高中数学人教新课标A版必修3 第二章 统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》示范课课件_18
归纳:
1.求样本数据的线性回归方程,可按下列步骤进行:
第一步,计算平均数 x , y
n
n
第二步,求和 xi yi , xi xi yi nx y
第三步,计算 b i1 n
i1 n
,a y bx
(xi x)2
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
审题指导 建立直角坐标系 ―描 点―→ 画散点图 ―判 断―→ 相关关系 ―→ 求回归系数 ―→ 写回归方程
[规范解答] (1)散点图如图所示:
(2)由散点图可以看出,这些点大致分布在一条直线的附近,可 求回归方程.由表中数据,用计算器计算得 x =3+4+4 5+6= 4.5(吨), y =2.5+3+4 4+4.5=3.5(吨),
思考1:对某一个人来说,他的体内脂肪含 量不一定随年龄增长而增加或减少,但是如 果把很多个体放在一起,就可能表现出一定 的规律性.观察上表中的数据,大体上看, 随着年龄的增加,人体脂肪含量怎样变化?
思考2:为了确定人体脂肪含量和年龄之间的更明确的关
系,我们需要对数据进行分析,通过作图可以对两个变量
(2)散点图 A、定义;B、正相关、负相关。
3、回归直线方程
(1)回归直线:观察散点图的特征,如果各点大致分
布在一条直线的附近,就称两个变量之间具有线性相关的
关系,这条直线叫做回归直线。
(2)最小二乘法
y bx a
n
n
b=
i= 1(xi -x)(yi -y)
n
-5
156
1、画出散点图;
0
150 2、从散点图中发现气温与热饮
4 7
132 128
高中数学第二章统计23变量间的相关关系课件新人教A版必修3(2)
总费用y/万元 2.2 3.8 5.5 6.5 7.0
(1)根据表格数据,画出散点图;
(2)求线性回归方程y^=b^x+a^的系数a^,b^; (3)估计使用年限为 10 年时,车的使用总费用是多少?
【解题探究】(1)利用描点法作出散点图; (2)把数据代入公式,可得回归方程的系数; (3)把x=10代入回归方程得y值,即为总费用的估计 值.
【答案】A 【解析】在A中,若b确定,则a,b,c都是常数,Δ= b2-4ac也就唯一确定了,因此,这两者之间是确定性的函数 关系;一般来说,光照时间越长,果树亩产量越高;降雪量越 大,交通事故发生率越高;施肥量越多,粮食亩产量越高,所 以B,C,D是相关关系.故选A.
两个变量x与y相关关系的判断方法 1.散点图法:通过散点图,观察它们的分布是否存在 一定规律,直观地判断.如果发现点的分布从整体上看大致在 一条直线附近,那么这两个变量就是线性相关的,注意不要受 个别点的位置的影响. 2.表格、关系式法:结合表格或关系式进行判断. 3.经验法:借助积累的经验进行分析判断.
变量之间的相关关系的判断
【 例 1】 下 列 变 量 之 间 的 关 系 不 是 相 关 关 系 的 是 ()
A.二次函数y=ax2+bx+c中,a,c是已知常数,取b 为自变量,因变量是判别式Δ=b2-4ac
B.光照时间和果树亩产量 C.降雪量和交通事故发生率 D.每亩田施肥量和粮食亩产量
【解题探究】判断两个变量之间具有相关关系的关键是 什么?
①反映^y与 x 之间的函数关系;
②反映 y 与 x 之间的函数关系;
③表示^y与 x 之间的不确定关系;
④表示最接近 y 与 x 之间真实关系的一条直线.
A.①②
人教A版高中数学必修三第二章第3节 2.3.2两个变量的线性相关 课件(共28张PPT)
【学习目标】 1、理解线性相关、正相关、负相关、散点图; 2、理清线性相关和散点图之间的关系;(定性) 3、在两个变量具有线性相关关系时,会作出线
性直线。(定量) 【学法指导】
在解决统计问题的过程中,系统地经历数据 收集和处理的全过程,进一步体会用样本估计总 体的思想,理解数形结合的数学思想和回归分析 的统计思想。
【探究新知】
在一次对人体脂肪含量和年龄关系的研究中,研究人员获 得了一组样本数据:
.
根据上述数据,你能分析人体的脂肪含量与年龄 之间有怎样的关系吗?
【小组合作】
探究一 收集数据 (1)回忆前面学过的统计知识,表中数据可能是如何收集到的?举例说明 (2)如何理解23岁对应的脂肪百分比为9.5? 探究二 分析数据 (1)统计学中常用什么方法分析收集到的数据? (2)高一在函数应用章节,如何根据已知数据预测其它数据? (3)你发现年龄与脂肪含量这两个变量之间是什么关系?怎样发现的? 探究三 寻找回归直线(定量) (1)回归直线一定过样本点的中心吗?为什么? (2)为什么要找回归直线?找到这条直线是否说明年龄与脂肪含量是函数关系? (3)假如我45岁,我的脂肪含量大约是多少?是表中的27.5吗? (4)如何具体求出这个回归直线的方程呢?回归直线与散点图中各点的位置应
人体内脂肪含量与年龄之间是相关关系
在一定年龄段内,随着年龄的增长,人体内的脂肪 含量会增加,但人体内的脂肪含量还与饮食习惯、体 育锻炼等有关,可能还与个人的先天体质有关。
对某一个人来说,他的体内脂肪含量不一定随年龄 增长而增加或减少,但是如果把很多个体放在一起, 就可能表现出一定的规律性.
散点图:
——具有函数关系. 2.如果所有的样本点都落在某一函数曲线附近,那么这两个 变量之间有关系吗?关系确定吗?是什么关系? ——有关系,不确定,有相关关系。 3. 如果所有的样本点都落在某一直线附近,变量之间就有线 性相关关系。线性相关又分正相关和负相关。(呈条形状) 4.如果散点图的点几乎没有什么规则,则这两个变量之间 关系又如何? ——没有相关关系
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_17
《变量间的相关关系》教学设计(2课时)一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算机基础,主要是电子表格的使用。
教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
结合教材特点及学情,特制定三维教学目标如下:二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及2回归方程系数公式的推导过程,利用电子表格求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力,引出利用计算机等现代化教学工具的必要性。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
利用计算机让学生动手操作,合作交流激发学生的学习兴趣。
三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想借助电子表格求出回归方程。
教学内容的难点:对最小二乘法的数学思想和回归方程的理解教学实施过程中的难点:根据给出的线性回归方程的系数公式建立线性回归方程。
四、教学媒体设计本节课涉及大量数据计算及分析,用传统方法很难突破,故我主要采用电子表格和几何画板,通过学生动手操作、教师动画演示、师生合作交流来突出重点、突破难点。
学生学习效果有明显提高。
五、教学设计(具体如下表)(一)、创设情境导入新课1、相关关系的理解师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?让学生举例,教师总结如:生:不是。
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_2
§2.3变量间的相关关系1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。
2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系3.两个变量具有线性相关关系时,会在数点图中作出线性回归直线,会用线性回归进行预测。
请同学们阅读教材P 84—P 91内容1.如果散点图中的分布从整体上看我们就称这两个变量之间具有 __这条直线中2.求回归方程的关键是如何用数学的方法来刻画“ ”如何实现这一目标呢?3.小结求回归方程的一般步骤:第一步,计算平均数______________.第二步,求和____________________.第三步,计算____________________.第四步,写出回归方程 ______________.4.利用计算器或计算机,如何求回归方程?5.线性回归直线a x b y +=的几何意义是:x 每增加一个单位,y 就相应 或 个单位,而不是 倍。
二、新课导学※ 探索新知新知1:线性相关如果散点图中的点分布从整体上看大致在一条直线附近,则这两个变量之间具有线性相关关系。
新知2:回归直线两个变量具有线性相关关系时,它们的散点图在一条直线附近,则这条直线称为回归直线。
新知3:回归直线方程分析与求法:分析:一是所求的回归直线方程只是“大体上”上接近了回归方程而且方程不唯一,可信度不高:二是没有从几何直观和代数精确上对回归直线作刻画,不能作合理的可靠的数学解释。
求回归方程的一般步骤:第一步,计算平均数 第二步,求和;,y x ;,∑∑==n i i n i i i x y x 121第三步,计算第四步,写出回归方程※ 典型例题例1.下列两个变量之间的关系,哪个不是函数关系 ( )A .角度和它的余弦值B .正方形的边长和面积C .正n 边形的边数和内角度数之和D .人的年龄与身高例2.下列两个变量中具有相关关系的是( )A .正方形的体积与边长B .匀速行驶的车辆的行驶距离与时间C .人的身高与体重D .人的身高与视力例 3.由一组10个数据(x i ,y i )算得 则b = ,a = ,回归方程为_____________________.※ 动手试试练1.下列那些变量是相关关系( )A.出租车与行驶里程B.房屋面积与房屋造价C.身高与体重D.铁球的体积大小与其体重练2.工人月工资y 与劳动生产率x 变化的回归方程y=50+80x ,下列判断正确的是( ) ①劳动生产率为1千克每小时时,工资为130元.②劳动生产率提高1千克每小时时,工资提高80元.③劳动生产率提高1千克每小时时,工资提高130元.④劳动生产率为2千克每小时时,工资为210元.A .①②B .①②④C. ②④ D . ①②③④练3.下列说法中不正确的是( )A.两个变量具有线性相关关系时,求出的回归方程才有意义;)())((1221121x b y a x n x y x n y x x x y y x x b n i i n i i i n i ini i i -=--=---=∑∑∑∑====,.a bx y +=∧,10,5==y x ,292,583121==∑∑==ni i n i i i x y xB.散点图能直观的反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.回归直线y=ax+b 一定经过(i x ,i y )(i=1,2,…,n)中的某些点三、总结提升1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。
人教A版高中数学必修三课件:2.3变量间的相关关系 (2).pptx
i 1
i 1
b 112.3 5 45 12.3 1.23 90 5 42 10
a y bx 5 1.23 4 0.08
(2)估计使用年限是10年时,维修费用估计是多少?
(2)回归直线方程是 yˆ 1.23x 0.08.
当x 10时, yˆ 1.2310 0.08 12.38 12.4(万元)
即,函数关系是一种因果关系,而相关关系不一定是因 果关系,也可能是随机关系.
(2)函数关系与相关关系之间有着密切联系:
在一定的条件下可以相互转化.而对于具有线性相关关系 的两个变量来说,当求得其回归直线方程后,又可以用一
种确定性的关系对这两个变量间的取值进行估计:
探究下面变量间的关系:
1.球的体积与该球的半径; 2.粮食的产量与施肥量; 3.小麦的亩产量与光照; 4.匀速行驶车辆的行驶距离与时间;
的实践与研究,已经找到了计算回归方程的斜率与截距的一
般公式:
n
n
(xi x )( yi y)
xi yi nx y
b i1 n
(xi x )2
i 1
i1 n
,
xi2 nx 2
i 1
a y bx
其中,b是回归方程的斜率,a是截距
回归方程为: yˆ bx a
以上公式的推导较复杂,故不作推导,但它的原理较为 简单:即各点到该直线的距离的平方和最小,这一方法 叫最小二乘法。(书本P88~89)
15
10
5
年龄
0 20 25 30 35 40 45 50 55 60 65
方. 案2、在图中选两点作直线,使直线两侧的点的
个数基本相同。
脂肪含量 40
35 30
25 20 15 10
人教A版高中数学必修三课件2.3.2变量间的相关关系(2).ppt
“选项”,选定“显示公式”,最后单击“确定”。
练习:P86第三题
小结:
(1)判断变量之间有无相关关系,简便方 法就是画散点图。
(2)当数字少时,可用人工或计算器,求 回归方程;当数字多时,用Excel求回归方 程。
(3)利用回归方程,可以进行预测。
三、利用回归直线方程对总体进行估计
1
Y(min)
100 200 210 185 155 135 170 205 235 12 5
(1)作出散点图,找规律。
(2)求回归直线方程。
(3)预测当钢水含碳量为160时,应冶炼多少分钟?
解: (1) 作散点图 从图可以看出,各点分布在一条直线附近,即它们线形相关.
(2)列出下表,并计算
画图3
例5 炼钢是一个氧化降碳的过程,钢水含碳量的多少直 接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间 的关系。如果已测得炉料熔化完毕时,钢水的含碳量X与冶 炼时间y(从炉料熔化完毕到出刚的时间)的一列数据,如 下表所示:
x(0.01%) 104 180 190 177 147 134 150 191 204 12
10
xi y i 10x y
b
i 1 10
1.267
x
2 i
10
x
2
i 1
a y bx 30.51.
所以回归直线的方程为yˆ=1.267x-30.51
(3)当x=160时, yˆ 1.267.160-30.51=172
0005500505
x 159.8, y 172,
x y x y 10
10
人教A版高中数学必修三2.3.2变量间的相关关系(二)
2.3.2 两个变量的线性相关(二)
学习目标
1.理解两个变量线性相关的概念; 2.了解用最小二乘法建立线性回归方程的思想,会用给出的公式建立回 归方程; 3.理解回归直线与观测数据的关系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 线性相关 思考 回顾上一节你看到的散点图,大致呈哪些形状? 答案 饼状,曲线状,直线状. 如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量 之间具有线性相关关系. 两个变量线性相关是相关关系的一种.
解析答案
跟踪训练3 有人统计了同一个省的6个城市某一年的人均国民生产总值(即 人均GDP)和这一年各城市患白血病的儿童数,如下表:
人均GDP/万元
10
8
6
4
3
1
患白血病的儿童数/人 351 312 207 175 132 180
(1)画出散点图,并判定这两个变量是否具有线性相关关系; 解 散点图如图: 根据散点图可以看出,在6个点中,虽然第一个点 离这条直线较远,但其余5个点大致分布在这条直 线的附近,所以这两个变量具有线性相关关系.
►Living without an aim is like sailing without a compass. 生活没有目标,犹如航海没有罗盘。
►A man is not old as long as he is seeking something. A man is not old until regrets take the place of dreams. 只要一个人还有追求,他就没有老。直到后悔取代了梦想,一个人才算老。
(1)请判断机动车辆数与交通事故数之间是否具有线性相关关系,如果 不具有线性相关关系,说明理由; 解 在平面直角坐标系中画出数据的散点图, 如图. 直观判断散点在一条直线附近,故具有线性
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_3
变量间的相关关系一、教材分析学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。
教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。
为以后更好地研究选修2-3第三章3.2节回归分析思想的应用奠定基础。
二、教学目标1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。
2 、过程与方法:①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。
②通过动手操作培养学生观察、分析、比较和归纳能力。
3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。
三、教学重点、难点重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。
难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。
四、教学设计)(一)、创设情境导入新课1、相关关系的理解我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。
生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。
这就是我们这节课要共同探讨的内容————变量间的相关关系。
生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。
通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。
让学生体会研究变量之间相关关系的重要性。
感受数学来源于生活。
(二)、初步探索,直观感知1、根据样本数据作出散点图,直观感知变量之间的相关关系。
高中数学新课标人教A版必修3:变量间的相关关系与统计案例 课件
3.通过对典型案例的探究,了
解独立性检验(只要求2×2列
联表)Байду номын сангаас基本思想、方法及初
步应用
核心素养
1.数据分析. 2.数学运算
目录
01 知 识 逐 点 夯 实 重点准 逐点清 结论要牢记
02 考 点 分 类 突 破 理解透 规律明 变化究其本
03 课 时 检 测
课前自修 课堂讲练
01
知识逐点夯实
重点准 逐点清 结论要牢记 课前自修
2.独立性检验
利用随机变量K2(也可表示为χ2)的观测值k=
nad-bc2 a+bc+da+cb+d
(其中n=a+b+c+d为样本容量)来判断
“两个变量有关系”的方法称为独立性检验.
[提醒] 独立性检验是对两个变量有关系的可信程度的判断, 而不是对其是否有关系的判断.
[逐点清]
3.(易错题)为调查中学生近视情况,测得某校男生150名中有80名
与吸烟有关”.故选C.
答案:C
[记结论·提速度] [记结论]
1.求解回归方程的关键是确定回归系数^a,^b,应充分利用回 归直线过样本中心点( x , y ).
2.根据K2的值可以判断两个分类变量有关的可信程度,若K2 越大,则两分类变量有关的把握越大.
3.根据回归方程计算的 ^y 值,仅是一个预报值,不是真实发 生的值.
=4.453,经查阅临界值表知P(K2≥3.841)≈0.05,现给出四个
结论,其中正确的是
()
A.在100个吸烟的人中约有95个人患肺病
B.若某人吸烟,那么他有95%的可能性患肺病
C.有95%的把握认为“患肺病与吸烟有关”
D.只有5%的把握认为“患肺病与吸烟有关”
人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》示范课课件_4
解:(1)散点图如图示:
(2)由题意得: x 9, y 4 4 xi2 x12 x22 x32 x42 344 i 1 4 xi yi x1 y1 x2 y2 x3 y3 x4 y4 158 i 1
b 0.7, a y bx 2.3
回归方程为: y 0.7 x 2.3
(3)由回归方程预测,
y 0.7 3 2.3 4
即记忆力为9的同学的判断力约为4.
利用计算机,可以方便的求出回归方程.
归纳小结
1.求样本数据的回归方程,可按下列步骤进行: 第一步,计算平均数 x , y ;
n
n
第二步,求和 xiyi, x2i ;
二.两个变量的线性相关: 1.散点图:在平面直角坐标系中,表示具有相关关系 的两个变量的一组数据图形,称为散点图.
2.正相关:在散点图中,点散布在从左下角到右上角的区域,对于两 个变量的这种相关关系,我们将它称为正相关。
3.负相关:在散点图中,点散布在从左上角到右下角的区域,对于两 个变量的这种相关关系,我们将它称为负相关。
4
2
3
5
49 26 39 54
根据上表可得回归方程 y bx a 中的 b 为 9.4,据此
模型预报广告费用为 6 万元时销售额为 65.5 万元.
解:
x 3.5,
y 42, a y bx 9.1
回归方程为:
y 9.4x 9.1
例(3):有一个同学家开了一个小卖部,他为了研究气温对热饮销售 的影响,经过统计,得到一个卖出的热饮杯数与当天气温的 对比表:
两个变量的线性相关(2) 第 二 章 : 统 计
一.变量之间的相关关系: 1.变量间相关关系的定义:自变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系,叫做相关关系.
高中数学 第二章 统计 2.3.1-2.3.2 变量之间的相关关系 两个变量的线性相关课件 新人教
A .1 B .1 C .1 D .1 1 6 8 4 2
35
【思路导引】利用回归直线方程必过样本点的中心求解.
【解析】选B.依题意可知样本点的中心为 ( 3 , ,3 )
48
则3
8
= 1×
3
+3
4
,a 解得
=a .
1 8Βιβλιοθήκη 36【拓展延伸】相关关系的强弱
(1)若相应于变量x的取值xi,变量y的观测值为yi(1≤i≤n),称r=
6
(2)你能举例说明你对正相关与负相关的理解吗? 提示:随自变量的变大(或变小),因变量也随之变大(或变小),这种带有随机性 的相关关系,我们称为正相关.例如,人年龄由小变大时,体内脂肪含量也由少 变多. 随自变量的变大(或变小),因变量却随之变小(或变大),这种带有随机性的相关 关系,我们称为负相关.例如,汽车越重,每消耗1 L汽油所行驶的平均路程就 越短.
n
n
x i2,
xi y,i
i1
i1
30
(5)代入公式计算
b ,a,公式为
n
x iyi n x y
b
i1
n
x
2 i
n
x
2
i1
,
a y b x .
(6)写出回归直线方程 = x+ .
yb a
31
【跟踪训练】 已知变量x,y有如下对应数据:
x1234 y1345
(1)作出散点图. (2)用最小二乘法求关于x,y的回归直线方程.
42
【思路导引】(1)以产量为横坐标,以生产能耗对应的测量值为纵坐标, 在平面直角坐标系内画散点图. (2)应用计算公式求得线性相关系数 bˆ , aˆ 的值. (3)实际上就是求当x=100时,对应的 yˆ 的值.
高中数学 第二章 统计 2.3 变量间的相关关系课件 新人教A版必修3
K12课件
3
2.回归直线的方程 (1)回归直线:如果散点图中点的分布从整体上看大致在一条直 线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回 归直线. (2)回归方程:回归直线对应的方程叫做回归直线的方程,简称 回归方程.
K12课件
4
(3)回归方程的求解过程.
K12课件
5
[化解疑难] (1)散点图的应用 ①散点图形象地体现了数据的密切程序,因此我们可以根据散 点图来判断两个变量有没有线性关系. ②从散点图上可以看出,如果变量之间存在着某种关系,这些 点会有一个大致的集中趋势.
K12课件
13
【解析】 (1)
题号
判断
原因分析
①
不是相关关系
身高与视力无关,不具有函数关系,也 不具有相关关系
②
不是函数关系,也 做自由落体的物体的质量与落地时间
不是相关关系
无关,不具有相关关系
③
相关关系
降雪量越大,交通事故发生率越高,不 确定性的关系
故填③.
K12课件
14
(2)以 x 轴为年平均气温,y 轴为年降雨量,可得相应的散点图, 如图所示:
K12课件
1
【课标要求】
1.理解两个变量的相关关系的概念. 2.会作散点图,并利用散点图判断两个变量之间是否具有相关 关系. 3.会求回归直线方程. 4.能利用回归方程由一个变量的变化去推测、估计另一个变量 的变化.
K12课件
2
自主学习 基础认识
1.两个变量的线性相关的有关概念 (1)散点图:将样本中 n 个数据点(xi,yi)(i=1,2,…,n)描在平 面直角坐标系中得到的图形. (2)正相关与负相关. ①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. (3)线性相关:散点图中的点如果分布在某条直线附近,我们就 可以得出结论:这两个变量之间具有线性相关关系. (4)回归分析:对具有相关关系的两个变量进行统计分析的方法 叫做回归分析.
【精品推荐】2019-2020学年高中数学人教A版必修3 第二章2.3 变量间的相关关系 课件(41张)
训练题 1.[2019·甘肃兰州一中高一月考]某中学的兴趣小组将在某座山测 得海拔、气压和沸点的六组数据绘制成散点图如图所示,则下列说 法错误的是 ( )
A.沸点与海拔成正相关 B.沸点与气压成正相关 C.沸点与海拔成负相关 D.气压与海拔、沸点与气压的相关性都很强
A 解析:由左图(题图)知气压随海拔的增加而减小,由右图(题 图)知沸点随气压的升高而升高,所以沸点与气压成正相关,沸点与 海拔成负相关,由于两个散点图中的点都成线性分布,所以气压与海 拔、沸点与气压的相关性都很强,故B、C、D正确,A错误.
【解】 (1)画散点图如图. 由图可知y与x具有线性相关关系.
(2)列表、计算:
i1
2
3
4
5
6
7
xi 10
20
30
40
50
60
70
yi 62
68
75
81
89
95
102
xiyi 620 1 360 2 250 3 240 4 450 5 700 7 140
10
10
x =55, y =91.7, xi2 =38 500, xiyi=55 950
例1 (1)下列关系中,属于相关关系的是
(填序号).
①正方形的边长与面积之间的关系;②农作物的产量与施肥量之间的
关系;③出租车费与行驶的里程;④降雪量与交通事故的发生率之间
的关系.
(2)某个男孩的年龄与身高的统计数据如下表所示.
年龄x(岁) 1
2
3
4
5
6
身高y(cm) 78
87
98 108 115 120
4
13 4
人教版高中数学 A版 必修三 第二章 《2.3.1 2.3.2变量间的相关关系》教学课件
据: 房屋面积x(m2)
115 110
80
135 105
销售价格y(万元)
24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图;
解 数据对应的散点图如图所示:
解析答案
(2)求回归方程,并在散点图中加上回归直线.
解析答案
类型三 回归方程的应用 例3 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响, 经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度/℃ -5 0 4 7 12 15 19 23 27 31 36
解析答案
返回
达标检测
12345
1.对于给定的两个变量的统计数据,下列说法正确的是( C ) A.都可以分析出两个变量的关系 B.都可以用一条直线近似地表示两者的关系 C.都可以作出散点图 D.都可以用确定的表达式表示两者的关系
答案
2.观察下列散点图,具有相关关系的是( D )
12345
A.①② C.②④
第二章 §2.3 变量间的相关关系
2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关(一)
学习目标
1.了解相关关系; 2.了解正相关,负相关的概念; 3.会作散点图,并能通过散点图判断两个变量之间是否具有相关关系.
问题导学
题型探究
达标检测
问题导学
新知探究 点点落实
知识点一 相关关系
思考 数学成绩y与学习数学所用时间t之间的关系,能否用函数关系刻画?
但381.15是对该城市人均GDP为12万元的情况下所作的一个估计,
该城市患白血病的儿童可能超过380人,也可能低于380人.
解析答案
返回
达标检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学人教新课标A版必修3 第二章统计 2.3变量间的相关关系(包括2.3.1变量间的相关关系,2.3.2两个变量的线性相关)B卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共7题;共14分)
1. (2分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:
根据统计资料,则()
A . 月收入的中位数是15,x与y有正线性相关关系
B . 月收入的中位数是17,x与y有负线性相关关系
C . 月收入的中位数是16,x与y有正线性相关关系
D . 月收入的中位数是16,x与y有负线性相关关系
2. (2分)若变量y与x之间的相关系数r=﹣0.9362,则变量y与x之间()
A . 不具有线性相关关系
B . 具有线性相关关系
C . 它们的线性相关关系还需要进一步确定
D . 不确定
3. (2分) (2016高一下·咸阳期末) 已知变量x,y之间的线性回归方程为y=﹣x+13,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是()
y6m32
A . 可以预测,当x=9时,y=4
B . 该回归直线必过点(9,4)
C . m=4
D . m=5
5. (2分) (2017高二上·钦州港月考) 有五组变量:
①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③某人每日吸烟量和其身体健康情况;④正方形的边长和面积;⑤汽车的重量和百公里耗油量;其中两个变量成正相关的是()
A . ①③
B . ②④
C . ②⑤
D . ④⑤
6. (2分) (2018高二下·黄陵期末) 对相关系数r ,下列说法正确的是()
A . 越大,线性相关程度越大
B . 越小,线性相关程度越大
C . 越大,线性相关程度越小,越接近0,线性相关程度越大
D . 且越接近1,线性相关程度越大,越接近0,线性相关程度越小
7. (2分)下列语句中所表示的事件中的因素不具有相关关系的是()
A . 瑞雪兆丰年
B . 上梁不正下梁歪
C . 吸烟有害健康
D . 喜鹊叫喜,乌鸦叫丧
二、单选题 (共1题;共2分)
8. (2分)若回归直线 =a+bx,b<0,则x与y之间的相关系数()
A . r=0
B . r=l
C . 0<r<1
D . ﹣1<r<0
三、填空题 (共3题;共3分)
9. (1分)如果两个变量的散点图由左下角到右上角则这两个变量成________相关.
11. (1分)在研究身高和体重的关系时,求得相关指数R2≈________,可以叙述为“身高解释了71%的体重变化”,而随机误差贡献了乘余的29%,所以身高对体重的效应比随机误差的效应大得多.
四、解答题 (共3题;共30分)
12. (10分) (2016高二下·海南期末) 海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:
x23456
y 2.2 3.8 5.5 6.57.0
(1)请根据上表提供的数据,用最小二乘法求出关于x的线性回归方程;
(2)我们把中(1)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型 =c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式 = ,.R2=1﹣, =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
13. (5分)某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
(1)写出2×2列联表;
(2)判断产品是否合格与设备改造是否有关.
参考答案一、选择题 (共7题;共14分)
1-1、
2-1、
3-1、
5-1、
6-1、
7-1、答案:略
二、单选题 (共1题;共2分)
8-1、
三、填空题 (共3题;共3分)
9-1、
11-1、
四、解答题 (共3题;共30分)
12-1、
12-2、13-1、。