四象限B .第三或第四象限C .第一或第二象限D .第二或第三象限5.某种商品在降价x %后,单价为a 元,则降价前它的单价为( )A .%a x B .%a x ⋅ C .1%a x - D .(1%)a x - 6.下列运算中,错误..的是( ) A .(0)a ac c b bc =≠ B .1a b a b --=-+ C .0.55100.20.323a b a b a b a b ++=-- D .x y y x x y y x--=++ 7.下列从左到右的变形是因式分解的为( )A .2(3)(3)9a a α-+=-B .22410(2)6x x x ++=++C .2269(3)x x x -+=-D .243(2)(2)3x x x x x -+=-++8.下列计算中,正确的是( )A .23a b ab +=B .770ab ba -+=C .22245x y xy x y -=-D .235x x x +=9. 有四张不透明的卡片,每一张卡片除正面数据不同外,其余都相同,将它们背面朝上洗匀后,从中任意抽取一张,抽到正面数据能构成三角形边长的卡片的概率是( )A .14B .13C .12D .34二、填空题10. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .11.从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是 .12.如图所示,将两条宽度为 3cm 的纸带交叉叠放,若α已知,则阴影部分的面积为 . 解答题13.如图,某处位于北纬 36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为 30°30′',因此,在规划建设楼高为20m 的小区时,两楼间的距离最小为 m ,才能保证不挡光. (结果保留四个有效数字)14.已知二次函数222c x x y ++-=的对称轴和x 轴相交于点(0,m )则m 的值为__________.15.已知抛物线y =ax 2+x +c 与x 轴交点的横坐标为-1,则a +c=__________.116.如图(1),在长方形MNPQ 即中.动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x ,△MNR 的面积为y .如果y 关于x 的函数图象如图(2)所示,那么当9x =时,点R 应运动到点 处(从N 、P 、Q 、M 四点中选择).17.将图1可以折成一个正方体形状的盒子,折好后与“迎”字相对的字是 .18.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点8200 m ,结果他在水中实际游了520 m ,则该河流的宽度为 .19.如图,0D ⊥AB ,垂足为点O ,∠DOC :∠AOC=2:1,则∠BOC= .20.罗马数字共有 7个:I(表示 1),V(表示5),X(表示10),L(表示 50),C(表示 100),D(表示 500),M(表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,计数时用“累积符号”和“前减后加”的原则来计数:如IX = 10 -1=9 , VI=5+1=6 , CD=500-100=400. 则XL= ,XI= .21.一电冰箱冷冻室的温度是-18℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高 ℃.三、解答题22.计算: (1) 002sin 603tan 30245o ++; (2)0tan 60tan 452sin 601tan 60tan 45o oo o -++⋅23.已知抛物线y =-ax 2(a ≠0)与直线y =2x +3交于点(1,b ),求抛物线y =-ax 2与直线y =5的两个交点及顶点所构成的三角形的面积.S △=5.24.某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.(1)第五个小组的频数是多少? 图中第四个小组和第五个小组的频率各是多少?(2) 50名学生的成绩的中位数在哪一组?(3)这次测验中,八年级全体学生成绩在59.5~69.5中的人数约是多少?(4)试估计这次测验中,八年级全体学生的平均成绩?25.如图,已知□ABCD.(1)写出□ABCD四个顶点的坐标;(2)画出□A1B1C1D1,使□A1B1C1D1与□ABCD关于y轴对称,并写出□A1B1C1D1四个顶点的坐标;(3)画出□A2B2C2D2,使□A2B2C2D2与□ABCD关于原点中心对称,并写出□A2B2C2D2的四个顶点的坐标;(4)□A1B1C1D1与□A2B2C2D2是对称图形吗?若是,请在图上画出对称轴或对称中心.26.已知 a,b,c 22a ab c-++++=,试求方程2021(2)|1|0++=ax bx c的解.27.如图,A、D、F、B在同一直线上,AD=BF,AE=BC, 且 AE∥BC.求证:(1)△AEF≌△BCD;(2) EF∥CD.28.试一试:(1)你能把一个梯形纸片裁剪拼成一个三角形、一个平行四边形、一个矩形吗(分别在图①、②、③中画出)?(2)请你用不同的方法把一个上底等于2,下底等于4的等腰梯形纸片裁成面积相等的三块(在图④中画出).29.已知某铁路桥长 800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.30.如图是某次跳远测验中某同学跳远情况示意图.该名同学的成绩该如何测量,请你画图示意.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.B4.A5.C6.D7.C8.B9.C二、填空题10.(2 11.0.2.12.9sin a13.33.9514.115.16.Q17.运;18.480 m19.150°20.40, 1121.23三、解答题22.(1)1;(2)223.24.(1)10;0.26;0.2.(2)中位数在69.5~79.5这一组中(3)400×950=72人(4)77.325.(1)A(-1,3),B(-3,2),C(-2,1),D(0,2);(2)A l(1,3),B l(3,2),C l(2,1),D l(0,2);(3)A2(1,-3),B2(3,-2),C2(2,-l),D2(0,-2)(4)关于x 轴对称26.11x =21x =27.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD 又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD.28.略29.火车的速度是x 米 /秒,火车的长度是y 米.则4580035800x y x y =+⎧⎨=-⎩,解这个方程组,得20100x y =⎧⎨=⎩. 经检验,这个解是原方程组的解,且符合题意.答:火车的速度是20米/秒,火车的长度是 100.30.略。
全国初中数学联赛浙江省复赛试卷
![全国初中数学联赛浙江省复赛试卷](https://img.taocdn.com/s3/m/041f5abb5acfa1c7ab00cc10.png)
全国初中数学联赛浙江省复赛试卷一、解答题(共5小题,满分100分)1.(20分)已知a2+b2=1,对于满足条件0≤x≤1的一切实数x,不等式a(1﹣x)(1﹣x ﹣ax)﹣b x(b﹣x﹣b x)≥0(1)恒成立.当乘积ab取最小值时,求a,b的值.2.(20分)如图,圆O与圆D相交于A,B两点,BC为圆D的切线,点C在圆O上,且AB=BC.(1)证明:点O在圆D的圆周上.(△2)设ABC的面积为S,求圆D的半径R的最小值.3.(20分)设a为质数,b为正整数,且9(2a+b)2=509(4a+511b)(1)求a,b的值.4.(20分)已知a2+b2=1,对于满足条件x+y=1,xy≥0的一切实数对(x.y),不等式ay2﹣xy+b x2≥0(1)恒成立.当乘积ab取最小值时,求a,b的值.5.(20分)设a为质数,b,c为正整数,且满足求a(b+c)的值.全国初中数学联赛浙江省复赛试卷参考答案与试题解析一、解答题(共5小题,满分100分)1.(20分)已知a2+b2=1,对于满足条件0≤x≤1的一切实数x,不等式a(1﹣x)(1﹣x ﹣ax)﹣b x(b﹣x﹣b x)≥0(1)恒成立.当乘积ab取最小值时,求a,b的值.【分析】由已知条件a2+b2=1,代入已知不等式重新整理,利用特殊值法确定关于a,b 的不等式,利用二次函数的增减性,确定判别式的取值范围,进而可以解决.【解答】解:整理不等式(1)并将a2+b2=1代入,得(1+a+b)x2﹣(2a+1)x+a≥0(2)在不等式(2)中,令x=0,得a≥0;令x=1,得b≥0.易知1+a+b>0,0<<1,故二次函数y=(1+a+b)x2﹣(2a+1)x+a的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式(2)对于满足条件0≤x≤1的一切实数x恒成立,所以它的判别式=(△2a+1)2﹣4(1+a+b)a≤0,即ab≥.由方程组(3)消去b,得16a4﹣16a2+1=0,所以a2=又因为a≥0,所以a=或a=或a2=,.于是方程组(3)的解为或,所以ab的最小值为,此时a,b的值有两组,分别为a=,b=和a=,b=.( 【点评】此题主要考查了二次函数与不等式以及二元二次方程的解法,综合性较强,需耐心思考.2.(20 分)如图,圆 O 与圆 D 相交于 A ,B 两点,BC 为圆 D 的切线,点 C 在圆 O 上,且AB =BC .(1)证明:点 O 在圆 D 的圆周上.(△2)设 ABC 的面积为 S ,求圆 D 的半径 R 的最小值.【分析】 1)连 OA ,OB ,OC ,△AC ,可证 OBA ∽△OBC ,即可证明∠OBA =∠OBC ,所以 DB =DO ,即可证点 O 在圆 D 的圆周上;(2)设圆 O 的半径为 a ,BO 的延长线交 AC 于点 E ,设 AC =2y (0<y ≤△a )即可求证BDO ∽△ABC ,进而可以 r ,即可求 r 的最小值,即可解题.【解答】解:(1)连 OA ,OB ,OC ,AC ,因为 O 为圆心,AB =BC ,所以△OBA ∽△OBC ,从而∠OBA =∠OBC .因为 OD ⊥AB ,DB ⊥BC ,所以∠DOB =90°﹣∠OBA =90°﹣∠OBC =∠DBO ,所以 DB =DO ,因此点 O 在圆 D 的圆周上.(2)设圆 O 的半径为 a ,BO 的延长线交 AC 于点 E ,易知 BE ⊥AC .设 AC =2y (0<y ≤a ),OE =x ,AB =l ,则 a 2=x 2+y 2,S =y (a +x ),l 2=y 2+(a +x )2=y 2+a 2+2ax +x 2=2a 2+2ax =2a (a +x )=因为∠ABC =2∠OBA =2∠OAB =∠BDO ,AB =BC ,DB =DO ,所以△BDO∽△ABC,所以=,即,故r=.所以r2==×=×≥,即r≥,其中等号当a=y时成立,这时AC是圆O的直径.所以圆D的半径r的最小值为.【点评】本题考查了相似三角形对应角相等、对应边比值相等的性质,考查了不等式的极值问题,考查了勾股定理在直角三角形中的运用,本题中求点O在圆D的圆周上是解题的关键.3.(20分)设a为质数,b为正整数,且9(2a+b)2=509(4a+511b)(1)求a,b的值.【分析】首先将9(2a+b)2=509(4a+511b)变形为=,此时假设m=,n=,则可得到b==与n=m2.因而可转化为关于m的一元二次方程3m2﹣511m+6a=0.利用根与系数的关系,求得m的取值进而讨论a、b的取值.【解答】解:①式即=,故设m=,n=,则b==②∴3n﹣511m+6a=0,又n=m2,所以3m2﹣511m+6a=0③由①式可知,(2a+b)2能被509整除,而509是质数,于是2a+b能被509整除,故m 为整数,即关于m的一元二次方程③有整数根,所以它的判别式△=5112﹣72a为完全平方数.不妨设△=5112﹣72a=t2(t为自然数),则72a=5112﹣t2=(511+t)(511﹣t).由于511+t和511﹣t的奇偶性相同,且511+t≥511,所以只可能有以下几种情况:①②③④两式相加,得36a+2=1022,没有整数解.两式相加,得18a+4=1022,没有整数解.两式相加,得12a+6=1022,没有整数解.两式相加,得6a+12=1022,没有整数解.⑤⑥两式相加,得4a+18=1022,解得a=251.两式相加,得2a+36=1022,解得a=493,而493=17×29不是质数,故舍去.综合可知a=251.此时方程③的解为m=3或m=(舍去).把a=251,m=3代入②式,得b==7.答:a=251,b=7.【点评】本题考查一元二次方程整数根与有理根、数的整除性问题.解决本题的关键是将问题转化为一元二次方程来解决.4.(20分)已知a2+b2=1,对于满足条件x+y=1,xy≥0的一切实数对(x.y),不等式ay2﹣xy+b x2≥0(1)恒成立.当乘积ab取最小值时,求a,b的值.【分析】利用特殊值法可得出a、b的范围,把y=1﹣x代入不等式,可整理成(1+a+b)x2﹣(2a+1)x+a≥0,再利用二次函数的性质可得到关于a、b的不等式,可求得ab的最小值,结合条件a2+b2=1,可得到关于a、b的方程组,则可求得a、b的值.【解答】解:∵x+y=1,xy≥0,∴0≤x≤1,0≤y≤1.在(1)式中,令x=0,y=1,得a≥0;令x=1,y=0,得b≥0.将y=1﹣x代入(1)式,得a(1﹣x)2﹣x(1+x)+b x2≥0,即(1+a+b)x2﹣(2a+1)x+a≥0(2),∵a2+b2=1,∴1+a+b>0,0<<1,∴二次函数y=(1+a+b)x2﹣(2a+1)x+a的图象(抛物线)的开口向上,且顶点的横坐标在0和1之间.∵不等式(2)对于满足条件0≤x≤1的一切实数x恒成立,∴=(△2a+1)2﹣4(1+a+b)﹣a≤0,即ab.由方程组(3),消去b,得16a4﹣16a2+1=0,解得∵a≥0,∴a=或a=.∴方程组(3)的解为或或a2=,∴满足条件的a,b的值有两组,分别为a=,b=和a=,b=.【点评】本题为二次函数的综合应用,构造二次函数,根据二次函数的性质得到ab≥,从而求得ab的最小值是解题的关键.本题综合性较强,涉及构造的思想,难度较大.5.(20分)设a为质数,b,c为正整数,且满足求a(b+c)的值.【分析】先把(1)式化为完全平方的形式,再把原方程化为关于m、n、a的三元二次方程,再根据n=m2,此方程化为二元二次方程,由(1)可判断出m为整数,再由一元二次方程的判别式可得5112﹣72a为完全平方数,设5112﹣72a=t(t为自然数),再把关于t的方程进行因式分解,求出符合条件的a的值代入(2)即可求解.【解答】解:把(1)式化为=,设m=2b﹣c=,n==(3),则故3n﹣511m+6a=0,又n=m2,所以3m2﹣511m+6a=0(4)(5分)由(1)式可知,(2a+2b﹣c)2能被509整除,而509是质数,于是2a+2b﹣c能被509整除,故m为整数,即关于m的一元二次方程(4)有整数根,所以它的判别式=511△2﹣72a为完全平方数.(10分)不妨设△=5112﹣72a=t2(t为自然数),则72a=5112﹣t2=(511+t)(511﹣t).由于511+t和511﹣t的奇偶性相同,且511+t≥511,所以只可能有以下几种情况:①②③④⑤⑥舍去.两式相加,得36a+2=1022,没有整数解;两式相加,得18a+4=1022,没有整数解;两式相加,得12a+6=1022,没有整数解;两式相加,得6a+12=1022,没有整数解;两式相加,得4a+18=1022,解得a=251;两式相加,得2a+36=1022,解得a=493,而493=17×29不是质数,故综合可知a=251,此时方程(4)的解为m=3或m=把a=251,m=3代入(3)式,得2b﹣c=(舍去).(20分)=7,即c=2b﹣7.代入(2)式得b=(2b﹣7)=2,所以b=5,c=3,因此a(b+c)=251×(5+3)=2008.(25分)故答案为:2008.【点评】本题考查的是质数与合数的定义、奇数与偶数、一元二次方程根的判别式,涉及面较广,难度较大.。
浙教版八年级数学竞赛试卷与答案
![浙教版八年级数学竞赛试卷与答案](https://img.taocdn.com/s3/m/c70fd96b0b4e767f5acfcec5.png)
浙教版八年级数学竞赛试题卷(一、精心选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在相应的括号内。
1. 不论x 、y 为何实数,346422+-+-y y xy x 的值总是 ( )A.正数B.负数 C . 0 D. 非负数2. 一次函数y=ax-3a+1的图象必通过一定点,此定点坐标是 ( ) A. (1,3) B. (0,1) C. (3,1) D.(0,3)3.若关于x 的方程x 2-2k x-1=0有两个不相等的实数根,则直线y=kx +3必不经过 ( )A. 第三象限B. 第四象限C. 第一、二象限D. 第三、四象限 4.某商品的进价是100元,标价为150元,商店要求以利润率不低于5%的售价打折出售,售货员最低可打 ( )A.8折B. 7折C.6折D. 9折 5.梯形的两底角之和为900,上底长为5,下底长为11,则连结两底中点的线段长是 ( )A. 3B.4C.5D.6 6.已知M (3,2)、N (1,-1),点P 在y 轴上,使PM+PN 最短,则点P 的坐标是( )A .(0,21-) B. (0,0) C. (0,611) D.(0,41-)7.如果等腰三角形一腰上的高线等于腰长的一半,那么它的底角等于 ( )A .750 B. 150 C. 300 D 750或1508.如图,D 、E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,∠α=300时,则∠CDE ( ) A .150 B.300 C.450 D.2009.某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称 ( )A .4次B .5次C .6次 D. 7次10.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( ) A .S=2 B .S=2.4 C .S=4 D .S 与BE 长度有关二.细心填一填(本题有10个小题,每小题4分,共40分)11.如果不等式组⎩⎨⎧<->-01a x x 无解,则a 的取值范围是____________12.如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于13. 若一个数的平方根等于这个数的立方根,则这个数是14..如图是2002年北京第24届国际数学家大会会标,它由4个全等 的直角三角形拼合而成,若图中大、小正方形的面积分别为13和1, 则直角三角形的较长直角边长为 .15.如图△ABC 中,AC >AB ,AB=4,AC=x ,AD 平分∠BAC ,BD ⊥AD 于D ,点E 是BC 的中点,DE=y ,则y 关于x 的 函数关系式为 16.已知1=-b a ,122-=-b a ,则=-20082008b a_________17.已知方程0119992001)2000(2=-⨯-x x 较大的根为α,方程0199919982=-+x x 较小的根为βαβ-则,的值是 。
2023年浙江省第四届初中生学科素养测评(竞赛选拔)数学试卷
![2023年浙江省第四届初中生学科素养测评(竞赛选拔)数学试卷](https://img.taocdn.com/s3/m/0cb01aaffbb069dc5022aaea998fcc22bdd14362.png)
一、选择题
数学试卷
1.如果m+n+p=0,且|m|>|n|>|p|.则下列说法中可能成立的是( C
)
A.m,n为正数,p为负数
B.m,p为正数,n为负数
C.n,p为正数,m为负数
D.m,p为负数,n为正数
【解析】解:∵m+n+p=0,
∴m、n、p至少有一个为正数,至少有一个为负数,
=(49-1)÷2
=48÷2
=24,
故答案为:(7×7-1)÷2(答案不唯一).
12.2 ,3 ,5 ,6 这四个数中最小的数是
55
44
33
55
.
22
5 11
11
44
4 11
11
33
3 11
11
【解析】解:2 =(2 ) =32 ,3 =(3 ) =81 ,5 =(5 ) =125 ,
22
2 11
故选:D.
7.已知m1,m2,m3,……m100均为整数,则|m1+m2|,|m2+m3|,
|m3+m4|,……|m99+m100|,|m100+m1|D中必有(
)
A.奇数个奇数,奇数个偶数
B.偶数个奇数,奇数个偶数
C.奇数个奇数,偶数个偶数
D.偶数个奇数,偶数个偶数
【解析】解:由
m1+m2+m2+m3+m3+m4+……+m99+m100+m100+m1=2(m1+m2+m3+……+m99
如图1叠放,将三角板绕顶点O以2度1秒
浙江省慈溪市区域性八年级数学竞赛试卷(含答案)-
![浙江省慈溪市区域性八年级数学竞赛试卷(含答案)-](https://img.taocdn.com/s3/m/86176ffdfad6195f302ba6c7.png)
八年级(下)数学竞赛试题(5月13日下午1:00——3:00 满分120分 可使用函数型计算器)一、选择题(每小题4分,共40分)1、设,a b 为有理数,且满足等式3623a b +=⨯+,则a b +的值为( ▲ ) A 、2 B 、4 C 、6 D 、82、设323x a a =-,则x 的值为( ▲ )A 、正数B 、负数C 、非负数D 、零3、一个均匀的立方体6个面上分别标有数1、2、3、4、5、6,右图是这个立方体表面展开图,抛掷这个立方体,则朝上一面上的数恰好等于下一面上的数的12的概率是( ▲ ) A 、12 B 、13 C 、23 D 、164、若a 满足不等式102a a -<⎧⎨->⎩,则反比例函数(0)ay x x =>的图像在( ▲ )A 、第一象限B 、第二象限C 、第三象限D 、第四象限5、下面有3个结论:(1)存在两个不同的无理数,它们的差是整数;(2)存在两个不同的无理数,它们的积是整数;(3)存在两个不同的非整数的有理数,它们的和与商都是整数,其中正确的结论有( ▲ )A 、0个B 、1个C 、2个D 、3个 6、边长为整数,周长等于21的等腰三角形共有( ▲ )个 A 、4 B 、5 C 、6 D 、77、如图,在ABC 中,,C Rt CD AB ∠=∠⊥,下列结论: (1)D C ×AB=AC ×BC ;(2)22AC AD BC BD =;(3)222111AC BC CD +=; (4)AC BC CD AB +>+;其中正确的个数是( ▲ ) A 、4 B 、3 C 、2 D 、1 8、设0<k <1,关于x 的一次函数)1(1x kkx y -+=,当1≤x ≤2时的最大值是( ▲ ) (A )k (B )k k 12- (C )k 1 (D )kk 1+9、若A 、B 、C 、D 、E 五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一654321D CBA段时间后,进行过的场次数与队员的对照统计表如下:选手 A B C D E 已赛过的场次数43212那么与E 进行过比赛的运动员是( ▲ )A 、A 和B B 、B 和C C 、A 和CD 、A 和D10、某工厂实行计时工资制,每个工人工作1小时的报酬是6元,一天工作8小时,但是用于计时的那口钟不准:每69分钟才使分针与时针重合一次,因此,工厂每天少付给每个工人的工资是( ▲ )A 、2.20元B 、2.40元C 、2.60元D 、2.80元 二、填空题(每小题4分,共40分)11、已知20062006,20062007,20062008a x b x c x =+=+=+,则多项式222a b c ab bc ca ++---的值 ▲12、如图2,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k= ▲13、如图3,一个正方形被5条平行于一组对边的直线和3条平行于另一组对边的直线分成24个(形状不一定相同的)长方形,如果这24个长方形的周长的和为24,则原正方形的面积为 ▲14、如图4所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2006将与圆周上的数字____ ▲______重合. 15、如图5,将三角形纸片ABC 沿EF 折叠可得图6(其中EF ∥BC),已知图6的面积与原三角形的面积之比为3∶4,且阴影部分的面积为8平方厘米,则原三角形面积为 _____ ▲____平方厘米。
浙江省丽水市第一届“瓯江杯”初中生学科素养邀请赛数学竞赛试题卷(..
![浙江省丽水市第一届“瓯江杯”初中生学科素养邀请赛数学竞赛试题卷(..](https://img.taocdn.com/s3/m/8342c915df80d4d8d15abe23482fb4daa58d1d78.png)
使得,则称n 为一个ab b a n ++=的方程的解是正数,则实数a 的取值范围是__________________.122-=-+x a x3、解答题(本题有4小题,其中15题8分,16到18题每题10分,共38分)15.已知 求的值.⎩⎨⎧+=+=+++,2933,07xy y x y x xy 22y x +16.小林利用所学的长方体表面展开图知识,用长为100cm ,宽为80cm 的长方形纸板制作出了大小不同的长方体纸盒,请你帮助小林进行相关的计算.(1)小林将纸板沿图1的虚线剪开,剪去部分是四个大小相同的小正方形,把所得部分通过折叠,制作出成无盖的长方体纸盒(如图2),若纸盒的底面长是宽的2倍,求这个纸盒的底面积.(2)小林仿照图1,裁去长方形纸板的四个角(剪去的四个角是大小相同的小长方形),用裁剪后所得的纸板折叠制作成有双层上盖的长方体纸盒(上盖纸板面积刚好等于底面面积的2倍),如图3,若该纸盒的底面积等于875,求这个纸盒的高?2cm17.在中,D 是AB 的中点,正方形DEFG 绕点D 转ABC ∆,12,90===∠BC AC ACB动,交的两边AC 、BC 于点P 、Q .ABC ∆(1)连接CD ,如图1.求证:.BDQ CDP ∆≅∆(2)正方形DEFG 的对角线DF 交BC 边于点M ,连接PM ,如图2.设BQ =x .①若QM =5,求x 的值;②若BM =a ,求x 的值(用含a 的代数式表示).18.甲、乙两人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度与1v ,甲前一半的路程使用速度、后一半路程使用速度;乙前一半时间使用2v )(21v v 1v 2v 速度,后一半时间使用速度.2v 1v (1)甲、乙两人从A 地道B 地的平均速度各是多少(用和表示)?1v 2v (2)甲、乙两人谁先到达B 地?为什么?(3)如图是甲从A 地到达B 地的路程S 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程S 与时间t 的函数图像.。
2023年浙江省丽水市瓯江杯初中生学科素养邀请赛数学竞赛试题卷
![2023年浙江省丽水市瓯江杯初中生学科素养邀请赛数学竞赛试题卷](https://img.taocdn.com/s3/m/01a5264da36925c52cc58bd63186bceb19e8ed1a.png)
丽水市 “瓯江杯”初中生学科素养邀请赛数学竞赛试题卷卷1(选择题)一、选择题(本小题有8小题,每小题4分,共32分)1.若y x ,为有理数,且42112=+-+-y x x ,则xy 的值为( ) A. 0 B. 21 C.2 D. 不能拟定 2.若b a ,为实数,满足ba b a +=-111,则b a a b -的值为( ) A. -1 B. 0 C.21 D. 1 3.一只盒子中有红球m 个,白球10个,黑球n 个,每个球除颜色外都相同,从中任取一个球,使取得白球的概率与不是白球的概率相同,那m 与n 的关系是()A. m +n =10B. m +n =5C. m =n =10D. m =2,n =34.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分.某球队共参赛15场,积分33分,若不考虑比赛顺序,则该对胜、平、负的情况也许有()A. 15种B. 11种C.5种D. 3种5.如图,在梯形ABCD 中,,,//BC AB CD AB ⊥E 为AD 的中点,AB +BC +CD =6,BE =5,则梯形ABCD 的面积是()A. 4B. 213 C.8 D. 136.对于一个正整数n ,若能找到正整数a 和b ,使得ab b a n ++=,则称n 为一个“好数”.例如: 11113⨯++=,则3就是一个“好数”,那么,从1到20这20个正整数中,“好数”应有()A. 13个B. 12个C.10个D. 8个7.已知k 是方程0123=-+x x 的一个实数根,则直线k x k y +-=)1(不通过()A. 第一象限B.第二象限C.第三象限D. 第四象限8.在平面直角坐标系中,称横、纵坐标均为整数的点为整点,如图所示的正方形ABCD 内(涉及边界)整点的个数共有()A. 42个B. 48个C.52个D. 60 卷2(非选择题)二、填空题(本题有6小题,每小题5分,共30分)9.已知实数x 满足541=++-x x ,则x 的取值范围是_______________________.10.让我们来玩一个数字游戏:第一步:取一个自然数51=n ,计算121+n 得1a ;第二步:算出1a 的各位数字之和得2n ,计算122+n 得2a ;第三步:算出2a 的各位数字之和得3n ,计算123+n 得3a ;以此类推,则=2012a ___________________.11.如图,在ABC Rt ∆中, 90=∠ACB ,AC =1,BC =2,若P 为斜边AB 上的一个动点, 过P 点作BC PE ⊥于E ,AC PF ⊥于F ,则线段EF 长的最小值为________________.12.若关于x 的方程122-=-+x a x 的解是正数,则实数a 的取值范围是__________________. 13.如图,正方形ABCD 的边长是1,E 是CD 边外的一点,满足BD BE BD CE =,//,则CE 的长=_______________________.14若503,30=-+=++z y x z y x ,且x 、y 、z 均为非负数,则z y x M 245++=的最小值为________________________.三、解答题(本题有4小题,其中15题8分,16到18题每题10分,共38分)15.已知⎩⎨⎧+=+=+++,2933,07xy y x y x xy 求22y x +的值.16.小林运用所学的长方体表面展开图知识,用长为100cm ,宽为80cm 的长方形纸板制作出了大小不同的长方体纸盒,请你帮助小林进行相关的计算.(1)小林将纸板沿图1的虚线剪开,剪去部分是四个大小相同的小正方形,把所得部分通过折叠,制作出成无盖的长方体纸盒(如图2),若纸盒的底面长是宽的2倍,求这个纸盒的底面积.(2)小林仿照图1,裁去长方形纸板的四个角(剪去的四个角是大小相同的小长方形),用裁剪后所得的纸板折叠制作成有双层上盖的长方体纸盒(上盖纸板面积刚好等于底面面积的2倍),如图3,若该纸盒的底面积等于8752cm ,求这个纸盒的高?17.在ABC ∆中,,12,90===∠BC AC ACBD 是AB 的中点,正方形DEFG 绕点D 转动,交ABC ∆的两边AC 、BC 于点P 、Q .(1)连接CD ,如图1.求证:.BDQ CDP ∆≅∆(2)正方形DEFG 的对角线DF 交BC 边于点M ,连接PM ,如图2.设BQ =x . ①若QM =5,求x 的值;②若BM =a ,求x 的值(用含a 的代数式表达).18.甲、乙两人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与2v )(21v v ,甲前一半的路程使用速度1v 、后一半路程使用速度2v ;乙前一半时间使用速度2v ,后一半时间使用速度1v .(1)甲、乙两人从A 地道B 地的平均速度各是多少(用1v 和2v 表达)?(2)甲、乙两人谁先到达B 地?为什么?(3)如图是甲从A 地到达B 地的路程S 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程S 与时间t 的函数图像.。
浙江省宁波市某校八年级第一学期数学竞赛测试卷(含答案)(浙教版)
![浙江省宁波市某校八年级第一学期数学竞赛测试卷(含答案)(浙教版)](https://img.taocdn.com/s3/m/c97e1a1a482fb4daa58d4b58.png)
八年级第一学期数学竞赛测试卷(浙教版)(测试时间120分钟,满分120分)(第一卷)一、选择题(每小题4分,一共32分) 1、下面各说法:① x 2+y 2+1≤ 2x +2y 的整数解有5种② 若△ABC 的三条高分别为12、15、20,则△ABC 是直角三角形 ③ 若2、3、x 是三角形的三边,且这个三角形是一个锐角三角形,则可知< x<其中正确的有( )A. 0个B. 1个C. 2个D. 3个 2、如图,这是一个六边形,每个内角都120°,连续四边的长为1、3、4、2,则这个六边形的周长为( ) A. 17 B. 18 C. 19 D. 203、某商场经销一种商品,由于进货时的价格比原进价降低了8%,使利润率增加了10%,则经销这种商品原来的利润率为( )A. 1.2%B. 1.5%C. 15%D. 14%4、杭州市某公交车站每天6:30~7:00开往学校的三辆班车的票价相同,但是车的舒适程度不同,小明先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,若第二辆车的状况比第一辆好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车。
若按这三辆车的舒适程度分为优、中、差三等,则小明坐上优等车的概率是( ) A.B.C.D.5、若三角形三边a 、b 、c 满足- + =,则这个三角形一定是( )A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰直角三角形 6、在平面直角坐标系中,A (1,0),B 在直线y =3x 上,若△AOB 为等腰三角形,则这样的点B 有( )A. 2个B. 3个C. 4个D. 5个13 427、如图(1)是某条公共汽车线路收支差额y 与乘客数量x 的图像(收支差额=车票收入-支出费用)由于目前本条线路亏损,公司提出两条建议:① 不改变票价,减少支出费用;② 不改变支出费用,提高票价。
下面给出了甲、乙、丙、丁四个图像,说法正确的为( ) A. 甲反映了建议② ,丙反映了建议① B. 甲反映了建议① ,丙反映了建议② C. 乙反映了建议① ,丁反映了建议② D. 丁反映了建议① ,乙反映了建议② (1) 甲 乙 丙 丁8、若有自然数x 1<x 2<x 3<……<x 100,满足x 1+x 2+x 3+……+x 100=7001,则x 1+x 2+x 3+……+x 50的最大值为( )A. 2225B. 2226C. 2227D. 2228 二、填空题(每空5分,共30分)9、若a +b +c =0,a ≤b ≤c ,a c ≠0,则的取值范围为__________________10、已知a x +5≥0的负整数解为x = -1,-2; 则可知a 的取值范围为_______________11、如图,四边形ABCD 的面积为8,其中AD =CD , ∠ADC =∠ABC =90°,DE ⊥AB ,则DE =__________12、如图,一个白色边长为1的正方形放在水平桌面上,现在有两个相同的黑色直角扇形(半径长度等于1),它们放在正方形上方,然后把两个扇形互相重叠的部分涂成白色.图中出现了一大一小的两个白色区域,它们的面积之差为_______ 13、利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性,如图所示的图形可表示为: (a -b )2= (a +b )2- 4ab 。
浙江省温州地区初中数学竞赛选拔试卷含答案
![浙江省温州地区初中数学竞赛选拔试卷含答案](https://img.taocdn.com/s3/m/b06e1332182e453610661ed9ad51f01dc2815708.png)
G FE'C'E A DB C浙江省温州地区初中数学竞赛选拔试卷(检测范围:初中数学竞赛大纲要求所有内容)一、单项选择题(本大题分4小题,每题5分,共20分)1、设二次函数y 1=a (x -x 1)(x -x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx +e (d ≠0)的图象交于点(x 1,0),若函数y =y 2+y 1的图象与x 轴仅有一个交点,则( ). A .a (x 1-x 2)=d B .a (x 2-x 1)=d C .a (x 1-x 2)2=d D .a (x 1+x 2)2=d2、如图,ΔABC 、ΔEFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当ΔEFG 绕点D 旋转时,线段BM 长的最小值是( ). A .32- B .13+ C .2 D .13-3、一名模型赛车手遥控一辆赛车,先前进1m ,然后原地逆时针旋转α(0°<α<180°),被称为一次操作.若5次操作后,发现赛车回到出发点,则α为( ). A .72° B .108° C .144° D .以上选项均不正确4、方程()y x y xy x +=++322的整数解有( ).A 、3组B 、4组C 、5组D 、6组 二、填空题(本大题分16小题,每题5分,共80分)5、如图,在矩形ABCD 中,AB =64,AD =10,连接BD ,DBC ∠的角平分线BE 交DC 于点E ,现把BCE ∆绕点B 逆时针旋转,记旋转后的BCE ∆为''E BC ∆,当射线'BE 和射线'BC 都与线段AD 相交时,设交点分别为F ,G ,若BFD ∆为等腰三角形,则线段DG 长为 .6、如图,在平面直角坐标系中,点M 是第一象限内一点,过M 的直线分别交x 轴,y 轴的正半轴于A 、B 两点,且M 是AB 的中点.以OM 为直径的⊙P 分别交x 轴,y 轴于C 、D 两点,交直线AB 于点E (位于点M 右下方),连结DE 交OM 于点K .设x OBA =∠tan (0<x <1),y MKOK=,则y 关于x 的函数解析式为 .7、如图,梯形ABCD 的面积为34cm 2,AE=BF ,CE 与DF 相交于O ,OCD ∆的面积为11cm 2,则阴影部分的面积为______cm 2.8、如图,四边形ABCD 为正方形,⊙O 过正方形的顶点第5题 第2题 第6题 第7题A 和对角线的交点P ,分别交AB 、AD 于点F 、E .若⊙O 的半径为23,AB =2+1,则EDAE的值为 . 9、已知一个正三角形的三个顶点在一个正方形的边上移动.如果这个内接三角形的最大面积是3.则该正方形的边长为 . 10、在四边形ABCD 中,边AB=x ,BC=CD =4,DA =5,它的对角线AC=y ,其中x ,y 都是整数,∠BAC =∠DAC ,那么x = .11、如果满足 ||x 2-6x -16|-10| = a 的实数x 恰有6个,那么实数a 的值等于 .12到三百多千米以外的乙站,已知每列货车的平均速度都相等,且记为v千米/小时.两列货车实在运行中的间隔不小于225v ⎛⎫⎪⎝⎭千米,这这批救灾物资全部运到目的地最快需要6小时,那么每隔 分钟从甲站向乙站发一趟货车才能使这批货物在6小时内运到.13、已知0≤a-b ≤1,1≤a+b ≤4,那么当a -2b 达到最大值时,8a +2015b 的值等于 .14、在边长为l 的正方形ABCD 中,点M 、N 、O 、P 分别在边AB 、BC 、CD 、DA 上.如果AM=BM ,DP =3AP ,则MN+NO+OP 的最小值是 .15、如图,在四边形纸片ABCD 中,AB=BC ,AD=CD ,∠A =∠C =90°,∠B =150°,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD =______________. 16、从1,2,…,中选出总和为1009000的1004个数,并且这1004个数中的任意两数之和都不等于.则这1004个数的平方和为 . 17、已知直角三角形ABC 中,斜边AB 长为2,∠ACB =90°,三角形内一个动点到三个顶点的距离之和的最小值为7,则这个直角三角形的两个锐角大小分别为 , . 18、若实数x 、y 满足:=+-13x x y y -+23,则若设p=x+y ,则p max = ,p min = . 19、已知平面上有4个圆叠在一起形成10个区域,其中在外区域的三个圆每个圆有5个区域,在内区域的圆有7个区域.现将数字0,1,…,9分别放入10个区域,且使每个圆都有相同的数字和,则数字和S 的取值范围为 .第8题 第10题第15题 第19题x 1x 2 x 3x 4 x 5 x 6x 7x 8 x 9x 1020、已知∠BAC =90°,四边形ADEF 是正方形且边长为1,则CABC AB 111++ 的最大值为 ,简述理由(可列式): .三、分析解答题(本大题分5小题,分值依次为8分、10分、8分、14分、10分,共50分)21、(8分)牛顿和莱布尼茨于17世纪分别地创立了积分学.其中有一个重要的概念:定积分.我们规定把函数()x f 中区间[]b a ,(包括a ,b )与x 轴围成的面积记作:()⎰ba x x f d .(1).试证:()()x x f k x x kf babad d ⎰⎰=;(2).对于任意实数c b a ,,其中(a <c <b ),是否都有:()()()⎰⎰⎰+=bccabax x f x x f x x f d d d .如没有请举出反例;如有,请证明之.22、(10分)在正方形ABCD 的AB 、AD 边各取点K 、N ,使得AK ·AN =2BK ·DN ,线段CK 、CN 交对角线BD 于点L 、M ,试证:∠BLK =∠DNC =∠BAM .第20题 ABD E C23、(8分)设AB ,CD 为圆O 的两直径,过B 作PB 垂直AB ,并与CD 延长线相交于点P ,过P 作直线PE ,与圆分别交于E ,F 两点,连AE ,AF 分别与CD 交于G ,H 两点(如图),求证:OG=OH .24、(14分)如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q ,以AQ 为边作Rt ABQ ∆,使∠BAQ =90°,AQ :AB =3:4,作ABQ ∆的外接圆O .点C 在点P 右侧,PC =4,过点C 作直线m ⊥l ,过点O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF =23CD ,以DE ,DF 为邻边作矩形DEGF .设AQ =3x . (1)用关于x 的代数式表示BQ ,DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,①当AP 为何值时,矩形DEGF 是正方形?②作直线BG 交⊙O 于点N ,若BN 的弦心距为1,求AP 的长.第23题25、(10分)有A、B、C三个村庄,各村分别有适龄儿童a、b、c人.今要建立一所小学,使各村学生到校总里程最短.试问:若三村人数不一定相等时学校应建在哪里?初 中 数 学 竞 赛 选 拔 试 卷参 考 答 案一、单项选择题()题目 1 2 3 4 答案BDDD二、填空题(本大题分5、1798 6、212xy -= 7、12 8、222或 9、332+ 10、4或5 11、10 12、12 13、8 14、 48515、 432+或32+16、1351373940 17、30°,60° 18、2213921539++或 19、21≤S ≤25 20、221+;理由:求式=1+BC1,又EFC BDE ∆∆∽⇒BD ·CF =1,BC 2≥2+2BD ·CF +CF BD •4=8∴计算可得为221+三、分析解答题(本大题分5小题,分值依次为8分、10分、14分、10分,共50分)21、(8分)【解】(暂无解答,征求答案) 22、(10分)【解】连结KN 、KM ,将NDC ∆绕点C 顺时针旋转90°得EBC ∆.AB=AD ⇒AK+BK=AN+DN ⇒(AK-AN )2=(DN-BK )2⇒AK 2+AN 2-2AK ·AN =DN 2+BK 2-2ND ·BK (两边同加2AK ·AN )⇒AK 2+AN 2=(DN +BK )2(由AK ·AN =2BK ·DN 可知),结合图可知NK 2=KE 2 ∴EKC NKC ∆∆∽(SSS )∴∠DNC =∠KEC =∠KNC ,且∠KCN =45° ∴B 、C 、M 、K 四点共圆(∠KBN =45°) ∴KM ⊥CN ,∴A 、K 、M 、N 四点共圆 ∴∠KAM =∠KNM =∠DNC ,又∠MDN =45°=∠KCN ∴N 、L 、C 、D 四点共圆,∴∠DNC =∠DLC =∠KLB ∴∠DNC =∠KAM =∠KLB (即∠BLK =∠DNC =∠BAM )23、(8分)【解】23、第23题解24、(14分)【解】25、(10分)【解】(I)当三村人数相等时,分以下两种情形(如图):(1)ABC∆中最大角大于120°,不妨令∠A≥120°,则学校应建在A村;(2)ABC∆中最大角小于120°,则学校应建在X点(此点到三边的张角相等,亦称ABC∆的费马点) (II)当三村人数不一定相等时,则学校所在地X,可通过物理学的模拟方法求出:在平面上,用三点A、B、C模拟三村,用重物a、b、c模拟相应各村人数,并用细线通过滑轮连接于X点.当出现平衡时,平衡点X就是学校该建的地方.由静力学势能原理可知:AX·a+BX·b+CX·c达最小值,即各村分别有适龄儿童到校总里程最短.当a=b=c时,AX、BX、CX三方向拉力ABC (1)XABC(2)相等且平衡.由对称关系,立得:∠AXB=∠BXC=∠CXA=90°.。
浙江初三初中数学竞赛测试带答案解析
![浙江初三初中数学竞赛测试带答案解析](https://img.taocdn.com/s3/m/af11b6fa844769eae109edbc.png)
浙江初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列等式一定成立的是()A.B.C.D.2.下列式子成立的是()A.a a=a B.(a b)= a bC.0.0081=8.1×10D.3.以下列各组数为边长,能构成直角三角形的是 ( )A.,,B.,,C.32,42,52D.1,2,34.使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25.解关于x的方程时产生增根,则m的值等于()A.-2B.-1C.1D.26.二次函数的图象可能是()7.如图几何体的俯视图是()8.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.10C.11D.129.如图,已知矩形ABCD,R、P分别是DC、BC上的点,E、F分别是AP,RP的中点,当P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定二、填空题1.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是 .2.规定"*"为一种运算,它满足a*b=,那么1992*(1992*1992)=____。
3.已知直角三角形的两条边x、y的长满足,则第三边长为4.有五根木条,分别为12cm,10cm,8cm,6cm,4cm,则从中任取三根能组成三角形的概率为5.如图所示,二次函数的图象经过点,且与x轴交点的横坐标为、,其中、下列结论:①;②;③;④;正确的结论是 .三、解答题1.解方程:2.某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?3.如图,在△ABC中,点O是AC边上的一动点,过点O作直线MN//BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
浙江省初中数学竞赛试题及答案
![浙江省初中数学竞赛试题及答案](https://img.taocdn.com/s3/m/e9120c30453610661ed9f44a.png)
BC(第2题)全国初中数学竞赛(浙江赛区)初赛试题一、选择题(共8小题,每小题5分,满分40分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1.要使方程组⎩⎨⎧=+=+232,23y x a y x 的解是一对异号的数,则a 的取值范围是((A)34<a <3 (B) a <34 (C) a >3 (D) a <34,或a >3 2.一块含30°角的直角三角板(如图),它的斜边AB =8cm ,里面空心△DEF 的各边与△ABC 的对应边平行,且各对应边的距离都是1 cm ,那么△DEF 的周长是( )(A) 5 cm (B) 6 cm (C)(36-)cm (D)(33+)cm 3.将长为15 dm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A) 5种 (B) 6种 (C) 7种 (D) 8种 4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1)1(22-+=x y ,则抛物线A 所对应的函数表达式是( )(A) 2)3(22-+-=x y (B) 2)3(22++-=x y (C) 2)1(22---=x y (D) 2)1(22+--=x y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )(A)32 (B) 31 (C) 21 (D) 616.如图,一枚棋子放在七边形ABCDEFG 的顶点A 处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点.如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 处.在这10次移动的过程中,棋子不可能停到的顶点是( (A) C ,E ,F (B) C ,E ,G (C) C ,E (D) E ,F(第8题)7.一元二次方程)0(02≠=++a c bx ax 中,若a ,b 都是偶数,c 是奇数,则这个方程( )(A) 有整数根 (B) 没有整数根 (C) 没有有理数根 (D) 没有实数根 8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由4×5个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A) 16 (B) 32 (C) 48 (D) 64二、填空题(共6小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3 cm 和4 cm ,那么以两直角边为直径的两圆公共弦的长为 cm .10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数.现有一组数据共有100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是 .11.△ABC 中,a ,b ,c 分别是∠A 、∠B 、∠C 的对边.已知a =10,b =23+,c =23-,则b sin B +c sin C 的值等于 .12.设直线1-+=k kx y 和直线k x k y ++=)1((k 是正整数)及x 轴围成的三角形面积为k S ,则1232006S S S S ++++的值是 .13.如图,正方形ABCD 和正方形CGEF 的边长分别是2和3,且点B ,C ,G 在同一直线上,M 是线段AE 的中点,连结MF ,则MF 的长为 . 14.边长为整数的等腰三角形一腰上的中线将其周长分为1∶2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是 .EC(第13题)三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)15.已知a ,b ,c 都是整数,且24a b -=,210ab c +-=,求a b c ++的值.16.做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A ,B 两种款式的服装合计30件,并且每售出一件A 款式和B 款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元.某日王老板进货A 款式服装35件,B 款式服装25件.怎样分配给每个店铺各30件服装,使得在保证乙店铺获毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?17.如图所示,⊙O 沿着凸n 边形A 1 A 2 A 3…A n -1A n 的外侧(圆和边相切)作无滑动的滚动一周回到原来的位置. (1) 当⊙O 和凸n 边形的周长相等时,证明⊙O 自身转动了两圈.(2) 当⊙O 的周长是a ,凸n 边形的周长是b 时,请写出此时⊙O 自身转动的圈数.18.已知二次函数1)1(22+-++=m x m x y .(1) 随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2) 如果直线1+=x y 经过二次函数1)1(22+-++=m x m x y 图象的顶点P ,求此时m的值.A 3n -1(第17题)B C (第2题)2006年全国初中数学竞赛(浙江赛区)初赛试题参考答案一、选择题(共8小题,每小题5分,满分40分) 1.答案:D解:解方程组,得⎪⎩⎪⎨⎧-=-=.526,543a y a x 只需⎩⎨⎧>-<-;026,043a a 或⎩⎨⎧<->-.026,043a a 即a <34或a >3.2.答案:B解:连结BE ,分别过E ,F 作A C 的平行线交BC 于点M 和N ,则EM =1,BM =3,MN =33134-=--.∴ 小三角形的周长是632=++MN MN MN cm . 3.答案:C解:能组成三角形的只有(1,7,7)、(2,6,7)、(3,5,7)、(3,6,6)、 (4,4,7)、(4,5,6)、(5,5,5)七种.4.答案:D解:将抛物线C 再变回到抛物线A :即将抛物线1)1(22-+=x y 向下平移1个单位,再向右平移2个单位,得到抛物线2)1(22--=x y ,而抛物线2)1(22--=x y 关于x 轴对称的抛物线是2)1(22+--=x y .5.答案:A解:四册教材任取两册共有6种不同的取法,取出的两册是一套教材的共有4种不同的取法,故所求概率是3264=.6.答案:A解: 经实验或按下述方法可求得顶点C ,E 和F 棋子不可能停到.设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是()121321+=++++k k k ,应停在第()p k k 7121-+格,这里p 是整数,且使0≤()p k k 7121-+≤6,分别取k =1,2,3,4,5,6,7,时,()p k k 7121-+=1,3,6,3,1,0,0,发现第2,4,5格没有停棋.若7<k ≤10,设t k +=7(t =1,2,3)代入可得,()p k k 7121-+=()1217++t t m ,由此可知,停棋的情形与tk =时相同.故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到.7.答案:B解:假设有整数根,不妨设它的根是2k 或2k +1(k 为整数),分别代入原方程得方程两边的奇偶性不同的矛盾结果,所以排除A ;若a ,b ,c 分别取4,8,3则排除C ,D .8.答案:C解:每个2×2小方格图形有4种不同的画法,而位置不同的2×2 小方格图形共有12个,故画出不同位置的L 形图案个数是12×4=48.二、填空题(共6小题,每小题5分,满分30分)9.答案:512解:不难证明其公共弦就是直角三角形斜边上的高(设为h ),则5h =3×4,h =512.10.答案:35%或65%(答对一个给3分)解:如果平均数小于中位数,那么小于平均数的数据有35个;如果平均数大于中位数,那么小于平均数的数据有65个,所以这组数据中小于平均数的数据占这100个数据的百分比是35%或65%. 11.答案:10解:不难验证,a 2=b 2+c 2.所以△ABC 是直角三角形,其中a 是斜边.b sin B +c sin C =a b b ⋅+ac c ⋅=a b c 22+=a a 2=a =10.12.答案:00720031解:方程组()⎩⎨⎧++=-+=k x k y k kx y 1,1的解为⎩⎨⎧-=-=.1,1y x 直线的交点是()1,1--.直线1y kx k =+-,1y k x k =++()与x 轴的交点分别是(kk-1,0)、(1+-k k,0).11121+---⨯-⨯=k k k k S k =11121+-k k .所以1232006S S S S ++++=⎪⎪⎭⎫⎝⎛-++-+-+-00721006214131312121121 =0072003100721121=⎪⎭⎫ ⎝⎛-⨯. 13.答案:22解:连结DM 并延长交EF 于N ,则△ADM ≌△ENM ,∴FN =1,则FM 是等腰直角△DFN 的底边上的高,所以FM =22.EC(第13题)(第8题)14.答案:463 解:设这个等腰三角形的腰为x ,底为y ,分为的两部分边长分别为n 和2n ,得⎪⎩⎪⎨⎧=+=+;22,2n y x n x x 或⎪⎩⎪⎨⎧=+=+.2,22n y x n x x 解得⎪⎩⎪⎨⎧==;35,32n y n x 或⎪⎩⎪⎨⎧==.3,34n y n x ∵ 35322n n <⨯(此时不能构成三角形,舍去),∴ 取⎪⎩⎪⎨⎧==,3,34n y n x 其中n 是3的倍数. 三角形的面积2223663)6()34(321n n n n S =-⨯⨯=∆.对于23663n S =∆, 当n ≥0时,∆S 随着n 的增大而增大,故当n =3时,463=∆S 取最小. 三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解:将b a 24+=代入210ab c +-=,得2b 2+4b +c 21-=0, ……………2分∴ 22622c b -±-=. …………………………………2分∵ b ,c 都是整数,∴ 只能取⎩⎨⎧==;1,011c b ⎩⎨⎧-==;1,022c b ⎩⎨⎧=-=;1,233c b ⎩⎨⎧-=-=1,244c b ,…4分相对应a 1=4,a 2=4,a 3=0,a 4=0.故所求a b c ++的值有4个:5,3,1-,3-. ……………………………4分16.(12分)解:设分配给甲店铺A 款式服装x 件(x 取整数,且5≤x ≤30),则分配给甲店铺B 款式服装(30x -)件,分配给乙店铺A 款式服装(35-x )件,分配给乙店铺B 款式服装[25-(30x -)]= (x 5-)件,总毛利润(设为y 总)为:y 总=30x +40(30x -)+27(35x -)+36(x 5-)= x -+1 965.………………………4分 乙店铺的毛利润(设为y 乙)应满足:y 乙=27(35x -)+36(x 5-)≥950,得x ≥9520.…………………………………3分对于y 总=x -+1 965,y 总随着x 的增大而减小,要使y 总最大,x 必须取最小值,又x ≥9520,故取x =21.即分配给甲店铺A ,B 两种款式服装分别为21件和9件,分配给乙店铺A ,B 两种款式服装分别为14件和16件,此时既保证了乙店铺获毛利润不小于950元,又保证了在此前提下王老板获取的总毛利润最大, ………………………………………3分 其最大的总毛利润为:y 总最大=21-+1 965=1 944(元).…………………………2分17.(12分)解:(1) 一个圆沿着线段的一个端点无滑动地滚动到另一个端点,圆自身转动的圈数n -1(第17题)=(线段的长度÷圆的周长)圈.因此若不考虑⊙O 滚动经过n 个顶点的情况,则⊙O 自身恰好转动了一圈. ……………………………………………3分现证明,当⊙O 在某边的一端,滚动经过该端点(即顶点)时,⊙O 自身转动的角度恰好等于n 边形在这个顶点的一个外角.如图所示,设∠A 2 A 1 A n 为钝角,已知A n A 1是⊙O 的切线,⊙O 滚动经过端点A 1后到⊙O '的位置,此时A 1A 2是⊙O '的切线,因此OA 1⊥A n A 1,O 'A 1⊥A 1 A 2. 当⊙O 转动至⊙O '时,则∠γ 就是⊙O 自身转动的角度.∵∠γ +∠β =90º,∠α+∠β =90º,∴∠γ =∠α . 即⊙O 滚动经过顶点A 1自身转动的角度恰好等于顶点A 1的一个外角. ………………………3分对于顶点是锐角或直角的情况,类似可证.(注:只证明直角的情况,只给2分) ∵ 凸n 边形的外角和为360º,∴ ⊙O 滚动经过n 个顶点自身又转动了一圈.………………………………3分∴ ⊙O 自身转动了两圈.(2) ⊙O 自身转动的圈数是)1(+ab圈. …………………………………………3分18.(14分)解:(1) 该二次函数图象的顶点P 是在某条抛物线上. ……………………2分求该抛物线的函数表达式如下:利用配方,得y =(x +m +1)2m m 32--,顶点坐标是P (1--m ,m m 32--).……………………2分方法一:分别取m =0,1-,1,得到三个顶点坐标是P 1(1-,0)、P 2(0,2)、 P 3(2-,4-),过这三个顶点的二次函数的表达式是y =2x -+x +2. …………3分 将顶点坐标P (1--m ,m m 32--)代入y =-x 2+x +2的左右两边,左边=m m 32--, 右边=(-1--m )2+(1--m )+2=m m 32--,∴ 左边=右边.即无论m 取何值,顶点P 都在抛物线y =2x -+x +2上.即所求抛物线的函数表达式是y =2x -+x +2.…3分 (注:如果没有“左边=右边”的证明,那么解法一最多只能得4分) 方法二:令1--m =x ,将m =1--x 代入m m 32--,得(-1--x )2-3(1--x )=2x -+x +2.………………………………………………3分 即所求抛物线的函数表达式是y =2x -+x +2上. ………………………………3分 (2) 如果顶点P (1--m ,m m 32--)在直线y =x +1上,则m m 32--=1--m +1, …………………………………2分即m m 22-=. ∴ m =0或 m =2-.∴当直线y =x +1经过二次函数y =x 2+2(m +1)x m -+1图象的顶点P 时,m 的值是2-或0. ………………2分2006年全国初中数学竞赛(浙江赛区)复赛试题(2006年4月2日下午1:00—3:00)一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1. 5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是( )(A )21 (B )22 (C )23 (D )24 2. 如图,长方形ABCD 恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD 的周长是( )(A )17 (B )18 (C )19 (D )317 3.设0<k <1,关于x 的一次函数)1(1x kkx y -+=,当1≤x ≤2时的最大值是( ) (A )k (B )k k 12- (C )k 1 (D )kk 1+4.钟面上的1~12这12个数字把圆周12等分,以其中任意4个等分点为顶点作四边形,其中矩形的个数是( )(A )10个 (B )14个 (C )15个 (D )30个5.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数1212-+=x x y 的图象上整点的个数是 ( )(A )2个 (B )4个 (C )6个 (D )8个6.用标有1克,2克,6克,26克的法码各一个,在一架无刻度的天平上称量重物,如果天平两端均可放置法码,那么可以称出的不同克数(正整数的重物)的种数共有( ) (A )15种 (B )23种 (C )28种 (D )33种二、填空题(共6小题,每小题6分,满分36分)7.三个实数按从小到大排列为1x ,2x ,3x ,把其中每两个数作和得到三个数分别是14,PADBC(第2题)17,33,则2x = .8.如图,AB 为半⊙O 的直径,C 为半圆弧的三等分点,过B ,C 两点的半⊙O 的切线交于点P ,若AB 的长是2a ,则P A 的长是 .9.函数1422-+=x x y 的最小值是 .10.在正方形ABCD 中,点E 是BC 上的一定点,且BE =10,EC =14,点P 是BD 上的一动点,则PE +PC 的最小值是 .11.某商店出售A 、B 、C 三种生日贺卡,已知A 种贺卡每张0.5元,B 种贺卡每张1元,C 种贺卡每张2.5元.营业员统计3月份的经营情况如下:三种贺卡共售出150张,营业收入合计180元.则该商店3月份售出的C 种贺卡至少有 张.12.有一个英文单词由5个字母组成,如果将26个英文字母a ,b ,c ,…,y ,z 按顺序依次对应0到25这26个整数,那么这个单词中的5个字母对应的整数按从左到右的顺序分别为x 1,x 2,x 3,x 4,x 5.已知x 1+3x 2,4x 2,x 3+2x 4,,5x 4,6x 4+x 5 除以26所得的余数分别为15,6,20,9,9.则该英文单词是 .DE(第10题)三、解答题(共4小题,满分54分)13.(本题满分12分)某列从上海到温州的火车,包括起始和终点在内共有6个停靠站,将这6个站按火车到达的先后次序,依次记为A ,B ,C ,D ,E ,F .小张乘坐这趟列车从上海出发去温州,火车驶离上海时,小张发现他乘坐的车厢里连他自己在内共19名旅客,这些旅客小张都认识,其中有些是浙江人,其他的都是上海人.一路上小张观测到下列情况:①除了终点站,在每一站,当火车到达时这节车厢里浙江人的人数与下车旅客的人数相同,且这次行程中没有新的旅客进入这节车厢;②当火车离开车站B 时,车厢里有12名旅客;当火车离开车站D 时,还有7名旅客在这一车厢里;在F 站下车的旅客包括小张在内共5人.(1)火车驶离上海时,小张乘坐的这节车厢里共有多少浙江人?多少上海人? (2)在B 到C 、C 到D 、D 到E 的旅途中,分别有多少浙江人?多少上海人?14.(本题满分12分)如图,M 、N 、P 分别为△ABC 三边AB 、BC 、CA 的中点,BP 与MN 、AN 分别交于E 、F , (1)求证:BF =2FP ;(2)设△ABC 的面积为S ,求△NEF 的面积.15.(本题满分15分)设,,,321x x x ...2006,x 是整数,且满足下列条件: ① -1≤n x ≤2,n =1,2,3,...,2006; ②+++321x x x ...2002006=+x ; ③+++232221x x x (20062)2006=+x .求 +++333231x x x (3)2006x + 的最小值和最大值. 16.(本题满分15分)BACMPEF一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃: ①能从任意一点(a ,b ),跳到点(2a ,b )或(a ,2b );②对于点(a ,b ),如果a >b ,则能从(a ,b )跳到(a -b ,b );如果a <b ,则能从(a ,b )跳到(a ,b -a ).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3, 5); (2)(12,60); (3)(200,5); (4)(200,6).2006年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:D解:设这5个自然数从小到大排列依次为x 1,x 2,x 3,x 4,x 5,则x 3=17.当这5个自然数中最大一个x 5的可能值最大时,其他3个自然数必取最小的可能值,x 1=0,x 2=1,x 4=18,此时x 5=24. 2.答案:C解:设小长方形的长、宽分别为x ,y ,则3 x = 4 y ,y x 34=. ∴334=⋅y y .23=y ,x =2.∴ 长方形ABCD 的周长为19. 3.答案:A 解:k x k k y 1)1(+-=,∵ 0<k <1,∴ kk k k k )1)(1(1-+=-<0,该一次函数的值随x 的增大而减小,当1≤x ≤2时,最大值为k kk k =+-11.4.答案:C解:连结圆周上12个等分点,得6条直径,以其中任意两条为对角线的四边形即为矩形,共15个矩形. 5.答案:C解:将函数表达式变形,得122+=-x y xy ,24224=--x y xy ,25)12)(12(=--x y .∵ x ,y 都是整数,∴ )12(),12(--x y 也是整数.∴ ⎩⎨⎧=-=-2512,112x y 或⎩⎨⎧-=--=-2512,112x y 或 ⎩⎨⎧=-=-112,2512x y 或 ⎩⎨⎧-=--=-112,2512x y 或 ⎩⎨⎧=-=-512,512x y 或⎩⎨⎧-=--=-.512,512x y 解得整点为(13,1),(-12,0),(1,13),(0,-12),(3,3),(-2,-2). 6.答案:C解:(1)当天平的一端放1个砝码,另一端不放砝码时,可以称量重物的克数有1克,2克,6克,26克;(2)当天平的一端放2个砝码,另一端不放砝码时,可以称量重物的克数有3克,7克,8克,27克, 28克,32克;(3)当天平的一端放3个砝码,另一端不放砝码时,可以称量重物的克数有9克,29克,33克,34克;(4)当天平的一端放4个砝码时,可以称量重物的克数有35克.(5)当天平的一端放1个砝码,另一端也放1个砝码时,可以称量重物的克数有1克,4克,5克,20克,24克,25克;(6)当天平的一端放1个砝码,另一端放2个砝码时,可以称量重物的克数有3克,5克,7克,18克,19克,21克,22克,23克,25克,27克,30克,31克; (7)当天平的一端放1个砝码,另一端放3个砝码时,可以称量重物的克数有17 克,23克,31克,33克;(8)当天平的一端放2个砝码,另一端也放2个砝码时,可以称量重物的克数有19克,21克,29克.去掉重复的克数后,共有28种.二、填空题(共6小题,每小题6分,满分36分) 7.答案:15解: 1421=+x x ,1731=+x x ,3332=+x x , ∴ 32321=++x x x ,152=x .8.答案:a 7解:连结OC ,OP ,则∠OCP =90°,∠COP =60°,OC = a∴ PC =a 3,PB =PC =a 3,P A =a 7. 9.答案:1-解:y =3)1(22-+x =⎪⎩⎪⎨⎧≤--≥-+.0,3)1(2,0,3)1(222x x x x 其图象如图,由图象可知,当x = 0时,y 最小为 -1.10.答案:26(第9题)解:连结AP ,则PE +PC =PE +P A ,当点P 在AE 上时,其值最小,最小值为26102422=+.11.答案:20解:设A 、B 、C 三种贺卡售出的张数分别为x ,y ,z ,则 ⎩⎨⎧=++=++.1805.25.0,150z y x z y x消去y 得,305.15.0-=z x .由0305.1≥-z ,得20≥z .12.答案:right ,evght解:由题意得,⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=+=++=+=+.9266,9265,20262,6264,152635544434322121k x x k x k x x k x k x x (54321,,,,k k k k k 为非负整数).由0≤54321,,,,x x x x x ≤25,可分析得出,123454,17,8,216,7,19.x x x x x =⎧⎪=⎪⎪=⎨⎪=⎪⎪=⎩或或,三、解答题(共4题,满分54分) 13.(12分)解:(1)由条件得,在B 站有7人下车,∴ 19名旅客中有7位浙江人,即火车驶离上海时,车厢里有7个浙江人,12个上海人. ……………2分 (2)在E 站有2人下车,即在D —E 途中有2个浙江人,5个上海人, ……………2分 从而C —D 途中至少有2位浙江人,在D 站至少有2人下车, ……………2分 ∴ C 站后车厢里至少有9个人. ∵ 火车离开B 站时车厢里有12人,离开D 站时有7人, ∴ 在C 站至少有3人下车,即经过C 站后车厢里至多9人,故经过C 站后车厢里有9人,即在C 站有3人下车. ……………2分 ∴ B —C 途中车厢里还有3个浙江人,9个上海人. ……………2分 在D 站有2人下车,C —D 途中车厢里还有2个浙江人,7个上海人.……………2分14.(12分)解:(1)如图1,连结PN ,则PN ∥AB ,且 AB PN 21=. ……………………2分∴ △ABF ∽△NPF ,2===PNABFN AF FP BF . ∴ BF =2FP . ……………………2分 (2)如图2,取AF 的中点G ,连结MG ,则 MG ∥EF ,AG =GF =FN . ……………………2分∴ S △NEF =41S △MNG ……………………2分 =41×32S △AMN ……………………2分 =41×32×41S △ABC =241S . ……………2分15.(15分)解:设,,,321x x x …2006,x 中有r 个-1、s 个1、t 个2,则⎩⎨⎧=++=++-.20064,2002t s r t s r ………………5分 两式相加,得s +3t =1103,故0367t ≤≤. ………………2分∵ +++333231x x x …t s r x 832006++-=+ ………………2分=2006+t . ………………2分∴ 200≤+++333231x x x (32006)x +≤6×367+200=2402. 当0,1103,903t s r ===时,+++333231x x x ...32006x +取最小值200,.........2分 当367,2,536t s r ===时,+++333231x x x (32006)x +取最大值2402.………2分16.(15分)解:(1)能到达点(3,5)和点(200,6). ………………2分从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5). ………………3分 从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6) →(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6) →(160,6)→(320,6)→(前面的数反复减20次6)→(200,6).……3分BACM N PE F(图1) BA CM N PE F(图2)G(2)不能到达点(12,60)和(200,5).………………2分理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a-b)和b的最大公约数,如果a<b,a和b的最大公约数=(b-a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.…………3分∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.………………2分∴从(1,1)出发不可能到达给定点(12,60)和(200,5).。
2023年浙江省舟山市中考数学竞赛试卷附解析
![2023年浙江省舟山市中考数学竞赛试卷附解析](https://img.taocdn.com/s3/m/6d3cf177bf1e650e52ea551810a6f524ccbfcb27.png)
O x y 2023年浙江省舟山市中考数学竞赛试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AB 、CD 是⊙O 相交的两条直径,连结 AC ,那么角α与β的关系是( )A .∠α=∠βB . ∠α>2∠βC . ∠β<2∠αD . ∠β=2∠α2.反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别是( )A .y =k x ,y =kx 2-xB .y =k x,y =kx 2+x C .y =-k x ,y =kx 2+x D .y =-k x ,y =-kx 2-x 3.八年级(1)班50名学生的年龄统计结果如表所示:则此班学生年龄的众数、中位数分别为( )年龄(岁)131415 16 人数(人) 4 22 23 1A .14岁,l4岁B .15岁,l4岁C .14岁,l5岁D .15岁,l6岁4.若0a <,则下列各点中在第二象限内的( )A . (-2,a )B .(-2,a -)C .(a ,-2)D . (a -,2)5.已知等腰三角形的一个底角为80,则这个等腰三角形的顶角为( )A .20B .40C .50D .806.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( ) A . B . C . D .7.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有()A.1 个B. 2 个C.3 个D. 4 个8.下列各组图形,可经过平移变换由一个图形得到另一个图形的是()9.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,那么图⑤的面积是()A.18 B.16 C.12 D.810.下列四个图案中,从对称的角度考虑,其中不同于其他三个的图案是()11.甲比乙大10岁,五年前甲的年龄是乙的年龄的3倍,甲现在的年龄为()A.20岁B.15岁C.10岁D.25岁12.下列说法中,正确的是()A.b的指数是0 B.b没有系数C.-3是一次单项式 D.-3是单项式二、填空题13.如图,如果2=⋅,那么△ABC∽.AC AD AB14.如图所示的抛物线,当x _时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小;当 x 时,y 有最大值. 15.已知△ABC 中,ACB=AC ,过点A 的直线把三角形分成两个等腰三角形,则∠B= . 解答题16.填空:(1)∵∠1=∠E ,∴ ∥ ( )(2)∵∠2=∠ ,∴AB ∥ (同位角相等,两直线平行)17.写出一个解为⎩⎨⎧==21y x 的二元一次方程组 . 18.若角α的余角与角α的补角的和是平角,则角α= .19.方程434x x =-的解是x = .三、解答题20.如图,五边形ABCDE ∽五边形 RSTUV ,求∠R 的度数和RS 的长.21.已知函数223y x x =--,结合图象,试确定 x 取何值时,y>0,y=0,y<0?22. 已知:如图①,在△ABC 中,∠ABC=45°,H 是高AD 和BE 的交点.(1)求证:BH=AC ;(2)现将原题图中的∠A 改成钝角,题设条件不变.请你按题设要求在钝角三角形 ABC(如图③)中画出该题的图形,写出画图步骤;(3)∠A 改成钝角后,结论BH=AC 还成立吗?若成立,请给出证明;若不成立,请说明理由.23.已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求b a b a 2222--的值.24.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)填空:在第4个图中,每一横行共有块瓷砖,每一竖列共有 块瓷砖;在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖.(2)按上述铺设方案,已知铺一块这样的矩形地面共用了1056块瓷砖,求此时图形为第几个.25.某工厂有甲、乙两个相邻的长方体的水池,甲池的水均匀地流入乙池;如图,是甲、乙两个水池水的深度y (米)与水流动时间x (小时)的函数关系的图象.(1)分别求两个水池水的深度y (米)与水流动时间x (小时)的函数关系式,并指出自变量x 的取值范围;(2)水流动几小时,两个水池的水的深度相同?26.写出一个单项式除以单项式的算式,使其结果为22x y.27.在 1999 年 8 月份结束的国际象棋女子世界冠军挑战赛上,我国女子国际象棋特级大师谢军在苦战第 15盘结束后,以净胜俄罗斯棋手加里亚莫娃 2 分的优异成绩,第三次夺得棋后桂冠. 问谢、加两位棋手最后的积分分别是多少? (在女子国际象棋比赛中规定,胜方得 1 分,负方得0分,和棋各得 0. 5 分)28.如图所示,△ABC经相似变换后所得的像是△DEF.(1)线段AB与DE,AC与DF,BC与EF的大小关系如何?(2)∠A与∠D,∠B8与∠E,∠C与∠F的大小关系如何?(3)变换后所得的图形周长是原图形周长的多少倍?29.解方程4316 0.205x x+--=-.30.自然数中有许多奇妙而有趣的现象,很多秘密等待我们探索. 比如:写出一个你喜欢欢的数,把这个数乘以 2,再加上 2,把结果乘以 5,再减去 10,再除以 10,结果你会重新得到原来的数.假设一开始写出的数为n,根据这个例子的每一步,列出最后的表达式.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.B4.B5.A6.D7.D8.A9.B10.C11.A12.D二、填空题13.△ACD14.≤2,≥2,215.45°或36°16.(1)AC;DE;同位角相等,两直线平行;(2)B,CD 17.略18.4519.-4三、解答题20.∵五边形 ABCDE∽五边形RSTUV,∴∠R=∠A= 128°.∴RS RVAB AE=,即446RS=,∴83RS=21.令2230x x--=,解得11x=-,23x=,结合图可知当 x<—1或 x>3 时,y>0;当一1<x<3 时,y<0;当 x= 一 1 或x=3 时,y=0.22.(1)证 Rt△BDH≌Rt△ADC可得 (2)略 (3)仍然成立,证略23.20 .24.(1)7, 6,3n+,2n+;(2)3025.(1)甲(:432+-=x y (0≤x ≤6),乙:231+=x y (0≤x ≤6);(2)2小时. 26.8663x y x ÷或23(2)2z xy y -÷等27.谢、加的积分分别为为 8.5 分和6. 5 分28. (1)AB=12DE ,AC=12DF ,BC=12EF ;(2)∠A=∠D ,∠B=∠E ,∠C=∠F ;(3)2倍 29.将原方程分母化为 1,得5(4)2(3)16x x +--=-,解得14x =-30.例如写出一个数为 3,则(232)510310⨯+⨯-=. 若写出的数为n ,则5(22)101010101010n n n +-+-==。
2023年浙江省金华市中考数学竞赛试题附解析
![2023年浙江省金华市中考数学竞赛试题附解析](https://img.taocdn.com/s3/m/863dc15cae1ffc4ffe4733687e21af45b307fe6c.png)
2023年浙江省金华市中考数学竞赛试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m2.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .223.如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是两腰的中点,且AD=5,BC=7,则EF 的长为( )A .6B .7C .8D .94.下列结论:①平行四边形内角和为360°;②平行四边形对角线相等; ③平行四边形对角线互相平分;④平行四边形邻角互补.其中正确的个数是( ) A .1 B .2 C .3 D .45.把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( ) A .10,3,1- B .10,7,1- C .12,5,1- D .2,3,16.已知点P 在x 轴下方,在y 轴右侧.且点P 到x 轴的距离是3,到y 轴的距离是2.则点P 的坐标是( )A . (2,-3)B .(3,-2)C .(-2,3)D .(-3,2) 7.如图,直线AE ∥CD,∠EBF=135°,∠BFD=60°,则∠D 等于( )A .75°B .45°C .30°D .15°8.十位学生的鞋号由小到大分别是20、21、22、22、22、22、23、23、24、24。
这组数据的平均数、中位数、众数中鞋厂最感兴趣的是( )A .平均数B .众数C .中位数D .平均数和中位数9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x 万箱,则可列方程( )A .17017031010x +=+B .17017031010x -=+ F E D CB AC .17017031010x -=+D .17017031010x+=+ 10.如图是某公司近三年的资金投放总额与利润统计示意图,根据图中的信息判断:①2001年的利润率比2000年的高2%;②2002年的利润率比2001年的利润率高8%;③这三年的平均利润率为14%;④这三年中2002年的利润率最高.以上判断正确的结论有( )A .1个B .2个C .3个D .4个 11.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =- 12.下列判断中错误..的有( ) ①每一个正数都有两个立方根②零的平方根等于零的算术平方根③没有平方根的数也没有立方根④有理数中绝对值最小的数是零A .1 个B .2 个C .3 个D .4 个 13.9416 ) A .34 B .324± C .223 D 173414. 下列说法不正确的是( )A .8 和-8 互为相反数B .8 是-8 的相反数C .-8 是8 的相反数D .-8 是相反数15.为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a 、b 对应的密文为2a -b 、2a +b.例如,明文1、2对应的密文是0、4.当接收方收到密文是1、7时,解密得到的明文是( )A .-1,1B .2,3C . 3,1D .1,l二、填空题16.若tanx=0.2378, 则x= (精确到l ′).17.如图所示,点D 、E 分别在线段AB 、AC 上,BE 、CD 相交于点O ,要使△ABE ∽△ACD ,需添加一个条件是 (只要写一个条件) .18.(1)x 的3 倍不小于 9,用不等式表示为 ,它的解集为 ; (2)x 与 2 的和不大于 4,用不等式表示为 ,它的解集为 ; 的相反数的 2倍与13的差小于23,用不等式表示为 ,它的解(3)x 集为 .19.等腰三角形的周长是l0,腰比底边长2,则腰长为 . 20.01(1)2π--⨯= ;32(63)(3)a a a -÷= .21.当3=x 或5-=x 时,代数式c bx x ++2的值都等于1,则bc 的值为 。
2023年浙江省中考数学竞赛试卷附解析
![2023年浙江省中考数学竞赛试卷附解析](https://img.taocdn.com/s3/m/0fe75e3278563c1ec5da50e2524de518964bd3c4.png)
2023年浙江省中考数学竞赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4)2.平行投影中的光线是( )A .平行的B .聚成一点的C .不平行的D .向四面发散的 A3.已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( )A .5cmB .11cmC .3cmD .5cm 或11cm 4.如图,以点O 为圆心的同心圆中,大圆的弦AB 切小圆于点C ,两圆的半径分别为5cm 和3cm ,则AB=( )A .8cmB .4cmC .234cmD .34cm5.如图,是一水库大坝横断面的一部分,坝高h=6m ,迎水斜坡AB=10m ,斜坡的坡角为α,则tan α的值为( )A .53B .54C .34D .43 6.下列事件,是必然事件的是( ) A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1 B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数 C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面7. 一扇形纸扇完全打开后,外侧两竹条AB,AC 的夹角为1200, AB 长为30cm ,贴纸部分BD 长为20cm ,则贴纸部分的面积为( )A .28003cm πB . 25003cm πC .800лcm 2D .500лcm 28.抛物线()223y x =++的顶点坐标是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(2,-3)9.已知正比例函数y kx =的图象经过点(2,4),k 的值是( )A . 1B .2C . -1D .-2 10.把多项式22481a b -分解因式,其结果正确的是( ) A . (49)(49)a b a b -+B .(92)(92)b a b a -+C .2(29)a b -D .(29)(29)a b a b -+ 11.下图中,正确画出△ABC 的 AC 边上的高的是 ( ) A .B .C .D . 12.当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( )A .10B .13C .-14D .-15 13.下列各组量中具有相反意义的量是( )A .向东行 4km 与向南行4 kmB .队伍前进与队伍后退C .6 个小人与 5 个大人D .增长3%与减少2%二、填空题14.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).15.如图,已知△ABC 的一边BC 与以AC 为直径的⊙O 相切于点C ,若BC=4,AB=5,则cosB= .16.如图所示,机器人从A 点沿着西南方向行进了 8个单位,到达 B 点后观察到原点 0 在它的南偏东60°的方向上,则原来A 的坐标为 (结果保留根号).17.函数22(1)23y x =---化为2y ax bx c =++的形式是 . 18.如图所示,函数y kx =-(k ≠0)与4y x=-的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为 C ,则△BOC 的面积为 .19.计算:ab a ⋅ =___________. 20. 解方程:2324x =-,x = .21.计算:2a ×(3a 2 -ab+b 2 )=_________;(a -1)(a+1)(a 2 +1)= .22.在括号里填上适当的代数式,使等式成立:(1)21664x x ++=( )2;(2)21025p p -+=( )2;(3)229124a ab b -+=( )2;(4)214t t -+=( )2; (5)2244ab a b ++=( )2;(6)222()()m m m n m n +-+-=( )2三、解答题23.已知锐角α的三角函数值,使用计算器求锐角 α(精确到 1").(1) tan α= 1.6982;(2) sin α=0. 8792;(3) cosa α= 0.3469.24.在Rt △ABC 中,∠C=90°,根据下列条件解直角三角形:(1)︒=∠=4520A c , (2)︒=∠=3036B a ,(3)19=a ,219=c (4)a =66,26=b25.在平面直角坐标系xoy 中,反比例函数y =k x 的图象与y =3x的图象关于x 轴对称,又与直线y =ax +2交于点A(m ,3),试确定a 的值26.为测量河宽 AB ,从B 出发,沿河岸走 40 m 到 C 处打一木桩,再沿BC 继续往前走 10 m 到D 处,然后转过 90°沿 DE 方向再走 5 m 到 E 处,看见河对岸的A 处和C 、E 在一条直线上,且AB ⊥DB(如图),求河宽.27.如图所示,四边形ABCD中,对角线AC和BD相交于点0,且OA=0C,BA⊥AC,DC ⊥AC,垂足分别为A,C.求证:四边形ABCD是平行四边形.28.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.29.设a,b是一个直角三角形两条直角边的长,且2222+++=,求这个直角三角a b a b()(4)21形的斜边长.330.有长为l的篱笆,现要用这个篱笆和一面墙围成矩形的园子(如图),园子的宽为t.(1)用含l、t的代数式表示园子的面积;(2)当100t=米时,求园子的面积.l=米,30【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.3.D4.A5.D6.D7.A8.A9.B10.D11.C12.13.D二、填空题14.变小15.4516.(0,8+8 17.224833y x x =-+-18. 219.b a 20.m =.223226ab b a a +-,14-a22.(1)8x +;(2)5p -;(3)32a b -;(4)12t -;(5)2a b +;(6)2m n -三、解答题23.(1)0593029α'''≈;(2)0613246α'''≈;(3)69428o α'''≈ 24.(1)210==b a ,∠B=45°;(2)312=b ,324=c ,∠A=60°;(3)19=b ,∠A=∠B=45°;(4)∠A=30°,∠B=60°,212=c .25.依题意得,反比例函数y=k x 的解析式为y=- 3x. 因为点A (m,3)反比例函数y=- 3x的图象上,所以m =-1 ,即点A 的坐标为(-1,由点A (-1,3)在直线y=ax+2 上,可求得a= -1.26.∵∠ACB=∠ECD,∠CDE=∠CBA=90°,∴△ABC ∽△EDC. ∴DE DC BA BC =,即51040BA =,∴BA=20 m 答:河宽 20 m .27.证明△AOB ≌△COD ,得OB=0D ,即四边形ABCD 为平行四边形 28.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一) 29..(1)园子的宽为t ,则长为2l t -,∴园子的面积为(2)t l t -;(2)当100l =米,30t =米时,园子的面积为(2)30(100230)1200t l t -=-⨯=(平方米)。
2022年浙江省衢州市中考数学竞赛试题附解析
![2022年浙江省衢州市中考数学竞赛试题附解析](https://img.taocdn.com/s3/m/386000a150e79b89680203d8ce2f0066f533641f.png)
2022年浙江省衢州市中考数学竞赛试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有下列四个命题:⑴对顶角相等;⑵同位角相等;⑶有两边和其中一边的对角对应相等的两个三角形全等;⑷平行于同一条直线的两直线平行.其中真命题有( )A .1个B .2个C .3个D .4个 2.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -=3.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .∠D=90°B .AB=CDC .AD=BCD .BC=CD 4.矩形的三个顶点坐标分别为(-1,-2),(-1,2),(1,2),则第四个顶点的坐标是( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-l ) 5.等腰三角形一个角为 40°,则它的顶角是( ) A .40° B .70° C . 100° D . 40°或 100°6.如图,直线 AB 、CD 被第三条直线EF 所截,∠1=80°,下列论述正确的是( ) A .若∠2=80°,则 AB ∥CD B .若∠5=80°,则 AB ∥CDC .若∠3= 100°则 AB ∥CD D .若∠4=80°,则 AB ∥CD7. 如图所示,将△ABC 沿着XY 方向平移一定的距离就得到△MNL ,则下列结论中正确的是( )①AM ∥BN ;②AM=BN ;③BC=ML ;④∠ACB=∠MNLA .1个B .2个C .3个D .4个 8.已知分式11x x -+的值为零,那么x 的值是( ) A .-1 B .0 C .1 D .1±9. 已知222220a a b b ++++=,则1b a+的值是( ) A .2 B .1 C .0 D .-110.在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,那么下面的平移中正确的是( )A .先向下移动l 格,再向左移动l 格B .先向下移动l 格,再向左移动2格C .先向下移动2格,再向左移动l 格D .先向下移动2格,再向左移动2格11. 如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A ﹑B 两点,他测得“图上”圆的半径为10厘米,AB=16厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,则“图上”太阳升起的速度为( )A .0.4厘米/分B .0.6厘米/分C .1.0厘米/分D .1.6厘米/分12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A .41B .61C .51D .203 二、填空题13.Rt △ABC 中,若∠C= 90°,AB = 5,BC=3,则 sinB = .14. 如图,BD 是□ABCD 的对角线,BE= EF=FD ,则:AMH ABCD S S = .15.如图,点 M 是⊙O 外一点,MC 、MD 分别交⊙O 于点B 、C 、A 、D ,弦AC 、BD 交于点 P ,且∠DAC=40°, ∠ADB=10°,那么∠DBC= 度,∠ACB= 度,∠CMD= 度.16.已知 ⊙O 半径为2 ㎝,弦AB 所对的劣弧为圆周的16,则∠AOB = ,AB= ㎝. 17.如图,这个几何体的名称是 , 它是由 个面, 条棱, 个顶点组成.18.在△ABC 中,AB= AC= 6,BC= 5,AD ⊥BC 于 D ,则 CD= .19.如图,如果_____,那么a ∥b .20.如图,△ABC 经过旋转变换得到△AB ′C ′,若∠CAC ′=32°,则∠BAB ′= .21.多项式24ax a -与多项式244x x -+的公因式是 .22.多项式21x +加上一个单项式后,能成为一个整式的平方,则加上的单项式可以是 . (填上一个正确的结论即可,不必考虑所有可能的情况)三、解答题23.如图所示,某水库大坝的横断面是等腰梯形,坝顶宽 6m ,坝高 lOm ,斜坡AB 的坡度为 1:2,现要加高 2m ,在坝顶宽度和斜坡坡度均不变的情况下,加固一条长50m 的大坝,需要多少土?24.如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于 A .B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的取值范围.25.某校团委准备举办学生绘画展览,为美化画面,在长为30cm、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.26.如图所示,在梯形ABCD中,AD∥BC,AB=DC,∠D=120°.对角线CA平分∠BCD,且梯形的周长为20,求AC的长及梯形的面积.27.已知,如图所示,在四边形ABCD中,∠A=90°,∠C=90°,BE,DF分别平分∠ABC,∠ADC,求证:BE∥DF.28.“所谓按行排序就是根据一行或几行中的数据值对数据清单进行排序,排序时Excel将按指定行的值和指定的“升序”或“降序”排序次序重新设定列.”这段话是对什么名称进行定义?29.按要求画出下列图形并计算求值.(1)画三角形ABC,用量角器量出∠A、∠B、∠C的度数,并求出∠A+∠B+∠C的度数.(2)画四边形ABCD,用量角器量出∠A、∠B、∠C、∠D的度数,并求出∠A+∠B+∠C+∠D 的度数.(3)仿前两题画五边形、六边形并量出它们的度数和,从中发现什么规律,请你把它写出来.30.一种圆筒状包装的保鲜膜如图所示,其规格为20 cm× 60 cm,经测量这筒保鲜膜的内径φ和外径φ分别为3.2 cm和4.0cm,求这种保鲜膜的厚度是多少?(π取3.14,保留两位有1效数字)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.D4.A5.D6.B7.B8.C9.A10.C11.D12.B二、填空题13.4514. 3: 815.40,10,3016.60°,217.五棱柱,7,15,1018.2.519.∠1=∠2(∠1=∠3或∠2+∠4=180)20.32°21.2x - 22.44x ,2x ±等三、解答题23.据题意作出加固后的坝体横断面(如图中等腰梯形 CFEP),过A 点作AH ⊥BC 于 H ,过E 点作 EM ⊥BC 于M ,则BH=2AH=20m.∴BC=2BH+AD=46m,1(646)102602AECD S =⨯+⨯=梯形(m 2), ∵EF=AD= 6 m,EM= 12 m, PM=24m.∴PC=54m,∴1(654)123602PCEF S =⨯+⨯=梯形(m 2), ∴加的面积为 360—260=100(m 2),∴应增加100×50= 5000(m 3)土.24.(1)由题意得,m=2×3=6. ∴6y x =,∴当 x=-1 时,n=-6. ∴23|6k b k b =+⎧⎨-=-+⎩,∴24k b =⎧⎨=-⎩,∴24y x =-(2)当 x<—1 或 0<x<3 时,一次函数的值大于反比例函数的值25.解:设彩纸的宽为x cm ,根据题意,得(302)(202)23020x x ++=⨯⨯, 整理,得2251500x x +-=,解之,得15x =,230x =-(不合题意,舍去), 答:彩纸的宽为5cm .26. AC=433S 梯形=1227.证明∠CFD=∠CBE ,则BE=DF28.按行排序29.画图略(1)180°(2)360°(3)540°;720°;规律:n 边形内角和为(n-2)·180°(n ≥3) 30.0.075 cm。
2023年浙江省金华市中考数学竞赛试卷附解析
![2023年浙江省金华市中考数学竞赛试卷附解析](https://img.taocdn.com/s3/m/7bca63c5c9d376eeaeaad1f34693daef5ff71366.png)
2023年浙江省金华市中考数学竞赛试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是( ). A .4πB .8πC .4D .82.二次函数28y x x c =-+的最小值是( ) A .4B .8C .-4D .16 3.下列函数是反比例函数的是( ) D .A .y kx =-B .(0)x y kk=≠C .y =D .y =4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x +1)=1035 B .x (x -1)=1035×2 C .x (x -1)=1035D .2x (x +1)=10355.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)2y x =-;(5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个6.在△ABC 中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC 是等边三角形的有( ) A . ① B . ①② C . ①②③ D . ①②③④ 7.在下列长度的四根木棒中,能与4 cm ,9 cm 长的两根木棒钉成一个三角形的是( ) A .4 cmB .5 cmC .9cmD .13 cm8.下列多项式:①16x 5-x ;②(x-1)2-4(x-1)+4;③(x+1)4-4x (x+1)+4x 2;④-4x 2-1+4x ,分解因式后,结果含有相同因式的是( ) A .①④ B .②④C .③④D .②③ 9.38.33°可化为 ( )A .38°30′3″B .38°33′C .38°30′30″D .38°19′48″二、填空题10.若a= 3 cm ,2b= 1 cm ,则a :b= .11.如图,已知矩形ABCD 中()AD AB >,EF 经过对角线的交点O ,且分别交AD BC ,于E F ,,请你添加一个条件: ,使四边形EBFD 是菱形.12.如图,已知∠1=∠2=∠3,∠GFA=36°,∠ACB=60°,AQ 平分∠FAC ,则∠HAQ= .13.关于x 的一元二次方程()423=-x x 的一般形式是_____ _____.14.已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是 .15.为了了解某种新药的治疗效果,研究人员从使用该药的患者中抽取了50名进行调查, 在这个问题中,总体是 ,样本是 ,个体是 . 16.如图,已知 AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C = .17.如图所示,△ABC 中,BC=16 cm ,AB ,AC 边上的中垂线分别交BC 于E ,F ,则△AEF 的周长是 cm .18.在下列横线上填写正确的理由.(1)若∠A+∠B=90°,∠A+∠C=90°,则∠B=∠C ,理由是 .(2)若∠A+∠B=180°,∠C+∠D=180°,且∠A=∠C ,则∠B=∠D ,理由是 . (3)若∠l+∠2=180°,∠2+∠3=180°,∠1+∠4=90°,∠3+∠5=90°,则 ①∠l=∠3,理由是 ; ②∠4=∠5,理由是 .(4)如图,已知∠AOC 和∠B0D 都是直角,则∠AOD=∠BOC ,理由是 .19.已知23x -和14x +互为相反数,则x = . 20.如图,已知圆的半径为 R ,正方形的边长为 a . (1)表示出阴影部分的面积S= ;(2)当R=20 cm,a=8 cm,阴影部分面积S= cm2.21.大于-3 且小于 4 的整数有,并将它们表示在数轴上.三、解答题22.如图,已知 AB 是⊙O的直径,BC⊙O于点B,AC 交⊙O于点 D,AC=10,BC=6,求AB 与 CD 的长.23.已知:如图所示,某商场设立了一个可以自由转动的转盘,并规定顾客购物10元以上就能获得一次转动转盘的机会. 转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率m n(2)请估计,当 n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角大约是多少(精确到 1°)?24.下列各题中,哪些变量之间的关系是反比例函数关系?哪些是正比例函数关系?哪些既不是正比例函数又不是反比例函数?(1)当速度v一定时,路程 s 与时间t之间的关系;(2)当路程s一定时,速度 v 与时间 t 之间的关系;(3)当被减数 a一定时,减数b与差c 之间的关系(4)圆面积S与半径r 之间的关系.25.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲802808802800795801798797798799乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量;(2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?26.画出如图所示几何体的主视图、左视图和俯视图.27.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?28.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.04L/km,则这次养护共耗油多少升?29.第一次从外面向仓库运进化肥 48. 5 t,第二次从仓库里运出化肥 54 t,结果怎样?试列出有理教运算的算式,通过计算作答.30.计算:(1)105-++;(2)1 62 -÷.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.C5.B6.C7.C8.A9.D二、填空题10.6. 111.EF⊥BD(答案不惟一)12.12°13.-x14.32=-x64y=6x-215.该种新药的治疗效果,50名使用该药的患者的治疗效果,每名使用该药的患者的治疗效果16.120°17.1618.(4)同角的余角相等(1)同角的余角相等 (2)等角的补角相等 (3)①同角的补角相等②等角的余角相等19.120.3π-(1)22- (2)40064nR a21.-2,-1,0,1,2,3,图略三、解答题22.连结 BD.∵BC是⊙O的切线,∴∠ABC= 90°.在 Rt△ABC 中,AC=10,BC=6由勾股定理可得AB=8,又∵AB 是直径,∠ADB= 90°,由AC BD AB BC⋅=⋅得BD=4.8,在 Rt△BDC 中,222=-,∴CD=3.6.CD BC BD23.(1)见表格:转动转盘的次数n1001502005008001000(2)随看频数的增大,频率接近于 0.70;(3)当频数很大时,频率约等于事件的概率,即获得铅笔的概率约0.70; (4)圆心角应是003600.7252⨯≈.24.(1) s vt =,当v 一定时,s 与t 成正比例函数关系; (2)sv t=, 当s 一定时,v 与 t 成反比例函数关系; (3 )b=a-c , 当a 一定时,b 与 c 既不是正比例函数关系也不是反此例函数关系; (4)2s r π=,S 与r 既不是正比例函数关系也不是反比例函数关系.25.(1)800x =甲kg ,796.5x =乙kg ;(2)甲的产量较为稳定;(3)甲种早稻较为优良26.27.略28.(1)在出发点的向东方向,距出发点15千米;(2)3.88升29.运出5. 5 t30.(1)15;(2)12落在“铅笔”的次数m 68 111 136 345 564 701 落在“铅笔”的频率mn0.68 0.740.680.690.7050.701。
浙江省初中数学竞赛试题(配答案)
![浙江省初中数学竞赛试题(配答案)](https://img.taocdn.com/s3/m/0bf181d5f90f76c661371a4f.png)
3.如图,AB是半圆的直径,弦AD,BC相交于P,已知∠DPB=60°,D是弧BC的中点,则tan∠ADC等于( )
A.B.2C. D.
4.抛物线 的图象与x轴一个交点的横坐标是P,那么该抛物线的顶点坐标是( )
A.(0,-2)B. C. D.
A. B. C. D.
二、填空题(共6小题,每小题5分,满分30分)
9.若a是一个完全平方数,则比a大的最小完全平方数是。
10.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为。
11.在锐角三角形ABC中,∠A=50°,AB>BC,则∠B的取值范围是。
12.设正△ABC的边长为a,将△ABC绕它的中心(正三三角形外接圆的圆心)旋转60°得到对应的△A′B′C′,则A,B′两点间的距离等于。
浙江省初中数学竞赛试题
一、选择题(共8小题,每小题5分,满分40分。以下每小题均给出了代号为A、B、C、C的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分)
1.函数y= 图象的大致形状是( )
A B C D
2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。如果设老王步行的速度为x米/分,则老王步行的速度范围是( )
18.已知抛物线 的顶点为A,抛物线 的顶点B在y轴上,且抛物线 关于P(1,3)成中心对称。
⑴当a=1时,求 的解析式和m的值;
⑵设 与x轴正半轴的交点是C,当△ABC为等腰三角形时,求a的值。
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)
浙江省慈溪市区域性七年级数学竞赛试卷(含答案)浙教版
![浙江省慈溪市区域性七年级数学竞赛试卷(含答案)浙教版](https://img.taocdn.com/s3/m/f1b6363755270722192ef7d1.png)
七年级(下)数学竞赛试题(5月13日下午1:00——3:00 满分120分 可使用函数型计算器) 一、选择题(每小题4分,共40分)1、如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别从A 、B 两地沿AC 、BC 同时出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A 、小明骑车的速度快B 、小亮的骑车速度快C 、两人一样快D 、因为不知道公路的长度,所以无法判断他们速度的快慢2、把4本两两不同的书全部分给甲、乙两个人,且每人至少分到一本书,则所有不同的的分配方法有( )A 、10B 、12C 、14D 、16 3、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为 ( )A 、 5B 、 4C 、3D 、 2 4、方程x +y +z =7的正整数解有( )A 、10组B 、12组C 、15组D 、16组5、有如下四个命题:①两个符号相反的分数之间至少有一个正整数; ②两个符号相反的分数之间至少有一个负整数; ③两个符号相反的分数之间至少有一个整数; ④两个符号相反的分数之间至少有一个有理数. 其中真命题的个数为( ) A 、1 B 、2 C 、3 D 、46、已知,,,a b c d 都是整数,x a b b c c d d a =-+-+-+-,那么( ) A 、x 一定是奇数 B 、x 一定是偶数 C 、仅当,,,a b c d 同奇或同偶时, x 是偶数 D 、x 的奇偶性不能确定7、如图,在ABC 中,已知AB=AC ,点D 、E 分别在AC 、AB 上,且BD=BC ,AD=DE=EB ,那么A ∠的度数是( )A 、30°B 、45°C 、35°D 、60°●● ▲■●■▲●▲?(1) (2)(3)学校 姓名 班级 学号----------------------------装--------------------------------------订--------------------------------线-----------------------------------------------CD图78、如图1,在ΔABC 中,AB=AC,∠ABC=40O ,BD 是∠ABC 的平分线,延长BD 至E,使DE=AD,则∠ECA 的度数为( )A 、30OB 、35OC 、40OD 、45O9、 架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( )A 、32 B 、31 C 、21 D 、6110、如图,“回”字形的道路宽为1米,整个“回”字形的长为8米,宽为7米,…个人从入口点A 沿着道路中央走到终点B ,他共走了( ).A 、55米B 、55.5米C 、56米D 、56.5米二、填空题(每小题4分,共40分)11、已知5,3a b ==,且a b <,则23a b -=12、等腰三角形的一个外角为100°,那么它的底角为 13、学校跑道最内侧由两个直径42米的半圆和直跑道组成,最内侧跑道一圈正好400米,每条跑道宽1.2米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D C
浙江省初中数学竞赛试题
一、 选择题(共8小题,每小题5分,满分40分。
以下每小题均给出了代号为A 、B 、C 、 C 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填在题后的括号里,不填、多填或错填均得零分) 1.函数y =1
x
图象的大致形状是( )
A B C
D
2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。
如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )
A .70≤x ≤87.5
B .70≤x 或x ≥87.5
C .x ≤70
D .x ≥87.5
3.如图,AB 是半圆的直径,弦AD ,BC 相交于P ,已知∠DPB =
y
x
O
y
x
O
y
x
O
y
x
O
D C B
A
60°,D 是弧BC 的中点,则tan ∠ADC 等于( ) A .12
B .2
C 3
D .
33
4.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是( )
A .(0,-2)
B .19,2
4⎛⎫- ⎪⎝⎭
C .19,24⎛⎫- ⎪⎝⎭
D .19,2
4⎛⎫-- ⎪⎝⎭
5.如图,△ABC 中,AB =AC ,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( ) A .
522 B .52
3
C .352-
D .353-
6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点
恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有( )
A .6条
B .7条
C .8条
D .无数条
7.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++= 的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方
21
35
1
3
程至少有一个整数根的a ,b ,c ( )
A .不存在
B .有一组
C .有两组
D .多于两组 8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。
按照这样的规定,每掷一次该小立方体,就得到平面
内的一个点的坐标。
已知小明前再次搠得的两个点能确定一条直线l ,且这条直线l 经过点P (4,7),那么他第三次掷得的点也在直线l 上的概率是( )
A .2
3
B .12
C .13
D .16
二、填空题(共6小题,每小题5分,满分30分)
9.若a 是一个完全平方数,则比a 大的最小完全平方数是 。
10.按如图所示,把一张边长超过10的正方形纸片剪成5个部分,则中间小正方形(阴影部分)的周长为 。
5
5
5
45︒
45︒
45︒
5
45︒
11.在锐角三角形ABC 中,∠A =50°,AB >BC ,则∠B 的取值范围是 。
12.设正△ABC 的边长为a ,将△ABC 绕它的中心(正三三角形外接圆的圆心)旋转60°得到对应的△A ′B ′C ′,则A ,B ′两点间的距离等于 。
13.如图,在平面直角坐标系内放置一个直角梯形AOCD ,已知AD =3,AO =8,OC =5,若点
P
在梯形内且,PAD
POC
PAO
PCD
S
S
S
S
==,那么点P 的坐标
是 。
14.已知A 、B 、C 、D 四人的体重均为整数千克,其中A 最轻,其次是B ,C ,D ,以他们中的每两人为一组称得的体重如下(单位:千克):
45, 49, 54, 60, 64 则D 的体重为 千克。
三、解答题(共4题,分值依次为12分、12分、12分和14分,
8
3
5y x
O
D
C A
满分50分)
15.已知211,2,84b b a a a a a
-=+=-求的值。
16.现在a 根长度相同的火柴棒,按如图1摆放时可摆成m 个正方形,按如图2摆放时可摆成2n 个正方形。
图 3
图 1
............
......
......
............图 2
⑴用含n 的代数式表示m ;
⑵当这a 根火柴棒还能摆成如图3所示的形状时,求a 的最小值。
17.如图,已知直径与等边三角形ABC 的高相等的圆AB 和BC 边相切于点D 和E ,与AC 边相交于点F 和G ,求∠DEF 的度数。
18.已知抛物线
()221:2210,0l y ax amx am m a m =-+++>>的顶点为A ,抛物线2l 的顶
点B 在y 轴上,且抛物线12l l 和关于P (1,3)成中心对称。
⑴当a =1时,求2l 的解析式和m 的值;
⑵设2l 与x 轴正半轴的交点是C ,当△ABC 为等腰三角形时,求a 的值。